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Abstract. A recent research direction for the localization of anatomical land-

marks with learning-based methods is to explore ways to enrich the trained mod-

els with context information. Lately, the addition of context features in regres-

sion-based approaches has been tried in the literature. In this work, a method is 

presented for the addition of context features in a regression setting where the 

locations of many vertebral landmarks are regressed all at once. As this method 

relies on the knowledge of the centers of the vertebral bodies (VBs), an auto-

matic, endplate-based approach for the localization of the VB centers is also pre-

sented.  

The proposed methods are evaluated on a dataset of 28 lumbar-focused CT im-

ages. The VB localization method detects all of the lumbar VBs of the testing set 

with a mean localization error of 3.2 mm. The multi-landmark localization 

method is tested on the task of localizing the tips of all the inferior articular pro-

cesses of the lumbar vertebrae, in addition to their VB centers. The proposed 

method detects these landmarks with a mean localization error of 3.0 mm. 

Keywords: Regression · Localization ·Lumbar · Vertebral body · Inferior artic-

ular process. 

1 Introduction 

Back pain in general and low back pain in particular constitutes a major public health 

problem, exhibiting epidemic proportions [1]. The computer-assisted diagnosis of pa-

thologies of the lumbar spine involves the analysis of images coming from a series of 

standard imaging modalities. Computed tomography (CT) images can be used for the 

diagnosis of spondylolysis, spondylolisthesis and osteoporosis, as this imaging modal-

ity permits the measurement of the bone mineral density of the vertebral bodies (VBs). 

This work focuses on the task of the localization of the lumbar VBs in CT images and 

the localization of key landmarks on the vertebral processes.  

The proposed framework can facilitate subsequent automated procedures, such as 

the segmentation of the vertebrae, the automatic assessment of skeletal vertebral pa-

thologies and the analysis of the spinal shape. In the case of vertebral segmentation, a 

large number of proposed methods employ some form of Active Shape Models (ASMs) 

or Active Appearance Model (AAMs) ([1,2]). The initialization step of these model-



2 

 

based approaches is typically based on the localization of the centers of the VBs. Using 

more landmarks than just the center of the VBs can add robustness to this initialization 

step. Furthermore, the detection of vertebral landmarks can function as the building 

block for the automated assessment of pathologies concerning the global spinal shape 

(scoliosis, lordosis) and the grading of spondylolisthesis: In [4], an automated method 

for the measurement of spondylolisthesis was presented, based on the identification of 

the endplate regions. For this application, the localization of the edges of the endplates 

in the coronal direction could provide a more direct method for the measurement of the 

anterior shift.  

Localization of anatomical landmarks is a fundamental problem in medical image 

analysis and a plethora of methods have been proposed in the literature. In recent years, 

these tend to be based on machine learning tools and they can be roughly categorized 

into classification-based methods and regression-based methods. A popular research 

direction is the addition of context information in the model that is constructed by these 

learning-based methods. For the problem of object segmentation, a principled method 

for achieving so is the Auto-context framework ([5]). Recently, there have been at-

tempts to apply this framework for the localization of landmarks with random forest 

regressors. In particular, in [6] the authors showed that the extraction of context features 

from the distance maps of a traditional random forest regressor can improve the land-

mark localization accuracy. Following this research direction, in the present work this 

method of adding context information is applied to a multiple-landmark localization 

task, where the locations of more than one landmark are regressed all at once by random 

forest regressors. We show that the proposed method is able to detect robustly key land-

marks of the vertebrae, despite the similar appearance of neighboring vertebra. As the 

proposed method assumes that the centers of the VBs have been already detected, we 

also present an endplate-based method for the detection of the lumbar VB centers. We 

evaluate both of the methods in a dataset of 28 lumbar-focused CT images. 

