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Abstract. We use a simple yet powerful higher-order conditional ran-
dom field (CRF) to model optical flow. It consists of a standard photo-
consistency cost and a prior on affine motions both modeled in terms
of higher-order potential functions. Reasoning jointly over a large set of
unknown variables provides more reliable motion estimates and a robust
matching criterion. One of the main contributions is that unlike pre-
vious region-based methods, we omit the assumption of constant flow.
Instead, we consider local affine warps whose likelihood energy can be
computed exactly without approximations. This results in a tractable,
so-called, higher-order likelihood function. We realize this idea by em-
ploying triangulation meshes which immensely reduce the complexity of
the problem. Optimization is performed by hierarchical fusion moves and
an adaptive mesh refinement strategy. Experiments show that we achieve
high-quality motion fields on several data sets including the Middlebury
optical flow database.

1 Introduction

Currently most methods for optical flow estimation can be roughly divided into
two groups: (i) variational methods based on the pioneering work of Horn and
Schunck [1], and (ii) discrete methods utilizing combinatorial optimization such
as graph-cuts [2]. Both approaches have their advantages and disadvantages.
While variational methods often yield very high accuracy, these methods depend
on rather local image properties and may also suffer from local minima during
optimization of the cost function. Combinatorial optimization is often able to
recover strong minima but only with respect to a rather sparse discretization of
the search space. Recently, methods have been proposed [3, 4] which successfully
combine both worlds towards discrete-continuous optimization which is able to
avoid local minima and obtain highly accurate (continuous) flow estimates at the
same time. A rather comprehensive overview and comparison of latest optical
flow methods can be found in [5] and on the website of the Middlebury optical
flow database1.
1 http://vision.middlebury.edu/flow/
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Still, a major limitation of existing algorithms is in the definition of the like-
lihood (or data) term within the energy formulation. Often, a matching criterion
is defined pixel-wise for instance using squared differences on the intensities. In
general, such a formulation yields an ill-posed problem since two-dimensional
flow vectors have to be recovered from a one-dimensional signal (aperture prob-
lem). Ambiguities may arise for matching individual pixels independently. Here,
regularization plays an important role to render the problem well-posed such
that the optimization yields meaningful solutions.

In contrast, region-based approaches [6, 7] use local image patches to esti-
mate point correspondences. Here, a matching criterion such as the correlation
coefficient (CC) is evaluated on the whole patch centered at a point for which
the motion is to be determined. The distribution of such points can be dense or
sparse (by employing a parameterization of the motion field) [8]. Region-based
approaches yield a more robust definition of the likelihood compared to pixel-
wise methods [9], but often introduce a rough approximation. In fact, in most
approaches it is assumed that all pixels within the patch move with constant
flow. However, except for pure translation within the patch, the assumption of
constant flow does not hold.

One may claim that an optimal definition of the likelihood should be (i) robust
and reliable, by considering a larger set of unknown variables simultaneously and
(ii) precise and tractable by modeling the various motions for the set of variables
beyond the assumption of constant flow. This leads us to our main contribution
in this paper, which we call higher-order likelihoods. In the following, we will
introduce the concept of higher-order likelihoods and their corresponding energy
in a conditional random field (CRF). We demonstrate how triangulation meshes
perfectly support our concept. The effectiveness of our approach is evaluated on
several datasets including the Middlebury optical flow database. We also revisit
the concept of motion layers [10] which, when integrated in our framework,
enables us to handle occlusions in a natural way in form of overlapping meshes.
We conclude our paper by a discussion on future work.

1.1 Related Work

Conditional random fields are ubiquitous in computer vision. Their success can
be certainly attributed in large parts to the existence of powerful optimization
methods which have been developed in the last decade. The most commonly
used models in low-level vision applications are first-order CRFs2, which con-
tain cliques of size up to two. Here, the unary potentials play the role of the
likelihood term evaluating how well a certain label fits to a variable w.r.t. to
the observation, independently of all other variables. The pairwise potentials are
then used to enforce smoothness by penalizing deviations of labelings between
two neighboring variables. These models are quite intuitive due to their natural
relationship to the image grid itself. Additionally, first-order models are attrac-

2 Note that an n-th order CRF contains cliques of size up to n+ 1.
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tive due to efficient optimization methods, which often guarantee to find the
global optimum.

