
EUROGRAPHICS 2014 / B. Lévy and J. Kautz
(Guest Editors)

Volume 33 (2014), Number 2

On-the-fly Generation and Rendering
of Infinite Cities on the GPU

Markus Steinberger1, Michael Kenzel1, Bernhard Kainz1, Peter Wonka2, and Dieter Schmalstieg1

1Graz University of Technology, Austria
2King Abdullah University of Science and Technology, Saudi Arabia

Figure 1: Infinite cities with highly detailed, context-sensitive buildings can be generated in real-time on the GPU using a parallel
shape grammar. The visible 28km2 of the city contain up to 47000 buildings. In full detail, these buildings would expand to
240 million rules, producing 2 billion triangles. Generating an initial view with adaptive level of detail (7 million triangles) from
scratch takes 500ms. Exploiting frame-to-frame coherence, we update the geometry for successive frames in 50ms on a standard
PC, even if the viewer moves at supersonic speed.

Abstract

In this paper, we present a new approach for shape-grammar-based generation and rendering of huge cities in
real-time on the graphics processing unit (GPU). Traditional approaches rely on evaluating a shape grammar and
storing the geometry produced as a preprocessing step. During rendering, the pregenerated data is then streamed
to the GPU. By interweaving generation and rendering, we overcome the problems and limitations of streaming
pregenerated data. Using our methods of visibility pruning and adaptive level of detail, we are able to dynamically
generate only the geometry needed to render the current view in real-time directly on the GPU. We also present
a robust and efficient way to dynamically update a scene’s derivation tree and geometry, enabling us to exploit
frame-to-frame coherence. Our combined generation and rendering is significantly faster than all previous work.
For detailed scenes, we are capable of generating geometry more rapidly than even just copying pregenerated data
from main memory, enabling us to render cities with thousands of buildings at up to 100 frames per second, even
with the camera moving at supersonic speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

Open world games such as Batman: Arkham City and Grand
Theft Auto are massively successful, because they grant play-
ers absolute freedom in exploring huge, detailed virtual urban
environments. The traditional process of creating such envi-
ronments involves many person-years of work. A potential

remedy can be found in procedural modeling using shape
grammars. However, the process of generating a complete, de-
tailed city the size of Manhattan, which consists of more than
100000 buildings, can take many hours, producing billions of
polygons and consume terabytes of storage. Rebuilding such
a scene after parameter tweaking becomes a costly operation,

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

making rapid design iterations impossible. All these factors
limit the practical usefulness of the procedural approach for
large environments.

As the full-detail geometry of a huge environment does
not fit into memory as a whole, it must be streamed from ex-
ternal storage for rendering. The organization and streaming
of such data for real-time rendering is a complicated exer-
cise. It could be avoided by generating only the geometry
needed to render the current view on the fly [PB13]. Through
the methods presented in parallel generation of architecture
(PGA) [SKK∗14], high-performance evaluation of state of the
art shape grammars has become a possibility. Specifically de-
signed for efficient, massively parallel execution on a current
graphics processing unit (GPU), PGA can deliver grammar
derivations of large cities in less than a second. However, the
amount of geometry generated for huge cities by far exceeds
storage capabilities of consumer graphics hardware.

In this work, we show how to extend the PGA evaluation
scheme to significantly reduce the amount of geometry gen-
erated by taking into account visibility and different levels of
detail. In doing so, we not only benefit from faster rendering
due to less geometry, but can also greatly speed up grammar
evaluation itself. The challenge herein lies in the fact that
we cannot know in advance the exact shape of the geom-
etry which will eventually be generated. Additionally, our
evaluation scheme also takes advantage of frame-to-frame
coherence. As the view usually does not change abruptly be-
tween two frames, the derivation tree [Sip06] is largely the
same in successive frames. Instead of reevaluating the whole
tree in each frame, we update the tree computed in previous
frames. Robust and efficient handling of the dynamic data
structures required to implement such an update procedure in
a massively parallel environment is a nontrivial problem. In
summary, our contributions are:

• We propose the method of visibility pruning. Instead of
culling geometry after it has been generated, we are able
to conservatively skip evaluation of rules to keep such
geometry from being generated in the first place.
• We propose a method of handling adaptive level of detail

during massively parallel grammar evaluation on the GPU.
Considering the characteristics of shape grammar opera-
tors, surrogate terminals can automatically be prebaked
for a given rule set, and applied during evaluation to avoid
generation of visually insignificant detail.
• We present a method of dynamically adapting an existing

derivation tree to a new view during parallel rule evaluation
on the GPU. Using a voting scheme, our update mecha-
nism can prioritize important generation steps to ensure
grammar derivation meets real-time.
• We propose a dynamic vertex buffer and index buffer man-

agement scheme that allows geometry to be generated at
any point during grammar derivation on the GPU. This
buffer management forms the backbone for dynamically
updating geometry across multiple frames.

2. Related work

The foundations of this work were laid in parallel generation
of architecture (PGA) [SKK∗14]. PGA itself builds on our
CUDA-based implementation of the Softshell programming
model [SKK∗12] to schedule CGA shape [MWH∗06] gram-
mars on GPUs. Relevant prior work influencing CGA shape
include shape grammars [Sti75], set grammars [Sti82], L-
systems [PL90], and split operations for façades [WWSR03].
L-system evaluation has been implemented on the GPU
using shaders [LH04], multi pass rendering [Mag09], and
CUDA [LWW10]. Otherwise sequential evaluation can
also be parallelized for the GPU by running it for each
pixel [KBK13]. High computational redundancy, however,
keeps such approaches from achieving real-time perfor-
mance.