2 Method 

The proposed framework consists of two modules. The first module deals with the 

localization of the VBs and the estimation of the pose of the vertebrae. It performs this 

task via the detection of the vertebral endplates on a spline-based unwrapping of the 

input image. The second module deals with the localization of key landmarks of the 

vertebrae, based on the estimation of the VB centers and the vertebral pose by the first 

module. It employs two levels of random forest regressors. The two modules are de-

scribed in sections 2.1 and 2.2. For the rest of this section, it is assumed that a number 

of CT images of the lumbar spine are available for training. A training image will be 

referred to using the notation: 

 𝐼𝑖 : Ω𝑖 ⊂ ℝ3 → ℝ, 𝑖 ∈ {1, ⋯ , 𝑁}  (1) 

A testing image will be denoted with 𝐼𝑇 . Every training image is accompanied with 

annotations of the centers of all the VBs within the field of view. We denote the set of 

the annotations of the training image 𝐼𝑖  with: 
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 𝐴𝑖 = {(𝒄1, 𝑣1), ⋯ , (𝒄𝑚𝑖
, 𝑣𝑚𝑖

)}  (2) 

  

Where 𝒄𝑗 ∈ Ω𝑖 , 𝑣𝑗 ∈ ℒ, ℒ = {𝑆2, 𝑆1, 𝐿5, 𝐿4, 𝐿3, 𝐿2, 𝐿1, 𝑇12, 𝑇11, 𝑇10}. We reduce the set 

of the spinal levels to T10, since the dataset that we used for the experiments does not 

capture any vertebrae at higher spinal levels. Finally, it is assumed that the field of view 

covers at least the S1 – L1 region. 

2.1 Localization of Vertebral Bodies and Estimation of their Pose 

The localization of the lumbar VBs is performed in 4 steps, summarized in Fig. 1. 

 

 

Fig. 1. A flowchart of the steps of proposed pipeline for the localization of the lumbar VBs. From 

left to right: a) A first-level detection of the VB centers is performed using the method of [7]; b) 

The original image is resliced along the curve that passes through the first-level detections; c) A 

mean-intensity profile is calculated along the axial center of the resliced image and the peaks of 

the mean-intensity profile that correspond to endplate locations are identified using a k-Nearest 

Neighbors classifier.   

Firstly, a first-level detection of the centers is performed using the method proposed 

in [7]. This method employs a random forest classifier and in the present work it is used 

for a first-level detection of the VB centers of the levels ℒ. At training time, it constructs 

a label-map for every training image, using the ground-truth annotations of the VB 

centers. A random forest multi-label classifier is trained on the label-maps, using as 

features the mean intensity of displayed boxes (Haar-like features). At testing time, the 

generated probability map for every vertebral level is assumed to follow a normal dis-

tribution. The mode of the distribution for every generated probability map separately 

is retrieved with the Mean-Shift mode-seeking algorithm ([8]).  

Secondly, the original CT image is resliced along the curve that passes through a set 

of VB center locations by performing an image deformation known as Curved Planar 
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Reformation ([9]). At training time, these locations are the ground truth VB center an-

notations whereas at testing time they are the first-level VB center detections. The 

reslicing is carried out using the method of [10], which firstly calculates a B-spline that 

passes through the first-level detections and then constructs a Local Coordinate System 

(LCS) on every point of the B-spline. In the rest of this paper, the resulting deformed 

image will be referred to as the spline-unwrapped image.  

Thirdly, for every slice of the spline-unwrapped image, the mean intensity of a re-

gion around the middle point of the slice is calculated. The result of this operation is a 

univariate signal, referred to as the mean-intensity profile (shown in the top plot of Fig. 

2). For the training phase, it is denoted with 𝑠𝑖 : 𝑂𝑖 ⊂ ℕ → ℝ. For a testing image, it is 

denoted with 𝑠𝑇 .  

Lastly, the locations of VB centers are inferred from the positions of the vertebral 

endplates in the mean-intensity profile, using an approach very similar to those of [11] 

and [12]. Unlike [11], we do not attempt to detect periodic patterns in the mean intensity 

profile but we just locate its local maxima. As in [12], the basic observation for the 

detection of the endplates is that their locations correspond to local maxima (peaks) in 

the mean-intensity profile. Unlike [12], we do not make any assumptions concerning 

the orthogonal symmetry of the vertebrae in order to fine tune the VB center estimations 

and we just average the locations of the bottom and top endplates. Furthermore, we 

attempt to add robustness to the identification of the peaks that correspond to endplates 

by training a k-Nearest Neighbors classifier specifically for this task. In detail: 

At training time, for every mean-intensity profile 𝑠𝑖, we locate the positions of those 

peaks 𝑃𝑖 = {𝑝1, ⋯ , 𝑝𝑞𝑖
}, 𝑝1 ∈ 𝑂𝑖  which are anatomically superior to the annotation 𝒄S1

. 

