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Discriminative Segmentation-based Evaluation
through Shape Dissimilarity

Ender Konukoglu, Ben Glocker, DongHye Ye, Antonio Criminisi, and Kilian M. Pohl

Abstract—Segmentation-based scores play an important role in
the evaluation of computational tools in medical image analysis.
These scores evaluate the quality of various tasks, such as
image registration and segmentation, by measuring the similarity
between two binary label maps. Commonly these measurements
blend two aspects of the similarity: pose misalignments and
shape discrepancies. Not being able to distinguish between these
two aspects, these scores often yield similar results to a widely
varying range of different segmentation pairs. Consequently,
the comparisons and analysis achieved by interpreting these
scores become questionable. In this paper we address this
problem by exploring a new segmentation-based score, called
normalized Weighted Spectral Distance (nWSD), that measures
only shape discrepancies using the spectrum of the Laplace
operator. Through experiments on synthetic and real data we
demonstrate that nWSD provides additional information for eval-
uating differences between segmentations, which is not captured
by other commonly used scores. Our results demonstrate that
when jointly used with other scores, such as Dice’s similarity
coefficient, the additional information provided by nWSD allows
richer, more discriminative evaluations. We show for the task
of registration that through this addition we can distinguish
different types of registration errors. This allows us to identify
the source of errors and discriminate registration results which
so far had to be treated as being of similar quality in previous
evaluation studies.

Index Terms—Evaluation, Accuracy Assessment, Image Regis-
tration, Image Segmentation, Shape Dissimilarity, Overlap Mea-
sures, Spectral Distance, Shape Dissimilarity, Laplace Operators.

I. INTRODUCTION

EVALUATION of computational tools in medical image
analysis is an important task. Widespread application of

these tools in different research fields, their deployment on
commercial systems, their use in advanced analysis tasks and
the amount of basic research focusing on developing new
tools emphasize the need of sound evaluation methodologies.
This need not only arises for understanding which algorithm
performs better on a specific dataset. It is also crucial for
devising unit tests for commercial systems, understanding
algorithm limitations for clinical use, detecting failures in
applications involving large amount of data and interpreting
analysis results correctly.

Though very important, evaluations for most analysis tools
are not straightforward. The main difficulty is the lack of
ground truth or gold standard. One particular tool is very
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striking in this regard: image registration [1]–[3]. Registra-
tion is defined as determining the coordinate transformation
between two images that aligns the corresponding anatomical
points. It is used for a wide range of purposes such as
fusing images of different modalities of the same anatomy [4],
studying spatiotemporal dynamics [5] and performing large
cohort studies [6].

Evaluating a registration method is defined as assessing
the accuracy of the coordinate transformation computed by
the method. In theory, this assessment can be done simply
by comparing the computed transformation with the real
transformation between the images. However, this is precisely
the point where it becomes difficult. The “real” transformation
between two arbitrary images is usually unknown, and thus,
ground truth for evaluation is inaccessible.

Despite the difficulty in its assessment, many analyses rely
on registration. Their outcome and correctness heavily depend
on the accuracy of the computed coordinate transformation.
This issue has been discussed, for example, in the context of
voxel-based [7] and deformation-based morphometry [8]. In
2003, Crum et al. in [9] remarked: “Clinical studies whose
results rely heavily on registration techniques of questionable
validity should be treated with suspicion.”

In order to circumvent the lack of ground truth, scien-
tists resort to using indirect or sparse methods for accuracy
assessment. Different approaches include using synthetically
generated transformations [10], [11], using sparse set of land-
marks to quantify alignment errors [11]–[13] and quantifying
mathematical properties of the computed coordinate trans-
formation [11], [13]–[16]. Although used in various studies,
these approaches are either too application-specific, in the case
of landmarks and synthetic transformations, or not indicative
of the registration accuracy. The last group of approaches,
which is also the most widely used one, uses segmentations
of corresponding structures [17], [18].

Segmentation-based approaches for assessing accuracy of a
given coordinate transformation is based on the fact that the
correct transformation between two images would align the
corresponding anatomical structures perfectly. These methods
thus quantify the quality of the coordinate transformation
by measuring the discrepancies between the corresponding
segmentations after registration. Although segmentation-based
methods do not directly quantify the registration accuracy
(in terms of mm displacements of corresponding anatomical
points), they are the most generally applicable and the most
popular group of evaluation strategies. This popularity is
mainly due to: i) creating manual segmentations of structures
is often easier and less sensitive to noise than annotating
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landmarks, ii) existence of publicly available imaging studies
that include scans and associated expert segmentations, iii)
segmentations in some sense provide a “dense sampling of
landmarks along the boundary” (given that the exact corre-
spondence of such landmarks between reference and floating
image is unknown), which enable the computation of a wide
array of measurements, such as the overlap agreement between
regions, and iv) one of the major applications of registration is
segmentation via label propagation and therefore, measuring
the registration accuracy via segmentations is closely aligned
to the target application.

Although very popular and useful, segmentation-based
scores that are commonly used in the literature have limi-
tations, [17], [19]. The one that is tackled in this article is
that scoring functions, such as Dice’s similarity coefficient
(DSC) [20] and surface distance, are often not discriminative
enough when it comes to certain differences between segmen-
tations. They measure the differences by blending two sources
of imperfections: i) pose misalignments (linear) and ii) shape
discrepancies (nonlinear). However, they cannot discriminate
these two sources and as a result, for a large class of visu-
ally very different segmentation pairs, these functions return
very similar scores. Such an example is shown in Figure 1.
In the context of registration, this means that coordinate
transformations of different qualities might not be correctly
discriminated, which undermines the assessment. Here, we
focus on this issue and address it by exploring a scoring
function that ignores pose misalignment and only measures
shape discrepancies.

Specifically, we present a score of shape dissimilarity, called
normalized Weighted Spectral Distance (nWSD). nWSD is a
normalized score (in the interval [0, 1]) that quantifies the
amount of discrepancy between two shapes by using their
Laplace spectra. In doing so, it enriches segmentation-based
evaluation by providing an additional measurement that cannot
be solely captured using other scores. Here, we define nWSD
and analyse its properties. Through different experiments with
synthetic and real data, we demonstrate that nWSD i) can
capture and quantify shape differences independently from
pose misalignments, and ii) can complement existing scores
leading to more discriminative and richer evaluation.