Geometry Streaming. The classical alternative to on-the-
fly evaluation of shape grammars is streaming pregenerated
geometry during rendering. To provide different levels of de-
tail (LOD), mesh simplification algorithms such as vertex
decimation [SZL92], progressive meshes [Hop96], or region
merging [RR96] can be applied. Exploiting the special prop-
erties of buildings, LOD algorithms can be fine-tuned for han-
dling cities [And05]. Mesh simplification can be performed
on the GPU [JWLL06], and also be optimized for fast expan-
sion on the GPU [HSH09]. Various out-of-core techniques
can be employed in streaming pregenerated data to the GPU,
including binary tree mesh partitioning [CGG∗03], tetrahedra
hierarchies [CGG∗04], or clustered hierarchies [YSGM04].
A GPU-friendly out-of-core streaming approach for massive
model rendering that also exploits frame-to-frame coherence
has recently been proposed by Peng et al. [PC12]. Their take
on resource management is less powerful than ours and re-
quires the entire geometry to be available beforehand.

Visibility Culling. Especially in urban scenes, visibility
culling can be of great benefit. If the geometry is static,
occluder fusion can be used to compute potentially visible
sets [WWS00]. Visibility can also be evaluated in parallel to
rendering [WWS01], or be integrated with view-dependent
rendering [ESSS01]. Using occlusion-switches [GSYM03],
culling can be distributed over multiple graphics cards. If a
voxel-based scene representation is available, a multiresolu-
tion framework can be built and used for culling [GM05].
The use of hardware occlusion queries has also been ex-
plored [BWPP04, MBW08]. All these approaches, however,
rely on scene geometry, which is not yet available during
grammar evaluation.

Generation of Cities. The generation of large urban envi-
ronments typically involves multiple stages [PM01]. Heavily
simplifying this model based on a fixed grid layout, a city of
infinite extent can be generated for a single view on the CPU
and rendered efficiently as shown by Greuter et al. [GPSL03].
Similar to our approach, their work depends on spatially-
dependent pseudo-random numbers to guarantee consistent

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

derivations when returning to the same location. To reduce the
number of derivations in each frame, buildings generated in
previous frames can be kept in a simple cache [CO11]. Such
a simple caching approach, however, cannot be employed in
our massively parallel, GPU-based evaluation scheme with
dynamic insertion of surrogate terminals. In the shader based
split grammar by Marvie et al. [MBG∗12], the use of a similar
cache is possible only because a limited set of LOD repre-
sentations is supported per building and visibility is left out
of consideration. Additionally, they restrict their grammar
to a simplified subset of CGA shape not supporting context-
sensitivity, and evaluation is already at least an order of mag-
nitude slower than PGA. An alternative way to incorporate
LOD into grammar-based city generation is to precompute
multiple versions of terminal shapes [BP13]. Because detail
reduction is applied to terminals only, deep derivation trees
will always generate large amounts of geometry. In contrast,
our LOD approach is able to insert surrogate terminals at any
point in the derivation tree.

3. Extended Evaluation Scheme

While PGA can generate a large, detailed city in a matter
of seconds, the complete city will exceed graphics memory
capacities. However, for rendering just a specific view, in-
visible geometry need not be generated and detail on distant
buildings can be reduced. We introduce the notion of visibil-
ity pruning, i. e., skipping the evaluation of rules that would
generate geometry not being visible, which conceptually cor-
responds to pruning the derivation tree. Note the difference
to visibility culling, where already generated geometry is
discarded. To remove as many shapes with as little effort
as possible, we first perform a coarse-grained view frustum
pruning, where we skip rules at the root of entire buildings
that would be constructed outside of the viewing frustum.
The remaining rules are then subject to occlusion pruning,
where we further skip rules that would generate geometry oc-
cluded by other elements of the scene. Derivation of rules that
could potentially be skipped must not start before pruning
has completed. In PGA, this kind of dependency is expressed
by introducing a phase boundary between pruning and further
derivation. Therefore, integrating these techniques into PGA
implies a minimum of three evaluation phases:

1. Building hulls. Initially, for each building, a bounding
volume called the hull is generated. Frustum pruning is
performed on these hulls.

2. Building specification. The hulls inside of the view frus-
tum are further expanded into a more detailed description
of each building used to decide occlusion. We call this
description the building specification.

3. Building construction. The rules remaining after occlu-
sion pruning are evaluated to generate the final geometry.
To stop evaluation of rules that would generate unneces-
sary detail, we adaptively insert suitable terminal shapes.

Figure 2 illustrates this pipeline, which is implemented
completely on the GPU. Note that our pipeline is not limited
to a three phase model, we only require a minimum of three
phases to resolve the dependencies introduced by frustum
pruning and occlusion pruning. Visibility pruning is exposed
to the rule designer by means of tagging. If, e. g., a shape
should serve as a building’s hull, the designer simply marks
the rule generating the shape with the hull tag.

3.1. City Layout

As a first step in generating our virtual world, a city layout
including streets and building lots needs to be created. We
base our city layout on a regular grid of tightly packed cells.
For each cell an initial rule is executed. This rule can either
trigger the generation of a road network followed by lot def-
initions, or load street layouts and building footprints from
GIS data. To ensure that derivations are consistent when re-
turning to a previously visited location, every cell is supplied
with its own pseudo-random seed, similar to the approach
by Greuter et al. [GPSL03]. In addition, a list of manual cus-
tomizations by a user could be stored for each cell. As a first,
simple measure to limit the amount of generated data, we
initiate rule derivation only for cells that are not further away
from the camera than a certain maximum viewing distance.

