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Abstract. In this paper we propose a novel framework to unite a population to an
optimal (unknown) pose through their mutual deformation. The registration cri-
terion comprises three terms, the first imposes compactness on appearance of the
registered population at the pixel level, the second tries to minimize the individual
distances between all possible pairs of images, while the last is a regularization
one imposing smoothness on the deformation fields. The problem is reformulated
as a graphical model that consists of hidden (deformation fields) and observed
variables (intensities). A novel deformation grid-based scheme is proposed that
guarantees the diffeomorphism of the deformation and is computationally favor-
ably compared to standard deformation methods. Towards addressing important
deformations we propose a compositional approach where the deformations are
recovered through the sub-optimal solutions of successive discrete MRFs by us-
ing efficient linear programming. Promising experimental results using real 2D
data demonstrate the potentials of our approach.

1 Introduction

Population registration is defined as the identification of a homology between more than
two images. Its importance is evident in problems like statistical modeling of variations
and atlas construction. To solve the fore-mentioned problems, often a reference frame is
chosen and all population members are mapped to this pose using pair-wise registration
algorithms. The explicit selection of the reference image bias inherently the registration
towards the chosen reference frame [1] and influence inherently its performance. Such
a behavior is the opposite to the one expected towards appropriate representation of the
population. Last but not least, these methods are not applicable when aiming statistical
deformations population modeling using data coming from different modalities.

Methods that try to overcome the above-stated limitations can be subdivided into
two classes. The first class of methods initially focuses on the appropriate selection of
the reference [2] or constructs a reference template through the use of the population
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statistics [3, 1]. Conventional registration methods based in pair-wise criteria are then
considered towards the reference. The main limitation of these methods lies in the use of
the template. The second class are template-free group-wise registration methods using
either local pairwise relations or global population measurements. In [4], all possible
pair-wise registrations were considered and a mean model was created by composing
the deformations for each member into a mean deformation. In [5], the sum of univariate
entropies along pixel stacks is introduced to address the problem of group-wise regis-
tration using an affine deformation model and is further extended by [6] to include FFD.
Last but not least, in [7] local pair-wise relations were considered to deform mutually a
population of images towards providing an atlas-based segmentation.

Template-driven methods introduce bias to the process through the selection of
the reference, and treat individually examples of the population. On the other hand,
template-free population-registration methods suffer from the lack of modularity with
respect to the registration criterion and the deformation model, are sensitive to the initial
conditions while being computationally inefficient. The scope of the objective function
is limited to pairwise relations and computational approximations [5] are used in order
to meet the high computational and memory demands.

In this paper, we propose a graphical model approach to population registration
[Fig.1]. The latent variables of the model aren-deformations (Hermite-based polyno-
mials) of the population examples and the optimal reference pose. The pose variables
are connected with the observations and the corresponding deformation variables to-
wards measuring the statistical compactness of the registration result at the pixel level.
The registration variables are inter-connected and aim to decrease the cost of pair-wise
comparisons between individual examples. Last, but not least the registration variables
within an image are connected so as to impose smoothness. The resulting paradigm can
easily encode different deformation interpolation methods, local similarity metrics and
global statistical measurements while being computational efficient [when compared
with the state of the art methods]. This graphical model is expressed in the form of
a MRF. Towards validating the approach, we consider population registration of calf
muscle MRI images.

2 Global and Local Population Registration

Let us consider n images {I1, ..., In}, where each image is described by intensity values
Ii(xi) for different image domains Ωi,xi ∈ Ωi. The aim of the mutual population
deformation is to determine a set of transformations T = {Ti : xR = Ti(xi), i =
{1, ..., n}} which maps mutually corresponding points from the n-image spaces to the
same point of a reference frame ΩR. In our case, we assume the reference pose to
simply correspond to the geometry and not an image template.

Deformation Model: Let us consider a grid-based deformation model that can en-
code different interpolation methods in a way that the transformation is one-to-one and
invertible. The deformation of an object is achieved by manipulating an underlying
mesh of control points. We superimpose a deformation grid Gi : [1,K] × [1, L] onto
each one of the images Ii and let us also consider a grid G0 : [1,K] × [1, L] in the
reference pose. The central idea of our approach is to deform the grids simultaneously
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(with a given displacement vector dpk
i

for each control point k belonging to the grid
Gi) such that meaningful correspondences between the population examples are ob-
tained and their mapping to the reference pose creates a statistically compact variable.
In this case, the transformation of an image pixel xi = (xi, yi) ∈ Ωi can be written as
Ti(xi) = xi +Di(xi) where Di(xi) =

∑
pk

i ∈Gi
η(|xi−pk

i |)dpk
i

and η(·) is a weight-
ing function that measures the contribution of the control point pk

i to the displacement
field Di.

