
A Sip of the Chalice

Azalea Raad
Imperial College London
azalea@doc.ic.ac.uk

Sophia Drossopoulou
Imperial College London

scd@doc.ic.ac.uk

ABSTRACT
Chalice is a verification tool for object-based concurrent pro-
grams. It supports verification of functional properties of the
programs as well as providing a deadlock prevention mech-
anism. It is built on Implicit Dynamic Frames, fractional
permissions and permission transfer.

Implicit Dynamic Frames have been formulated and proven
sound using verification conditions and axiomatisation of the
heap and stack. Verification in Chalice is specified in terms
of weakest preconditions and havocing the heap.

In this paper we give a formalisation of the part of Chal-
ice concerned with functional properties. We describe its
operational semantics, Hoare logic and sketch the sound-
ness proof. Our system is parametric with respect to the
underlying assertion language.

1. INTRODUCTION
Chalice [5, 6] is a verification tool used for multi-threaded,

object-based programs whose methodology centres around
fractional permissions and permission transfer[2]. Chalice
was built on Implicit Dynamic Frames (IDFs)[8] and was
extended to concurrent programs.

Implicit dynamic frames have been defined in terms of
weakest preconditions and have been proven sound in [8].
The meaning of the underlying IDF-based assertions has
been explored and compared with separation logic based as-
sertions in [7].

The implementation and verification conditions for Chal-
ice have been informally described in [5]. To our knowledge,
the exact syntax and semantics of Chalice assertions has
not been formally stated, and differs from that in [7]; also
no work has been undertaken to demonstrate soundness.
Our Contribution We focus on the part of Chalice that is
concerned with functional correctness of programs and leave
out those features pertaining to the deadlock prevention.
For brevity we refer to this system as Chalicef .

We give an operational semantics which distinguishes“real”
operations, such as updating a field or locking an object,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP’11, July 26, 2011, Lancaster, UK.
Copyright 2011 ACM 978-1-4503-0893-9/11/07 ...$10.00.

from“ghost”operations, such as permission transfer between
threads. In our opinion, this treatment clarifies the implicit
argument underpinning the soundness.

We find verification conditions/weakest preconditions some-
what indirect, and therefore we develop a Hoare logic for
Chalicef .

Because the meaning of assertions may vary across sys-
tems, we do not give a complete syntax for assertions. In-
stead, our model is parametric with respect to the assertions
and their validity, provided these satisfy some necessary re-
quirements that we have distilled. Thus we are agnostic as
to the meaning of some of the logical connectives (eg →),
or validity of user-defined predicates, and we hope that our
model can be applied to a family of assertion languages.

The rest of this paper is organised as follows. In section 2,
we present a more detailed description of Chalice’s method-
ology and its features. In section 3, we give the syntax of
Chalicef and its Hoare logic. We describe its operational
semantics and state our assumptions about the assertions
language. We sketch the soundness proof of Chalicef and
state the supporting lemmas. We discuss future work and
conclude in section 4.

2. INTRODUCTION TO Chalicef
In this section we introduce the part of Chalice that is

concerned with the functional correctness of programs.

2.1 Permissions
A heap location may only be accessed by a thread if it

has sufficient permissions. Chalice employs Boyland’s frac-
tional permissions[2] which allow the access permission to
a memory location to be split up amongst several threads,
thus enabling concurrent reading of that location. A thread
can only write to a location if it has exclusive access to that
location indicated by 1. On the other hand, any non-zero
permission to a location is sufficient for a thread to read
that location. A permission of n to field f of x is denoted by
acc(x.f, n) where 0 ≤ n ≤ 1.
Methods and Permissions Transfer A method may
only access a memory location if it has the permission to do
so. The precondition of a method specifies all the permis-
sions that it requires from its caller and in its postcondition
the permissions that it returns to its caller. For instance,
consider the code in Figure 1. Method copy, assigns the
value of y.f to the field f of the caller. Since it writes to
this.f and reads from y.f it requires write and read ac-
cesses to these locations respectively and hence the method
contract includes requires acc(this.f, 1) && acc(y.f,

class C {

var f:int;

method copy(y)

requires acc(this.f, 1) && acc(y.f, 0.1);

ensures acc(this.f, 1) && acc(y.f, 0.1);

{this.f := y.f;}

method readOnly()

requires acc(this.f, 1);

ensures acc(this.f, 0.8);

{this.f:= 7}

}

Figure 1: Illustration of permission transfer

0.1).
Once the execution of this method has ended, these per-

missions are handed back to the caller. In other words, the
caller loses full access to this.f and partial access to y.f

for the duration of the call. It does however regain these
permissions upon exit from copy.

The permissions specified in the precondition of the read-

Only method can be justified in the similar manner. This
method requires full access to the this.f location. However,
upon exit from this method only a partial access is given
back to the caller and the remaining permission is retained
by the system. That is, calling this method deems this.f

immutable and no other thread can acquire full access to
that location any more.

2.2 Threads
We now discuss how Chalice uses threads and how per-

missions are transferred when threads are forked and joined.
Creation of New Threads A fork statement creates a
new thread and specifies the method to be executed upon
creation of the new thread. For instance,
fork tk:=x.m(y);

creates a new thread to execute the method m on x with
y parameters. Furthermore, it creates a token that can be
stored in the stack frame as a variable (tk) which can then
be used to identify the thread it is associated with. Simi-
lar to method calls, upon forking a new thread the current
thread is stripped from the permissions required by the pre-
condition of the target method. These permissions are then
granted to the newly forked thread.

One thread can wait for another to complete using the
join statement. For instance, through
join tk;

the current thread waits for the thread associated with tk

to complete and then terminates it. Just like method calls,
upon termination of the forked thread the permissions in the
postcondition of the target method are handed back to the
joining thread. In fact, a method call can best be described
as a fork immediately followed by a join [6].

Note that the way Chalice handles thread creation en-
sures freedom from data races. For instance, consider the
copy method in Figure 1. While a thread is executing this
method, no other thread can read or write to this.f, since
the current thread has full permission to this location. This
ensures that no other thread can read from a location we are
currently modifying and hence there will be no data races.

class List{

var length:int;

invariant acc(this.length, 1) && length >= 0

}

Figure 2: Illustration of class invariants

On the other hand, other threads can read from y.f as the
current thread only holds a read permission to this location.
Note that having a read permission to a location indicates
that no other thread can have full access to this location and
therefore cannot modify it. Therefore, the value of a loca-
tion that we are currently reading from cannot be altered
by other threads.

2.3 Monitors
In Chalice, each class is associated with an invariant which

can both hold access permissions (accessibility assertions)
and describe properties about the objects of this kind (pure
assertions). For instance, class List in Figure 2 declares a
monitor invariant that states that the monitor of each List

object holds full permission to its length field and that its
length is non-negative.

When an object is shared amongst several threads, its
monitor can be treated as a mutual exclusion lock to syn-
chronise data access. A thread can compete for exclusive
access to a shared memory location using the acquire state-
ment. Once a thread has successfully obtained the monitor
of an object, it is granted the permissions held by the ob-
ject’s monitor. When the thread no longer needs the ex-
clusive access to the location, it releases the lock using the
release statement. At this point, the target object becomes
shared once again and the permissions originally held by the
object’s monitor are stripped from the current thread and
are handed back to the object monitor.
States of an Object In Chalice, an object can be in one
of three states: available, held and not-a-monitor. However,
since the distinction between the held and not-a-monitor
states lies in the deadlock prevention mechanism, we only
consider the available and held states in Chalicef .

When an object is newly allocated, it is in the held state
and its monitor is held by the thread that created it. The
release statement can be used to transfer an object from
the held state to the available state. It checks that the
monitor invariant holds and then transfers the permissions
required by the monitor invariant to the object monitor.
In the available state, the monitor invariant holds and the
acquire statement can be used to transition the object to
the held state.

3. FORMAL SYSTEM
In this sections we define the syntax, operational seman-

tics and Hoare logic for Chalicef , and prove its soundness.

3.1 Syntax
We give the syntax of Chalicef in Figure 3.

Classes As with other object-oriented languages, classes
keep track of fields and methods. Moreover, each class is
associated with an assertion (A) corresponding to the in-
variant of the class. The invariant asserts certain properties
about objects of this type that hold when the object is in
the available state.

t::= CId prog ::= class

class ::= CId → A × (FId → t) × (MId → meth)

meth ::= void m (t x) (requires A ensures A) {e}

e::= e;e | new CId() | x.f:=y | x:=y.f | x.m(y)

| if(B) {e} else {e} | acquire x | release x

| TkId := fork x.m(y) | join TkId

B::= ...

A::= acc(x.f,n) | x.f=y | A*A | A∧A | ¬A | true |

...

Figure 3: Syntax of Chalicef

Assertion Language and required Properties As dis-
cussed earlier, we do not define the syntax of assertions in
Chalicef . Thus our model is parametric with respect to
assertions and their validity. However, we requite these to
satisfy certain properties:

The assertion language is required to support at least
the syntax required in Fig. 3, i.e accessibility assertions
acc(x.f, n), assertions inspecting the values of a memory
locations x.f = v, and also to support the connectives ∧,
¬, and ∗. We require these to have the expected meaning,
as described in section 3.3. We are agnostic as to further
connectives.