Hence, S1 is used as an anchor vertebra. For every peak position 𝑝𝜉  we compute three 

simple features: (a) the value of the peak 𝑠𝑖(𝑝𝜉); (b) its left prominence 𝑒𝜉  and (c) its 

right prominence 𝐸𝜉 . The left prominence is defined as: 

 𝑒𝜉 = max {𝑠𝑖(𝑝𝜉) − 𝑠𝑖(𝜌), 𝜌 ∈ 𝑂𝑖 , 𝑠𝑖 ↗ [𝜌, 𝑝𝜉]} (3) 

Where the ↗ denotes that 𝑠𝑖 is increasing in the specified interval. The right promi-

nence 𝐸𝜉  is defined symmetrically. A binary label is provided for every peak, marking 

whether it corresponds to an endplate position or not. A k-Nearest Neighbors classifier 

is fit to this training set.  

At testing time, the peaks of mean-intensity profile 𝑠𝑇 after the S1 first-level detec-

tion are identified (Fig. 1a) and the 3 features are computed as in training. The trained 

k-Nearest Neighbors classifier classifies these peaks as corresponding to endplates or 

not (Fig. 1b). Finally, the estimates for the centers of the lumbar VBs are given by 

simply averaging the endplate positions. The pose of every vertebra is given by the LCS 

(computed at the second step) of the point of the B-spline which is closest to the VB 

center estimation. 

2.2 Localization of Vertebral Landmarks 

The objective of the second module is to locate a given number of vertebral land-

marks on each level of the lumbar spine separately. We are interested in the lumbar 
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spinal levels ℒ′ = {𝐿5, 𝐿4, 𝐿3, 𝐿2, 𝐿1}. Let 𝑣 ∈ ℒ′ be one such level. For simplicity, it is 

assumed that same number 𝑀𝑣 = 𝑀 of landmarks is desired to be found on all the lev-

els. Therefore, it is assumed that the annotations 𝐵𝑖
𝑣  of the 𝑀 landmarks of the vertebra 

at level 𝑣 of every training image 𝐼𝑖  are available. This ordered set of annotations is 

denoted as: 

 

Fig. 2. The mean-intensity profile and the detection of the endplates. Top: The mean-intensity 

profile of a testing image with all the local maxima (peaks) in black dots; Middle: The output of 

the k-Nearest Neighbors classifier, which classifies the peaks in “endplate” and “non-endplate”. 

Bottom: The same endplate positions, on the spline-unwrapped image. The prediction of the VB 

center is the average position of the bottom and top endplate on every lumbar level. 

 𝐵𝑖
𝑣 = (𝐜1

𝑣 , ⋯ , 𝐜𝑀
𝑣 ), 𝐜𝑗 ∈  Ω𝑖  (4) 

The VB center annotations for the lumbar region of Eq. 2 are incorporated in the 

ordered sets 𝐵𝑖 as its first elements, i.e. 𝐜1
𝑣 = 𝐜𝑣 for all the levels, where 𝐜𝑣 is annotation 

for the VB center.  

Hence, given a testing image 𝐼𝑇 , the task is to localize the 𝑀 landmarks on each level 

𝑣 ∈ ℒ′ . This is accomplished with two layers of random forest regressors, combined 

in an Auto-context fashion ([5]). The next two sections describe these two layers.  

