Dense Planar SLAM

Renato F. Salas-Moreno* Ben Glocker'

Paul H. J. Kelly* Andrew J. Davison®

Imperial College London

Figure 1: Dense Planar SLAM in action. (left) The stairs of a house have been mapped with both planar and non-planar region surfels. (mid-left)
Normal map shows high-quality reconstruction. Observe the lower quality normals on the highlighted red area lacking planar measurements.
(mid-right) Planar-only regions. (right) Some planar regions detected on a kitchen are used to display user’s content.

ABSTRACT

Using higher-level entities during mapping has the potential to im-
prove camera localisation performance and give substantial percep-
tion capabilities to real-time 3D SLAM systems. We present an ef-
ficient new real-time approach which densely maps an environment
using bounded planes and surfels extracted from depth images (like
those produced by RGB-D sensors or dense multi-view stereo re-
construction). Our method offers the every-pixel descriptive power
of the latest dense SLAM approaches, but takes advantage directly
of the planarity of many parts of real-world scenes via a data-driven
process to directly regularize planar regions and represent their ac-
curate extent efficiently using an occupancy approach with on-line
compression. Large areas can be mapped efficiently and with useful
semantic planar structure which enables intuitive and useful AR ap-
plications such as using any wall or other planar surface in a scene
to display a user’s content.

Index Terms: Computing methodologies [Scene understanding];
Computing methodologies [Reconstruction]. Computing method-
ologies [Image Processing and Computer Vision]: Segmentation.
Information Systems [Information Interfaces and Presentation]: Ar-
tificial, augmented, and virtual realities.

*e-mail: r.salas-morenol0@imperial.ac.uk
Te-mail: b.glocker @imperial.ac.uk
fe-mail: p.kelly@imperial.ac.uk

8e-mail: a.davison@imperial.ac.uk

1 INTRODUCTION

In augmented reality applications, the goals of SLAM systems
which can operate in unknown environments with hand-held or
wearable cameras have now clearly progressed beyond pure local-
isation towards capturing significant information about the scene
to enable meaningful automatic annotation. We define a ‘dense
SLAM’ system as one which produces not a point cloud but a
closed surface geometry scene model, enabling every-pixel depth
prediction and occlusion reasoning. A breakthrough in real-time
dense SLAM was provided by the KinectFusion algorithm [17],
and it was shown that in AR a dense geometric reconstruction can
be annotated in any number of interactive or automatic ways [12].
However, KinectFusion and related methods [27, 19, 13] use non-
parametric representations which are both heavyweight in terms of
computing resources and lack semantic description.

Salas-Moreno et al. [21] attacked both of these weaknesses in
their SLAM++ algorithm, which operates by detecting instances of
known 3D objects in the live image stream from a hand-held depth
camera and creating a highly efficient object-level map consisting
solely of the objects’ configuration. The estimated object configu-
ration is used to generate a dense surface prediction for accurate and
robust camera pose tracking using ICP as in KinectFusion; and the
known objects can easily be used as the basis for content-aware AR
effects. However, SLAM++ relies on a database of specific known
objects only, and apart from the ability to define and use a ground
plane under objects such as chairs and tables, cannot cope with non-
object regions such as walls, which often have a large extent well
beyond the field of view of a camera.

We believe that the crucial measure of the performance of a
dense SLAM system is what fraction of the pixels in each new im-
age it is able to explain with its scene model, and that this must be
driven up closer to the near 100% that KinectFusion achieves for

the efficient and semantic object-based SLAM paradigm to be fully
competitive. This requires both the ability to model and use the
non-object-like regions of a scene; and to find and add new types
of objects which are not present in the prior database. In man-made
scenes, both of these requirements strongly motivate the capability
to discover and model significant planar scene structures. Planes
are extremely common and often occupy large fractions of the field
of view of typical images from indoor scenes. Mapping them ex-
plains these pixels, potentially with great efficiency; and crucially if
all planes in a scene can be mapped then the regions which are not
planar are relatively few and are often clearly segmented against the
planar surfaces which surround them.