Moreover, we assume that our assertion language includes
an inference system whereby an assertion can be derived
from another, written as A→a B. The formal definition of
all our requirements is given in section 3.3.

Expressions We provide standard object-oriented expres-
sions such as field access, method call and conditionals. We
allow locking of objects through the acquire and release

expressions. Creation and termination of new threads is
achieved by using the fork and join commands. The syn-
tax of the boolean expressions (b) is as expected.

3.2 Runtime Environment
We specify the runtime configurations in Figure 4.

Processes A process in our system is a triple (e, τ, σ) where
e denotes the expression to execute, τ is the thread identifier
and σ is the stack frame. We characterise multiple threads
by (P |P).
Heap An object address in the heap is associated with its
class, values of its fields and the state of its monitor. The
monitor of an object contains a ProcId ranged over by τ
indicating the thread that currently holds the monitor of
the object. We use τg to represent a ghost thread that holds
the monitor of an object whenever it is in the available state.
That is, we assume the existence of a global thread τg that
holds the monitor of all objects that are in the available
state.

Heaps also keep track of the token information. Upon exe-
cution of a fork statement fork tk := x.m′(y), a new address
in the heap is associated with (tk) and this address holds
information about the forked thread. This information is a
tuple of the form(TK, {c:C, m:m’, args:ι.ι}, τ) where τ
is the identifier of the forked thread, m stores the identifier
of the method to execute, C denotes the class identifier in
which m’ can be found, ι is the address of x and ι are the
addresses of y.
Permission Map and Permission Mask A Permission

P::= (e, ProcId, σ) | P|P

H : ObjAddr → obj ∪ TkAddr → tk

obj : CId × (FId → value) × ProcId

tk : {TK} × (FId → value) × ProcId

Π: ProcId → pMask

pMask : ObjAddr× FId→ n ∪ TkAddr× FId→ n

(n : Rational ∧ 0 ≤ n ≤ 1)
σ::= (Var → value) ∪ (TkId → TkAddr)

value::= null | ObjAddr | CId | MId | ObjAddr

Figure 4: Runtime Configuration

map (Π) keeps track of the permissions associated with each
thread. Each thread is mapped onto a permission mask π.
A permission mask associates a permission with each pair
of object address and field identifier or token address and
field identifier. When Π(τ) maps (ι, f) to n, then τ holds a
permission of n to the ι.f location.
Stack Frame A stack frame σ maps variables and token
identifiers to their values.

3.3 The assertion language
Validity Judgement and Permission Function We as-
sume the existence of a judgement |= of shape

H, π, σ |= A
which asserts the validity of assertions given a heap H, a
permission mask π and a stack σ. We also assume the exis-
tence of a function P,
P :: Heap× Stack Frame× A→ pMask

which calculates the permissions required to satisfy an as-
sertion. We also require a judgment

A→a A
which determines when an assertion can be inferred from
another.

We require that |= has the following properties:
R1. H, π, σ |= A ∧ y = fv(A) ∧ σ′(x) = σ(y)

=⇒ H, π, σ′ |= A[x/y]
R2. H, π, σ |= x.f = y ⇐⇒ H(σ(x), f) = σ(y)
R3. H, π, σ |= acc(x.f, n) ⇐⇒ π(σ(x), f) ≥ n
R4. H, π, σ |= A ∧ A′ ⇐⇒ H, π, σ |= A and H, π, σ |= A′

R5. H, π, σ |= A ∗ A′ =⇒
∀(ι.f)[P(H, σ,A)(ι.f) + P(H, σ,A′)(ι.f) ≤ 1]
∧ ∀(κ)[P(H, σ,A)(κ.g) + P(H, σ,A′)(κ.g) ≤ 1]

where g ∈ {c,m, args}
R6. H, π, σ |= true

We require that P has the following properties:
R7. P(H, σ,A) = P(H, σ[y 7→ σ(x)],A[y/x])
R8. H, π, σ |= A =⇒ H,P(H, σ,A), σ |= A

∧ ∀(ι.f)[π(ι.f) ≥ P(H, σ,A)(ι.f)]
R9. ∀H, σ,A, (ι.f)[P(H, σ,A)(ι.f) 6= Udf =⇒ ι.f ∈ Dom(H)]
∧ ∀H, σ,A, (κ.g)[P(H, σ,A)(κ.g) 6= Udf =⇒ κ.g ∈ Dom(H)]

We require that →a has the property:
R10. A→a A′ ∧ H, π, σ |= A =⇒ H, π, σ |= A′

Self-framing Assertions We call an assertion self-framing
if its validity is preserved in all heaps which agree in the
locations mentioned in the permissions.
SF(A) ⇐⇒

∀ H,H′, π, σ [H, π, σ |= A ∧ H
P(H,σ,A)
≡ H′ =⇒ H′, π, σ |= A]

The
π≡ notation indicates agreement between two heaps and

is defined in Appendix A1.
We require for self-framing assertions that:
R11. If A1 and A2 are self-framing, then

H, π, σ |= A1 ∗ A2 ⇐⇒
∃π1, π2.[H, π1, σ |= A1 ∧ H, π2, σ |= A2, ∧ π = π1] π2]

where π1] π2 is as defined in Appendix A.
R12. A,A′ is self framing, then A ∗ A′ is also self-framing.

R13. We call an assertion B a case-split assertion, if
SF(B ∧ A) =⇒ SF(A)

∧ [H, π, σ |= A =⇒ H, π, σ |= B ∨ [H, π, σ |= ¬B].

The above properties allow us to be agnostic as to the exact
meaning of further logical connectives, such as →, −−∗, ∗−−
and user-defined predicates.

Validity Judgement from the viewpoint of a thread
We define the judgement H,Π, σ, τ |= A such that:

H,Π, σ, τ |= A ⇐⇒ H,Π(τ), σ |= A

3.4 Hoare Logic
We have formalised the verification conditions of Chalice

through Hoare logic as illustrated in Figure 5. We now look
at some of the more interesting rules.

New When a new object is created, the current thread is
granted the full access to all of its fields and all fields are
initialised with the null value .

Acquire and Release When the monitor of an object is
acquired by a thread, its invariant can be assumed to hold.
This is reflected in the postcondition (right hand side) of the
Acq. rule. Note that this also implicitly gives access to all
permissions required by that invariant.

On the other hand, an object may only be released if its
invariant holds. In the Rel. rule, A represents the invariant
of x. After releasing an object, the current thread may no
longer assume its invariant to hold, this is reflected in the
Hoare logic by the empty postcondition of Rel.

Fork and Join When forking a method to execute x.m(y),
the precondition of m must hold. This has been reflected
in the precondition of the Fork rule. The postcondition of
this rule guarantees that the variable tk correctly reflects
the specification of the new thread.

The Join rule guarantees that the postcondition of the
method holds, where its postcondition and actual parame-
ters are reflected in the contents of tk.

We have used the shorthand
Thread(tk,C,m, x.y) ≡ acc(tk.c, 1) ∗ tk.c = C

∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y

Connection to Chalice Verification Conditions The
Hoare logic judgements given in Figure 5, correspond to the
verification conditions described in [5] using the exhale and
inhale commands. exhale A has the effect of generating as-

sert A statement and giving up any accessibility predicates
in A. If the verification condition for a command C is exhale

1Note that our definition of self-framing is inspired from,
but slightly different than that from [7].

A, the corresponding Hoare triplet is {A} C {}. Mutatis mu-
tandis for inhale A.

Note that the verification conditions given in [5] include
additional checks missing from our Hoare logic. For in-
stance, in order to verify a release statement, it is asserted
that the object released is held by the current thread to en-
sure the progress of the system. However, in our model of
Chalicef , we are not concerned with the progress property
and our Hoare logic does not reflect these constraints.

3.5 Rewriting Rules
We have divided the rewriting rules of Chalicef into two

parts, the operational semantics corresponding to the “real”
execution of the program and the permission passing seman-
tics, reflecting all ghost operations necessary for the sound-
ness argument. That is, permission passing and keeping
track of the contents of the tokens.

The operational semantics for one thread has the following
format and thus keeps track of the changes applied to the
contents of the thread and the heap.

P,H ; P′,H′

For n threads we have:
P

1...n
,H ; P′

1...m
,H′ where m ∈ {n, n + 1, n− 1}.

The cases where m = n+1 and m = n-1 correspond to the
execution of fork and join statements, respectively.

On the other hand, the permissions semantics for one
thread has the following format and thus keeps track of the
changes in permissions.

P,H,Π ; H′,Π′,
Similarly, for multiple threads we have:

P
1...n

,H,Π ; H′,Π′.

3.6 Operational Semantics
We describe the operational semantics of Chalicef in Fig-

ure 6. For brevity, we have omitted the judgements pertain-
ing to the execution of boolean expressions and assume that
they are as expected. We now explain some of the more
interesting rules.
Acquire and Release The monitor of an object can only
be acquired by a thread if the object is in the available state,
that is its monitor contains the ghost thread τg. Upon suc-
cessful acquisition of the lock, the monitor of the object is
modified in the new heap to contain the current thread τ .

Conversely, an object can only be released by a thread if
it is already held by that thread. That is, the monitor of
the object contains the current thread τ . Once the object is
released its monitor is modified to contain the ghost thread
τg.
Fork and Join When a new thread is forked in association
with token tk to execute x.m(y), tk is mapped to a new ad-
dress in the heap to hold the identifier of the newly forked
thread. Moreover, a new stack frame is created for the new
thread to reflect the values of the method receiver and ar-
guments. The newly created thread then proceeds with the
execution of the corresponding method.