First Layer: Multi-Landmark Localization Using Appearance Features  

The first layer employs a traditional multi-landmark regression-based method. One 

random forest regressor is trained for each lumbar level. Since each of these regressors 

is being utilized independently of all the others, let’s assume that interest is on a specific 

level 𝑣 ∈ ℒ′.  
At training time, the images 𝐼𝑖  are rotated according to the poses of the vertebrae at 

level 𝑣, so that all the vertebrae at level 𝑣 are aligned, and a ROI is constructed around 

the VB center. The training set is sampled from all the ROIs. For every training sample, 
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the displacements to the 𝑀 landmarks are computed, hence it is paired with  3 ∗ 𝑀 

continuous values. A random forest is trained to regress these displacements. The tra-

ditional Haar-like features are used (as in [6,7,13]), which are based on the mean inten-

sity value of randomly displayed boxes. The following feature types are considered: 

𝑓(𝒙; 𝐵1, 𝐵2, 𝒐1, 𝒐2, 𝑠) =
∑ 𝐼(𝒙+𝒐1+𝒚)𝒚∈𝐵1

|𝐵1|
− 𝑠

∑ 𝐼(𝒙+𝒐2+𝑦)𝒚∈𝐵2

|𝐵2|
 (5) 

 

Where 𝑠 ∈ {0,1}, 𝑩1, 𝑩2 are the sizes of two 3D boxes and 𝒐1, 𝒐2 are 3D offsets. A 

specific number of these features is sampled at the beginning of the random forest train-

ing and the parameters of the features are sampled uniformly from an interval of al-

lowed values. In each leaf node of the decision trees of the trained random forest, two 

vectors of dimension 3 ∗ 𝑀 are stored: The mean displacements of the training samples 

that arrived on this leaf and their variance along every dimension. 

 

Fig. 3. Illustration of the problem with the single regressor approach on 3 testing images. The 

semi-transparent red layer represents the ROI testing region and the blue-red colormap the vote 

maps. All the testing images are rotated around the respective vertebra of interest, L1 for (a) and 

(c) and L2 for (b). The white arrow point to the ground-truth location of the corresponding land-

mark. On (a), the vote map retains its maximum value around the correct location. On (b), while 

the vote map still has a higher value around the correct location, it can no longer be considered 

unimodal. On (c), the problem is even clearer, as the mode with the highest value does not cor-

respond to the ground truth location. 

At testing time, the first module estimates the VB center of 𝐼𝑇  at level 𝑣 and the 

relevant pose. Then, 𝐼𝑇  is aligned according the detected pose, a ROI is generated 

around the detected VB center and a testing set is sampled from inside this ROI. In a 

traditional single-layer approach, every testing sample would be parsed by every tree 

of the forest and it would cast 𝑀 votes for the locations of each of the 𝑀 landmarks. 

The aggregation of the votes from all the testing samples results in 𝑀 maps, which in 

this work will be referred to as vote maps. The location of the each of the 𝑀 landmarks 

would be inferred from its vote map, via a mode-seeking algorithm. 

A drawback of this approach is that the vote maps are not guaranteed to be unimodal. 

In fact, it is to be expected that the vote map will have a high value on not only the 

target landmark at level 𝑣 but possibly on the homologous location of neighboring ver-

tebra with similar appearance. This is partially addressed by the fact that only a ROI 

around the detected VB center of the testing image is considered. However, the problem 

is not fully eliminated, since it is not possible to know in advance how large this ROI 

should be. This is illustrated in Fig. 3, where sagittal slices from 3 different testing 

(a)                                       (b)                                           (c) 
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cases are depicted. The problem is most apparent in Fig. 3(c), where the maximum of 

the vote map occurs on the incorrect mode. A mode-seeking algorithm, without any 

additional post-processing, would fail in that case.  

Second Layer: Addition of Context Features  

The problem of the concurrent appearance of modes on neighboring spinal levels is 

addressed by the addition of context features. These context features are similar to the 

ones introduced in [6], where context information is extracted from the distance maps. 

In [6] one random forest regressor is constructed for every landmark. This would not 

scale well to the current task, as |ℒ′| ∗ 𝑀 regressors would have to be trained on every 

layer. Therefore, the context features are used here by a multi-landmark regressor.  

At training time, every tree of the first layer makes 3 predictions (one for each 

spatial dimension) for the displacement of each training sample to each of the 𝑀 land-

marks. The mean value of Euclidean distance of these 3 predictions over all the trees is 

called a distance map. At this point, an important decision to be made is which part of 

the training image should be considered for the computation of the distance maps. A 

simple choice is to use the same ROI as the one used for the training of the first layer. 