In this work we focus on the detection and modelling of accu-
rate, bounded planar regions with arbitrary boundary shape. These
are extracted and refined over time to form a real-time dense pla-
nar SLAM system using depth images such as those produced by
RGB-D sensors or via dense multi-view stereo reconstruction meth-
ods [18]. While there are many planes in most man-made scenes,
mapping them is not as simple as identifying these and instantiating
infinite planes in a map. Rather, accurately representing the shape
and extent of planes is crucial, and for us this is what defines ‘Dense
Planar SLAM”. Planar regions will often have irregular boundaries,
or holes (when an object is on a table top, or hangs on a wall, for
instance). Starting from a surfel map generated in real-time using
the point fusion method of [13], we show how planar regions at
arbitrary orientations can be segmented and incrementally grown
over time. We introduce an efficient representation of the accurate
extent of 3D planar regions using a 2D occupancy map approach.
This representation is incrementally extensible so that large planar
regions can be grown, refined and joined over long observation pe-
riods. Our representation also allows on the fly compression and
efficient use of memory and processing resources, and we particu-
larly show how it is amenable to parallel GPGPU implementation.

While this work was first motivated by high level goals in ob-
ject aware SLAM, we show that dense planar SLAM alone is very
interesting and practical for a number of novel AR applications; in
particular the use of walls or other real-world surfaces for the dis-
play of information, which will be particularly attractive when used
with see-through AR headsets in the near future.

2 RELATED WORK

Our work relates to previous real-time and off-line SLAM meth-
ods which have attempted to efficiently map scenes using planar
assumptions. In the broader context, it relates to the literature on
augmenting 3D reconstructions with semantic meaning. Our ap-
proach, benefits from the simplification, efficiency and predictive
power of semantic model-fitting in the loop of real-time operation,
a principle that also underpins Salas-Moreno et al.’s SLAM++ [21],
which recognises instances of objects from a pre-scanned library
and directly builds a map at the object level. This is in contrast
to numerous approaches which consider reconstruction and seman-
tic labelling as processes to be applied one after the other (e.g.
the sophisticated work of Kim er al. [14]).Other work which does
jointly perform reconstruction and object fitting, such as that by
Bao et al. [3], is far from being feasible in real-time operation, un-
like [21].

Earlier approaches for real-time SLAM using planes include
work from Gee et al. [9] and Chekhlov et al. [6]. Their systems used
planes to replace point features and reduce the state space of estima-
tion, because having large number of points becomes unbearable in
Kalman filter-based systems. This was improved by Carranza and
Calway [16] who directly mapped using planes and points without
initialisation delay.

Dou et al. [8] improved indoor 3D reconstruction quality via
bundle adjustment method that incorporated planar surface align-
ment errors in addition to 3D point reprojection errors. Their sys-

tem however was not aimed at real-time scenarios, taking 3 seconds
for plane extraction and a few minutes for global optimisation.

Trevor et al. [26] combined a Kinect sensor with a 2D laser
range scanner to map both close and distant line and plane fea-
tures. Taguchi er al. [23] performed camera tracking by detect-
ing point and plane features and matching them in the complete
global map. However this approach resulted in perceptual aliasing
and slow tracking. Most recently Ataer-Cansizoglu et al. [2] im-
proves on Taguchi’s method by predicting the camera motion via
a constant velocity model using optical flow, a condition which is
difficult to satisfy with handheld camera scenarios. Our method im-
poses no such assumption and instead directly tracks via ICP align-
ment from a dense model, giving a fine pose update that eases the
data-association task.

3 SYSTEM OVERVIEW

A schematic overview of our system is shown in Figure 2. Our
starting point is the Point-based Fusion method of Keller ez al. [13]
to densely map the environment with surfels: small disk-shaped en-
tities to describe locally planar regions without connectivity infor-
mation. Mapping from noisy depth sensors using surfels provides
easier management of data-association, insertion, averaging and re-
moval of map entities compared to structured meshes like triangles
as well as memory savings compared to voxel-based methods like
KinectFusion [17].

In our approach, we aim to label each surfel in the 3D map either
with one of a number of discrete plane labels, or to leave it with
no label if it is not part of any major plane in the scene. Planar
region surfels describe large areas with little or no curvature and
therefore share common properties (normals and closest distance
to the common plane) and are managed together to enforce this.
Non-planar region surfels on the other hand are located in areas of
high curvature and are managed as in the original method of Keller
etal [13].

The dense and incremental mapping nature of our method en-
ables easy data-association of modelled and measured planes across
consecutive frames: After the current pose of the camera is es-
timated, plane association is simply done by counting pixel-level
matches of projected modelled planes into the currently measured
depth image and handling mismatches in a logical manner.