On the other hand, when joining a thread through a token
tk, we first check the identifier of the joined thread against
that associated with tk. We then remove the information
associated with that token from the heap.
Method Calls Upon a method call x.m(y), a new thread
is forked to execute x.m(y) and is immediately joined after.

3.7 Permission Passing Semantics

FAss {acc(x.f, 1)} x.f := y {acc(x.f, 1) ∗ x.f = y}

If B is a case-split assert.
{B ∧ P} C1 {Q} {¬B ∧ P} C2 {Q}
{P} if(B) then C1 else C2 {Q}

VAss z > 0
{acc(x.f, z)} y := x.f {acc(x.f, z) ∗ y = x.f}

Meth Pre(m) = P(u) Post(m) = Q(w)
{P[x/this][y/u]} x.m(y) {Q[x/this][y/w]}

Val. SF(P)
{P} v {P}

New fi ∈ FS(C)
{} x := new C {∗acc(x.fi, 1) ∗ x.fi = null}

Seq. {P} C1 {Q} {Q} C2 {R}
{P} C1; C2 {R} Acq. {} acquire x {A[x/this]}

Fork Pre(m) = P(u) x.class = C
{P[x/this][y/u]} fork tk := x.m(y) {Thread(tk,C,m, x.y)} Rel. {A[x/this]} release x {}

Join Post(m) = A(u)
{Thread(tk,C,m, x.y)} join tk {Post(m)[x/this][y/u]}

Con. SF(P) SF(Q)
P→a P′ {P′} C {Q′} Q′ →a Q
{P} C {Q}

Frm {P} C {Q} SF(R)
FV(R) ∩Mods(C) = ∅

{P ∗ R} C {Q ∗ R}

Figure 5: Hoare Logic for Chalicef commands; A represents the invariant of object x in the acquire and release
judgements and v represents a value.

FAssO σ(x) = ι H′ = H[ι 7→ H(ι)[f 7→ σ(y)]]
(x.f := y , τ, σ),H ; (σ(y), τ, σ),H′

VAssO σ(x) = ι H(ι) ↓2 (f) = v σ′ = σ[y 7→ v]
(y := x.f, τ, σ),H ; (v, τ, σ′),H

IfTO

(if(true)then{e2}else{e3}, τ, σ),H ;

(e2, τ, σ),H

IfFO

(if(false)then{e2}else{e3}, τ, σ),H ;

(e3, τ, σ),H

ValO

(v; e, τ, σ),H ; (e, τ, σ),H

MethO tk 6∈ σ
(x.m(y), τ, σ),H ;

((fork tk := x.m(y); join tk), τ, σ),H

SeqO (e1, τ, σ),H ; (e′1, τ, σ
′),H′

(e1; e2, τ, σ),H ; (e′1; e2, τ, σ
′),H′

NewO FS(C) = {t1 f1 ..., tr fr} ι /∈ H σ′ = σ[x 7→ ι]
H′ = H[ι 7→ (C, {f1 : null, ..., fr : null}, τ)]
(x := new C , τ, σ),H ; (ι, τ, σ′),H′

AcqO σ(x) = ι H(ι) ↓3= τg

H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τ)]
(acquire x, τ, σ),H ; (null, τ, σ),H′

RelO σ(x) = ι H(ι) ↓3= τ
H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τg)]
(release x, τ, σ),H ; (null, τ, σ),H′

ForkO κ 6∈ dom(H) τ ′ 6∈ range(H) mBody(m) = e(u)

σ(x) = ι H(ι) ↓1= C σ(y) = ι
H′ = H[κ 7→ (TK, {c : C,m : m, args : ι.ι}, τ ′)]
σ′ = σ[tk 7→ κ] σ′′ = this 7→ ι, u 7→ ι
(fork tk := x.m(y), τ, σ),H ;

((null, τ, σ′)|(e, τ ′, σ′′)),H′

JoinO H(σ(tk)) ↓3= τ ′ H′ = H[σ(tk) 7→ ε]
(v, τ ′, σ′)|(join tk, τ, σ),H ; (null, τ, σ),H′

ThrdO P′,H ; P′′,H′

P1 | P′ | P2,H ; P1 | P′′ | P2,H
′,

Figure 6: Operational semantics of Chalicef

RestP e ∈ { y := x.f, x.f := y, if..., x.m(y) }
(e , τ, σ),H ; (e′, τ, σ),H′

(e , τ, σ),H ; H′,Π

NewP FS(C) = {t1 f1 ..., tr fr} ι = dom(H′) \ dom(H)
Π′ = Π[(τ)(ι, fi) 7→ 1]i∈1...r

(x := new C , τ, σ),H,Π ; H′,Π′

AcqP σ(x) = ι H(ι) ↓1= C
Invariant(C) = A P(H, σ,A[x/this]) = ps
Π′ = Π[τ+ = ps, τg− = ps]
(acquire x, τ, σ),H,Π ; H′,Π′

ForkP σ(x) = ι H(ι) ↓1= C pre(C,m) = A(u)
P(H, σ,A[x/this][x/u]) = ps
κ ∈ H′ \ H H(κ) ↓3= τ ′

Π′′ = Π[τ ′ 7→ ps, τ− = ps]
Π′ = Π′′[(τ)(κ.g) 7→ 1] for g ∈ {c,m, args}
(fork tk := x.m(y), τ, σ),H,Π ; H′,Π′

RelP σ(x) = ι H(ι) ↓1= C
Invariant(C) = A P(H, σ,A[x/this]) = ps
Π′ = Π[τ− = ps, τg+ = ps]
(release x, τ, σ),H,Π ; H′,Π′

JoinP σ(tk) = κ H(κ) ↓3= τ ′ H(κ.args) = ι.ι
H(κ.c) = C H(κ.m) = m Post(C,m) = A(u)
P(H, [this 7→ ι, u 7→ ι],A(u)) = ps
Π′ = Π[τ+ = ps, τ ′− = ps]
(v, τ ′, σ)|(join tk, τ, σ),H,Π ; H′,Π′

ThrdP P,H,Π ; P′,H′,Π′

P1 | P | P2,H,Π ; P1 | P′ | P2,H
′,Π′

SeqP (e1, τ, σ),H,Π ; (e′1, τ, σ
′),H′,Π′

(e1; e2, τ, σ),H,Π ; H′,Π′

Figure 7: Permission passing semantics of Chalicef

We describe the permission semantics of Chalicef in Fig-
ure 7. We now explain some of the more interesting rules.
New When a new object is created, the permission mask
is modified such that the current thread is given full permis-
sions (denoted by 1) on all its fields.
Acquire and Release When a thread acquires the monitor
of an object, the permissions associated with its invariant A
are stripped from the global thread τg and are granted to
the acquiring thread τ . Note that these permissions are re-
calculated in the heap upon each acquisition. Therefore,
it is possible that different sets of address and field pairs
are involved when acquiring or releasing the same object at
different times during execution.

Dually, when the monitor of an object is released, the
permissions associated with its invariant A are stripped from
the current thread τ and are granted to the global thread
τg.
Fork and Join When a new thread is forked to execute
x.m(y), the permissions associated with the precondition of
m are calculated and taken away from the forking thread τ
and are granted to the new thread τ ′.

On the other hand, when joining a thread, the permissions
associated with the postcondition of m are calculated and
taken away from the forked thread. These permissions are
then granted back to the current thread.

3.8 Soundness Theorem
In order to express the argument for soundness more con-

veniently, we want to be able to talk succinctly about the
effect of execution on the heap, as well as the permissions.
Therefore, we will use the judgment

P
1...n

,H,Π ; P′
1...m

,H′,Π′

as a shorthand for
P

1...n
,H ; P′

1...m
,H′ and P

1...n
,H,Π ; H′,Π′

This judgment directly follows from Fig. 6 and 7, but for
convenience, in the appendix, we given the rules for this
judgment in Fig 8 in the appendix.
Well-Formed Configuration A system of n processes is
well-formed with respect to a heap and a permission mask

if and only if it satisfies the following properties.

WF(H,Π, (e, τ, σ1...n)) ⇐⇒
a. ∀ κ.[H(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) =⇒
∃j ∈ {1...n}, ∃P.[τ = τj ∧ H,Π, τj, σj |= P
∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]

b. ∀ι.f[
P
τ∈DOM(Π) Π(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) ≤ 1]

c. H,Π, x 7→ ι1...m, τg |= ∗Invariant(ιi.class)[xi/this]
1...m

for ι1...m = {ι|ι ∈ Dom(H) ∧ H(ι) ↓3= τg}
d. ∀κ, κ′[H(κ) ↓3= τ ∧ H(κ′) ↓3= τ =⇒ κ = κ′]

In other words, in a well-configured configuration, a., each
thread token is associated with a thread present in the sys-
tem, an assertion that it needs to satisfy upon termination
and a set of locations representing the receiver and the ar-
guments; the expression associated with that thread can be
verified under a precondition P to lead to a configuration
where the postcondition specified holds; the precondition P
itself is satisfied in the current configuration.