However, such a setup will bias the second layer into expecting that the VB center lies 

exactly at the center of the sampling ROI. In order to remove this bias, a modification 

to the standard Auto-context framework is introduced. For every ground truth annota-

tion 𝐜1
𝑣 of the VB centers, 𝑊 randomly displaced locations are generated:  

𝐜1,𝑤
𝑣 = 𝐜1

𝑣 + 𝒅𝑤 , 𝒅𝑤 ∈ [−𝑑, 𝑑]3, 𝑤 ∈ {1, ⋯ , 𝑊} (6) 

The displacements 𝒅𝑤 are sampled randomly from the space [−𝑑, 𝑑]3. Then, 𝑊 

ROIs ℛ𝑤 ⊆ Ω𝑤 , 𝑤 ∈ {1, ⋯ , 𝑊} around each 𝐜1,𝑤
𝑣  are generated. The regions ℛ𝑤  of the 

training image 𝐼𝑖  are parsed by the random forest of the first layer in order to compute 

the 𝑊 ∗ 𝑀 distance maps  D𝑖,𝑤
𝑚 : Ω𝑖 → ℝ+. The value of distance maps D𝑖,𝑤

𝑚  outside of 

ℛ𝑤 is set to a fixed, large value. 

For the training of the second layer, each training image I𝑖 is taken into account 𝑊 

times, each time paired with the 𝑀 distance maps D𝑖,𝑤
𝑚 . As in the first layer, a pool of 

Haar-like features is sampled before the training of the forest starts, with the difference 

that the intensity image 𝐼(·) of Eq. 5 can be replaced by one of the D𝑖,𝑤
𝑚 . When this 

happens, the resulting Haar-like feature is able to capture context information from the 

distance maps of the first layer (context feature). The total number of context features 

is set beforehand as a hyperparameter.  

At testing time, the distance maps of the testing image are generated by the first 

layer, using the same testing ROI as in the first layer. The testing image is paired with 

the generated distance maps and it is passed to the second layer, so that both appearance 

features (computed on the original testing image) and context features (computed on 

the distance maps) can be calculated. The testing pipeline proceeds with the computa-

tion of the vote maps. For every testing sample, the vote generated by each tree of the 

forest for each landmark is taken into account separately, provided that the variance of 

the displacement is below a certain threshold. As it is illustrated in the second row of 

Fig. 4, the resulting vote map is unimodal. The mode of every vote map is estimated 
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using the mean-shift algorithm ([8]). Finally, the estimated modes are rotated back to 

the original image space in order to provide the localization of the landmarks.  

 

 

Fig. 4. Qualitative comparison of the voting maps of a single random forest layer (top row) with 

the voting maps after the second layer of the proposed method (bottom row). From left to right: 

Sagittal cuts of different testing images for levels L1 to L5, respectively. Notice that the images 

have been automatically aligned around the vertebra of interest. In can be observed that the voting 

map is more concentrated in the two-layered approach and it is has exactly one mode around the 

correct landmark location. 

3 Experiments and Results 

3.1 Dataset and Experimental Setup 

The proposed methods are evaluated on a dataset of 28 CT images. The intra-slice 

slice spacing is in the 0.29 – 0.42 mm range, the inter-slice spacing is 0.7 mm and the 

slice size is 512x512. All of the images capture at least the S1 – L1 levels, which is 

typical for scans of the lumbar spine. The thoracic region is captured up to the T10 level 

some cases. No implants are presented in any of the images. There are cases with mild 

scoliosis, osteophytes and fractures vertebrae. For every lumbar vertebra, 5 manual an-

notations are made: The center of the VB and the tips of the four inferior articular pro-

cesses. There are four inferior articular process on a typical lumbar vertebra: a bottom-

left, a bottom-right, a top-right and a top-left. We will refer to their tips as landmarks 

A, B, C and D respectively. Sagittal and coronal view of two example annotations for 

landmarks A and B are shown on Fig. 5(a) and Fig. 5(b). 