We first demonstrate the limitations of commonly used
segmentation-based scores. We do so by constructing in Sec-
tion II a very simple database of segmentations where popular
scores, such as DSC, are not able to discriminate between
visually very different segmentation pairs. In Section III, we
provide some technical background on Laplace operators and
their role in shape analysis. We then present nWSD, which
can provide the necessary discrimination. For the sake of
brevity and focus, we omit the theoretical analysis of our
score, which is described in [21]. Instead we discuss a
series of synthetic examples to underline the properties and
the advantages of nWSD for the purposes of this article.
Based on these examples, we then propose a two dimensional
evaluation system, which jointly uses nWSD along with an
overlap score, namely DSC. In Section IV we apply the two
dimensional system on real data for assessing the quality of
306 registrations cross aligning MRI brain scans of 18 different

(a) (b) (c)

Fig. 1: Example images from the synthetic database. Image in
(a) is the reference disc of radius 15 mm, followed by four
perturbed versions of this reference in (b) and (c). The first
image shown in (b) is a simple translation of (a) by 3 mm. The
remaining three shown in (c) are nonlinear deformations of the
reference with varying magnitude and amount of nonlinearity.
By construction, the DICE scores between the reference and
all the perturbed ones are identical.

subjects. The experiment highlights the additional information
provided by nWSD and the use of this richer assessment in
the registration scenario. In particular the results demonstrate
that nWSD allows us to interpret differences in DSC, where
higher not always means better.

II. STUDYING COMMON SCORING FUNCTIONS

Commonly used segmentation-based scoring functions
quantify the differences between two label maps taking into
account: i) misalignments due to incorrect pose and ii) shape
(geometry) discrepancies. The scores are applied in the eval-
uation of registration methods for indirectly measuring the
quality of anatomical correspondences between the aligned
images. This evaluation is indirect as it rather measures errors
of overlap and resemblance of corresponding regions, than
the errors in actual point correspondences. Popular parameter-
free measures are DSC, symmetric mean surface distance
(SMSD), symmetric root-mean-square error over surface dis-
tance (SRMS), Hausdorff distance (HD), volume similarity
(VS) [17], and other statistics based on true/false positives and
negatives such as overlap score (OS). Their popularity partly
lies in their ease of implementation and intuitive meaning.
While HD and SRMS are more sensitive to shape differences
by responding to the largest errors, DSC, SMSD, OS, and VS
are more robust to outliers and segmentation errors.

All these segmentation-based scores have limitations when
it comes to distinguishing shape differences, whether subtle
or substantial. The robust ones, such as DICE and VS,
cannot discriminate misalignments due to incorrect pose from
mismatches in shape even in the case when the shapes are
significantly different. The more sensitive measures such as
HD and SRMS, essentially measure the dissimilarity between
the boundaries of the segmentations in terms of locations but
not in terms of their overall geometry. As a result, when
applied to evaluate registration algorithms, these measures
may yield similar scores to substantially different registration
outcomes. We demonstrate these shortcomings on a synthetic
database of 2D label maps.

Our synthetic database consists of a reference label map
showing a disc of radius 15 mm in an image of 200 × 200
pixels with a resolution of 0.5 mm, see Fig. 1(a). By randomly
perturbing the reference, we created 250 other segmentations.
One can imagine these new segmentations to represent differ-
ent possible registration results with respect to the reference.
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Fig. 2: Different overlap similarity scores applied to the synthetic database (examples shown in Figure 1). The graphs show
different similarity scores between the reference label map and each of the 250 perturbed images. The x-axis in each graph
is the index of the perturbed image. Notice, the commonly used segmentation-based accuracy scores are unable to properly
capture the substantial shape variation in the constructed dataset.

The first perturbed segmentation is a simple translation of the
reference by 3 mm, therefore has exactly the same shape
but a misalignment with respect to pose, see Fig. 1(b). The
remaining 249 segmentations are created by deforming the
reference shape using transformations with varying magnitude
and amount of nonlinearity. As a result, they all have different
shapes than the reference, as the samples shown in Fig. 1(c).
As an additional constraint, the dataset is constructed such
that the DICE scores between each perturbed image and the
reference shape is identical. We note the wide variations of
the sample shapes shown in Figure 1. Now, we analyse the
commonly used scores using this dataset.

We first compute DSC, SMSD, OS and VS between the
reference image and all the other perturbed images. Figures 2
plots these scores for each perturbed segmentation. As ex-
pected DSC, OS and VS are exactly the same for all the
images. The same, although not shown here, is actually also
true for other measures, such as various statistics based on
true/false positives. They do not capture the shape differences
and as a result they cannot distinguish between errors in pose
and shape discrepancy. The SMSD score shows some variation
between different segmentations however: i) this variation
is very small, i.e. 200 of 250 images are within interval
[1.6, 2.0] mm and ii) there is no discrimination with respect
to shape.

We also obtain measurements on the synthetic database us-
ing HD and SRMS scores, although these scores are normally
not used due to their high susceptibility to outliers. The HD
and SRMS scores are shown in Figure 3(a). As expected, the
dispersions for these scores are much higher throughout the
dataset compared to the previously shown scores. However,
the dispersions do not necessarily correlate with the shape
differences between the segmentations. Figure 3(b) illustrates
this issue with an example. The two segmentations shown in
this figure have very similar, identical up to the first floating
point, HD scores with respect to the reference disc. The
HD score fails to identify the substantial shape differences
between the segmentations. We observe a similar behaviour for
SRMS with respect to the segmentations of Figure 3(c). These
examples show that, in addition to their high susceptibility to
outliers, HD and SRMS are unable to capture certain shape
discrepancies. Furthermore, we would also like to point out

(a)

(b) HD[mm]: 8.5 (c) SRMS[mm]: 2.4

Fig. 3: The HD and SRMS scores for the synthetic dataset.
(a) The graphs plot the HD and SRMS scores between the
reference image and the perturbed images. We notice that HD
and SRMS show higher variations throughout the synthetic
database compared to the scores in Figure 2. However, this
dispersion does not correspond to shape differences. (b) Two
perturbed segmentations whose HD distances to the reference
disc are very similar, both 8.5 mm. (c) Two other perturbed
segmentations whose SRMS scores are very similar, both
2.4 mm. HD and SRMS scores are unable to acknowledge
the shape differences.

that just as we constructed a dataset which has identical
DSC scores with respect to the reference shape, one can also
construct a dataset that would have identical HD or SRMS
scores with respect to the reference.