3.2. Building hulls

During the first phase, for each building, a hull must be gen-
erated. The hull is assumed to be a conservative bounding
volume—the building will not generate geometry outside
of its hull—and thus be suitable for view frustum pruning.
Building hulls can also be subject to queries in successive
phases, e. g., to determine the tallest building in an area, or
to avoid the placement of balconies directly facing nearby
buildings.

View frustum pruning If a shape has been tagged as a build-
ing hull, it is subject to view frustum pruning. We apply a
trivial reject test: If all vertices are outside of the same side of
the frustum, the building can be ignored. Although this test is
not highly accurate, its simplicity usually outweighs poten-
tial gains through more accuracy. Individual vertices can be
checked independently, making it a natural fit for the SIMD
architecture of the GPU. If a building hull is determined not
visible, the entire building is skipped for all following phases.

3.3. Building specification

During this phase, a building specification, i. e., a geometric
description of the building accurate enough to participate
in occlusion pruning, is constructed. This process is similar
to, and can be performed as part of, mass modeling. The
building specification can be an arbitrary composition of
shapes. Each shape is associated with the respective building
and designated an occluder type. A shape can either be an

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

city
layout

building
hulls

frustum
pruning

building
specification

occlusion
pruning

building
construction

Figure 2: Integrating visibility pruning into PGA requires at least three phases (red, green, blue). Starting from the city layout,
building hulls, which enclose individual buildings, are constructed and used for frustum pruning. The more detailed building
specifications generated in the next phase are used for occlusion pruning. During the final stage, the geometry is constructed.

opaque, enclosing, or hidden occluder. Opaque occluders are
expected to be entirely surrounded by solid geometry. Thus,
shapes that are fully occluded by an opaque occluder can be
discarded. Enclosing shapes form a boundary volume that
will contain visible shapes. They act as a refinement of the
building hull. Whenever part of an enclosing shape is visible,
we conservatively assume that all its contents are going to be
visible. Hidden shapes do not participate in occlusion pruning.
An example is given in Figure 3.

Figure 3: Different occluder types illustrated for a suburban
house: Boxes and wedges specify opaque parts of the building
(gray). An enclosing box (yellow) is added to cover the fence.
A hidden shape (red) marks the entrance way toward the door.

Occlusion pruning Especially in city walkthroughs, large
portions of the urban environment can be removed by occlu-
sion pruning. If an opaque or enclosing shape is determined
to be visible, the building is constructed. If no part of the
building specification is visible, the entire building is skipped.

The use of hardware occlusion queries would require ev-
ery single building to be rendered to determine visibility.
Since the efficiency of rule evaluation in PGA depends on
uninterrupted derivation, we use a custom, hierarchical depth
buffer [GK93] to perform occlusion pruning in software dur-
ing derivation. The top level of our low-resolution depth
buffer is divided into 8×8 tiles which are further subdivided
to a maximum depth of five levels. In this configuration, 64
threads can test all shapes of a building specification in paral-
lel, each thread traversing the subtree associated with a tile.
For depth testing and updating of the depth buffer, we exploit

the fact that all our shape primitives are convex. Depending
on the kind of shape, we either use the convex hull computed
from the projection of the shape’s vertices for the depth test
and update, or a circumscribed circle for the depth test and an
inscribed circle for the update to determine the tiles affected
by the shape. Convex hulls are computed using the parallel
Jarvis’ march algorithm [Jar73]. Both, opaque and enclosing
shapes, are tested against the depth buffer, but only opaque
shapes are written to the depth buffer.

For occlusion pruning to be effective, we have to ensure
that occluders are written to the depth buffer before occluded
shapes are tested. In a massively parallel derivation process,
this is not automatically the case. A strict ordering could
be enforced by introducing an additional evaluation phase.
However, every shape would then have to go through depth
buffering twice in addition to all the usual performance im-
plications of global synchronization. Instead, we rely on an
approximately optimal processing order by sorting building
hulls according to their distance to the camera before start-
ing the building specification phase. While some actually
occluded buildings might unnecessarily be generated due to
concurrent depth buffer updates, this less invasive approach
will overall perform better in practice.

3.4. Building construction

For all buildings remaining after visibility pruning, geometry
is finally generated. However, evaluating distant buildings to
full detail would be wasteful, as most detail will not be no-
ticeable and can cause aliasing artifacts. It would be desirable
to stop evaluation early, generating only as much detail as
visually important.

Procedural Level of Detail If further derivation would not
visually enhance the rendering, suitable terminal shapes
should be emitted to halt evaluation. We observe, that rule
input shapes usually approximate the shapes generated during
following derivations. Therefore, we propose to use automat-
ically generated surrogate terminals which are based upon

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

these input shapes. We identify three issues that have to be
addressed in such an approach: First, the input shape does not
always match the shapes produced in the derivation, e. g., if
balconies are constructed on the tiles of a façade, the shapes
do not even share the same dimensionality. Second, generated
shapes may depend on random variables, and thus, a single
surrogate cannot cover all possible instances. And third, there
might be probabilistic selection among alternative rules.

To address these problems, we propose the following pre-
processing approach to bake surrogate terminals for a given
grammar: We start by generating samples of many building
instances. We then traverse the derivation tree bottom up. To
decide under which circumstances a parent shape can be used
as surrogate for a rule, we render both, the detailed child
shapes and the parent shape from various angles and viewing
distances. For each viewing distance, we compute the average
per-pixel difference between the potential surrogate and the
detailed rule across all samples and viewing angles. We then
fit a sigmoid function model approximating this view depen-
dent per-pixel difference to allow efficient error estimation
during rendering.

tile−→ Border{randA : wall, randA : wall, randA : wall,

randB : wall, window}

(a) Surrogate texture generation for the tile rule

floor−→ RepeatX{2.2 : tile}

(b) Surrogate texture generation for the floor rule

Figure 4: Surrogate textures are generated from rule samples.
Depending on the operators used, an archetype can be derived
from the samples and rendered to generate a single texture
per rule. This texture can then be warped and repeated to
approximate any given instance of the rule (colored outline in
the combined texture). In this way, a single surrogate texture
can be used for different buildings as shown in Figure 5.