Despite the popularity of first-order models, their modeling capabilities are
very limited. As already mentioned, a likelihood term based on unaries is either
not very reliable or rough approximations have to be used as in previous region-
based methods. In some works (e.g. in [11–13]), the pairwise terms are considered
for the likelihood in order to model a conditional data-dependency on a pair of
variables which yields a more appropriate model for the problem at hand.

Recent advances in CRF optimization allow the use of higher-order potentials
in an efficient and principled manner [14–16]. A combination of fusion moves [17,
18], reduction techniques [19], and the QPBO algorithm [20, 21] allows to use
a second-order model in stereo [22], while a similar model is used for motion
in [23] employing belief propagation. Both works use a second-order prior de-
fined on triple-cliques to enforce smoothness based on second derivatives of the
disparity/motion field. Still, only unary terms are used for the likelihood.

Recently, many techniques have been developed for larger cliques of up to
several hundred variables, e.g. [15, 24] just to mention a few. In order to deal with
such large cliques in a tractable way , they must exhibit some internal structure.
For instance in [15] it is assumed that only a few (important) label-configurations
have a low energy and all remaining configurations a constant (high) cost.

In the following, we will introduce our concept of higher-order likelihoods for
the task of optical flow. We will derive a likelihood term based on triple-cliques
which models the costs of local affine motions exactly without approximations.
Additionally, we propose two novel regularization terms, the first one being also
based on triple-cliques, and the second one based on quadruple-cliques.

2 Concept of Higher-Order Likelihoods

Consider a set V of variables i, ..., N . In optical flow, the variables correspond to
pixels and we seek for optimal assignments di

3 corresponding to two-dimensional
flow vectors. Additionally, we introduce the power set C containing all possible
cliques (subsets) c of variables. We define the cost for a labeling d (i.e. every
variable is assigned a value di) in terms of a general CRF energy as

E(d|θ) =
∑
c∈C

ψc(dc|θ) . (1)

The clique potential functions ψc evaluate the cost for assigning a sub-labeling
dc to a clique c conditioned on the observation θ (the image data). In first-order
models, the energy would then be simply the sum of unary potentials ψi(xi|θ)
plus the sum of pairwise potentials ψij(di, dj |θ). For simplicity, in the following
we will neglect θ in the potential functions.

3 Depending on the context we will treat i, j, ... as random variables and as 2D coor-
dinates. Similarly, we treat labels di, dj , ... also as 2D motion vectors.
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Theoretically, reasoning jointly over all variables would be the best approach
for finding an optimal labeling. The energy would simply consist of one higher-
order potential for a clique containing all variables. Obviously, even for a small
number of variables this approach is doomed in practice regarding the compu-
tational complexity. A compromise has to be found between the clique size and
the tractability of the problem.

Let us concentrate on the problem of optical flow. Determining the flow
vector of individual pixels is clearly not well defined due to the aperture problem
mentioned earlier. In contrast, solving for the flow for a group of pixels might
be more reliable. Assume we are seeking for the optimal flow vectors within a
discretized search space L (a set of labels). Then, for a clique of K pixels the
solution space for the labeling problem has the cardinality |L|K . Evaluating all
of the potential labelings is infeasible. We discuss two alternative solutions to
this dilemma. We realize one of these solutions in our practical system, which
we discuss in detail in Sec. 2.1.