These simple tests demonstrate that DSC, SMSD, SMRS,
OS, and VS are generally not discriminative enough to allow
a distinction between misalignments due to pose and shape
differences. Even in the case where the shape differences are
substantial these scores will not be able to identify them.
Considering that many registration evaluation studies [16]–
[18] are based on these measures, and different algorithms are
ranked by considering a few percent differences in their scores,
the limitation of the segmentation-based scores is critical.
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It is crucial that the measures discussed in this section are
considered in combination with others. Examples are overlap
distance [22] or PCA [14]. However, these latter measures are
either also not discriminative or require training data for which
statistics of the residual transformation are not trivial to obtain.

III. SPECTRAL SHAPE DISSIMILARITY

In this section, we explore the use of the spectrum of
Laplace operators to define a shape dissimilarity score nor-
malized Weighted Spectral Distance – nWSD. We show that
nWSD captures and quantifies shape differences and offers a
solution to the limitations of existing scores.

We begin this section by first briefly providing the necessary
background on Laplace operators, their spectra and their
role in shape analysis, Section III-A. Then we present in
Section III-B the nWSD score and its properties that make
it useful for measuring shape differences. In Section III-C we
experimentally analyse nWSD and demonstrate its advantages
for the problem segmentation-based evaluations. We further
show that jointly using nWSD with DSC yields more discrimi-
native power than either of the scores alone. Finally, we briefly
discuss implementation details of nWSD and the choices of
its parameters in Section III-D.

A. Spectrum of Laplace Operator

Laplace operators and their spectra have been studied in
mathematics and theoretical physics for a long time [23].
Their introduction in computational shape analysis is however,
rather recent [24]. In this first part, we give a brief overview
of Laplace operators to equip the reader with the necessary
background. We specifically focus on their role in shape
analysis. For a more thorough discussion of these topics we
refer the reader to [23], [25], [26] and [24].

We denote an object (an anatomical structure) as a closed
bounded domain Ω ⊂ Rd with piecewise smooth boundaries
in the d-dimensional Euclidean space. With respect to images
or volumes, Ω corresponds to the region outlined by the seg-
mentation (or the label map). Now let FΩ , {f |f : Ω→ R}
be the space of real-valued functions on Ω and DΩ the space of
twice differentiable functions in FΩ, then the Laplace operator
∆Ω : DΩ → FΩ for f ∈ DΩ with respect to Ω is defined as

∆Ωf ,
d∑
i=1

∂2

∂x2
i

f,

where x , {x1, . . . xd} represent the spatial coordinates
of Rd. The importance of the Laplace operator for shape
analysis arises from the fact that the eigenvalues and the
eigenfunctions of this operator contain information on the
intrinsic geometry of the object [23], [27], [28]. An intuitive
analogy (in 2D) is to consider a drum membrane that has the
same shape as the object. Then, the eigenvalues of the Laplace
operator defined on the object correspond to the fundamental
frequencies of vibration of the membrane during percussion.
These frequencies depend on the shape of the drum and
as such the eigenvalues depend on the shape of the object.
Mathematically, the eigenvalues and the eigenfunctions of ∆Ω

are the solutions of the Helmholtz equation with Dirichlet type
boundary conditions1, [23],

∆Ωf + λf = 0, ∀x ∈ Ω and f(x) = 0, ∀x ∈ ∂Ω,

where ∂Ω denotes the boundary of the object and λ ∈ R
is a scalar. The eigenvalue-eigenfunction pairs {(λn, fn)}∞n=1

that satisfy this equation form an infinite set. Furthermore,
the ordered set of eigenvalues is a positive diverging sequence
0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . . This infinite sequence is
called the Dirichlet spectrum of ∆Ω, which we refer simply as
the “spectrum”. In addition, each component of the spectrum
is called a “mode”, e.g. λn is the nth mode of the spectrum.

As we mentioned above, the spectrum contains information
on the intrinsic geometry of objects. Mathematically, this is
given by the heat-trace, which in Rd is

Z(t) ,
∞∑
n=1

e−λnt =
∞∑
s=0

as/2t
−d/2+s/2, t > 0, (1)

where t is formally related to a time variable in a heat diffusion
system [29]. The coefficients of the polynomial expansion,
as/2, are the components carrying the geometric information.
These coefficients are given as sums of volume and boundary
integrals of some local invariants of the shape, [26], [27], [30],
[31]. For instance, as given in [30], the first three coefficients
are:

a0 =
1

(4π)d/2
VΩ,

a1/2 = − 1
4(4π)d/2−1/2

SΩ,

a1 = − 1
6(4π)d/2

∫
∂Ω

κd∂Ω,

where VΩ is the volume, SΩ is the surface area (circumference
in 2D) and κ is the mean (geodesic) curvature on the boundary
of Ω. The functional relationship between the eigenvalue
sequence and the coefficients as/2 as given by the Equation (1)
relates the spectrum to the intrinsic geometry. This “spectrum-
geometry” link makes the Laplace spectrum important for the
computational study of shapes.

In addition to the spectrum-geometry link, the spectrum
of the Laplace operator has two other properties that make
it useful for shape analysis, [23]: i) eigenvalues are invari-
ant to isometric transformations and ii) eigenvalues change
continuously with the deformations applied to the boundary
of the object. The first property shows that the eigenvalues
capture the fact that isometric transformations do not alter the
shape but only the location and the orientation of an object.
The second property, on the other hand, states that there is a
continuous link between the differences in eigenvalues and the
difference in shape. This continuous link is a key property that
makes the spectrum useful in quantifying shape differences.