Data-associated planes are then converted into the same world
reference frame and refined with a running average. All modelled
surfels belonging to the same plane are enforced to share the same
refined normals and closest distance, unlike non-planar region sur-
fels which average in isolation.

Finally, two or more overlapping modelled planes with similar
properties are merged together to incrementally extend areas that
initially fail to connect due to noise or occlusion.

While a particular planar region is still densely represented by
many surfels, it is worth mentioning that surfels’ position and ori-
entation are controlled by the same set of plane parameters. This
may seem redundant and memory inefficient at first but allows us
to densely represent complex planes with holes in the middle ! that
would otherwise be challenging to model and render incrementally
using closed polygons with hulls (e.g. as done in [26, 23, 2]). Sec-
tion 5 demonstrates how we compress planes with a 9-to-1 ratio to
achieve lightweight maps particularly of indoor environments com-
posed of several planes.

3.1 Preliminaries

As in [13], we represent the SLAM map with a set of k unstructured
surfels Py, with properties such as position ¥ € R?, normal ni, €
R3, radius 7, € R, confidence ¢, € R, and timestamp2 tr € N.

I'see for example the plane hole on the washing machine door in Figure 8.
2timestamp is the moment when a measurement is taken such as a simple
frame counter.

Live Depth
Measurement

Live Camera

@ vlbl Mz.

Planar Region Detection
and Data Association

Planar Region Refinement

and Merging Surface Splatting

Pose Estimation

D,

Non-planar region surfels
association

averaging

[Non-planar region surfels

]) Rendering

Figure 2: Outline of the Dense Planar SLAM pipeline. (1) A bilateral filtered depth measurement D, is transformed into a metric vertex V? and
normal /\/lb map and used for both camera pose estimation and plane detection. (2) We update the live camera pose T,,; by densely aligning
with ICP the measured vertex map Vlb against the predicted vertex V,- and normal map A;.. (3) Planes are detected via connected component
labelling and incrementally extended with projective data-association. (4) Modelled planes 7; are merged and refined with a running average.
(5) View prediction is generated by rendering surfels P, via surface-splatting using the reference pose Tu.

Additionally we include a plane ID o, = i;¢ = 1, ...
or = 0 signalling non-planar region surfels.

A surfel radius is representative of the local surface area with
its value chosen to minimise holes between neighbouring surfels;
we compute them as: 7, = \/ivk(z) /f, with f the camera focal
length.

A live depth measurement D is transformed into a metric vertex
map V;(u) = K~'aD;(u), with K the camera intrinsic matrix,
u = (x,y)" a pixel position in the image domain u € Q C R?
and u its homogeneous representation. The live normal map N is
simply generated from the vertex map by central differences.

Additionally, we apply a bilateral filter [24] to D; generating
discontinuity preserved vertex V! and normal A/ map with reduced
noise.

To update the live camera to world transform T3,;, = [R,t] €
SE(3), R € SO(3), t € R?; a pair of vertex map V, and normal
map N, is rendered via surface-splatting using the previously ref-
erence pose T, € SE(3) that is incrementally aligned to V? using
dense ICP [17] with a point-plane error metric [20]. This produces a
series of incremental updates {Tﬁ 1 composed together to gen-

erate T, < T“,TTT

,p € N with

3.2 Relocalisation

In line with the dense nature of our system, we avoid extracting
features to match (such as SIFT or SURF) to retrieve known places
and continue tracking when this is lost. Instead we perform whole
image encoding of keyframes using Ferns, following the method
of Glocker et al. [10]. This enables the fast retrieval of near poses
when tracking is lost that are later refined with ICP on the dense
model.

4 MAPPING WITH PLANES

Assuming an updated live camera pose 17,;, mapping a scene con-
sists of integrating new measurements into the global model. To
do so, a 4z super-resolution index map Z° is created by record-
ing the point index k projected into the live frame at pixel u® =
7(K*T;'¥1) via standard pin-hole projection function 7. Mod-
elled surfels can now be associated with measurements accord-
ing to sensor uncertainty, normals agreement, confidence value
and distance to viewing ray [13], producing data-associated pairs

Asurfels = {(7'7])}y2 = 1,,k,j = 1, W X h.