Let us first consider the alternative solution, which we only discuss theoreti-
cally. It is based on the recent work [15], where higher-order cliques are modeled
by sparse higher-order representations. Only a few labelings have assigned the
correct higher-order cost and all other remaining labelings are assigned a con-
stant (high) cost, which approximates their true cost. The key question is now
which labelings should be modeled? Note that there is actually only one label-
ing, i.e. the maximum a posteriori (MAP) labeling d̂, which has to be modeled.
This is the labeling which corresponds to the global optimum of the CRF energy,
which is obviously unknown. One approach is to design a data-driven prediction
function which has the observation as input and possible labelings as output.
Also, an iterative optimization procedure can be envisioned, where the higher-
order terms, which only approximate the current MAP labeling by a constant
cost, are redefined and thus improve the modeling of the MAP labeling in the
next iteration. However, such an approach might be computationally very ex-
pensive. In this paper, we present a simple yet powerful model overcoming this
limitation by exploiting inherent properties of optical flow.

2.1 Reduction of Complexity using Triangulations

Optical flow estimation consists of recovering the apparent motion from two
dimensional images capturing a scene of three dimensional objects moving over
time. We make two observations: (i) often the scene contains mainly solid objects,
which might translate, rotate, and/or scale from one image to another, (ii) the
motion of non-solid objects (such as textiles) can be sufficiently represented
by several local affine motions. These observations are consistent with other
approaches previously proposed for optical flow [25–27].

If we restrict the set of labelings to the ones representing affine motions only,
we already achieve an immense reduction of complexity. An affine motion in 2D
is fully defined by three two-dimensional points (i.e. six degrees of freedom). So,
estimating an affine motion from K(> 3) pixels is an over-determined problem
which allows further simplifications. Additional reduction of complexity can be
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Fig. 1. Left: the triangles (ijk) and (ijl) represent higher-order likelihoods and define
local affine warps when labels (di, dj , dk, dl) are assigned to the triangle points. Right:
illustration of the two different regularization terms. The ADP penalizes changes be-
tween initial angles (α, β) and angles (α′, β′). The NAMP determines how well the
warp of one triangle describes the warp of the other one by computing the (normal-
ized) distance between the warped points k′, l′ and their locations Aijl(k), Aijk(l) if
warped by the neighboring triangle.

achieved by a parameterization of the cliques motion using a simple geometrical
transformation model in terms of triangulation. A triangle in 2D space defines
an affine warp. We propose to represent a clique of pixels by a single triangle.
Then, the task becomes to find the optimal displacements of the triangle points,
instead of seeking for individual displacements for each pixel. Let us now derive
the energy for this model.

2.2 Likelihood Term

First, we need to define a matching criterion. In this work, we consider the
correlation coefficient (CC). For two sets of measurements X and Y , the CC is
defined as

CC(X,Y ) =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2

=
cov(X,Y )
σxσy

, (2)

where x̄ and ȳ are the two means and σx and σy the standard deviations. The
CC takes values from [−1, 1], where 1 indicates a perfect linear relationship, 0
indicates no linear relationship, and −1 an inverse linear relationship. In order
to use the CC score within an energy minimization, we modify the original term
into CC′ = (1− CC) taking values from [0, 2].

Second, we formalize the local affine motion model based on a triangulation
mesh. Assume that a set of triangles covering the image domain is given. We
can define a local affine warp Tijk of a point p = (x, y)> lying in a triangle (ijk)
as the sum of the products of the barycentric coordinates (ωi, ωj , ωk) of p and
the three displacement vectors (di, dj , dk) as

Tijk(p) = p+ ωidi + ωjdj + ωkdk . (3)

This is a simple linear triangle interpolation. The warping is illustrated in Fig.
1(left). Note that instead of expressing the local warp as a linear combination
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of the three displacements, we can equivalently define an affine transformation
matrix Aijk as

Aijk =

ax bx cx
ay by cy
0 0 1

 , (4)

which maps (homogeneous) image points to their new locations. The matrix can
be determined by solving a simple linear system of equations.

From Aijk we can extract two linear functions P x
ijk(p) = ax x+ bx y+ cx and

P y
ijk(p) = ay x + by y + cy, together defining the movement of point p. These

definitions are later used in one of our regularization terms.
For convenience, we define some further notation used in the following equa-

tions. Given an image I, then I ′ denotes the warped image I ◦ T . Additionally,
Iijk denotes the triangular sub-image containing only the pixels lying within the
triangle (ijk).