Unfortunately, it has also been shown that there exist non-
congruent shapes that have exactly the same spectrum, called
isospectral shapes [32]. Therefore, theoretically the spectrum
does not uniquely identify shapes. However, as stated in [24],

1Here we are only interested in the Dirichlet type. Please refer to [23] for
other types.
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practically this does not cause a problem mostly because
the constructed isospectral shapes in 2D and 3D are rather
extreme examples with nonsmooth and nonconvex boundaries.
Furthermore, for dimensions less than four, it is not even
clear whether there exist continuous deformations that do not
modify the spectrum while changing the shape [33].

Although the spectrum-geometry link has been known for
a long time, this link has not been explored for computational
analysis of shapes until recently. Inspired by the properties of
the spectrum, Reuter et al. in [24] proposed a shape descriptor,
called shape-DNA, based on the eigenvalue sequence. For a
given shape Ω, it is defined as the vector composed of the first
(smallest) N modes of the spectrum of the associated Laplace
operator (i.e. the operator defined on Ω) : [λ1, λ2, . . . , λN ].
Using shape-DNA, authors in [34] and [35] analysed anatom-
ical structures and showed the potential of the spectrum as
a descriptive feature vector. They were able to capture the
shape differences between distinct objects and use shape-DNA
for the purposes of classification, recognition and statistical
analysis.

In the context of segmentation-based evaluation, the com-
mon measures discussed in Section II mainly use the spatial
information extracted from the segmentations. For instance,
DSC computes the spatial overlap between the corresponding
segmentations. These measures thus combine pose and shape
differences in one score. Now, the Laplace spectra present
other opportunities. As a representation, using exactly the
same input as the other measures, the spectrum extracts
information on the intrinsic geometry from the segmentation.
Therefore, a scoring function that can quantify the difference
between spectra of two objects can also be used as a measure
of shape dissimilarity. As a result, such a scoring function
alleviates the limitations of existing scores.

B. Normalized Weighted Spectral Distance - nWSD

In order to make use of the shape information contained in
the Laplace spectra, we need to define a score or a distance that
quantifies the difference between the spectra of two objects.
Defining such a shape-distance however, is a challenging task
due to the diverging nature of the eigenvalue sequence.

A first approach is presented in [24], where a distance
is defined as the Euclidean distance between shape-DNAs
of objects. Although this distance can be useful for certain
cases, it has some important drawbacks [36]. The Euclidean
distance between shape-DNAs: i) is extremely sensitive to
the descriptor size N while the choice of this parameter is
arbitrary, ii) cannot be defined over the entire spectrum, iii) is
dominated by the differences at higher modes of the spectrum
even though these modes are not necessarily more informative
about the intrinsic geometry and iv) cannot be normalized and
therefore, it is not trivial to use in conjunction with other scores
that have different ranges, such as DSC which is in the interval
[0, 1]. These problems limit the use of the Euclidean distance
in practice.

Here we present an alternative definition, which overcomes
the difficulties posed by the diverging nature of the spectrum.
In order to keep the presentation focused on the problem

of measuring discrepancies between segmentations we only
provide the definitions and briefly describe the properties. The
derivations and the detailed theoretical analysis of the follow-
ing definitions, in a more general framework, are presented in
[21].

To define our shape dissimilarity score, we first create a
theoretically sound spectral distance that can be normalized to
the [0, 1] interval. The weighted spectral distance (WSD) for
two closed bounded domains with piecewise smooth bound-
aries, Ωλ,Ωξ ⊂ Rd, whose spectra are given as the sequences
{λn}∞n=1 and {ξn}∞n=1 respectively, is defined as

ρ(Ωλ,Ωξ) ,

[ ∞∑
n=1

∣∣∣∣ 1
λn
− 1
ξn

∣∣∣∣p
] 1
p

, (2)

where p is a positive scalar such that p > d/2. Unlike the
Euclidean distance between shape-DNAs, WSD is defined
over the entire eigenvalue sequence and the difference at each
mode uses 1/λn and 1/ξn rather than λn and ξn. The basic
theoretical properties of WSD are:

(i) for p > d/2, WSD exists for any two closed bounded
domains with piecewise smooth boundaries, i.e. the
infinite sum in the definition is guaranteed to converge
to a finite value

(ii) WSD satisfies the triangular inequality making it a
pseudometric and

(iii) WSD has a multi-scale aspect with respect to p in the
sense that increasing p lowers the sensitivity of WSD
with respect to shape differences at finer scales, i.e. with
respect to geometric differences at local level such as
thin protrusions or small bumps.

Based on the first property of WSD, we can now define
the normalized score of shape dissimilarity, which we call
normalized weighted spectral distance (nWSD), as

ρ(Ωλ,Ωξ) ,
ρ(Ωλ,Ωξ)
W(Ωλ,Ωξ)

∈ [0, 1) (3)

where ρ(Ωλ,Ωξ) is mapped to the [0, 1) interval using the
shape-dependent normalization factor

W(Ωλ,Ωξ) ,

{
C +K ·

[
ζ

(
2p
d

)
− 1−

(
1
2

) 2p
d

]} 1
p

.

ζ(·) represents the Riemann zeta function [37], and C and K
are the shape based coefficients given as

C ,
∑
i=1,2

 d+ 2
d · 4π2

·

(
BdV̂

i

) 2
d

− 1
µ
·
(

d

d+ 4

)i−1
p

K ,

[
d+ 2
d · 4π2

·
(
BdV̂

) 2
d − 1

µ
· d

d+ 2.64

]p
,

V̂ , max
(
VΩλ , VΩξ

)
and µ , max (λ1, ξ1) ,

where Bd is the volume of the unit ball in Rd. nWSD
inherits the properties of WSD except being a pseudometric.
Furthermore, being confined to [0, 1), nWSD also allows us
to i) easily use the shape dissimilarity in combination with
scores quantifying other types of differences between objects,
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such as DSC, and ii) compare dissimilarities of different pairs
of shapes which is of practical importance in the setting of
registration evaluation.