Population-wise Global Comparisons: The first term of the objective criterion to
be minimized is the global statistical compactness one. We consider the intensity val-
ues of the deforming images at corresponding coordinate locations as a distribution of a
random variable π(i(x)), where i(x) = {I1(T−1

i (x)), · · · , In(T−1
n (x))}. In statistics,

one can associate a random variable to a measure of compactness with respect to this
density. Examples can refer to standard deviation, higher order moments, Shannon en-
tropy, etc. It should be expected that as the images are aligned the compactness of the
probability distribution should increase. We introduce the following global measure-
ment towards population registration

Eg(T1, · · · , Tn) =

∫∫

ΩR

γ(π(i(x)))dx (1)

with γ being a monotonic function inversely proportional to the compactness of the
intensity distribution at x once all population examples have been mapped to the ref-
erence pose. Such an objective function introduces the inverse transformation, that is
challenging from theoretical and practical point of view when referring to deformable
deformation. An alternative criterion that can be considered is using the forward trans-
formations and measure the similarity of the images on the intersection of the deformed
images, or

Eg(T) =

∫
· · ·

∫

Ωi∪···∪Ωn

φ(T1(x1), · · · , Tn(xn))γ(λ(x1, · · ·xn))dx1 · · · dxn (2)

where λ(x1, · · ·xn) = π(I1(T1(x1)), · · · , In(Tn(xn))) and φ is a Dirac-driven func-
tion whose role is to define which pixels correspond to the same position at the reference
pose defined as follows:

∏
(i,j)∈[1,n]×[1,n] δα(|xi − xj |).

Population-wise Local Comparisons: It may be the case that a distribution ex-
hibits good compactness characteristics globally but certain members of the population
can always be placed in the tale of the distribution. To avoid such cases, local pair-wise
comparison between the members of the population are going to be considered. Let
ρij(·) be a similarity measurement used to compare the visual information for the im-
ages i and j. Then, if (without loss of generality) we consider for example pixel-based
measurements, the pair of forward deformations Ti, Tj , should minimize the distance
in the intersection of the deformed images:

El(Ti, Tj) =

∫∫

Ωi∪Ωj

φ(|Ti(xi)− Tj(xj)|)ρij(Ii(Ti(xi)), Ij(Tj(xj)))dxidxj (3)

In simple words, this quantity evaluates the pertinence of the correspondences between
the two images using both definition domains Ωi, Ωj where only the pixels for which
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Fig. 1. The node and the edge system of the constructed graph. With blue color the relationship
between the grid nodes and the images is depicted (deformation model). The black edges repre-
sent the smoothness terms while the red ones encode the local dissimilarity measure. The global
relationship between all the nodes at respective places in the grids is shown by the yellow edges.
(For clarity a fraction of the edges is shown.)

correspondences between the two images have been found are considered. The criterion
can be extended to deal with the case of n-images by simply considering all possible
pairs of images.

Smoothness Constraints: Medical images capture properties of spatially continu-
ous anatomical structures, therefore it is natural to assume that the deformation applied
to them should be locally smooth. Opposite to the former cases, this constraint should
applied to each grid separately. This constraint can be defined on the grid as

Es(T1, · · · , Tn) =

n∑
i=1

∫∫

Ωi

ψ(∇Ti(xi))dxi (4)

where ψ is a convex function imposing smoothness.
The optimal parameters of the deformation should be determined through the mini-

mization of an objective function being composed of the above terms. Gradient descent
method is the most common approach, but is unable to guarantee the recovery of the
global minimum, is computational inefficient, and far from being modular. Graphical
models and the off-the-shelf discrete optimization methods being associated to them
can address the above mentioned constraints.