4.1 Planar Region Detection

Similar to Trevor et al. [25] we detect planes using connected com-
ponent labelling [7]. This produces a label map L(u) = ;7 =
1,...,q € N identifying to which of the ¢ measured planes each
pixel belongs to. L£(u;) = 0 is reserved for regions with few con-
necting components or high curvature (see Figure 3 left).

Planes are parametrised by 7 = (ng,ny, n., d)T with n, =
(na,ny,n.)" the plane normal and d the closest distance to the
common plane.

Detection proceeds by first computing a similarity map effi-
ciently using the GPU. This generates for every pixel a bitmask
indicating if the pixel above and to the left of the current one have
similar plane distance and normal:

Mask(u) = (S(u,up) < 1) | S(u, left) (1)

Laf VP (x) - NP (x) = Vi (y) - NP (y)l
<V (%) (2))? and,/\/l() - NP (y) > cos(©1)

0 otherwise

S(x,y) =

up=u—(0,1)", left =u—(1,0)"

The process continues on the CPU by assigning unique labels
to similar and contiguous pixels followed by a union-find algo-
rithm to merge equivalent labels. To prevent merging regions with
low-quality normals, the process is avoided at depth-discontinuity
boundaries (see Figure 3 right), i.e. zeros in the map:

Disc(u H S(u,uy) 2)

u;Ew

with w a window with radius 3 centered in u.

Following [25], we discard regions with few connected pixels
(< min-inliers). From the rest we fit planes by performing Princi-
pal Component Analysis (PCA): first the vertices are normalised by
subtracting its mean Vv, followed by the computation of a covariance
matrix 32 and its corresponding eigendecomposition. The eigenvec-
tor with minimum eigenvalue \,,;,, becomes the plane normal n,.
The plane distance is computed as: d = —n, - ¥ while the plane
curvature is: Kk = 53"”'"&. We discard planes having curvature
K > max-curvature.

4.2 Data-Association with Planes

A SLAM system should be able to incrementally expand its map
during exploration. To enable this in our system we need to expand
modelled planes as the camera browses a new scene.

Once the current sensor pose is estimated, modelled planar and
non-planar region surfels are projected into the current live frame.
For each pixel u, one of several data-association cases may occur
(see Figure 4):

(A) A modelled plane and a measured plane intersect. This sit-
uation indicates a data-association between the modelled and mea-
sured planes, producing pairs apianes = {(i,7) ;¢ = 1,...,p;J =
1,...,q.

Figure 3: Planar region detection. (left) Three planes have been
detected with connected component labelling using the measured
vertex and normal maps. (right) A depth discontinuity map is used
to avoid labelling regions with low quality normals (black pixels).

(B) Modelled surfels lack a planar measurement. This indicates
a non-planar region due to high-curvature or noisy depth measure-
ments preventing planes to be fitted.

(C, D) Modelled planar region surfels lack planar measurement.
Due to noise, not every plane is expected to be detected on mea-
sured depth maps.

(E, F) Unmodelled (measured) planar regions. This happens
when a new plane is detected on the live depth map and is yet to
be incorporated into the SLAM map.

(G) Invalid data. Occurs at pixels where the live depth data from
the sensor is invalid (has holes).

Cases C and D as well as E and F have to be disambiguated.
To do this we first identify the intersecting pixels (Case A) giving
them a unique ID that is flooded into the regions C and E, thus
expanding the modelled plane of regions C and A towards region
E. At this point we are left with only cases D and F which are purely
modelled or unmodelled (measured) respectively.

This disambiguation is efficiently performed in practice via par-
allel operations evaluated on the GPU [1, 5]. First the set of pixels
associations apjanes corresponding to Case A are transformed into
a hash value h = jp + i (with p a constant to ensure uniqueness)
and sorted in parallel to group pixels belonging to the same mod-
elled plane first and same measured plane second. This is followed
by a parallel reduction operation using the hash values as keys and
aconstant 1 (one) as value, giving a list of possible associations and
number of pixels supporting this: {(j, 7, count)}.

A measured plane 7; could be associated to more than one mod-
elled plane 7; due to noise or occlusion. To prevent wrong associ-
ations to the measured plane we traverse the previous list looking
for a modelled plane with similar coefficients: ||d; — d;|| < 2,
n) - n; > cos(O2). Similar modelled planes IDs are added into
a merge map M and the one with maximum count count™ >=
min-assoc-count is chosen as the final associated modelled plane
and used as key for M.