Based on the above matching criterion and the triangle motion model, and
given two images I and J (i.e. the two adjacent frames in an optical flow se-
quence), we can now define the higher-order likelihood in terms of triple-clique
potential functions

ψijk(di, dj , dk) = CC′
(
I ′ijk, Jijk

)
= 1−

cov(I ′ijk, Jijk)
σI′

ijk
σJijk

. (5)

In fact, any labeling (di, dj , dk) yields a potential affine warp and the resulting
matching cost is evaluated exactly (without approximations) for the set of pixels
within the triangular sub-image. One problem remains, which is that the space
of affine transformations also includes reflections. This type of transformations
should not be considered in case of optical flow. We can enforce this by a simple
modification on the likelihood term

ψijk(di, dj , dk) =

{
CC′

(
I ′ijk, Jijk

)
if O(i, j, k) = O(i′, j′, k′)

2 otherwise
, (6)

where O(i, j, k) determines the orientation (i.e. clockwise or counter-clockwise)
of a triangle. Note that this is a very simple and efficient geometrical operation
to check whether a triangle warp constitutes a reflection. The assignment of the
maximum cost of 2 for reflections avoids such unwanted warps.

An energy based on the sum of such triple-clique potentials could be sufficient
for estimating the flow. It imposes some implicit regularization on the transfor-
mation since the cliques overlap at the common edge of neighboring triangles.
However, texture-less regions and small triangles might benefit from an explicit
regularization.

2.3 Regularization Term

Triangles covering homogeneous regions might lead to unreliable estimates. Reg-
ularization is needed such that discriminative triangles with reliable motion drive
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the less reliable triangles towards a good solution. There are several ways for em-
ploying a regularization on the mesh of triangles. Here, we propose two different
terms. Which of these two terms should be used depends on the application
and the motion we expect to be present in the image sequence. We evaluate the
performance of both terms later in our experiments.

The first regularization term is based on triple-clique potential functions and
we call it the angle deviation penalty (ADP). The ADP is defined as

ψijk(di, dj , dk) = ‖(αi, αj , αk)− (α′i, α
′
j , α

′
k)‖ . (7)

The term penalizes the change between the initial angles (αi, αj , αk) and the
angles of the warped triangle (α′i, α

′
j , α

′
k) (see also Fig. 1(right)). The ADP is

invariant to similarity transformations (i.e. all transformations containing only
translation, rotation, and isotropic scaling).

The second term is more general and defined on quadruple-cliques. It reg-
ularizes the motion between neighboring triangles (ijk) and (ijl). We call this
term non-affine motion penalty (NAMP) and define it as

ψijkl(di, dj , dk, dl) =
∥∥∥∥θk

θl

∥∥∥∥ , (8)

with

θk =
∥∥∥∥ δ(P x

ijl, k, k
′
x)

δ(P y
ijl, k, k

′
y)

∥∥∥∥ θl =
∥∥∥∥ δ(P x

ijk, l, l
′
x)

δ(P y
ijk, l, l

′
y)

∥∥∥∥ δ(P, p, v) =
|P (p)− v|√
a2 + b2 + 1

. (9)

Intuitively, the term determines how well the warp of one triangle, represented
by the linear functions P x and P y, describes the motion of the other one. If
the two local warps Aijk and Aijl constitute an affine motion on the rectangle
(ijkl), then the penalty term evaluates to zero. A geometrical interpretation is
illustrated in Fig. 1. We adopted the NAMP from the closely related distances
from planes measure proposed in [28]. The NAMP can be seen as the multi-
variate extension.

The final energy of our higher-order CRF is then the weighted sum of the
likelihood energy and the regularization energy

E(d) = Elikelihood(d) + λEregularization(d) , (10)

where λ controls the influence of the regularization term.