3 Graphical Model towards Population Registration

In order to able to use discrete optimization schemes the deformation space should
be quantized. Let Θ = {d1, ..,dq} be a quantized version of the deformation field,
then a discrete set of labels L = {l1, ..., lq} can be corresponded to it. A label as-
signment lξp, where ξ ∈ {1, · · · , q}, to a grid node p is associated with displacing

the node by the corresponding vector dlξp . If a label is assigned to every node we get
a discrete labeling l. The displacement field associated with a certain labeling l be-
comes D(x) =

∑
p∈G η(|x − p|)dlp . We have considered the Hermite splines. In

this case D =
∑1

l=0

∑1
m=0 Hl(u)Hm(v)di+l,j+m. i = bx/δxc, j = by/δyc, u =

x/δx − bx/δxc and v = y/δy − by/δyc. Hl represents the lth basis function of the
Hermite spline and δx = M

K−1 , δy = N
L−1 denotes the control point spacing. Hermite
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splines involve less computations than cubic-B splines while exhibiting the same de-
sired properties.

By applying this quantization of the deformation space one would like to reformu-
late the problem as a discrete multi-labeling problem. A common model for represent-
ing such problems are Graphical Models and MRFs. In the context of population reg-
istration, the graphical model will involve three terms, one singleton that measures the
compactness and two pair-wise, one that account for smoothness at each deformation
field and one that enforces pair-wise correspondences.

EGM (G0, T1 ◦G1, · · · , Tn ◦Gn, ) = α

n∑
i=0

∑
p∈G0

Vp(lp)+

βintra

n∑
i=0

∑
p∈Gi

∑

q∈(N(p)∩Gi)

Vpq(lp, lq) + βinter

n∑
i=0

∑
p∈Gi

∑

q∈(N(p)\Gi)

Vpq(lp, lq)

(5)

where Vp(· ) are the unary potentials, Vpq(· , · ) are the pair-wise potentials and N repre-
sents the neighborhood system of the nodes [Fig.1]. α, βinter and βintra are weighting
constants. The main challenge of discrete optimization methods is the quantization of
the search space since it seeks for a compromise between computational complexity
and the ability to capture a good minimum. This can be achieved through a composi-
tional approach, where the final solution is obtained through successive optimization
problems with respect to the deformation increment towards minimizing the objective
function [8]. Thus, by keeping the set of the labels in a reasonable size it becomes
possible to approximate the optimal solution in an efficient way.

3.1 Mapping of the Objective Function to the Graphical Model

Mapping global, local and smoothness costs to the graphical model consists of convert-
ing them to singleton and pair-wise terms. The most challenging case is the global cost
due to the fact that in order to be properly determined it requires higher order cliques.
The mapping of the other two terms is straightforward.

Singleton Term: The adoption of higher order cliques is possible within MRFs,
however their use decreases significantly their computational efficiency. We consider
an approximation of the global cost that consists of assuming that for a given node p of
a given deformation field/image i, the rest of the images do not move within the current
iteration. This assumption is considered for all nodes, and for all deformation fields
within a given iteration and therefore is not restrictive and quite common in minimizing
graphical models through expansion moves. Then, the cost of a deformation will depend
only on the label of this node, or,

V t
pk
i
(lpk

i
) ≈

∫
· · ·

∫

Ω1∪···∪Ωn

η−1
s (xi,p

k
i )φ(T t−1

1 (x1), · · · , T t
i (xi), · · ·T t−1

n (xn))

γ(λ(I1(T
t−1
1 (x1)), · · · , Ii(T

t
i (xi)))dx1 · · · dxn

(6)

where η−1
s (xi,pk

i ) = η−1
s (|xi − pi|) = η(|xi−pi|)∫

Ωi
η(|yi−pi|)dyi

. We have considered a

congealing-like global cost that aims at minimizing the entropy of the pixel distribu-
tions upon registration. This term corresponds to the G0 graphical model variables.
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Fig. 2. Results obtained for the muscle image data set (mean and variance image). From left
to right, the initial images, the result of the group-wise registration, the result of two pair-wise
registrations.

Pair-Wise Terms: Two different cases have to be discerned, one that accounts for
pair-wise registrations between all image pairs and one that imposes smoothness on the
deformation fields. The adaptation of the local registration costs involves connections
between the nodes pk

i ,qk
j , that are placed in respective places k in grids that belong to

two different images i and j. The inter pair-wise potential are defined as

Vpk
i qk

j
(lpk

i
, lqk

j
) ≈

∫

Ωi∪Ωj

η−1
p (xi,p

k
i ,xjq

k
j )φ(|Ti(xi)− Tj(xj)|) · ρ(Ii(Ti(xi)), Ij(Tj(xj)))dxidxj

(7)

where η−1 are inverse projection functions that depend on the distances between the
pixel and the different deformation grids and are defined as: η−1

p (xi,pk
i ,xjqk

j ) =
η(|xi−pi|)η(|xj−qj |)∫

Ωi∪Ωj
δ(Ti(yi),Tj(yj))η(|yi−pi|η(|yj−qj |))dyidyj

. The image metric used in the context

of pair-wise image comparisons of our approach was the sum of absolute differences.
Last, but not least imposing smoothness on the deformation fields can be done by

defining a distance function computing the magnitude of vector differences [8]

Vpiqi
(lξpi

, lνqi
) = |dlξpi − dlνqi |.