4.3 Planar Region Refinement and Merging

A modelled plane 7; is refined with the associated measured plane
m; using a simple running average. First the measured plane coef-
ficients are transformed into the world reference frame:

5 =Rn; 3)
d; = —nj -t +d, 4)
The modelled plane coefficients are then refined with:
wn; + nj wd; + dj
'L‘ 77 1 -1) 1
n; < w1 d; ol w— w+)

We traverse the merge map M and for each entry we rename the
contained plane IDs with that of the corresponding key.

Finally all surfels belonging to the measured plane 7; are pro-
jected onto the refined modelled plane 7;.

N
A"
A 4
!
l
I

- 90000000
v 20000000
20000000
20000000
20000000
000000

Figure 5: (left)Virtual Image with on-pixels surfels (orange) repre-
senting planar region coverage. The coloured coordinate frame are
the eigenvectors centred at the plane centroid, while the black coordi-
nate frame is the virtual image origin. (top-right) Non-planar region
surfels around a region of high curvature need to explicitly represent
individual position and orientation information. (bottom-right) Planar
region surfels are evenly organised and share common properties.
Note: Surfel radius size reduced for easier visualisation

4.4 Non-Planar region surfels mapping

Surfels not having planar region measurements have their associ-
ated properties updated with a running average o weighted for ra-
dial noise as in [13]. This is reproduced here for easier reading:

Vi + alwivi cpn + aRny

v ng+ —— 6
P 3 k e + o ()
CkT ar -
fk%ik_k+ Z,Ek<—ék—|—a,tk<—t 7
Cr +

5 MAP COMPRESSION

Planar region surfels need to densely populate their area of cov-
erage, however many of their properties are shared between them
(normals, radius size, confidence, timestamp and plane ID). Fur-
thermore their planar position requires a two-dimensional represen-
tation only.

We will compress planar regions whenever they become non-
visible (i.e. outside the view frustum). First we execute frustum
culling by intersecting the plane bounding box with each of the 6
planes enclosing the frustum. Only if the planar region does not in-
tersect all of them we can safely compress the plane, move its data
down the memory hierarchy (i.e. from GPU memory to RAM or
disk) and reclaim the working GPU memory. This form of occlu-
sion culling also helps to maintain an almost consistent frame rate
independent of map size, while reducing the need for additional
space partitioning techniques like octrees.

Compression begins by performing an additional PCA step in or-
der to estimate the major x-y axis of the extended plane. As in the
plane fitting procedure, we first normalise the vertices by subtract-
ing its mean v, followed by calculation of the covariance matrix 3
and corresponding eigendecomposition to obtain the x-y axis.

We can think of the plane compression mechanism as a way of
representing the plane as a binary image: with on-pixels signalling
the areas of coverage and off-pixels for holes (see Figure 5). To do
so we will convert vertex coordinates into pixel locations in a Vir-
tual Image of dimensions: wy; X hy,. In practice both dimensions
are set to 65536, allowing us to represent planes with dimensions
in the range (—32.768m, —32.768m) to (32.767m, 32.767m) at

[

A: Plane Association]

C, D: Modelled Plane

C

)

E, F: Unmodelled Plane]

]
-

G: Invalid Data

Figure 4: Data-association cases. (left) The diagram shows all the possible pixel-wise association cases when projecting the SLAM map into the
measured live frame. (right) Colour-coded visualisation of pixel-wise association cases. The top-left inset shows the rgb data while the top-right

shows the densely reconstructed planar and non-planar region surfels.

millimetre accuracy. The fixed virtual image dimensions allow us to
further linearise the coordinates in 1D. Computing the compressed
index of a surfel is detailed below:

Ve=V—V (8)

Vp = (xaacis Ve, Yaxis - Vc)T (9)
Vi = round(v, X 1000) (10)

Vo = Vyi + (wviyhvi)T/z (11)
indexr = Vo(y) X Wi + Vo(a) (12)

v is the normalised (centred) vertex, v, is the vertex on the plane
after projecting the v. coordinates with the plane axis, v,; is the
vertex on the virtual image with integer units pre-scaled to preserve
millimetre accuracy, v, is the vertex on the top-left reference frame,
finally index is the linearised v, coordinates in 1D.