Similarly to image-based impostors [JWP05], surrogate
terminals can be enhanced by applying an automatically gen-
erated texture showing an image of the more detailed shapes.
By providing automatic texture generation and mapping for
each shape operator, arbitrary rules can be supported. At this
point, we are also able to deal with the influence of random-
ness on a shape’s appearance. Consider the example given
in Figure 4 and Figure 5: The tile rule splits a face into a
randomly sized border and a window. First, we generate a

(a) 88k triangles (full detail)

(b) 7440 triangles (c) 1312 (d) 268

Figure 5: Different views on two towers rendered with adap-
tive level of detail. Both buildings can use the same surrogate
texture, even though the window size and number of windows
per façade differ. Also note that context-sensitive rules do not
create windows where the parts of the left building meet.

number of samples for the tile rule. Knowing the characteris-
tics of the border operator, we can derive an archetype from
these samples and render it into a texture. This texture can
then be warped to approximate any given instance of the
rule. The floor rule example demonstrates the same strategy
applied to the repeat operator. Again, we sample the space
of rule products and generate a texture from an archetype,
which can then be warped and repeated to approximate any
instance of the rule. Following the same procedure, we can
also store material parameters in another texture to achieve
appropriate shading on different parts of the surrogate. For
rules that entail probabilistic selection among multiple alter-
natives, we fall back to generating the surrogate texture by
averaging all samples.

4. Frame-to-frame coherence

Given that the view changes only slightly from one frame
to the next, major parts of the scene will be the same in
both frames and, thus, could be reused. To enable such reuse,
derivation trees need to be updated dynamically, taking into
account visibility pruning as well as adaptive level of detail.
Thus arises the need for dynamic memory management on
the output buffers that receive the generated geometry. Robust
and efficient dynamic data structures pose a major challenge
on the GPU.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

4.1. Sparse derivation tree

To keep track of objects in the scene, we use two arrays in
GPU memory. The first array stores all cells within viewing
distance. The second array stores all building hulls along with
their building specifications for buildings located on these
cells, sorted according to their distance to the camera. In each
frame, based on the current and previous camera positions,
we can compute which cells are no longer within viewing
range and which cells have just come into viewing range.
After removing cells which are no longer in viewing range
(along with their buildings), we trigger the PGA evaluation
scheme for all cells which came into viewing range and all
building hulls stored in the array. As some buildings have
already been generated in a previous frame, we extend the
PGA evaluation scheme as follows:

• If a previously visible building is moved out of the frustum,
we remove all geometry associated with it, but keep its
building hull and building specification in the second array
to enable a quick rebuild.
• If a previously visible building is completely occluded, we

increase a counter we keep for each building. As occlusion
could be temporary, we remove the building’s geometry
only if it has been occluded for a certain number of frames.
• If a building comes back into sight, we start the PGA

derivation at the building specification which is still present
in the second array.
• If a building remains not visible, there is no need for any

derivation.
• If a previously visible building is still visible, we reevaluate

the building’s level of detail as outlined in the following.

To enable reevaluation of a building’s level of detail, we
keep a sparse version of the derivation tree for all visible
buildings in memory. This sparse tree contains all possible
surrogate terminals and all actually inserted surrogates, as
shown in Figure 6. During the PGA evaluation, instead of
directly executing the building’s rule set, we first traverse this
tree and recompute the error estimates for all nodes. If the
error estimate suggests the insertion or removal of a surro-
gate, a vote is cast for the reevaluation of the building. We
accumulate these votes over multiple frames, and, if the sum
of votes exceeds a given threshold, rebuild the building. The
number of votes can also be used to prioritize the reevaluation
of those buildings which are most in need of a rebuild, while
delaying the rebuild for buildings which are nearly consistent
with the current view to a later frame.

Our approach of rebuilding entire buildings instead of
adjusting the derivation tree locally may seem inefficient.
However, the alternative would require the ability to remove
small amounts of geometry from the output buffers, which,
over time, can lead to strong fragmentation and high memory
management overheads. The proposed scheme, on the con-
trary, works with larger portions of memory and allows us to
settle for more lightweight memory management strategies.

(a) List of cells and building hulls

potential

surrogate

surrogate

not kept

pruned

(b) Sparse derivation tree for two instances of the same building

Figure 6: To exploit frame-to-frame coherence, we keep a
list of all active world cells and buildings on these cells (a).
In every frame, we run through these lists in parallel and
reevaluate the state of each entity. To enable a reevaluation
of the pruned derivation tree for each building, we keep a
sparse derivation tree for each building (b). This tree contains
potential and active surrogates only. We continuously recheck
these surrogates and rebuild a building if the level of detail
does not fit anymore.

4.2. Buffer management

In our setup, we use a vertex and an index buffer to store the
geometry generated by PGA. CUDA and OpenGL interoper-
ability features enable the buffers filled by PGA to be directly
used for rendering in OpenGL. Instead of directly producing
geometry, terminal shapes could be rendered using hardware
instancing, in which case the output buffers would receive
instance data. In both cases, we face the same challenges:
First, geometry of arbitrary size may have to be inserted or
deleted at any point in time. Second, as we are dealing with
potentially large amounts of data, we cannot afford to waste
memory. Third, the necessity to move around data should
be avoided to save bandwidth. Thus, the buffers storing the
geometry should be directly usable for rendering. Neither
previous buffer management strategies [PC12], nor general
purpose GPU dynamic memory allocators [SKKS12] are
able to meet these demands. We propose a novel, dynamic
memory management scheme that builds its data structures
directly in the index buffer, and is able to serve thousands of
concurrent allocation requests efficiently.