An important theoretical property of the nWSD score is that
it is defined over the entire eigenvalue sequence. In practice,
however, we can only compute a finite number of eigenvalues
and therefore, can only approximate nWSD. Considering this,
we also define the finite approximations of nWSD using the
smallest N eigenvalues as

ρN (Ωλ,Ωξ) ,
ρN (Ωλ,Ωξ)
W(Ωλ,Ωξ)

∈ [0, 1), (4)

which has diminishing asymptotic errors
limN→∞ |ρ(Ωλ,Ωξ) − ρN (Ωλ,Ωξ)| = 0. Furthermore,
ρN (·, ·) can accurately approximate nWSD only using a few
number of modes, which makes nWSD useful in practice.

The invariance properties of the eigenvalues is the other very
important property of nWSD. Since the eigenvalues do not
change with respect to isometric transformations, e.g. rotation
and translation, the ρ(·, ·) does not change with respect to
isometric transformations applied to the objects. As a result
of these invariance properties the nWSD score focuses solely
on the shape differences between objects becoming truly
complementary to other scores discussed in Section II.

The nWSD score allows us to use the shape information
encoded via the Laplace spectra for measuring shape discrep-
ancies between binary label maps.

C. Experimental Analysis of nWSD using Synthetic Images

We now explore nWSD experimentally and analyse its
properties from the viewpoint of segmentation-based evalu-
ation by reviewing a series of experiments based on synthetic
data. Specifically, we confirm in Section III-C1 the ability
of our measure to capture shape differences that are missed
by the scores studied in Section II. Furthermore, we perform
experiments that demonstrate nWSD’s invariance to isometric
transformations (Section III-C2) and its continuous relation-
ship with respect to deformations ( Section III-C3). These
findings serve as a motivation in III-C4 to combine nWSD
with DSC resulting in a rich quantification of differences
between two binary label maps. Consequently, in the scenario
of registration, this yields a more discriminative assessment of
registration quality than possible by either score alone.

1) Discriminating Shape Differences: We start our exper-
iments with the dataset of Section II. Following the same
procedure as before, we compute nWSD scores between the
reference, i.e. a disc of 15 mm radius, and each of the 250
perturbed segmentations, where the first one is a translation of
the reference by 3 mm (see also Figure 1). In Figure 4(a) we
plot these scores for each perturbed segmentation along with
some example images that lie at different bands of the nWSD
score. We make the following important observations:

- Considering the value ranges we see that the dispersion
of the nWSD score for this dataset is substantially larger
than for other scores used in Section II. This shows that
nWSD provides a much higher level of discrimination
for the segmentations considered in this dataset.

(a)

(b) (c) (d)

Fig. 4: nWSD scores for the synthetic dataset described in
Section II. (a) The graph shows the nWSD scores between
the reference segmentation and each of the 250 perturbed
segmentations, where x-axis is the image index. The 16 images
on the right are some examples of perturbed segmentations
corresponding to different bands of nWSD score (same row
= similar scores). Note that segmentations with similar scores
are visually more similar than ones with very different scores.
(b) The two perturbed segmentations with the second and the
third lowest nWSD scores with respect to the reference disc.
Although the shape differences are subtle they are captured by
nWSD. (c) The same images as in Figure 3(b). The difference
between their nWSD scores is relatively large considering the
maximum and minimum values of nWSD seen in plot (a).
nWSD captures the difference between these shapes, while
HD does not. (d) The same images as in Figure 3(c), where
we see a similar behaviour: the shape difference that is not
differentiated by SRMS is captured by nWSD.

- The first image in the dataset, which is simply a transla-
tion of the reference segmentation, received the lowest
nWSD score, nWSD = 7.5× 10−14.

- Observing the example segmentations and the corre-
sponding bands of the nWSD score shown in Figure
4(a), we notice that the ordering of shapes with respect
to nWSD is visually meaningful. Segmentations that
receive similar nWSD scores with respect to the refer-
ence have indeed visually comparable discrepancies. It
is remarkable that all these segmentations yield identical
DSC scores with respect to the reference, as shown in
Fig. 2.

- The images with the second and third lowest nWSD
score are shown in Figure 4(b), from left to right re-
spectively. We note that these segmentations have fairly
subtle shape differences compared to the reference. Yet
nWSD is able to capture these differences.

- Figure 4(c) and (d) show the pairs of segmentations
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(a)

(b)

Fig. 5: Invariance of nWSD to isometric transformations. (a) A
synthetic dataset of 250 perturbed images obtained by rotating
a reference segmentation with angles varying in [0, 2π]. The
left most image shows the reference while the remaining are
examples from the perturbed ones. (b) The graph on the left
plots the DSC scores between the reference and the perturbed
images with respect to the angle of rotation. The graph on the
right similarly plots the nWSD score.

that were earlier used in Figures 3(b) and (c), where
we have illustrated the limitations of HD and SRMS.
Below each segmentation we also give their nWSD
scores with respect to the reference. We see that nWSD
discriminates between these segmentations while not
having the drawbacks of HD and SRMS.

In summary, while other segmentation-based scores fail to
capture shape differences in this dataset, nWSD captures the
differences and provides a visually meaningful discrimination
between different segmentations. We also notice that nWSD
does not capture all the differences between two segmenta-
tions, i.e. misalignments due to incorrect pose. This is due
to its invariance to isometric transformations, which we will
explore in the next section. Before proceeding to this analysis,
we would like to point out that this invariance is precisely why
nWSD is able to provide additional information to the other
scores and enriches segmentation-based evaluation.

2) The Source of Extra Information: Invariance to Isometric
Transformations: As we have mentioned in Section II, scoring
functions, such as DSC, measure the differences between two
label maps by blending discrepancies arising from misalign-
ments due to pose and actual shape mismatches. Due to this,
they are unable to distinguish between simple translations and
substantial shape differences. nWSD only focuses on the shape
differences providing that extra information. It achieves this as
a consequence of its invariance to isometric transformations. In
this section, we demonstrate this invariance of nWSD through
a simple example.

For simplicity, we only focus on rotations however similar
results can be produced with translations. We constructed a
synthetic dataset which consists of a reference segmentation,
shown in Figure 5(a) left most image, and rotations of this

segmentation with angles varying in [0, 2π]. Examples of the
rotated reference segmentation are shown in Figure 5(a). We
then compute DSC and nWSD scores between the reference
and the rotated segmentations. Figure 5(b) shows these scores
with respect to the angle of rotation. We observe that, as
expected, DSC changes with respect to the angle of rotation
successfully capturing the misalignment due to pose. The
nWSD score varies slightly within the small interval [0, 0.003],
meaning that the shape similarities between the reference and
the rotated segmentations are almost perfect. In theory, the
score should exactly be 0 for all the rotated segmentations. The
small deviation from 0 is due to image discretization artifacts,
which slightly change the shape.