Moreover, b., the sum of all permissions to a memory lo-
cation held by the threads present in the system is less than
or equal to 1. Also, c., the invariant of those objects in the
available state holds in disjoint parts of the heap (assume
that xi 6= xi for i 6= j). Finally, d., the mapping from thread
tokens to threads is injective.

Program Verification A program is verified if and only
if all methods of all its classes are verified.

Ver(Prog) ⇐⇒ ∀ C ∈ classes(Prog), ∀m ∈ methods(Prog,C)
[SF(A) ∧ {P} e {Q} ∧ SF(P) ∧ SF(Q)]

where P ≡ Pre(m) Q ≡ Post(m) e ≡ mBody(m)
A ≡ Invariant(C)

Soundness Theorem The verification system of Chalicef is
sound in the sense that if an expression e0 is verified by
Chalicef and its prescribed precondition is satisfied in the

current heap and permission mask, then the execution of
e0 will result in another expression e′0, such that the final
expression e′0 itself can be verified using Chalicef and its
precondition is satisfied under the new heap and permis-
sion mask. Furthermore, execution of a single thread does
not interfere with the state of other threads present in the
system. That is, any of the previously verified threads can
also be verified in the final configuration. Finally, the well-
formedness of the system is preserved under execution. In
other words, if the initial configuration of the system is well-
formed, it remains well-formed after the execution of an ex-
pression.

The execution of an expression e0 can result reduction to
another expression e′0 without affecting other threads, or in
forking new thread, or in joining with another thread. We
formalise soundness for the first scenario in the following the-
orem. Soundness for the latter two scenarios is formalised
in Appendix B. The proof of these theorems is provided in
Appendix D.

Soundness Theorem 1
Ver(Prog) ∧ ({Pi} ei {Qi})i∈{0...n} ∧ (H,Π, σi, τi |= Pi)i∈{0...n}

∧ (e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ
′
0)|(e, τ, σ1...n),H′,Π′

∧ WF(H,Π, (e, τ, σ0...n))
=⇒

1. (H′,Π′, σ′i , τi |= Pi)i∈{1...n}
2. ∃P′0.[{P′0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]
3. WF(H′,Π′, (e′0, τ0, σ

′
0)|(e, τ, σ1...n))

4. CONCLUSIONS AND FUTURE WORK
A similar verification protocol to that of Chalice with has

been proposed for separation logic as the underlying logic
of assertions in [3] and has been proven sound in [4]. This
system also supports re-entrant locks. It is developed on a
partial heap semantics, and permissions are implicit.

Chalice has been developed with implicit dynamic frames
as its underlying logic of assertions. Our formalization sup-
ports a whole heap semantics and makes permission passing
explicit, and therefore in our opinion reflects more directly
the idea behind the verification protocol. The treatment of
the assertion language as, to some extent, external to our
system will allow us to distill what is absolutely essential for
the verification protocol. For instance, we realized that all
assertions treated at the level of the Hoare logic rules had
to be self-framing, even though they may internally consist
of smaller, non-self-framing assertions.

We hope that our treatment of the assertion language as
external will allow the model to be applicable to a wider
range of assertion languages.

We believe that the separation of execution into the “real”
operations, and “ghost” operations working on the permis-
sions mask gives a natural account of the ideas behind the
Chalice verification protocol. Note however, that we have
been unable to represent the state of the tokens as ghost
operqtions, because this would have made it impossible to
combine with out other goal, which was to be agnostic as to
the meaning of logical conectives,

As further work, we would like to consider in how far
existing assertion languages satisfy the properties distill in
section 3.3. We will consider the application of these ideas
to other concurrency concepts, such as chords [1].

Acknowledgements
We are grateful to Alexander J. Summers for many fruitful
conversations. We thank the anonymous reviewers for lots
of interesting and constructive feedback.

5. REFERENCES
[1] Nick Benton, Luca Cardelli, and Cedric Fournet.

Modern concurrency abstractions for c#. TOPLAS,
2004.

[2] John Boyland. Checking interference with fractional
permissions. In Static Analysis: 10th International
Symposium, pages 55–72. Springer, 2003.

[3] Christian Haack and Clément Hurlin. Separation logic
contracts for a Java-like language with fork/join. In
International Conference on Algebraic Methodology and
Software Technology (AMAST’08), July 2008.

[4] Clément Hurlin. Specification and Verification of
Multithreaded Object-Oriented Programs with
Separation Logic. PhD thesis, Université Nice - Sophia
Antipolis, September 2009.

[5] K. Rustan Leino and Peter Müller. A basis for verifying
multi-threaded programs. In Proceedings of the 18th
European Symposium on Programming Languages and
Systems: Held as Part of the Joint European
Conferences on Theory and Practice of Software,
ETAPS 2009, ESOP ’09, pages 378–393, Berlin,
Heidelberg, 2009. Springer-Verlag.

[6] K. Rustan Leino, Peter Müller, and Jan Smans.
Verification of Concurrent Programs with Chalice, pages
195–222. Springer-Verlag, Berlin, Heidelberg, 2009.

[7] M. J. Parkinson and A. J. Summers. The relationship
between separation logic and implicit dynamic frames.
In Gilles Barthe, editor, European Symposium on
Programming (ESOP), volume 6602 of Lecture Notes in
Computer Science. Springer-Verlag, 2011.

[8] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit
dynamic frames: Combining dynamic frames and
separation logic. In Proceedings of the 23rd European
Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, pages 148–172, Berlin,
Heidelberg, 2009. Springer-Verlag.

APPENDIX
A. ADDITIONAL DEFINITIONS

A.1 Definition (π1] π2)
The union of two permission masks is defined if and only

if
∀(ι.f) ∈ Dom(π1) ∩ Dom(π2).[π(ι.f) + π2(ι.f) ≤ 1]
and is described as follows.

π1]π2(ι.f) =

8>><>>:
m if π1(ι.f) = m ∧ π2(ι.f) = Udf
n if π2(ι.f) = n ∧ π1(ι.f) = Udf
m+ n if π1(ι.f) = m ∧ π2(ι.f) = n

∧ m+ n ≤ 1

A.2 (H π≡ H’)
H

π≡ H′ ⇐⇒ ∀(ι.f)[π(ι.f) > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ.g)[π(κ.g) > 0 =⇒ H(κ.g) = H′(κ.g)]

where g ∈ {c,m, args}

A.3 Definition (σ1] σ2)
The union of two stack frames σ1 and σ2 is defined if and

only if Dom(σ1) ∩ Dom(σ2) = ∅ and is described as follows.

σ1] σ2(x) =


σ1(x) if x ∈ Dom(σ1) ∧ x 6∈ Dom(σ2)
σ2(x) if x ∈ Dom(σ2) ∧ x 6∈ Dom(σ1)

A.4 Definition (π1 ⊆ π2)
Permission mask inclusion is defined as follows.
π1 ⊆ π2 ⇐⇒ ∀(ι.f) ∈ Dom(π1)[π1(ι.f) ≤ π2(ι.f)]

B. COMPLEMENTARY SOUNDNESS THE-
OREMS FOR Chalicef

As we pointed out earlier, the execution of an expression
e0 can result in three different situations:

• e0 reduces to another expression e′0 and all other threads
in the system remain unchanged.

• e0 reduces to another expression e′0 and in doing so, a
new thread is created. Meanwhile, all the other threads
initially present in the system remain unchanged. This
case corresponds to the execution of a fork statement.

• e0 reduces to another expression e′0 and results in the
termination of another thread. All other threads re-
main unchanged in the system. This case corresponds
to the execution of a join statement.

We have formalise the first scenario in the main part of the
paper. The latter two scenarios are formalised here. The
proofs of these theorems is provided in Appendix D.

Soundness Theorem 2
Ver(Prog)
∧({Pi} ei {Qi})i∈{0...n−1}
∧(H,Π, σi, τi |= Pi)i∈{0...n−1}

∧ (e0, τ0, σ0)|(e, τ, σ1...n−1),H,Π ;

(e′0, τ0, σ
′
0)|(e, τ, σ1...n−1)|(en, τn, σn),H′,Π′

∧ WF(H,Π, (e, τ, σ0...n−1))
=⇒

1. (H′,Π′, σi, τi |= Pi)i∈{1...n−1}
2. ∃Pn,Qn.[{Pn} en {Qn} ∧ H′,Π′, σn, τn |= Pn]
3. ∃P′0.[{P′0} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= P′0]

4. WF(H′,Π′, (e′0, τ0, σ
′
0)|(e, τ, σ1...n))

Soundness Theorem 3
Ver(Prog)
∧ ({Pi} ei {Qi})i∈{0...n}
∧ (H,Π, σi, τi |= Pi)i∈{0...n}

(e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ
′
0)|(e, τ, σ1...n−1),H′,Π′

WF(H,Π, (e, τ, σ0...n))
=⇒

1. (H′,Π′, σi, τi |= Pi)i∈{1...n−1}
2. ∃P′0.[{P′0} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= P′0]
3. WF(H′,Π′, (e′0, τ0, σ

′
0)|(e, τ, σ1...n−1))

C. PROOF OF SUPPORTING LEMMAS
In our proofs we have used different names for the prop-

erties of asserions defined in section ??, as follows
P1a. H, π, σ |= A ∧ y = fv(A) ∧ σ′(x) = σ(y)

=⇒ H, π, σ′ |= A[x/y]