Buffer Setup. We assume vertex and index buffers are of
sufficient size to hold all geometry that will be generated.
Similar to the buddy memory allocator [Kno65], we partition
the index buffer into blocks. Each block in the index buffer

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

 0FF000000000 300364000000 0CC000 000000 600253871000 0AA000 300735 3DD169 3EE834 000000000000000000000000 000000000000

(a) The index buffer subdived into blocks of different size: only the lower part of the index buffer is used for rendering (dashed).

1

2

4

000000 0AA000

000000000000000000000000

0CC000

 000000000000 0FF000000000

(b) A list of free blocks is kept for each block size

3DD169 600253871000

300735

3EE834 300364000000

(c) Each cell and building has a list of in-use blocks

Figure 7: To dynamically manage the buffers used for terminal geometry, we build a parallel buddy allocation scheme within the
index buffer (a). A list of free blocks serves allocation requests (b). Memory allocations are routed over buildings (and cells),
which keep a list of blocks in use (c). In every block, we use the first index as atomically operated counter capturing the number
of indices in use, and the second index as pointer linking to the next list element. To ensure this meta data is skipped during
rendering, we keep a copy of the second index in the third, generating a degenerated triangle.

is associated with a block in the vertex buffer, based on an
estimated vertex to index ratio. Thus, we avoid the need for
additional data structures to manage the vertex buffer. As
our allocation algorithm allows holes in the buffers, we zero-
initialize the index buffer to ensure unused parts are ignored
during rendering.

Incremental allocation and combined free. Since we al-
ways regenerate entire buildings, instead of micromanaging
small parts of geometry, we propose the use of incremental
allocation and combined free. Associated with the building
hull, we keep a list of blocks allocated for each building.
During shape derivation, we request memory from this list. If
there is no more space to be found in this list, we request a
new block from the memory allocator. As we cannot foretell
how much geometry will be needed for a specific building,
we use an adaptive allocation strategy: We start by allocat-
ing a small block only. Whenever a block is full, we request
a block twice the size of the previous block and add it to
the list. Following such a strategy of doubling the allocation
size, only little memory is requested for low-detail buildings,
while at the same time, full-detail buildings require only a
few allocations. If a building’s geometry is to be removed,
we run through the block list, zero all blocks, and free them.
During rendering, we draw all triangles between index zero
and the highest index in use. As the unused areas contain
zeros only, they will be ignored.

Memory block management. For each block size used by
the allocator, we keep a list of free blocks. If a new block
is requested, we check if a free block of suitable size is
available. If this is the case, we remove it from the list. If not,
we take a block of larger size and split it. When a block is
freed, it is inserted back into the respective list of free blocks.
To counteract fragmentation, we scan these lists between
rendering and merge neighboring blocks unless the number

of blocks available for the given size is below a threshold.
Furthermore, we move blocks starting at lower indices to the
front. As blocks are removed from the front of the lists, this
strategy ensures that holes within the buffer are filled before
new memory is requested from the back,

As outlined in Figure 7, we use the first three indices
in each block to store meta information to build our data
structure. The first index serves as an atomically operated
counter keeping track of the number of indices available. The
second index is used as a pointer to the next block in the list.
The third index holds the same value as the second, forming
a degenerate triangle that is skipped during rendering.

5. Results

To evaluate the effect of visibility pruning and adaptive level
of detail, we tested four static scenes and sequentially acti-
vated the individual techniques. To evaluate our sparse deriva-
tion tree and buffer management to exploit frame-to-frame
coherence, we evaluated a continuous camera movement
through an infinite city. Due to the fact that PGA itself is
already orders of magnitude faster than all other grammar
evaluation schemes [SKK∗14], we only compare our meth-
ods to the PGA baseline. All measurements were run on the
same machine with an Intel Core i7-940 Quad Core CPU
(2.93 GHz) and an NVIDIA Quadro 6000 GPU.

Generating a single view. The four test scenes used for the
static scene evaluation were Suburban, which can be seen in
Figure 3, Green Town Streetside (Figure 2 right), Green Town
Birdseye (Figure 2 left view without pruning), and Infinite
Airplane (Figure 1 center), with a visibility distance of 500m,
2000m, 2000m, and 8700m, respectively. In addition to our
GPU implementation, we also provide a CPU version for
comparison. The characteristics of the scenes and results for
all tests are shown in Table 1.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

buildings nodes terminals vertices triangles memory GPU CPU trans render

Suburban PGA full 868 490.9k 3.8M 102.1M 59M 425MB 1.9k 4.0k 8.1k 88.3
(500m) LOD 868 124.8k 647.7k 14.6M 8.8M 74MB 187 655 1.2k 14.5

LOD+FRT 311 38.8k 202.1k 1.7M 926.2k 22MB 32.8 128 51.6 6.0
LOD+FRT+OCC 265 26.8k 150.6k 1.3M 723.5k 19MB 26.4 98.8 47.9 5.8

Green Town PGA full 5.9k 1.3M 6.5M 37.5M 18.8M 800MB 1.1k 2.4k 1.7k 27.3
Streetside LOD 5.9k 43.6k 229.2k 2.4M 1.2M 23MB 81.1 304.9 81.3 4.5
(2000m) LOD+FRT 1.6k 20.7k 64.9k 610.8k 321.3k 7.2MB 26.1 97.8 11.3 3.5