This experiment demonstrates that the score values obtained
via nWSD purely quantify the shape differences, in other
words nonlinear discrepancies between two segmentations.
As such, nWSD can point out the shape differences without
being affected by misalignments due to incorrect pose. This
provides a richer understanding of the discrepancies between
segmentations and a better interpretation of other scores.

3) Continuity with Respect to Deformations: Another im-
portant property of the spectrum mentioned in Section III
is that the eigenvalues change continuously with respect to
deformations applied to an object’s boundary [23]. Here, we
use the notion of continuity in the mathematical sense [37].
The continuous relation between the deformations and the
spectrum is also inherited by the nWSD score, i.e. the score de-
pends continuously on the deformations. We demonstrate this
with a simple example. We start from a reference segmentation
– a disc of radius 15 mm – and protrude the boundary of this
reference in a continuous manner to create 160 perturbed seg-
mentations. Some examples of these perturbed segmentations
are shown in Figure 6. We then computed the nWSD score
between the reference and each perturbed segmentation. The
graph shown in Figure 6 plots the nWSD scores versus the
maximum extent of the protrusion.

Figure 6 shows that nWSD depends continuously on the
extent of the protrusion. This continuous relation is especially
interesting in segmentation-based scoring for the problem of
assessing registration quality because it relates the amount of
deformation to the magnitude of the spectral distance.

4) 2D Accuracy Measure: Combining nWSD with DSC
Score: The properties that we demonstrated above make
nWSD a useful and complementary segmentation-based eval-
uation score. Motivated by its properties, in this section we
propose a two dimensional scoring system where one dimen-
sion is DSC, quantifying the overall differences between the
segmentations through spatial overlap, and the other dimension
is nWSD, focusing on the shape discrepancies. We note that
instead of DSC we could have also used one of the other
scores studied in Section II.

We follow the same procedure as in the previous sections
and make use of a synthetic dataset generated from a reference
segmentation. The reference segmentation for this experiment
is chosen as the slightly more complicated structure shown in
Figure 7(a) left most image. Starting from this reference, we
have generated 500 perturbed segmentations using transforma-
tions with varying degrees of nonlinearity and magnitude. In



8

Fig. 6: Change of nWSD with respect to continuously growing
deformation. The synthetic dataset in this experiment consists
of a reference disc and 160 perturbed images. The perturbed
images are constructed by protruding the boundary of the
reference in a continuous manner and taking snapshots at
different points. The graph plots the nWSD score between the
reference and the perturbed images. Some of the perturbed
images are shown on the graph pointing to their respective
nWSD score.

addition, for the last 100 perturbed segmentations, we have
only used isometric transformations, i.e. rotations and trans-
lations. Some examples of the perturbed segmentations are
shown in Figure 7(a). We then computed the DSC and nWSD
scores between the reference and each perturbed segmentation.
In Figure 7(b) we plot the nWSD scores. As expected there
is a large dispersion among the first 400 images. Furthermore,
the last 100 images receive very low scores.

In Figure 7(c) we combine DSC with nWSD in a two dimen-
sional evaluation score. Each point in this graph corresponds
to a different perturbed segmentation, the dots representing
the ones constructed using nonlinear transformations and the
crosses representing the ones constructed using isometric
transformations. We observe that there are many segmentations
that have very similar DSC scores but different nWSD scores.
First of all, this 2D dispersion allow us to further discrim-
inate between these segmentations, which would not have
been possible by using only DSC. Furthermore, we can now
interpret the sources of the discrepancies as measured by DSC:
whether the discrepancy is due to pose misalignments or shape
mismatches. Lastly, using this system we can better compare
segmentation pairs that yield slightly different DSC values
and interpret the difference correctly. By looking at nWSD
values for these segmentations, we can conclude whether
higher DSC score corresponds to a truly better alignment of
the segmentations or if the increase in DSC is coming at
the expense of altering the shape. We will elaborate on this
idea further in Section IV in the context of an intersubject
registration scenario.

In summary, we see that the 2D score (DSC,nWSD) pro-
vides richer information on the discrepancies between seg-
mentations. A “good” registration in this plot would lie on
the bottom-right corner close to the point (DSC, nWSD)=
(1, 0). At this point we can ensure that the structures are
not only overlaid well but also that their shapes are similar.

(a)

(b) (c)

Fig. 7: Joint use of nWSD with DSC. (a) Examples from
the synthetic dataset constructed for this experiment. The left
most image is the reference image from which 500 other
segmentations are constructed by perturbing the reference
via deformations of varying magnitude and amount of non-
linearity. The last 100 perturbed images are the result of
applying isometric transformations to the reference. (b) The
graph shows the nWSD score between the reference and the
perturbed images. (c) The graph shows DSC vs. nWSD scores
for the perturbed images with respect to the reference. Each
point in the graph represents a perturbed image. The crosses
correspond to the images which are isometric transformations
and the dots correspond to the images which are nonlinear
deformations of the reference. This 2D accuracy system pro-
vides richer information regarding discrepancies between the
perturbed and the reference segmentations. For the same DSC
score now we can identify the source of the discrepancy, i.e.
whether pose or shape. A good registration in this plot lies
on the bottom-right corner where we can not only ensure that
the corresponding structures in the aligned images are well
overlaid, but also guarantee that their shapes are similar.

Furthermore, comparing segmentations to the template we can
conclude that the segmentations with higher DSC score is the
result of truly a better alignment if it also has similar or lower
nWSD score. If it has a higher nWSD score then this points
out that the increase in DSC came at the expense of increasing
shape differences.