To minimize the successive MRFs, that is to assign a label l to all the nodes p of the
constructed graph, an efficient linear programming method is used [9]. The last con-
straint to be addressed refers to the diffeomorphic property of the proposed population
registration framework. This can easily introduced by imposing hard constraints to the
allowed deformations [10]. Following [11], the bound for the maximum displacement
towards guaranteeing diffeomorphic deformations, in the case of the cubic Hermite
spline, is proven to be 0.25 times the grid spacing.

4 Experimental Validation

To evaluate the performance of the method, the population registration of 2D MR hu-
man skeletal muscle calf images has been considered. The images were acquired with
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Fig. 3. Comparison between group-wise and pair-wise registration. The Dice coefficients obtained
through pair-wise registration with respect to all plausible individual template choices are com-
pared with the population registration result.

a 1.5T Siemens scanner, with parameters TR=711, TE=11. Each volume consists of
90 slices of 4mm thickness with voxel spacing of 0.7812 × 0.7812 × 4 mm. From the
original volumes slices that correspond to respective positions were selected to for the
data set. Segmentations for the data were provided by an expert. The parameters of the
method, α, βinter, βintra were set to 10, 1 and 0.1, respectively. We have used a multi-
scale implementation with 3 levels, an initial grid resolution of 8× 8, and a final one of
32× 32. A number of 2× 4 + 1 labels were used per iteration cycle, sampled along the
principal horizontal and vertical directions.

The qualitative results of the group-wise registration of the muscle data are pre-
sented in [Fig.2]. Comparing visually the mean and the variance image of the popula-
tion before and after the group-wise registration the success of the registration process
can be assessed qualitatively. The mean image is far more sharp than the one before the
registration process, while the variance image emphasizes the decrease of the intensity
differences along the registered data.

To further appraise the performance of the proposed method, it was compared to a
state of the art pair-wise registration method [8]. Similar parameters and deformation
grids were used for both methods with the difference that for the group-wise registra-
tion scheme, Hermite weighting functions were used instead of cubic B-splines. The
performance of the pairwise registration was exhaustively evaluated as all possible im-
ages were used as targets. The distributions of the Dice values for each image target
are reported in [Fig.3], where a boxplot is given for every image target. The results for
the pair-wise registration are given from column 1 to 18, while the last column corre-
sponds to the results obtained by the proposed group-wise registration framework. By
simple observation, it can be concluded that the group-wise registration outperforms
the pair-wise method for the majority of the cases.

The results depicted in the graph suggest that considering the population as a whole
and registering subjects jointly brings the population into better alignment than match-
ing each subject to a target image. This is implied by the decrease of the dispersion of
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the Dice values that is observed in the group-wise case. The results presented in the
figure [Fig. 3] point out the intrinsic drawbacks of the pair-wise registration process
whose performance is greatly influenced by the choice of the target image.

A Matlab implementation of our approach takes approximately 30 min on an Apple
Mac with 4GB memory and 2.5GHZ Processor, for a population registration of 20 ex-
amples (256×256) and a final resolution grid of 32×32 per image. However, since our
graph is similar to the one in [8] and the same optimization technique is used, a C++
implementation should decrease the running time to a couple of minutes.

5 Discussion

In this paper we have proposed a novel approach to unbiased diffeomorphic deformable
population registration using graphical models and discrete optimization. Our approach
is gradient free, modular in terms of the image and smoothness components and can
encode global population criteria and pair-wise comparisons.

The extension of the method to deal with 3D data is natural and straightforward
future direction. Furthermore, the use of higher-order MRFs towards proper approx-
imation of the global costs will improve the performance of the method in terms of
ability to capture the global optimum. Last, but not least the ability to construct an un-
biased statistical anatomical atlas using the proposed concept could be a useful tool in
a number of applications in medical imaging.
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