LOD+FRT+OCC 17 4.0k 7.6k 64.2k 54.9k 4.0MB 5.23 20.3 2.64 3.2

Green Town PGA full 4.5k 1.2M 6.1M 35.1M 17.6M 684MB 743 2.5k 1.8k 114.5
Birdseye LOD 4.5k 34.8k 176k 2.0M 1.0M 20MB 43.4 174 42.3 6.8
(2000m) LOD+FRT 1.1k 21.3k 79.4k 788.7k 410k 10MB 28 110 16.8 6.3

LOD+FRT+OCC 1.1k 21.2k 79.2k 786k 409.9k 10MB 32.1 121 16.3 6.3

Infinite PGA full 151.2k 183.4M 1.1G 7.4G 3.8G 121GB - 13.5M - -
Airplane LOD 151.2k 941.6k 6.6M 54.8M 28.6M 735MB 1.4k 5.2k 3.2k 141.2
(8700m) LOD+FRT 30.4k 501.3k 2M 15.4M 8.2M 279MB 721 2.8k 864 15.3

LOD+FRT+OCC 30.4k 501.2k 2M 15.4M 8.2M 279MB 793 3.1k 863 15.3

Table 1: Scene characteristics, memory requirements for intermediate shapes, generation times (in ms) for our GPU and CPU
implementation, transfer time (in ms) if the data generated were copied from main memory to the GPU, and rendering time (in
ms). While adaptive level of detail (LOD) and frustum pruning (FRT) always increase performance, occlusion pruning (OCC)
only helps if the camera is close to the ground, like in the Green Town Streetside scenario. Our techniques not only reduce the
generation time, but also the memory requirements for intermediate symbols and rendering time. GPU generation is always faster
than CPU generation, in ten out of the 16 cases even faster than copying pregenerated geometry to the GPU.

For all test scenes, we recorded a clear benefit using adap-
tive level of detail and frustum pruning. When applying adap-
tive level of detail, the performance increased by a factor
of 10 to 17. As surrogate terminals affect distant buildings,
the gain increased with increasing visibility distance. Due to
memory restrictions, we were unable to derive the Infinite
Airplane scenario in full detail on the GPU. However, adap-
tive level of detail reduces the amount of geometry by a factor
of 100 and GPU generation becomes possible.

When also using frustum pruning, we could further in-
crease the derivation speed by a factor of 1.5–5.7. The lowest
speedup was achieved for Green Town Birdseye, in which
the camera points to the city center. Thus, the most com-
plex buildings were not pruned. Using occlusion pruning,
the performance can further be increased in scenes where the
camera is positioned on the ground. For instance, we achieved
a speedup of five for Green Town Streetside. If hardly any
buildings can be pruned, like in the birds-eye view, occlusion
pruning actually decreases performance.

Our implementation of pruning and adaptive level of de-
tail does not only work well on the GPU, we achieved very
similar performance gains on the CPU. Still, the GPU imple-
mentations were always between two and five times faster
than the corresponding CPU versions. The lowest speedups
were achieved for the full derivations, which we account to
the high memory usage, slowing down the memory alloc-
tor [SKKS12]. Using our techniques, the memory required

for intermediate shape data and generated geometry is re-
duced by a factor of 22–200, which allows the generation of
large cities witin the memory constraints of consumer graph-
ics cards. The reduced amount of to-be-rendered geometry
also increases rendering speed by a factor of 10–20.

Another interesting fact is that in two thirds of all cases,
we were able to derive the geometry on the GPU faster than it
would take to copy the data from main memory. Even when
large portions of the derivation tree are pruned and, thus,
the time spent on pruning becomes dominant, the evaluation
process does not take more than twice as long as the memory
transfer would take. This clearly shows the advantages of
grammar derivations directly on the GPU. Overall, we can
state that, due to their low overhead, adaptive level of detail
and frustum pruning should be used in all cases. Occlusion
pruning is only effective, if the camera is close to the ground.

Rendering during continuous movement. To evaluate the
effect of frame-to-frame coherence, we use our Infinite City
test case with adjustable clipping distance. In this setup, we
use the population density to guide the generation of street
layouts and selection of building types. The street layout is
derived using a simple parallel split grammar. To connect
streets of neighboring cells, we use the sibling query feature
of PGA. As clipping distance we chose 1000 meters and
3500 meters, leading to an average of 3500 and 47k buildings
being within in the visible range respectively. A full detail

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

generation of these 3500 buildings requires 18M rules and
150M polygons; 47k buildings need 240M rules generating
2 billion polygons. The LOD versions require 1.6M and
7M polygons only. Our test scenario contains a walkthrough
(movement speed 1.5m/s) of the suburban area, a drive to a
dense skyscraper area (20m/s), rising over the city (50m/s)
and flying above the city at rocket speed (300m/s–100km/s).
Selected frames from the scenario are shown in Figure 1. We
tested four methods: CPU derives the required geometry
on the CPU (using adaptive level of detail) and transfers
it to graphics memory, LOD derives the geometry on the
GPU using adaptive level of detail, Pruning additionally uses
visibility pruning, and Frame to Frame uses our proposed
techniques to reuse geometry generated in previous frames.

The generation times for all methods and two clipping
distances are shown in Figure 8. For 1000m clipping dis-
tance, CPU needs between 250ms and 400ms per frame.
Our basic GPU implementation is about five times faster with
an average of 65ms per frame. With pruning, performance
approximately doubles to 30ms per frame. If, additionally,
we exploit frame-to-frame coherence, only about 5ms per
frame are needed after the initial frame, yielding a speedup of
about 60 compared to CPU. For 3500m clipping distance, we
achieved the following results: CPU 3500ms, LOD 525ms,
Pruning 280ms, and Frame to Frame 50ms per frame. Again,
our full GPU implementation was able to create the city in
real-time and was about 60 times faster than CPU.