All of the images are resampled to an isotropic spacing of 1x1x1 mm. We randomly 

select 20 images to be used for the training phase of the proposed methods. The held-

out 8 images will be used for evaluation.  
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The hyperparameters of the proposed methods are set through a leave-one-out cross-

validation iteration on the training set. The K parameter of the k-Nearest Neighbors 

classifier of the first module (localization of VBs) is set to 15. For the second module 

(localization of vertebral landmarks) the hyperparameters are as following: For the ran-

dom forest of the first layer, 50 trees are trained, the size of the feature pool is 10000 

and on every node the search space is 200 features. The size of the ROI around every 

vertebra, during both training and testing, is 120x150x80 mm. The training set of every 

tree is a random 1% subset of all the voxels inside the ROIs of the images. At testing 

time, all of voxels inside the ROIs are used. For the second layer, the parameters 𝑊, 𝑑 

of Eq. 6 are set to 5 and 8 mm respectively. 50 trees are trained with a depth of 25. The 

size of the feature pool is 11000 features: 10000 features plus exactly 200 from the each 

of the 5 distance maps. The sampling of the training samples is again 1%. At testing 

time, all the voxels inside the ROI are tested, but only the votes with a predicted vari-

ance of less than 15 mm in every spatial dimension (from each tree independently) are 

taken into account for the construction of the vote maps.  

 

Fig. 5. Left: the sagittal and the coronal views of the annotation of the tip of the bottom-left 

inferior articular process (landmark A) of an L3 vertebra. Middle: The sagittal and coronal views 

of the annotation of a bottom-right inferior articular process (landmark B) of an L2 vertebra. 

Right: The 3D bounding boxes of the manual annotations for the inferior articular process (blue 

dots) and their detections (red dots). The localization errors have been exaggerated. 

3.2 Evaluation 

For the evaluation of the first module, two metrics are used: (a) the rate of successful 

detections and (b) the displacements to the manual annotations of the VB centers of 

the lumbar spine (localization error). A VB center detection is considered successful 

when it lies within 10 mm from the respective manual annotation. The detailed evalu-

ation for every lumbar spinal level is presented on Table 1, where the rate of successful 

detections is labeled as “Id. Rate”. All of the lumbar VB of the 8 testing images are 

detected successfully. The mean localization error is 3.2 mm, with a standard deviation 

of 2.0 mm and a median value of 2.8 mm. The evaluation of the first-level detections 

obtained with the method of [7] is also presented on Table 1. 

For the evaluation of the second module, the localization error metric is also used. 

The localization errors for each lumbar level are presented in Table 2 - Table 6, along 

with the rate of the detections with a localization error of less than 6 mm. Overall, the 

proposed method achieves a mean localization error of 3.0 mm, with a 1.6 mm standard 

deviation and a median value of 2.7 mm. 95.4% of the detections have a localization 

error of below 6 mm. Regarding the training of the second layer, we experimented with 

(a)                                            (b)                                                (c) 
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removing the randomly displaced ROIs of Eq. 6 and train instead using ROIs centered 

around the VB centers. With that setup, the localization error increases to 3.4 ± 1.8 mm.  

As an additional metric for the quality of the detections, their bounding boxes are 

also considered. In particular, the extreme locations of the 5 landmarks in the each of 

the 3 spatial dimensions define 6 bounding planes and therefore a 3D bounding box. 

Coronal projections of such bounding boxes are depicted in Fig. 5(c) for both the man-

ual annotations (blue box) and the automatic detections (red box). The evaluation met-

ric is the Dice overlap coefficient of the bounding box of the manual annotations and 

the bounding box of the detections. The achieved scores on this metric are presented in 

Table 7. The mean dice coefficient, across all the spinal levels, is 88.8%. 

Table 1. Localization performance of the first module for the VB centers. A detection is consid-

ered successful if it lies within 10 mm from the manual annotation (Id. Rate). The mean, standard 

deviation and median of the localization errors are computed on the successful detections only. 

The first-level detections are the output of the method [7]. The endplate-based detections are the 

output of the first module. Expect for the rates, all the quantities are expressed in mm. 