3 Triangulation

So far, we have defined an energy model which enables us to use any triangula-
tion for estimating optical flow. Since there are various ways for obtaining such
triangulations, which might be more or less suitable for optical flow, we would
like to discuss some of them in the following, which are all based on the popular
Delaunay triangulation [29].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustration of different approaches for obtaining triangulations (cf. Sec. 3) for
an input image (a). Triangulation based on a regular mesh in (b), based on Canny
edges in (c,d), and based on segmentation in (e,f). Mesh refinement with and without
merging step in (g) and (h) (cf. Sec. 3.2).

The simplest way of defining a mesh of triangles is through a uniform dis-
tribution of nodes along the image domain (cf. Fig. 2(b)). Such regular meshes
have been previously used for optical flow [8], and they can be represented by
a small number of parameters (e.g. number of nodes or node spacing). While
they have the advantage of simplicity, regular meshes have the drawback of
a missing relation to the underlying image data. Triangles might cover differ-
ent objects and thus probably different layers of motion. Here, data-dependent
triangulation (DDT) seems to provide more suitable triangulations. Low-level
data-dependence (e.g. using Canny edges as shown in Fig. 2(c)) would allow to
place triangle edges along image edges (cf. Fig. 2(d)). However, image edges do
not necessarily follow motion boundaries. In [30], a method is proposed which
extracts occlusion boundaries from a single image. These boundaries might fol-
low the real motion boundaries more closely. Another approach could be based
on object segmentation. In Fig. 2(e), we utilize a mean-shift color segmentation4

to extract the shape of the teddybear. We perform a Delaunay triangulation for
boundary nodes and discard triangles outside the segmentation (cf. Fig. 2(f)).
In all these examples, the nodes can be obtained with the Douglas-Peucker al-
gorithm for line simplification [31] from any given boundary or edge image.

3.1 Layered Representation

An elegant and promising approach for motion estimation is based on a multi-
layer representation, starting with the work of Wang and Adelson [10] and nu-

4 http://www.caip.rutgers.edu/riul/research/code/EDISON/
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merous ongoing developments, e.g. [32, 33, 12] just to name a few. However, this
approach has fallen a little bit into oblivion when reviewing the list of meth-
ods in the popular Middlebury optical flow ranking. In this work, we revisit a
simple but effective method for determining motion layers. We follow a similar
approach as described in [33]. Initially, we use a mean-shift color segmentation
on the first frame to obtain an over-segmentation. Then we estimate affine warps
in a least-squares sense from displacements of the pixels in each segment. The
displacements are taken from an initial motion field, which we compute in ad-
vance using our energy model and a regular mesh. Next, segments with similar
affine motions are grouped by spectral clustering. For that purpose we use the
end-point distance of warped image boundary points as a distance measure on
affine warps and a fixed value of 15 clusters. This approach allows us to define
independent meshes, one for each cluster, where each cluster represents a motion
layer. This also allows us to handle occlusions and preserve discontinuities be-
tween motion layers in a natural way. Whenever two meshes overlap, we consider
the mesh with a higher CC score in the overlap area to be in front of the other.

3.2 Mesh Refinement and Area Importance

As discussed earlier, larger triangles are in general more robust in providing
reliable flow estimates due to the larger set of pixels considered simultaneously.
Now, imagining two neighboring triangles where one of them is significantly
larger than the other one, we would trust more in the motion corresponding
to the energy minimum of the larger one. However, the actual energy value is
independent of the size of the triangles. To this end, we propose to add an area
weighting factor. The modified likelihood term becomes

ψijk(di, dj , dk) =

{
∆ijk CC′

(
I ′ijk, Jijk

)
if O(i, j, k) = O(i′, j′, k′)

2∆ijk otherwise
, (11)

where ∆ijk is the area of the triangle (ijk). Similarly, we add a weighting factor
to the ADP regularization term5.

Still, smaller triangles are more suitable for recovering local flow, in particular
for areas undergoing non-rigid motion. To this end, we propose a hierarchical
mesh refinement. Starting with an initial triangulation containing larger triangles
which will drive the estimation in the beginning, we subsequently refine the mesh
by inserting a node at the center of each edge and recompute the triangulation.
Each triangle will be separated into four smaller triangles all having the same
size. On this refined mesh we continue the optical flow estimation.