P1b. P(H, σ,A) = P(H, σ[y 7→ σ(x)],A[y/x])
P2. H, π, σ |= A =⇒ H,P(H, σ,A), σ |= A

∧ ∀(ι.f)[π(ι.f) ≥ P(H, σ,A)(ι.f)]
P3. A→a A′ ∧ H, π, σ |= A =⇒ H, π, σ |= A′

P4a. H, π, σ |= x.f = y ⇐⇒ H(σ(x), f) = σ(y)
P4b. H, π, σ |= acc(x.f, n) ⇐⇒ π(σ(x), f) ≥ n
P5. If A1 and A2 are self-framing, then
H, π, σ |= A1 ∗ A2 ⇐⇒
∃π1, π2.[H, π1, σ |= A1 ∧ H, π2, σ |= A2, ∧ π = π1] π2]

where π1] π2 is as defined in Appendix A.
P6. We call an assertion B a case-split assertion, if
SF(B ∧ A) =⇒ SF(A)

∧ [H, π, σ |= A =⇒ H, π, σ |= B ∨ [H, π, σ |= ¬B].
P7. H, π, σ |= A ∧ A′ ⇐⇒ H, π, σ |= A and H, π, σ |= A′

P8. A,A′ is self framing, then A ∗ A′ is also self-framing.
P9. H, π, σ |= A ∗ A′ =⇒

∀(ι.f)[P(H, σ,A)(ι.f) + P(H, σ,A′)(ι.f) ≤ 1]
∧ ∀(κ)[P(H, σ,A)(κ.g) + P(H, σ,A′)(κ.g) ≤ 1]

where g ∈ {c,m, args}
P10. H, π, σ |= true
P11. ∀H, σ,A, (ι.f)[P(H, σ,A)(ι.f) 6= Udf =⇒ ι.f ∈ Dom(H)]
∧ ∀H, σ,A, (κ.g)[P(H, σ,A)(κ.g) 6= Udf =⇒ κ.g ∈ Dom(H)]
P12. We use the shorthand

Thread(tk,C,m, x.y) ≡ acc(tk.c, 1) ∗ tk.c = C
∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y

C.1 Lemma 1
H,Π, (e, σ, τ) ; (e′, σ′, τ),H′,Π′ ∧ Π = Π1] Π2

∧ H,Π1, (e, σ, τ) ; (e′, σ′, τ),H′,Π′1
=⇒ Π′ = Π′1] Π2

where] over Π has the obvious meaning.

Proof. By induction over the ; derivations.

C.2 Lemma 2
H,Π, σ, τ |= P ∗ R ∧ {P} e {Q}
∧ H,Π, (e, σ, τ) ; (e′, σ′, τ),H′,Π′ =⇒
∃Π1,Π2.[H,Π1, σ, τ |= P ∧ H,Π2, σ, τ |= R

∧ Π = Π1] Π2 ∧ H,Π1, (e, σ, τ) ; (e′, σ′, τ),H′,Π′1]

where] over Π has the obvious meaning.

FAss σ(x) = ι H′ = H[ι 7→ H(ι)[f 7→ σ(y)]]
(x.f := y , τ, σ),H,Π ; (σ(y), τ, σ),H′,Π

IfT

(if(true)then{e2}else{e3}, τ, σ),H,Π ;

(e2, τ, σ),H,Π

VAss σ(x) = ι H(ι) ↓2 (f) = v σ′ = σ[y 7→ v]
(y := x.f, τ, σ),H,Π ; (v, τ, σ′),H,Π

IfF

(if(false)then{e2}else{e3}, τ, σ),H,Π ;

(e3, τ, σ),H,Π

Val.

(v; e, τ, σ),H,Π ; (e, τ, σ),H,Π

Meth tk 6∈ σ
(x.m(y), τ, σ),H,Π ;

((fork tk := x.m(y); join tk), τ, σ),H,Π

Seq. (e1, τ, σ),H,Π ; (e′1, τ, σ
′),H′,Π′

(e1; e2, τ, σ),H,Π ; (e′1; e2, τ, σ
′),H′,Π′

NewC FS(C) = {t1 f1 ..., tr fr}
ι /∈ H Π′ = Π[(τ)(ι, fi) 7→ 1]i∈1...r

H′ = H[ι 7→ (C, {f1 : null, ..., fr : null}, τ)]
(new C , τ, σ),H,Π0 ; (ι, τ, σ),H′,Π′

Acq. σ(x) = ι H(ι) ↓1= C H(ι) ↓3= τg

Invariant(C) = A P(H, σ,A[x/this]) = ps
Π′ = Π[τ+ = ps, τg− = ps]
H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τ)]
(acquire x, τ, σ),H,Π ; (null, τ, σ),H′,Π′

Fork σ(x) = ι H(ι) ↓1= C pre(C,m) = A
P(H, σ,A[x/this][y/u]) = ps
τ ′ 6∈ Π Π′′ = Π[τ ′ 7→ ps, τ− = ps]
Π′ = Π′′[(τ)(κ.g) 7→ 1] where g ∈ {c,m, args}
κ 6∈ H σ′ = σ[tk 7→ κ]

H′ = H[κ 7→ (TK, {c : C,m : m, args : ι.σ(y)}, τ ′)]
mBody(C,m) = e(u) σ′′ = [this 7→ ι, u 7→ σ(y)]
(fork tk := x.m(y), τ, σ),H,Π ;

((null, τ, σ′)|(e, τ ′, σ′′)),H′,Π′

Rel. σ(x) = ι H(ι) ↓1= C H(ι) ↓3= τ
Invariant(C) = A P(H, σ,A[x/this]) = ps
Π′ = Π[τ− = ps, τg+ = ps]
H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τg)]
(release x, τ, σ),H,Π ; (null, τ, σ),H′,Π′

Join σ(tk) = κ H(κ) ↓3= τ ′ H(κ.args) = ι.ι
H(κ.c) = C H(κ.m) = m Post(C,m) = A(u)
P(H, [this 7→ ι, u 7→ ι],A(u)) = ps
Π′ = Π[τ+ = ps, τ ′− = ps]
H′ = H[κ 7→ ε]
(v, τ ′, σ)|(join tk, τ, σ),H,Π ; (null, τ, σ),H′,Π′

Thrd P,H,Π ; P′,H′,Π′

P1 | P | P2,H,Π ; P1 | P′ | P2,H
′,Π′

Figure 8: Combined Operational and permission passing semantics of Chalicef

Proof. By induction over the Hoare Logic triplets.

C.3 Lemma 3
H,Π, (e, τ, σ) ; (e′, τ, σ′),H′,Π′ ∧ τ ′ 6= τ ∧ τ ′ 6= τg

=⇒ Π′(τ ′)(ι.f) = Π(τ ′)(ι.f)

Proof. By straightforward induction over the ; deriva-
tions.

C.4 Lemma 4
{P} e {Q} (G1)
∧ H,Π, σ, τ |= P (G2)
∧ τ 6= τ ′ (G3)
∧ τ 6= τg (G4)
∧ [H,Π, (e′τ ′, σ′) ; (e′′, τ ′, σ′′),H′,Π′ (G5a)
∨ {H,Π, (e′, τ ′, σ′) ;

((e′′, τ ′, σ′′)|(e′′′, τ ′′, σ0)),H′,Π′ ∧ τ ′′ 6= τ} (G5b)
∨ {H,Π, ((v, τ ′′, σ0)|(e′, τ ′, σ′)) ; (e′′, τ ′, σ′′),H′,Π′

∧ τ ′′ 6= τ} (G5c)]
∧ {P′} e′ {Q′} (G6)
∧ H,Π, σ′, τ ′ |= P′ (G7)
∧
P
τi∈DOM(Π) Π(τi)(ι.f) ≤ 1 (G8)

=⇒ H′,Π′, σ, τ |= P

Proof. By induction over the Hoare Logic triplets ({P′} e′ {Q′}).
Since we have {P} e {Q}, in all the following cases from
Lemma 7 we can deduce:
SF(P) (G9)

Case FldAss P′ ≡ acc(x.f, 1) (I)
e′ ≡ x.f := y Π′ = Π H′ = H[σ′(x)(f) 7→ σ′(y)]

First, we show that H
P(H,σ,P)
≡ H′

In other words:
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∀(κ.g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0 (II)
There are now two cases:
Case 1. ι.f 6= σ′(x).f
RTS. H′(ι.f) = H(ι.f)
Since H′ is exactly the same as H except for the value of σ′(x).f, we
can deduce that:
H′(ι.f) = H(ι.f) (III)

Case 2.
ι.f = σ′(x).f (IV)
RTS. H′(ι.f) = H(ι.f) From (G7) and (I) we know:
H,Π, σ′, τ ′ |= acc(x.f, 1) (V)
From the definition of |= we know:
H,Π(τ ′), σ′ |= acc(x.f, 1) (VI)
From (VI) and property P4b we have:
Π(τ ′)(σ′(x).f) ≥ 1 from (IV) that is:
Π(τ ′)(ι.f) ≥ 1 (VII)
On the other hand, From G2 we have:
H,Π, σ, τ |= P, that is:
H,Π(τ), σ |= P (VIII)
By definition, we know permission masks are a set of mappings from
locations and field identifiers to (positive) numbers between 0 and 1
inclusively. That is, we know:
Π(τ)(ι.f) ≥ 0 (IX)
From (VII) and (IX) we have:
Π(τ)(ι.f) + Π(τ ′)(ι.f) ≥ 1 (X)
On the other hand from (G8) we know:
Π(τ)(ι.f) + Π(τ ′)(ι.f) ≤ 1 (XI)
From (X) and (XI) we know:
Π(τ)(ι.f) + Π(τ ′)(ι.f) = 1 (XII)
From (VII) and (XII) we can deduce:
Π(τ)(ι.f) = 0 (XIII)
From (VIII), (XIII) and property P2 we can deduce:

P(H, σ,P)(ι.f) ≤ 0
However, from (II) we have:
P(H, σ,P)(ι.f) > 0
Contradiction!!
Hence we can deduce:
H′(ι.f) = H(ι.f) (XIV)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that P(H, σ,P)(κ, g) = n ∧ n > 0.
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι.f , we can
deuce:
H(κ.g) = H′(κ.g) as required. (XV)

From (III), (XIV) and (XV) we can deduce:

H
P(H,σ,P)
≡ H′ (XVI)

From (G9), (VIII), (XVI) and the definition of self-framing assertions
we can deduce:
H′,Π(τ), σ |= P (XVII)
From (XVII) and the definition of |= we know:
H′,Π, σ, τ |= P (XVIII)
Finally, since Π′ = Π, from (XVIII) we can deduce:
H′,Π′, σ, τ |= P as required.

Cases VarAss, IfT, IfF, Val, Meth
Since H′ = H and Π′ = Π, from G2 we can deduce:
H′,Π′, σ, τ |= P as required.

Case NewC
H′ = H[ι′ 7→ (C, {f1 : null...fn : null}, τ ′)] ι′ 6∈ H f1...fn ∈ FS(C)
Π′ = Π[(τ ′)(ι′, fi) 7→ 1] fi ∈ FS(C)

First, we show that H
P(H,σ,P)
≡ H′

In other words,
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∀(κ.g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0 (I)
We know from P11 that: ι ∈ Dom(H), that is ι 6= ι′.
On the other hand, since H′ is exactly the same as H except for the
value of ι′, we know that:
H′(ι.f) = H(ι.f). (II)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that P(H, σ,P)(κ, g) = n ∧ n > 0.
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι′, we can
deuce:
H(κ.g) = H′(κ.g) as required. (III)

From (II) and (III) we can deduce:

H
P(H,σ,P)
≡ H′ (IV)

From (G2) and the definition of |= we can deduce:
H,Π(τ), σ |= P (V)
From (G9), (IV), (V) and the definition of self-framing assertions we
can deduce:
H′,Π(τ), σ |= P (VI)
Since Π′(τ) = Π(τ), we can deduce:
H′,Π′(τ), σ, |= P (VII)
Finally, from (VII) and the definition of the |= judgement, we can
deuce:
H′,Π′, σ, τ |= P as required.

Case Acq. e ≡ acquire x σ′(x) = ι′ H(ι) ↓1= C Inv(C) = A
H′ = H[ι′ 7→ (H(ι′) ↓1,H(ι′) ↓2, τ

′)]
Π′ = Π[τ ′+ = P(H, σ′,A[x/this]), τg− = P(H, σ′,A[x/this])]

First, we show that H
P(H,σ,P)
≡ H′

In other words,
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∀(κ.g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0 (I)
There are now two cases:
Case 1. ι.f 6= ι′.f
RTS. H′(ι.f) = H(ι.f)

Since H′ is exactly the same as H except for the value of ι′, we can
deduce that:
H′(ι.f) = H(ι.f) (II)

Case 2. ι.f = ι′.f
RTS. H′(ι′.f) = H(ι′.f)
From the definition of H′, we know that H′(ι′) ↓2= H(ι′) ↓2 and hence:
H′(ι′.f) = H(ι′.f) as required. (III)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that P(H, σ,P)(κ, g) = n ∧ n > 0.
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι′, we can
deuce:
H(κ.g) = H′(κ.g) as required. (IV)

From (II), (III) and (IV) we have:

H
P(H,σ,P)
≡ H′ (V)

From (G2) and the definition of |= we can deduce:
H,Π(τ), σ |= P (VI)
From (G9), (V), (VI) and the definition of self-framing assertions we
can deduce:
H′,Π(τ), σ |= P (VII)
Since Π′(τ) = Π(τ), we can deduce:
H′,Π′(τ), σ, |= P (VIII)
Finally, from (VIII) and the definition of the |= judgement, we can
deuce:
H′,Π′, σ, τ |= P as required.

Case Rel. e ≡ release x σ′(x) = ι′ H(ι) ↓1= C Inv(C) = A
H′ = H[ι′ 7→ (H(ι′) ↓1,H(ι′) ↓2, τg)]
Π′ = Π[τ ′− = P(H, σ′,A[x/this])]), τg+ = P(H, σ′,A[x/this])])]
The proof of this case is similar to the previous case and is left out.

Case Fork
e ≡ fork tk := x.m(y) σ′(x) = ι′ H(ι) ↓1= C Pre(C,m) = A(u)
τ ′′ 6∈ Π Π′′ = Π[τ ′′ 7→ ps, τ ′− = ps] ps = P(H, σ′,A[x/this][y/u])
κ 6∈ H H′ = H[κ 7→ (TK, {c : C,m : m, args : ι′.σ′(y)}, τ ′′)]
Π′ = Π′′[(τ ′)(κ.g) 7→ 1] for g ∈ {c,m, args}

First, we show that H
P(H,σ,P)
≡ H′

In other words:
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0
Since H′ is exactly the same as H except for the value of κ, we know
that:
H′(ι.f) = H(ι.f) (I)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary (κ′.g) s.t. P(H, σ,P)(κ′.g) = n ∧ n > 0
RTS. H(κ′.g) = H′(κ′.g)
Since we have: P(H, σ,P)(κ′.g) = n, from property P11 we know that:
κ′ ∈ Dom(H) (II)
Since we have κ 6∈ Dom(H), from (II) we can deduce:
κ′ 6= κ (III)
Since H′ is exactly the same as H except for the value of κ, from (III)
we deduce:
H′(κ′) = H(κ) as required. (IV)
From (I) and (IV) we can can deduce:

H
P(H,σ,P)
≡ H′ (V)

From (G2) and the definition of |= we can deduce:
H,Π(τ), σ |= P (VI)
From (V), (VI), (G9) and the definition of self-framing assertions we
can deduce:
H′,Π(τ), σ |= P (VII)
As τ ′′ 6∈ Π, we know τ 6= τ ′′ (VIII)
Since Π′ is exactly the same as Π except for the values of τ ′′ and τ ′,
from (VIII) we know:
Π′(τ) = Π(τ). (IX)
From (VII) and (IX) we can deduce:
H′,Π′(τ), σ, |= P (X)
Finally, from (X) and the definition of the |= judgement, we can deuce:
H′,Π′, σ, τ |= P as required.

Case Join
e ≡ join tk σ(tk) = κ H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ ′′) Post(C,m) = A(u)
Π′ = Π[τ ′′− = ps, τ ′+ = ps] ps = P(H, [this 7→ ι′, u 7→ ι],A(u))

H′ = H[κ 7→ null]
P′ ≡ Thread(tk,C,m, x.y) (I)

First, we show that H
P(H,σ,P)
≡ H′, that is:

∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ, g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0
Since H′ is exactly the same as H except for the value of κ, we know
that:
H′(ι.f) = H(ι.f) (II)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary (κ′.g) such that P(H, σ′,P)(κ′.g) = n ∧ n > 0
where g ∈ {c,m, args}. (III)
There are now two cases:

Case 1.
κ′ 6= σ′(tk)
RTS. H′(κ.g) = H(κ.g)
Since H′ is exactly the same as H except for the value of σ′(tk), we
can deduce that:
H′(κ′.g) = H(κ′.g) (IV)

Case 2. κ′ = σ′(tk) = κ
RTS. H′(κ′.g) = H(κ′.g)
From (G7) and (I) we know:
H,Π, σ′, τ ′ |= Thread(tk,C,m, args)
From the definition of |= we know:
H,Π(τ ′), σ′ |= Thread(tk,C,m, args) (V)
From P12 and (V) we derive:
H,Π(τ ′), σ′ |= acc(tk.c, 1) ∗ acc(tk.m, 1) ∗ acc(tk.args, 1)

∗ tk.c = C ∗ tk.m = m ∗ tk.args = x.y (VI)
From (VI) and applying property P5 three times we have:
H, π1, σ

′ |= acc(tk.c, 1) (VII)
H, π2, σ

′ |= acc(tk.c, 1) (VIII)
H, π3, σ

′ |= acc(tk.c, 1) (IX)
H, π4, σ

′ |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y
where Π(τ ′) = π1] π2] π3] π4 (X)
From (VII)-(X) and lemma 13 we have:
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XI)
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XII)
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XIII)
From (X)-(XIII) and property P4b we have:
Π(τ ′)(σ′(tk).g) ≥ 1 where g ∈ {c,m, args} (XIV)
By definition, we know permission masks are a set of mappings from
locations and field identifiers to (positive) numbers between 0 and 1
inclusively. That is, we know:
Π(τ)(κ.g) ≥ 0 where g ∈ {c,m, args} (XV)
From (XIV) and (XV) we have:
Π(τ)(κ.g) + Π(τ ′)(κ.g) ≥ 1 (XVI)
On the other hand from (G8) we know:
Π(τ)(κ.g) + Π(τ ′)(κ.g) ≤ 1 (XVII)
From (XVI) and (XVII) we know:
Π(τ)(κ.g) + Π(τ ′)(κ.g) = 1 (XVIII)
From (XIV) and (XVIII) we can deduce:
Π(τ)(κ.g) = 0 (XIX)
On the other hand, From G2 we have:
H,Π, σ, τ |= P, that is:
H,Π(τ), σ |= P (XX)
From (XX), (XIX) and property P2 we can deduce:
P(H, σ,P)(κ.g) ≤ 0
However, from (III) we have:
P(H, σ,P)(κ.g) > 0
Contradiction!!
Hence we can deduce:
H′(κ.g) = H(κ.g) (XXI)
From (II), (IV) and (XXI) we can deduce:

H
P(H,σ,P)
≡ H′ (XXII)

From (G9), (XX), (XXII) and the definition of self-framing assertions
we can deduce:
H′,Π(τ), σ |= P (XXIII)
From (XXIII) and the definition of |= we know:
H′,Π, σ, τ |= P (XXIV)
Finally, since Π′ = Π, from (XXIV) we can deduce:
H′,Π′, σ, τ |= P as required.