D. Implementation Details

There are two different aspects of the numerical com-
putation of the nWSD score. The first one concerns the
computation of the Laplace spectra for each segmentation.
Most existing numerical methods [24], [38] for computing
eigenvalues of the Laplace operator in a volume or on a surface
can be used to compute nWSD. For the experiments provided
in this article, we choose to use the basic finite difference
scheme using the natural image grid (see for instance Chapter
2 of [38] for further details). Our main argument in choosing
this method is to avoid additional steps, such as volumetric
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(a) (b)

(c)

Fig. 8: Evolution of nWSD with respect to the parameters
N and p. The line types shown below the images of (a) are
used for plotting the corresponding results in (b) - (c). The
nWSD scores are computed between each of segmentations
shown in (a) and the reference segmentation of Section II
shown in Figure 1(a). We see that the convergence for all the
segmentations is rapid with respect to the number of modes
N . Furthermore, the choice of p do not alter the ordering for
these segmentations.

mesh construction, but use exactly the same inputs as other
segmentation-based scores. For a segmentation Ω represented
as binary image in a rectangular grid we compute the dis-
crete Laplacian operator using the central finite-difference
approximation of the ∆Ω operator. This step yields a sparse
matrix which we then solve using Arnoldi’s method [39] as
implemented in MATLAB R©.

The second numerical aspect in computing nWSD is the
choice of the parameters p, the norm type, and N , the number
of modes. In order to provide the reader an intuition we plot
in Figures 8 the change of nWSD (and ρ(·, ·)) with respect
to these parameters. We choose four segmentations from the
synthetic dataset used in Section II and compute their nWSD
scores with respect to the reference segmentation (the disc of
15 mm radius shown in Figure 1(a)) using different p and
N . In Figure 8(a) we show these images where the small
strips below the images displays the line style each image
corresponds to in the accompanying plots. In Figure 8(b) we
plot the evolution of nWSD scores with respect to N (setting
p = 1.5). We notice that the nWSD scores converge rapidly
as N increases and do not change after N = 50. Although
not shown here, the same convergence holds for any pair of
segmentation and in 3D as well. Therefore, the choice of N
is not a very crucial parameter for the computation of nWSD
as long as it is a fairly large number, such as N > 50. In all
the experiments shown in this article, whether 2D or 3D, we
have used N = 200.

In Figure 8(c) we plot the evolution of ρ(·, ·) (see Eqn. 2)

and nWSD with respect to different p, for the same four
segmentations (setting N=200). As we can see in the plot to
the left, ρ(·, ·) increases with decreasing p. This is as expected
since, as mentioned in Section III-B, as p decreases ρ(·, ·)
becomes sensitive to finer scale shape discrepancies showing
higher distances. On the other hand, in the formulation of
nWSD given in Eqn. 3 we notice that p also affects the
normalization factor W. Integrating this effect as well, we see
in the plot to the right that nWSD increases with increasing
p and then converges. The important point to notice in these
plots is that the order of the curves do not change with p.
the exact value of p is application dependent and should be
chosen keeping in mind two points. First, low values of p
will emphasize the very fine scale differences, which might be
due to noise. Therefore, for having a robust score one should
not choose p too low. Second, too high values of p might
loose details which can be important to distinguish between
segmentations. In our experiments we empirically found that
the values p = 1.5 in 2D and p = 2.0 in 3D provide good
discrimination while being robust to noise.

In summary, we described a new score that exploits the
properties and advantages of spectral representations to mea-
sure discrepancies between segmentations. We showed on
synthetic images that nWSD is a sound and useful scoring
function. It allows us to further distinguish pairs of segmen-
tations with similar DSC score and better interpret the score
differences as it ignores pose changes and only measures shape
differences.

IV. INTER-SUBJECT MRI BRAIN REGISTRATION

We now perform a series of real data nonlinear registration
experiments to underline the benefits of nWSD in practice.
For these experiments we use the publicly available dataset
IBSR (Internet Brain Segmentation Repository 2). This dataset
includes MR brain scans (T1) of 18 healthy subjects along
with manual delineations of 43 structures – subcortical and
cortical – for each scan. In [17] the IBSR dataset has been used
for a comparative study of different registration algorithms.
The comparisons were based on various segmentation-based
evaluation scores using the manual delineations. Regarding
the behaviour of different scores, the authors state in their
results: “Target, union and mean overlap measures for volumes
and surfaces (and the inverse of their false positive and
false negative values) all produced results that are almost
identical if corrected for baseline discrepancies.” In other
words, different measures did not provide extra information for
discriminating different algorithms. Here, we demonstrate that
nWSD indeed provides additional information to commonly
used segmentation-based scores on the same dataset. We show
that when used jointly with DSC, nWSD yields a much richer
discrimination between different registrations.

In our experiments we use a single registration algorithm
and compare the outcome of different registrations, i.e. dif-
ferent source and target images. For this purpose we employ
the diffeomorphic demons algorithm [40] implemented within
the ITK library (http://www.itk.org). We cross registered each

2http://www.cma.mhg.harvard.edu/ibsr
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image in the IBSR dataset to the remaining 17, adding up to
306 non-rigid registrations in total. Each registration is run
for 50 iterations and 3 resolution levels. The images have
been skull-stripped prior to registration, and the non-rigid
registration is initialized with an affine alignment.

After registering the scans, for each pair of source-target
images we align the manual segmentations of the correspond-
ing structures using the transformations computed by the
registration algorithm. For all cases, we compute the DSC,
SMSD, and nWSD scores between the aligned segmentations
of four selected structures: right ventricle, caudate, thalamus,
and putamen. In Figure 9, we plot these scores for each
registration in the 2D coordinate systems (DSC,SMSD) and
(DSC,nWSD). In each graph every point corresponds to a dif-
ferent registration problem, i.e. different source-target image
pair.

The plots demonstrate the large variation of each score
across the dataset and the relationships between different
scores. Observing these plots we note the following:

- Figures 9(a)-(c) show that DSC and SMSD are highly
correlated for the corresponding structures, i.e. Pearson’s
correlation coefficients are r = −0.95,−0.98,−0.98
respectively. This means that these two scores do not
provide different information regarding the quality of
the registration with respect to these structures, which
is inline with the results given in [17].