During both tests, we hardly noticed any influence of the
movement speed on the performance of Frame to Frame.
Only in the 3500m clipping scenario after increasing the
movement speed to 10km/s subsequent frames no longer
have significant coherence and incremental evaluation is even
detrimental to performance. For 1000m clipping Frame to
Frame worked well even for very high speeds. A much easier
way to break frame-to-frame coherence is camera rotation,
which was not considered in the frame-to-frame coherence
scheme. We performed two fast camera rotations during the
walking phase, leading to spikes in the frame rate. Still, the
system recovers quickly. Overall, our approach achieved
real-time performance in both scenarios.

6. Discussion and Conclusion

We have shown that taking into account visibility during the
evaluation of shape grammars is possible and can lead to vast
improvements in evaluation speed, memory consumption and
rendering speed. By using frustum pruning and occlusion
pruning, we skip the generation of buildings that are not go-
ing to be visible. While frustum pruning most often reduces
the number of generated buildings by 75%, occlusion prun-
ing works best at street level, where it saves up to 90% of
otherwise generated geometry. To further reduce the number
of processed shapes and allow for highly detailed cities, we
proposed an automatic approach for the generation and inser-
tion of surrogate terminals, reducing the amount of geometry

walk drive lift up �y: 1km/s 100km/s

movement

ge
ne

ra
tio

n
tim

e
in

 m
s

0

50

100

150

200

250

300

350

400

450

500

1000m Clipping Distance

0

10

20

30

40

50

60

70

80

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

walk drive lift up �y: 1km/s 100km/s
movement

ge
ne

ra
tio

n
tim

e
in

 m
s

3500m Clipping Distance

0

100

200

300

400

500

600

CPU LOD Pruning Frame to Frame

Figure 8: Comparison of generation times in an infinity city
(Figure 1). Generating geometry on the CPU and streaming
it to the GPU is too slow for interactive rendering. Our GPU
method with frame-to-frame coherence updates the geometry
needed for rendering in 5ms (1000m) and 50ms (3500m)
respectively. Frame-to-frame coherence breaks if the camera
is rotated fast (spikes in enlarged areas) or if the movement
speed is very fast (about 10km/s).

by about 90%. To reach full real-time performance, we ex-
ploit frame-to-frame coherence, using our dynamic buffer
management scheme and tracking changes in the derivation
trees over time. In this way, we generate and update cities
with 47 000 visible buildings at 20fps, even when the viewer
is moving at supersonic speed.

Although our results are very promising, we see the need to
explore visibility pruning and the generation of surrogate ter-
minals in more detail. For instance, occlusion pruning could
incorporate the depth buffer rendered in the last frame, the
authoring of building specifications could be automated, and
the concept of hulls and building specifications should be
generalized to arbitrary objects. There are multiple benefits
for the integration of our dynamic shape-grammar-based ge-
ometry into real-time applications. Our techniques enable
real-time exploration of huge virtual worlds as needed for
planning and simulation scenarios as well as games. They
also greatly reduce the time needed to derive the geometry
for a single rendering, enabling fast design iterations dur-
ing content creation. Thus, we expect to see parallel shape
grammar evaluation schemes executed on massively parallel
processors in a variety of future applications.

Acknowledgments This research was funded by the Aus-
trian Science Fund (FWF): P23329.

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

M. Steinberger, M. Kenzel, B. Kainz, P. Wonka, and D. Schmalstieg / On-the-fly Generation and Rendering of Infinite Cities on the GPU

References
[And05] ANDERS K.-H.: Level of detail generation of 3d building

groups by aggregation and typification. In International Carto-
graphic Conference (2005). 2

[BP13] BESUIEVSKY G., PATOW G.: Customizable LoD for
procedural architecture. In Comp. Graph. Forum (2013), vol. 32.
3

[BWPP04] BITTNER J., WIMMER M., PIRINGER H., PURGATH-
OFER W.: Coherent hierarchical culling: Hardware occlusion
queries made useful. In Comp. Graph. Forum (2004), vol. 23,
pp. 615–624. 2

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Bdam - batched dynamic
adaptive meshes for high performance terrain visualization. Comp.
Graph. Forum 22 (2003), 505–514. 2

[CGG∗04] CIGNONI P., GANOVELLI F., GOBBETTI E., MAR-
TON F., PONCHIO F., SCOPIGNO R.: Adaptive tetrapuzzles:
efficient out-of-core construction and visualization of gigantic
multiresolution polygonal models. ACM Trans. Graph. 23 (2004),
796–803. 2

[CO11] CULLEN B., O’SULLIVAN C.: A caching approach to
real-time procedural generation of cities from gis data. 2

[ESSS01] EL-SANA J., SOKOLOVSKY N., SILVA C. T.: Integrat-
ing occlusion culling with view-dependent rendering. In Proc. of
Visualization ’01 (2001), pp. 371–378. 2

[GK93] GREENE N., KASS M.: Hierarchical Z-Buffer Visibility.
In Proc. SIGGRAPH’93 (1993), pp. 231–238. 4

[GM05] GOBBETTI E., MARTON F.: Far voxels: a multiresolution
framework for interactive rendering of huge complex 3d models
on commodity graphics platforms. ACM Trans. Graph. 24 (2005),
878–885. 2

[GPSL03] GREUTER S., PARKER J., STEWART N., LEACH G.:
Real-time procedural generation of ‘pseudo infinite’ cities. In
Proc. GRAPHITE 03 (2003), pp. 87–ff. 2, 3