Case Seq.
e′ ≡ e1; e2

{P′} e1 {R} (I)

{R} e2 {Q′}

RTS. H′,Π′, σ, τ |= P
Given the definition of e′, from the operational semantics of the (Seq.)
rule we know:
H,Π, (e1, σ

′, τ ′) ; (e′1, σ
′′, τ ′),H′,Π′ (II)

From (G1), (G2), (G3), (G4), (II), (I), (G7), (G8) and the induction
hypothesis we can deduce:
H′,Π′, σ, τ |= P as required.

Case Frame
P′ ≡ A ∗ C (I)
{A} e′ {B} (II)

RTS. H′,Π′, σ, τ |= P
From (G7) and (I) we have:
H,Π, σ′, τ ′ |= A ∗ C (III)
From (III) and the definition of |= we have:
H,Π(τ ′), σ′ |= A ∗ C (IV)
From (IV) and property P5 we have:
H, π1, σ

′ |= A (V)
H, π2, σ

′ |= C
Π(τ ′) = π1] π2 (VI)
From (V), (VI) and lemma 13 we have:
H,Π(τ ′), σ′ |= A (VII)
From (VII) and the definition of |= we have:
H,Π, σ′, τ ′ |= A (VIII)
From (G1), (G2), (G3), (G4), (G5), (II), (VIII), (G8) and the induc-
tion hypothesis we can deduce:
H′,Π′, σ, τ |= P as required.

Case Conseq.
P′ →a A (I) {A} e′ {B} (II)

RTS. H′,Π′, σ, τ |= P
From (G7), (I) and property P3 we have:
H,Π, σ′, τ ′ |= A (III)
From (G1), (G2), (G3), (G4), (G5), (II), (III), (G8) and the induction
hypothesis we can deduce:
H′,Π′, σ, τ |= P as required.

C.5 Lemma 5
H,Π, σ, τ |= A ∧ Π′ = Π[τ− = P(H, σ,A), τ ′+ = P(H, σ,A)]

=⇒ H,Π′, σ, τ ′ |= A

Proof. Since we have H,Π, σ, τ |= A, by definition of the |= judge-
ment we have:
H,Π(τ), σ |= A (I)
From (I) and property P2 of the |= judgement we can deduce:
H,P(H, σ,A), σ |= A (II)
Now from the definition of Π′ we have:
Π′(τ) = Π(τ) \ P(H, σ,A) (III)
Π′(τ ′) = Π(τ ′)] P(H, σ,A) (IV)
∀τ0[τ0 6= τ ∧ τ0 6= τ ′ =⇒ Π′(τ0) = Π(τ0)] (V)
From (II), (IV) and Lemma 13a we have:
H,Π′(τ ′), σ |= A (VI)
From (VI) and the definition of |= we can deduce: H,Π′, σ, τ ′ |= A
as required.

C.6 Lemma 6
SF(P) (G1)
H,Π, σ, τ |= P (G2)
τ 6= τ ′ (G3)
e′ 6≡ acquire x ∧ e′ 6≡ release x (G4)
[H,Π, (e′, τ ′, σ′) ; (e′′, τ ′, σ′′),H′,Π′ (G5a)
∨ {H,Π, (e′, τ ′, σ′) ;

((e′′, τ ′, σ′′)|(e′′′, τ ′′′, σ′′′)),H′,Π′} (G5b)
∨ {H,Π, ((v, τ ′′, σ′′)|(e′, τ ′, σ′)) ; (e′′, τ ′, σ′′),H′,Π′ (G5c)

{P′} e′ {Q′} (G6)
H,Π, σ′, τ ′ |= P′ (G7)P
τi ∈ DOM(Π)Π(τi)(ι.f) ≤ 1

(G8)
=⇒ H′,Π′, σ, τ |= P

Proof. There are two cases to consider:

Case 1. τ 6= τg
This case follows immediately from Lemma 4.

Case 2. τ = τg
Proof. By induction over the Hoare Logic triplets ({P′} e′ {Q′}).

Case FldAss
P′ ≡ acc(x.f, 1) (I)
e′ ≡ x.f := y Π′ = Π H′ = H[σ′(x)(f) 7→ σ′(y)]

First, we show that H
P(H,σ,P)
≡ H′

In other words:
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∀(κ.g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0 (II)
There are now two cases:
Case 1. ι.f 6= σ′(x).f
RTS. H′(ι.f) = H(ι.f)
Since H′ is exactly the same as H except for the value of σ′(x).f, we
can deduce that:
H′(ι.f) = H(ι.f) (III)

Case 2.
ι.f = σ′(x).f (IV)
RTS. H′(ι.f) = H(ι.f) From (G7) and (I) we know:
H,Π, σ′, τ ′ |= acc(x.f, 1) (V)
From the definition of |= we know:
H,Π(τ ′), σ′ |= acc(x.f, 1) (VI)
From (VI) and property P4b we have:
Π(τ ′)(σ′(x).f) ≥ 1 from (IV) that is:
Π(τ ′)(ι.f) ≥ 1 (VII)
On the other hand, From G2 we have:
H,Π, σ, τ |= P, that is:
H,Π(τ), σ |= P (VIII)
By definition, we know permission masks are a set of mappings from
locations and field identifiers to (positive) numbers between 0 and 1
inclusively. That is, we know:
Π(τ)(ι.f) ≥ 0 (IX)
From (VII) and (IX) we have:
Π(τ)(ι.f) + Π(τ ′)(ι.f) ≥ 1 (X)
On the other hand from (G8) we know:
Π(τ)(ι.f) + Π(τ ′)(ι.f) ≤ 1 (XI)
From (X) and (XI) we know:
Π(τ)(ι.f) + Π(τ ′)(ι.f) = 1 (XII)
From (VII) and (XII) we can deduce:
Π(τ)(ι.f) = 0 (XIII)
From (VIII), (XIII) and property P2 we can deduce:
P(H, σ,P)(ι.f) ≤ 0
However, from (II) we have:
P(H, σ,P)(ι.f) > 0
Contradiction!!
Hence we can deduce:
H′(ι.f) = H(ι.f) (XIV)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that P(H, σ,P)(κ, g) = n ∧ n > 0.
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι.f , we can
deuce:
H(κ.g) = H′(κ.g) as required. (XV)

From (III), (XIV) and (XV) we can deduce:

H
P(H,σ,P)
≡ H′ (XVI)

From (G1), (VIII), (XVI) and the definition of self-framing assertions
we can deduce:
H′,Π(τ), σ |= P (XVII)
From (XVII) and the definition of |= we know:
H′,Π, σ, τ |= P (XVIII)
Finally, since Π′ = Π, from (XVIII) we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Cases VarAss, IfT, IfF, Val, Meth
Since H′ = H and Π′ = Π, from G2 we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Case NewC
H′ = H[ι′ 7→ (C, {f1 : null...fn : null}, τ ′)] ι′ 6∈ H f1...fn ∈ FS(C)
Π′ = Π[(τ ′)(ι′, fi) 7→ 1] fi ∈ FS(C)

First, we show that H
P(H,σ,P)
≡ H′

In other words,

∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∀(κ.g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0 (I)
We know from P11 that: ι ∈ Dom(H), that is ι 6= ι′.
On the other hand, since H′ is exactly the same as H except for the
value of ι′, we know that:
H′(ι.f) = H(ι.f). (II)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that P(H, σ,P)(κ, g) = n ∧ n > 0.
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι′, we can
deuce:
H(κ.g) = H′(κ.g) as required. (III)

From (II) and (III) we can deduce:

H
P(H,σ,P)
≡ H′ (IV)

From (G2) and the definition of |= we can deduce:
H,Π(τ), σ |= P (V)
From (G1), (IV), (V) and the definition of self-framing assertions we
can deduce:
H′,Π(τ), σ |= P (VI)
Since Π′(τ) = Π(τ), we can deduce:
H′,Π′(τ), σ, |= P (VII)
Finally, from (VII) and the definition of the |= judgement, we can
deuce:
H′,Π′, σ, τ |= P , that is:
H′,Π′, σ, τg |= P as required.