In this way planar region surfels are compressed with an approx-
imate ratio of 9-to-1 as we only need to store their indices with 4
bytes per surfel’. In contrast, non-planar region surfels require 36
bytes each: vertices (3 floats), normals (2 floats), radius (1 float),
confidence (1 float), timestamp (1 uint), plane ID (1 uint).

Scenes composed of planar and non-planar region surfels pro-
duces combined compression ratios of about 2.27. Some compres-
sion results on real and synthetic data are shown on the chart in
Figure 6.

Further compression ratios could be achieved for example by
performing run-length encoding of on-pixels but this is not explored
yet.

Decompression is trivially achieved by performing the inverse
compression steps (12 - 8) and in practice both tasks take less than
2ms, allowing online operation.

6 RESULTS

Quantitative experiments using synthetic scenes were performed to
measure the quality of tracking with and without planar mapping.
Qualitative results of the enhanced planar representation are shown
for real scenes obtained with the Asus Xtion Pro RGB-D sensor.

The plane detection parameters were set to min-inliers = 1000,
01 = 0.0lm, 62 = 0.2m, ©; = O = 20°, max-curvature =
0.00015, and min-assoc-count = 100.

The noise characteristics of the depth sensor make plane detec-
tion only usable in the close range (< 4m). Our thresholds dis-
courage false-positives by discarding planes with large-curvature

3planar regions surfels share the same normal, radius, confidence, times-
tamp and plane ID.

Map size compression, grouped by sequence
250

200

99.1

Data Size (MB)
=
~
00

[11.1] 103.2

3 [11.5 |
53.8 1538 52.7 527

387 1387
0

Stairs (real) Apartment (real) Desktop (real) Liv. Room (synth)

[- Uncomp. Planar @ Uncomp. Non-Planar @ Comp. Planar [Comp. Non-Planar w

Figure 6: Chart showing the map data size of planar and non-planar
region surfels with and without compression.

(as described in Section 4.1). Nevertheless, the fact that mapping
and tracking are still possible in the absence of plane detection re-
inforces the integrated planar/non-planar approach presented.

6.1 Synthetic scenes

We evaluate our system on synthetic scenes with groundtruth cam-
era poses for two trajectories produced by Handa et al. [11]. Depth
maps are further corrupted by the noise model proposed by Barron
and Malik [4] to create data closer to the Kinect sensor. Reconstruc-
tions results of the ‘living room’ sequence are shown on Figure 7.

Table 1 summarises the Absolute Trajectory Error (ATE) as pro-
posed by Sturm et al. [22]. ATE computes the absolute difference
between the groundtruth and estimated poses after alignment.

Although tracking from a globally consistent dense model is
shown to be already of high quality [17] we can see from the RMSE
values that using planar regions surfels decreases the trajectory er-
ror slightly, this is because the scene contains a large number of pla-
nar regions affected by noise and alleviated earlier by our method
(compared to KinectFusion [17] or Point-based Fusion [13] that re-
quire a few frames to denoise).

While the RMSE of trajectory-0 is large compared to trajectory-
1 it is worth highlighting that trajectory-0 is challenging when
tracking with ICP since the camera cannot be locked based on 2

planes only (wall and ceiling)* and therefore large drift occurs. This
artefact was also reported in [11] section VI-D-1.

Table 1: Absolute Trajectory Error (ATE) in synthetic scene

trajectory-0 trajectory-1
Error
non-planar planar non-planar planar

RMSE 0.254134 0.246437 0.018997 0.016940
Mean 0.222794 0.218559 0.016906 0.015043
Median 0.179679 0.182547 0.014714 0.016449
Std 0.122258 0.113857 0.008666 0.007789
Min 0.055287 0.070420 0.003252 0.002228
Max 0.728229 0.645284 0.032742 0.028430

6.2 Real-world scenes

Examples of real-world scenes are shown in Figure 1 and 8. Here
the stairs of a house and an apartment have been reconstructed and
major planes parametrised incrementally and in real-time. The first
case could be particularly useful for stair-climbing robots navigat-
ing new environments.

6.3 Augmented Reality with dense planar maps

We can take advantage of the dense and real-time nature of our
system to perform novel Augmented Reality (AR) interactions with
fine occlusion handling, requiring very little user input .