We demonstrate the effectiveness of this refinement strategy in a small ex-
periment on the RubberWhale sequence, for which the ground truth flow field
is available. In four different runs, we distribute triangles of same sizes – with
different initial sizes in each run – over the whole image domain. We run our
energy minimization over four to five levels of refinement (depending on the ini-
tial size), where in each level the motion of the triangles is initialized with the
5 The NAMP already has an inherent bias towards larger triangles.
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motion from the previous level. The motion of inserted nodes is linearly inter-
polated. We compute the average angular error for the estimated flow of each
level. In Fig. 3 we plot the progress of the error versus the triangle size. The
error decreases along with the level of refinement until a certain point where
the error increases in all four runs. There seems to be a critical point where the
triangle sizes are becoming too small to provide reliable motion estimates.

We conclude that a refinement of triangles im-
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Fig. 3. Error versus Area.
Colors show different runs.

proves the result, while a certain size should be pre-
served. This is exactly the range, where all four runs
have their minimum error. In order to preserve these
sizes, while still refining triangles above this range,
we add a threshold on the edge length in the refine-
ment. Nodes are only inserted on edges having at
least a length of 15 pixels which results in minimum
triangles of sizes between 100 and 25px2.

In some cases the node insertion can lead to
nodes lying very closely next to each other. To this
end, after each mesh refinement we identify nodes whose initial position is located
at almost the same position and replace the nodes by one averaged node and
compute its motion as the average motion of the replaced ones. The refinement
with and without this merging step is illustrated in Fig. 2(g) and 2(h).

4 Optimization

In order to optimize our CRF energy, we employ a discrete optimization over
hierarchical sets of displacement vectors. We generate a search space for each
optimization sweep by defining a maximum range and a sub-sampling of this
range by a fixed number of displacements along the eight main directions in 2D
(i.e. positive and negative horizontal, vertical, and diagonal direction). A similar
quantization strategy has been previously used in [13]. The energy minimization
is performed by subsequent sweeps using the QPBO-I algorithm [34], iteratively
over the set of displacements. Higher-order potential functions are transformed
into pairwise terms based on the reduction techniques for triple-cliques [19], and
quadruple-cliques [16]. After an optimization sweep, the displacement set and
thus the search range is re-scaled by a user defined factor. This procedure is
repeated for a fixed number of sweeps, before we initiate a mesh refinement and
rerun the optimization on the refined mesh. Throughout this work, we use fixed
setting. We set the initial maximum range to 10 pixels and the number of sub-
sampling steps to 5 yielding 41 displacements (including the zero-displacement).
We perform 5 sweeps on one mesh level, and after each run we refine the dis-
placements by a factor of 0.66 while we use a total of 4 mesh levels.
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(a) (b) (c) (d) (e)

Fig. 4. Experiment on regularization behavior of ADP and NAMP for different types
of transformations (cf. Sec. 5.1). We show the initial triangulation in (a), and in (b-e)
the warp applied on (a) in green and the results for ADP in red and for NAMP in blue.

5 Experiments

5.1 ADP versus NAMP

The purpose of this experiment is to investigate the behavior of the two differ-
ent regularization terms in a fully controlled setting. Remember, that ADP is
invariant to similarity transformations, while NAMP is invariant to affine trans-
formations. We define a triangulation on a test image (cf. Fig. 4(a)) where only
one triangle is covering a textured part of the image. The likelihood of this tri-
angle will be the driving force for the alignment to four different warped images.
The warped images are generated by applying warps to the initial image and
triangulation, i.e. an isotropic scaling, a rotation, an anisotropic scaling, and a
shearing (cf. Fig. 4(b) to 4(e)). Except for the one triangle in the middle, the
motion of the other triangles will result only from the regularization term. We
find that both terms yield very good alignments for the outer triangles in case of
similarity transformations. For pure rotation, ADP performs even slightly bet-
ter, most probably due to the higher invariance of NAMP. In contrast, NAMP
yields accurate alignments in case of the two affine transformations, while here
ADP prevents a proper alignment of the outer triangles. We conclude that ADP
should be used, when mostly similarity transformations are expected. It is also
much more efficient w.r.t. to computational time than NAMP. Beyond this ex-
periment, we experienced that NAMP based on quadruple-cliques is currently
impracticable for triangulations with several thousands of triangles due to its
computational demands. In the following experiment, we will again use both
terms and measure the performance w.r.t. to computational time.