 First-level detections Endplate-based detections 

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 

Id. Rate (%) 75.0 62.5 62.5 75.0 100 100 100 100 100 100 

Mean 3.7 6.7 8.1 7.6 5.0 2.8 3.4 3.8 3.1 2.9 

Std. 2.1 3.5 3.3 3.2 1.8 1.3 2.3 1.5 2.6 1.5 

Median 3.4 6.1 6.9 7.6 5.2 2.4 2.4 4.0 1.7 2.7 

Table 2. Localization errors of the second module for the 5 landmarks of the L1 level 

L1-level Landmarks VB Center A B C D  Overall 

Loc. error < 6 mm (%) 100 100 100 100 100 100 

Mean (mm) 1.8 2.8 3.0 2.6 3.4 2.7 

Std. (mm) 0.6 1.4 1.3  1.1 1.5 1.3 

Median (mm) 1.7 2.6 2.7 2.6 2.9 2.7 

Table 3. Localization errors of the second module for the 5 landmarks of the L2 level 

L2-level landmarks VB Center A B C D  Overall 

Loc. error < 6 mm (%) 100 100 100 100 100 100 

Mean (mm) 2.4 2.2 2.1 3.1 2.6 2.5 

Std. (mm) 1.1 0.8 0.8 1.2 1.4 1.1 

Median (mm) 2.8 2.2 2.0 2.8 2.4 2.3 

Table 4. Localization errors of the second module for the 5 landmarks of the L3 level 

L3-level landmarks VB Center A B C D  Overall 

Loc. error < 6 mm (%) 100 100 87.5 87.5 100 95.0 

Mean (mm) 2.7 3.4 3.7 3.6 2.8 3.2 

Std. (mm) 0.9 1.6 1.5 1.9 0.9 1.5 

Median (mm) 2.4 3.1 3.1 3.1 2.7 2.9 
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Table 5. Localization errors of the second module for the 5 landmarks of the L4 level. One testing 

case has been omitted because it was not possible to annotate all its articular processes due to a 

vertebral fracture. Hence, there are 7 testing images on this spinal level. 

L4-level landmarks VB Center A B C D  Overall 

Loc. error < 6 mm (%) 100 87.5 87.5 87.5 87.5 88.6 

Mean (mm) 1.9 4.0 3.4 3.5 3.4 3.2 

Std. (mm) 1.0 1.7 2.3 1.9 2.9 2.2 

Median (mm) 1.7 3.2 2.1 3.5 2.4 2.4 

Table 6.  Localization errors of the second module for the 5 landmarks of the L5 level 

L5-level landmarks VB Center A B C D  Overall 

Loc. error < 6 mm (%) 100 75.0 100 100 100 92.5 

Mean (mm) 2.7 4.5 3.4 3.4 2.9 3.4 

Std. (mm) 1.6 1.6 1.3 1.3 1.1 1.5 

Median (mm) 2.4 4.7 3.8 3.3 2.9 3.0 

Table 7. Dice Coefficients for the bounding boxes from the 5 landmarks over each spinal level 

Dice Coefficients L1 L2 L3 L4 L5 Overall 

Mean 0.87 0.90 0.90 0.90 0.87 0.89 

Min. 0.80 0.86 0.87 0.80 0.82 0.80 

Max. 0.94 0.95 0.96 0.95 0.92 0.96 

 

4 Conclusion 

The repetitive nature of the spine poses an additional difficult to the task of landmark 

localization, as neighboring vertebrae often have very similar appearance. However, a 

fully automatic method for localizing vertebral landmarks is highly desirable, as it can 

provide as a robust initialization step for model-based segmentation methods and it can 

facilitate the assessment of certain vertebral pathologies. In this work, a pipeline for the 

detection of lumbar vertebral landmarks is proposed. The proposed pipeline starts with 

the detection of VB centers and proceeds with the localization of landmarks on each 

lumbar level. For evaluation, the pipeline was applied for the localization of the VB 

centers and the inferior articular processes on a dataset of lumbar-focused CT images. 

The experimental results suggest that the proposed method can detect reliably the ver-

tebral landmarks on all the levels of the lumbar spine. Even though in our experiments 

we focused on the articular processes, we expect that the proposed method can be ap-

plied for different vertebral landmarks as well, such as key endplate landmarks for the 

measurement of spondylolisthesis. In the future, we plan to explore such a direction. 

Future research also includes the more extensive evaluation of the proposed methods 

on larger datasets and the investigation of ways to improve the localization accuracy, 

for example by fine-tuning the detections in a multi-scale fashion and by introducing 

context features from different vertebral levels.  
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