As a first example, we let the user choose a set of planes to aug-
ment the original input with an application display using the Oculus
Rift paired with an Xtion sensor (see Figure 9 and the rightmost im-
age on Figure 1), essentially converting the real-world into a win-
dow manager. To enable this, we first extract the bounding-box of
the selected plane(s) and convert it into a quad polygon for efficient
texture mapping. This feature could also be very useful in see-
through AR headsets as it can replace small floating widgets with
large projections on planes without interfering with the wearer’s
field of view (e.g. a limiting factor in the current Google Glass).

Another useful example is virtually replacing the floor style of
a house many times until the user is satisfied with the result (see
Figure 10).

The idea of overlaying information on real planes instead of
floating windows allows the user to safely navigate environments
without fear of collisions and make tasks like zooming in/out as
natural as walking closer/further from surfaces.

6.4 System Statistics

Table 2 summarises the results when mapping the stairs sequence
shown in Figure 1. This was executed on a high-performance laptop
equipped with an Intel i7 Quad Core CPU at 2.50GHz and NVidia
GTX 580M GPU with 2GB of memory.

While the overhead of plane detection, data association and com-
pression are not present in systems like [13], we note that further
optimisation can be easily engineered to increase frame rate such as
moving mapping to a lower priority thread as in Klein et al. [15].

7 CONCLUSIONS AND FUTURE WORK

We have presented a Dense Planar SLAM algorithm which identi-
fies, merges and compresses the arbitrary planar regions which are
present in many man-made scenes, and leads to an efficient, robust
and real-time plane-aware SLAM system.

In addition, we have shown the highly practical AR applications
this permits, in particular the use of planar regions for the display

“as can be seen on minute 0:32 at: http://youtu.be/40-OaVOh4AQ
5The supplementary video contains demos of the described AR use
cases.

Figure 9: Facebook Wall on a real wall using the Oculus Rift. The
user chooses a wall from which to read his Facebook Wall.

27

e X
m./fl‘zl.—

Figure 10: Floor carpet change. The ground plane is selected and
overlaid with a new carpet.

Figure 7: Synthetic scene reconstruction of a living room. (left) Displaying both planar and non-planar regions surfels. (right) In clockwise order:
Colour output, normal map, non-planar region surfels only, planar region surfels only.

Table 2: System statistics for the stairs sequence

Memory usage
Non-Planar region surfels count 1°566,063
Planar region surfels count 47159,902
Plane Count 30
Point-Based fusion Memory [13] 196.58 MB
Dense Planar SLAM Memory (this work) 69.64 MB
Compression Ratio 2.82
Timings
Frame Prediction 11.8 ms
ICP 6.08ms
Plane Detection 10.1 ms
Data Association 24.02 ms
Averaging 2.58 ms
Surfel Addition/Removal 9.4 ms
Compression and Decompression 1.8 ms
Total time 65.98 ms
Frame Rate 15.16 fps

of information in a very natural manner which will fit well with
see-through head mounted displays.

We remain interested in our long-term goals of a fully object-
based SLAM system within which this planar mapping will form a
crucial component.

Adding a graph-based loop closure optimisation for consistency
over long loopy trajectories is a clear short-term goal, and we hope
that standard methods as used in [21] will be suitable here. Though
careful thought has to be given to how non-planar regions of surfels
should be treated when the locations of planes is optimised due
to loop closure constraints; presumably each small blob of non-
planar surfels should be attached and adjusted rigidly with the same
transformation of one or more of its neighbouring planar regions
rather than being broken up or sheared.

Also, we will continue to work on using these non-planar regions
to extend a library of object types; the main challenge here is rapid
learning of efficient detectors for these new object types during real-
time operation when the resources for extravagant training are not
available.

REFERENCES

(1]
[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

Advanced Micro Devices Inc. Bolt C++ Template Library. 2012.

E. Ataer-Cansizoglu, Y. Taguchi, S. Ramalingam, and T. Garaas.
Tracking an RGB-D Camera Using Points and Planes. In ICCV
CDC4CV Workshop, 2013.

S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese. Semantic Structure
From Motion with Points, Regions, and Objects. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

J. Barron and J. Malik. Intrinsic Scene Properties from a Single RGB-
D Image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2013.