5.2 Giraffe

In this experiment, we perform a motion estimation on two frames of the Giraffe
sequence (180× 144 pixels), where the Giraffe deforms considerably. Segmenta-
tions of the giraffe are available, so we can define two motion layers, one for the
giraffe and one for the background. We run the estimation with both regulariza-
tion terms, and each run with three levels of mesh refinement (≈ 800 triangles
on the finest level). We find a large difference in the running time. While using
ADP, the optimization takes less than one minute, using NAMP takes almost
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(a) (b) (c) (d)

Fig. 5. Experiment on Giraffe sequence. Target frame in (a), initial and final mesh in
(b) and (c), and the resulting flow field in (d) (cf. Sec. 5.2).

Fig. 6. Flow fields for the Army and Teddy sequence for the single-layer approach
using a regular mesh on the left, and results for the multi-layer approach on the right
(cf. Sec. 5.3). Please note the sharp transitions at motion boundaries in case of the
multi-layer approach.

ten minutes until convergence. We show the images, the initial and final meshes,
and the color-encoded flow field using ADP in Fig. 5. The NAMP yields a similar
result. Despite its more restrictive nature, we are able to obtain a high-accurate
flow field using ADP even for the giraffe layer with highly non-rigid motion.

5.3 Middlebury

Finally, we perform an evaluation on the datasets of the Middlebury database.
We compare two approaches for defining the triangulation. The first one is based
on a single regular mesh, and the second one is based on the layered represen-
tation described in Sec. 3.1. Here, the resulting flow fields of the first approach
are used for the affine motion clustering yielding the different motion layers.
Throughout the experiments we use the ADP regularization with λ = 0.3. The
remaining optimization parameters correspond to those described in Sec. 4. The
initial node distance for the regular mesh is set to 60 pixels and subsequently
refined to 30, 15, and 7.5. The initial motions of the multi-layer meshes are
interpolated from the single-layer result.

The single-layer approach yields already quite reasonable results ranked in
the midfield of the database. The multi-layer approach results in high-quality,
discontinuity preserving motion fields which are competing with the best meth-
ods currently listed in the ranking, including advanced variational methods. In
Fig. 6 we show some visual results. The detailed quantitative evaluation can be
found online on the Middlebury website and in the supplementary material.
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The computationally expensive part of our method is the likelihood evalua-
tion, in particular on the finer mesh levels containing a large number of triangles
(>10, 000). Since the computations are based on rather simple geometrical trian-
gle operations and linear interpolation, a tremendous speed-up might be achieved
by GPU implementation providing efficient, hardware-supported functionalities.

6 Conclusion

We propose a novel CRF model with higher-order likelihoods for the application
of optical flow beyond the assumption of constant flow. Likelihood terms are de-
fined on local pixel regions whose motions are constrained to local affine warps
through triangle-based parameterization. The energies are defined as triple-
cliques for the likelihood as well as the similarity invariant regularization term,
while non-affine motions can be penalized through quadruple-clique energies. To
our best knowledge, this is the first time that higher-order CRF likelihoods are
modeled in such a way. Here, the main advantage of our approach is that the
energies are evaluated exactly without approximations yielding a robust and re-
liable matching process. An interesting direction would be to integrate the whole
process of triangulation and motion layer definition into the optimization. A prior
on the maximum number of layers, as well as a flow-dependent mesh-refinement
could further improve the the results. A step beyond our current approach could
allow for the definition of higher-order likelihoods with arbitrary shapes and
without restrictions through the parametrization. We believe our model can be
seen as a building block for new directions in CRF modeling in computer vision,
which directly benefit from future advances in CRF optimization.
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