- The combination of DSC and nWSD for the
same structures shows much less correlation (r =
−0.59,−0.35,−0.48). There is a large number of regis-
trations that have very similar DSC and different nWSD
scores, and vice-versa. This shows for this experiment
that nWSD provides additional information to DSC and
the proposed 2D scoring system has a higher disrimina-
tive power than each score alone.

- The plots in (d) show that the variations of all three
scores across the dataset are larger for ventricles than for
the other structures. We see that the correlation between
DSC and SMSD is still high in this case but slightly
lower than the previous cases, i.e. r=−0.85. Correlation
between DSC and nWSD is also higher, r=−0.82. This
high correlation is largely due to registrations yielding
bad values in all scores. In fact, if we only consider
registrations that achieve DSC score higher than 0.7 then
the correlation between DSC and nWSD drops yielding
r=−0.33. A similar behaviour to a lesser extent is also
apparent in (a).

The proposed (DSC,nWSD) scoring system allows us to
interpret the quality of the nonlinear registration in a much
richer way than by just reporting the resulting DSC scores. For
instance, for two registration problems that achieve the same
DSC score we can now recognise the sources of imperfections
between the aligned segmentations. A low nWSD score would
hint us that the imperfection is due to pose misalignment while
a high score tells us that there is a shape mismatch. Such
information can help to understand better the behaviour of
registration methods and the influence of parameters such as
the amount of regularization.

One of the most important uses of the (DSC,nWSD) evalu-
ation system is for comparing different registrations yielding
slightly different DSC scores (or any other score mentioned
in Section II). In the literature, it is common to assume that a
slightly better DSC score is an indicator of a better registration
(or segmentation). However, the shape variations that one
obtains for exactly the same DSC score, as shown in Section II,
raise some concerns on the validity of this assumption. By con-
sidering DSC only, one cannot understand whether the increase
in the score is a consequence of a truly better registration or
just a result of a better pose alignment while substantial shape
mismatches might be present. Providing a quantification of the
shape discrepancy through nWSD, removes this ambiguity.
Below we demonstrate this with some visual examples. We
examine four pairs of registrations, one pair for each structure,
which yield slightly different DSC and SMSD scores.

From the graphs shown in Figure 9 we select two cases
for each structure independently. These selected registrations
are indicated by red and green points. For each of these
registrations, we provide a visual interpretation of the nWSD
score. We extract the segmentations of the aligned structures
of interest and correct for remaining pose misalignments using
the iterative closest point (ICP) algorithm. We determine
the residual surface distances and colour-encode these on
the surface meshes shown in Figure 10. Blue corresponds
to lower residuals. For each structure, Registration #1 (#2)
corresponds to the green (red) point in the respective graph
in Figure 9. For the ease of demonstration, we only show
either the target or the warped source segmentation, whichever
shows higher residuals. The meshes are rendered from two
different viewpoints. In the accompanying table we provide
the DSC, SMSD, and nWSD scores for each structure and
each registration.

Observing Figure 10 we notice that although the DSC
scores for Registration #2 for each structure are higher, these
registrations also show much higher discrepancy between the
aligned surfaces after correcting for the pose misalignments
which is reflected in the nWSD scores. It is debatable if
these registrations are really better, and it would have been
impossible to notice these differences by only considering
DSC. nWSD detects these differences and assigns high scores
to Registration #2. If the results shown in Registration #2
were truly better they would have also yielded lower nWSD
scores. In fact, by equipping the segmentation-based evaluation
system with nWSD, we can now define the following rule: if
two registrations yield similar nWSD scores, and one of them
has higher DSC, that one truly better aligns the delineations
of the corresponding anatomical structures and therefore, has
a better quality.

In summary, the experiments indicate that only relying on
commonly used scoring functions, such as DSC, is not suf-
ficient for discriminating between registrations. Registrations
of different quality can be assigned similar scores. Confirming
the conclusions of [17], we also see that alternative scores
such as SMSD actually do not provide additional information
for most of the structures. Furthermore, comparing different
registration results (different methods or problems) based
on DSC, or any other similar score, does not necessarily
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(a) right caduate nucleus (b) right thalamus

(c) right putamen (d) right ventricle

Fig. 9: The DSC vs. SMSD and DSC vs nWSD scoring plots for the 306 registrations. In the graphs, each point corresponds
to a different registration problem, i.e. different source-target image pair. The scores are computed for each registration by
aligning the manual segmentations of the target and source image using the computed transformations. We compute the scores
based on four subcortical structures: (a) caudate, (b) thalamus, (c) putamen and (d) ventricle. We note that in (a)-(c) DSC
and SMSD are very correlated while nWSD and DSC are much less correlated. This shows that the information provided by
nWSD is indeed not captured by DSC. The correlation scores (r-values) are given in the titles of each plot. In each plot we
also highlight two points in red and in green, which we elaborate further in Fig. 10 and in the text.

provide a valid conclusion. nWSD, on the other hand, provides
additional information that is not captured by the commonly
used scores. Our experiments illustrate that jointly using DSC
and nWSD achieves a much richer characterization and a
higher discriminative power than either one of them alone. It
provides the ability to interpret the imperfections in alignments
as well as better means for comparisons.

V. CONCLUSION

This paper explored a new score, called normalised
Weighted Spectral Distance (nWSD), for segmentation-based
evaluation. We showed that commonly used measures, such
as Dice’s coefficient (DSC), are not discriminative enough in
measuring discrepancies between two binary label maps. They
cannot make the distinction between simple pose alignments
and substantial shape mismatches. As a result they yield
similar scores to a wide range of segmentation pairs. In
order to overcome these shortcomings, we explored the use
of a complementary measure, namely nWSD, which measures
shape discrepancies between two binary label maps based
on spectra of Laplace operator. Through different synthetic
experiments we demonstrated that nWSD is able to quantify
the shape differences other scores are indifferent to. Further-
more, theoretical and practical properties of nWSD make it
a practical measure complementary to existing scores. We
further showed that nWSD in combination with standard
metrics, such as DSC, provides higher discrimination power

in segmentation-based evaluation. nWSD has the potential to
be an important component in segmentation-based evaluation
studies that can be applied to future studies as well as to
retrospective studies for re-evaluation. We will support those
studies wanting to take advantage of nWSD by making our
MATLAB R© implementation available upon request.
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