N. Bell and J. Hoberock. Thrust: C++ Template Library for CUDA.
20009.

D. Chekhlov, A. Gee, A. Calway, and W. Mayol-Cuevas. Ninja on a
Plane: Automatic Discovery of Physical Planes for Augmented Real-
ity Using Visual SLAM. In Proceedings of the International Sympo-
sium on Mixed and Augmented Reality (ISMAR), 2007.

M. B. Dillencourt, H. Samet, and M. Tamminen. A General Approach
to Connected-component Labeling for Arbitrary Image Representa-
tions. Journal of the ACM, 39(2):253-280, Apr. 1992.

M. Dou, L. Guan, J. Frahm, and H. Fuchs. Exploring High-Level
Plane Primitives for Indoor 3D Reconstruction with a Hand-held
RGB-D Camera. In ACCV Workshop on Color Depth Fusion, in
conjunction with 11th Asian Conference on Computer Vision (ACCV),
2012.

A. Gee, D. Chekhlov, W. Mayol, and A. Calway. Discovering planes
and collapsing the state space in visual slam. In Proceedings of the
British Machine Vision Conference (BMVC), 2007.

B. Glocker, S. Izadi, J. Shotton, and A. Criminisi. Real-Time RGB-
D Camera Relocalization. In International Symposium on Mixed and
Augmented Reality (ISMAR), 2013.

A. Handa, T. Whelan, J. McDonald, and A. J. Davison. A Bench-
mark for RGB-D Visual Odometry, 3D Reconstruction and SLAM. In
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2014.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. J. Davison, and
A. Fitzgibbon. KinectFusion: Real-Time 3D Reconstruction and In-
teraction Using a Moving Depth Camera. In Proceedings of ACM
Symposium on User Interface Software and Technolog (UIST), 2011.
M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb.
Real-time 3D Reconstruction in Dynamic Scenes using Point-based

Figure 8: Real scene reconstruction of an apartment (top) and desktop (bottom). (left) Displaying both planar and non-planar regions surfels.
(right) In clockwise order: Colour output, Normal Map, Non-Planar region surfels only, Planar region surfels only.

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

Fusion. In Proc. of Joint 3DIM/3DPVT Conference (3DV), June 2013.
Y. M. Kim, N. J. Mitra, D.-M. Yan, and L. Guibas. Acquiring 3D
Indoor Environments with Variability and Repetition. In SIGGRAPH
Asia, 2012.

G. Klein and D. W. Murray. Parallel Tracking and Mapping for Small
AR Workspaces. In Proceedings of the International Symposium on
Mixed and Augmented Reality (ISMAR), 2007.

J. Martinez-Carranza and A. Calway. Unifying planar and point map-
ping in monocular slam. In BMVC, 2010.

R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinect-
Fusion: Real-Time Dense Surface Mapping and Tracking. In Proceed-
ings of the International Symposium on Mixed and Augmented Reality
(ISMAR), 2011.

R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM: Dense
Tracking and Mapping in Real-Time. In Proceedings of the Interna-
tional Conference on Computer Vision (ICCV), 2011.

H. Roth and M. Vona. Moving Volume KinectFusion. In Proceedings
of the British Machine Vision Conference (BMVC), 2012.

S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP Algo-
rithm. In Proceedings of the IEEE International Workshop on 3D
Digital Imaging and Modeling (3DIM), 2001.

R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison. SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

(22]

[23]

(24]

[25]

(26]

(27]

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
A benchmark for RGB-D SLAM evaluation. In Proceedings of
the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),
2012.

Y. Taguchi, Y. Jian, S. Ramalingam, and C. Feng. Point-Plane SLAM
for Hand-Held 3D Sensors. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2013.

C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and Color
Images. In Proceedings of the International Conference on Computer
Vision (ICCV), 1998.

A. Trevor, S. Gedikli, R. Rusu, and H. Christensen. Efficient Orga-
nized Point Cloud Segmentation with Connected Components. In 3rd
Workshop on Semantic Perception Mapping and Exploration (SPME),
2013.

A. Trevor, J. Rogers III, and H. Christensen. Planar Surface SLAM
with 3D and 2D Sensors. 2012.

T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J.J. Leonard. Kintinuous: Spatially Extended KinectFusion. In Work-
shop on RGB-D: Advanced Reasoning with Depth Cameras, in con-
Junction with Robotics: Science and Systems, 2012.