[GSYM03] GOVINDARAJU N. K., SUD A., YOON S.-E.,
MANOCHA D.: Interactive visibility culling in complex envi-
ronments using occlusion-switches. In Proc. I3D ’03 (2003),
pp. 103–112. 2

[Hop96] HOPPE H.: Progressive meshes. In Proc. SIGGRAPH
’96 (1996), pp. 99–108. 2

[HSH09] HU L., SANDER P. V., HOPPE H.: Parallel view-
dependent refinement of progressive meshes. In Proc. I3D ’09
(2009), pp. 169–176. 2

[Jar73] JARVIS R.: On the identification of the convex hull of a
finite set of points in the plane. Information Processing Letters 2,
1 (1973). 4

[JWLL06] JI J., WU E., LI S., LIU X.: View-dependent refine-
ment of multiresolution meshes using programmable graphics
hardware. The Visual Computer 22 (2006), 424–433. 2

[JWP05] JESCHKE S., WIMMER M., PURGATHOFER W.: Image-
based representations for accelerated rendering of complex scenes.
STAR reports, Eurographics 2005 (2005), 1–20. 5

[KBK13] KRECKLAU L., BORN J., KOBBELT L.: View-
Dependent Realtime Rendering of Procedural Facades with High
Geometric Detail . Comp. Graph. Forum 32, 2pt1 (2013). 2

[Kno65] KNOWLTON K. C.: A Fast Storage Allocator. Commun.
ACM 8, 10 (1965), 623–624. 6

[LH04] LACZ P., HART J.: Procedural Geometry Synthesis on the
GPU. In Workshop on General Purpose Computing on Graphics
Processors (2004), pp. 23–23. 2

[LWW10] LIPP M., WONKA P., WIMMER M.: Parallel Genera-
tion of Multiple L-systems. Computers & Graphics 34, 5 (2010),
585–593. 2

[Mag09] MAGDICS M.: Real-time Generation of L-system Scene
Models for Rendering and Interaction. In Spring Conf. on Com-
puter Graphics (2009), Comenius Univ., pp. 77–84. 2

[MBG∗12] MARVIE J.-E., BURON C., GAUTRON P., HIRTZLIN
P., SOURIMANT G.: GPU Shape Grammars. Comp. Graph.
Forum 31, 7-1 (2012), 2087–2095. 3

[MBW08] MATTAUSCH O., BITTNER J., WIMMER M.: Chc++:
Coherent hierarchical culling revisited. In Comp. Graph. Forum
(2008), vol. 27, pp. 221–230. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural Modeling of Buildings. ACM Trans.
Graph. 25, 3 (2006), 614–623. 2

[PB13] PATOW G., BESUIEVSKY G.: Challenges in Procedural
Modeling of Buildings. In Eurographics Workshop on Urban
Data Modelling and Visualisation (2013). 2

[PC12] PENG C., CAO Y.: A GPU-based approach for massive
model rendering with frame-to-frame coherence. In Comp. Graph.
Forum (2012), vol. 31, pp. 393–402. 2, 6

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The Algorithmic
Beauty of Plants. Springer-Verlag, 1990. 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. SIGGRAPH 2001 (2001), pp. 301–308. 2

[RR96] RONFARD R., ROSSIGNAC J.: Full-range approximation
of triangulated polyhedra. In Comp. Graph. Forum (1996), vol. 15,
pp. 67–76. 2

[Sip06] SIPSER M.: Introduction to the Theory of Computation,
vol. 2. Thomson Course Technology Boston, 2006. 2

[SKK∗12] STEINBERGER M., KAINZ B., KERBL B., HAUSWIES-
NER S., KENZEL M., SCHMALSTIEG D.: Softshell: Dynamic
Scheduling on GPUs. ACM Trans. Graph. 31 (2012). 2

[SKK∗14] STEINBERGER M., KENZEL M., KAINZ B., MÜLLER
J., WONKA P., SCHMALSTIEG D.: Parallel generation of archi-
tecture on the GPU. Comp. Graph. Forum 33 (2014). 2, 7

[SKKS12] STEINBERGER M., KENZEL M., KAINZ B., SCHMAL-
STIEG D.: ScatterAlloc: Massively parallel dynamic memory
allocation for the GPU. In Innovative Parallel Computing (2012).
6, 8

[Sti75] STINY G.: Pictorial and Formal Aspects of Shape and
Shape Grammars. Birkhauser Verlag, 1975. 2

[Sti82] STINY G.: Spatial Relations and Grammars. Environment
and Planning B 9 (1982), 313–314. 2

[SZL92] SCHROEDER W. J., ZARGE J. A., LORENSEN W. E.:
Decimation of triangle meshes. In ACM SIGGRAPH Computer
Graphics (1992), vol. 26, pp. 65–70. 2

[WWS00] WONKA P., WIMMER M., SCHMALSTIEG D.: Visibil-
ity preprocessing with occluder fusion for urban walkthroughs. In
Proc. EG Workshop on Rendering Techn. (2000), pp. 71–82. 2

[WWS01] WONKA P., WIMMER M., SILLION F.: Instant vis-
ibility. In Comp. Graph. Forum (2001), vol. 20, pp. 411–421.
2

[WWSR03] WONKA P., WIMMER M., SILLION F. X., RIB-
ARSKY W.: Instant Architecture. ACM Trans. Graph. 22 (2003),
669–677. 2

[YSGM04] YOON S.-E., SALOMON B., GAYLE R., MANOCHA
D.: Quick-vdr: Interactive view-dependent rendering of massive
models. In Visualization, 2004. IEEE (2004), pp. 131–138. 2

c© 2014 The Author(s)
c© 2014 The Eurographics Association and Blackwell Publishing Ltd.