Case Fork
e′ ≡ fork tk := x.m(y) σ′(x) = ι′ H(ι) ↓1= C Pre(C,m) = A(u)
τ ′′ 6∈ Π Π′′ = Π[τ ′′ 7→ ps, τ ′− = ps] ps = P(H, σ′,A[x/this][y/u])
κ 6∈ H H′ = H[κ 7→ (TK, {c : C,m : m, args : ι′.σ′(y)}, τ ′′)]
Π′ = Π′′[(τ ′)(κ.g) 7→ 1] for g ∈ {c,m, args}

First, we show that H
P(H,σ,P)
≡ H′

In other words:
∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
where g ∈ {c,m, args}

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0
Since H′ is exactly the same as H except for the value of κ, we know
that:
H′(ι.f) = H(ι.f) (I)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary (κ′.g) s.t. P(H, σ,P)(κ′.g) = n ∧ n > 0
RTS. H(κ′.g) = H′(κ′.g)
Since we have: P(H, σ,P)(κ′.g) = n, from property P11 we know that:
κ′ ∈ Dom(H) (II)
Since we have κ 6∈ Dom(H), from (II) we can deduce:
κ′ 6= κ (III)
Since H′ is exactly the same as H except for the value of κ, from (III)
we deduce:
H′(κ′) = H(κ) as required. (IV)
From (I) and (IV) we can can deduce:

H
P(H,σ,P)
≡ H′ (V)

From (G2) and the definition of |= we can deduce:
H,Π(τ), σ |= P (VI)
From (V), (VI), (G1) and the definition of self-framing assertions we
can deduce:
H′,Π(τ), σ |= P (VII)
As τ ′′ 6∈ Π, we know τ 6= τ ′′ (VIII)
Since Π′ is exactly the same as Π except for the values of τ ′′ and τ ′,
from (VIII) we know:
Π′(τ) = Π(τ). (IX)
From (VII) and (IX) we can deduce:
H′,Π′(τ), σ, |= P (X)
Finally, from (X) and the definition of the |= judgement, we can deuce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Case Join
e ≡ join tk σ(tk) = κ H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ ′′) Post(C,m) = A(u)
Π′ = Π[τ ′′− = ps, τ ′+ = ps] ps = P(H, [this 7→ ι′, u 7→ ι],A(u))
H′ = H[κ 7→ null]

P′ ≡ Thread(tk,C,m, x.y) (I)

First, we show that H
P(H,σ,P)
≡ H′, that is:

∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ, g).[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]

RTS. ∀(ι, f).[P(H, σ,P)(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
Take an arbitrary (ι, f) such that P(H, σ,P)(ι, f) = n ∧ n > 0
Since H′ is exactly the same as H except for the value of κ, we know
that:
H′(ι.f) = H(ι.f) (II)

RTS. ∀(κ.g)[P(H, σ,P)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary (κ′.g) such that P(H, σ′,P)(κ′.g) = n ∧ n > 0
where g ∈ {c,m, args}. (III)
There are now two cases:

Case 1.
κ′ 6= σ′(tk)
RTS. H′(κ.g) = H(κ.g)
Since H′ is exactly the same as H except for the value of σ′(tk), we
can deduce that:
H′(κ′.g) = H(κ′.g) (IV)

Case 2. κ′ = σ′(tk) = κ
RTS. H′(κ′.g) = H(κ′.g)
From (G7) and (I) we know:
H,Π, σ′, τ ′ |= Thread(tk,C,m, args)
From the definition of |= we know:
H,Π(τ ′), σ′ |= Thread(tk,C,m, args) (V)
From P12 and (V) we derive:
H,Π(τ ′), σ′ |= acc(tk.c, 1) ∗ acc(tk.m, 1) ∗ acc(tk.args, 1)

∗ tk.c = C ∗ tk.m = m ∗ tk.args = x.y (VI)
From (VI) and applying property P5 three times we have:
H, π1, σ

′ |= acc(tk.c, 1) (VII)
H, π2, σ

′ |= acc(tk.c, 1) (VIII)
H, π3, σ

′ |= acc(tk.c, 1) (IX)
H, π4, σ

′ |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y
where Π(τ ′) = π1] π2] π3] π4 (X)
From (VII)-(X) and lemma 13 we have:
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XI)
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XII)
H,Π(τ ′), σ′ |= acc(tk.c, 1) (XIII)
From (X)-(XIII) and property P4b we have:
Π(τ ′)(σ′(tk).g) ≥ 1 where g ∈ {c,m, args} (XIV)
By definition, we know permission masks are a set of mappings from
locations and field identifiers to (positive) numbers between 0 and 1
inclusively. That is, we know:
Π(τ)(κ.g) ≥ 0 where g ∈ {c,m, args} (XV)
From (XIV) and (XV) we have:
Π(τ)(κ.g) + Π(τ ′)(κ.g) ≥ 1 (XVI)
On the other hand from (G8) we know:
Π(τ)(κ.g) + Π(τ ′)(κ.g) ≤ 1 (XVII)
From (XVI) and (XVII) we know:
Π(τ)(κ.g) + Π(τ ′)(κ.g) = 1 (XVIII)
From (XIV) and (XVIII) we can deduce:
Π(τ)(κ.g) = 0 (XIX)
On the other hand, From G2 we have:
H,Π, σ, τ |= P, that is:
H,Π(τ), σ |= P (XX)
From (XX), (XIX) and property P2 we can deduce:
P(H, σ,P)(κ.g) ≤ 0
However, from (III) we have:
P(H, σ,P)(κ.g) > 0
Contradiction!!
Hence we can deduce:
H′(κ.g) = H(κ.g) (XXI)
From (II), (IV) and (XXI) we can deduce:

H
P(H,σ,P)
≡ H′ (XXII)

From (G1), (XX), (XXII) and the definition of self-framing assertions
we can deduce:
H′,Π(τ), σ |= P (XXIII)
From (XXIII) and the definition of |= we know:
H′,Π, σ, τ |= P (XXIV)
Finally, since Π′ = Π, from (XXIV) we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Case Seq.
e′ ≡ e1; e2

{P′} e1 {R} (I)

{R} e2 {Q′}

RTS. H′,Π′, σ, τ |= P
Given the definition of e′, from the operational semantics of the (Seq.)
rule we know:
H,Π, (e1, σ

′, τ ′) ; (e′1, σ
′′, τ ′),H′,Π′ (II)

From (G1), (G2), (G3), (G4), (II), (I), (G7), (G8) and the induction
hypothesis we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Case Frame
P′ ≡ A ∗ C (I)
{A} e′ {B} (II)

RTS. H′,Π′, σ, τ |= P
From (G7) and (I) we have:
H,Π, σ′, τ ′ |= A ∗ C (III)
From (III) and the definition of |= we have:
H,Π(τ ′), σ′ |= A ∗ C (IV)
From (IV) and property P5 we have:
H, π1, σ

′ |= A (V)
H, π2, σ

′ |= C
Π(τ ′) = π1] π2 (VI)
From (V), (VI) and lemma 13 we have:
H,Π(τ ′), σ′ |= A (VII)
From (VII) and the definition of |= we have:
H,Π, σ′, τ ′ |= A (VIII)
From (G1), (G2), (G3), (G4), (G5), (II), (VIII), (G8) and the induc-
tion hypothesis we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

Case Conseq.
P′ →a A (I) {A} e′ {B} (II)

RTS. H′,Π′, σ, τ |= P
From (G7), (I) and property P3 we have:
H,Π, σ′, τ ′ |= A (III)
From (G1), (G2), (G3), (G4), (G5), (II), (III), (G8) and the induction
hypothesis we can deduce:
H′,Π′, σ, τ |= P, that is:
H′,Π′, σ, τg |= P as required.

C.7 Lemma 7
∀ e ∈ Prog[Ver(Prog) ∧ {P} e {Q} =⇒ SF(P) ∧ SF(Q)]
Proof. By induction over the {P} e {Q} derivations.

Case FAss. P ≡ acc(x.f, 1) e ≡ x.f := y Q ≡ acc1) ∗ x.f = y

RTS. SF(acc(x.f, 1)) ∧ SF(acc(x.f, 1) ∗ x.f = y)
From Lemma 10 we can deduce:
SF(acc(x.f, 1)) (I)
From Lemma 11 we can deduce:
SF(acc(x.f, 1) ∗ x.f = y) (II)
From (I) and (II) we can deduce:
SF(acc(x.f, 1)) ∧ SF(acc(x.f, 1) ∗ x.f = y) as required.

Case VAss. P ≡ acc(x.f, z) e ≡ y := x.f Q ≡ acc(x.f, z) ∗ y = x.f where
z > 0

RTS. SF(acc(x.f, z)) ∧ SF(acc(x.f, z) ∗ y = x.f)
From Lemma 10 we can deduce:
SF(acc(x.f, z)) (I)
From Lemma 11 and since z > 0 we can deduce:
SF(acc(x.f, z) ∗ y = x.f) (II)
From (I) and (II) we can deduce:
SF(acc(x.f, z)) ∧ SF(acc(x.f, z) ∗ y = x.f) as required.

Case If e ≡ if(B) then C1 else C2
{B ∧ P} C1 {Q} (G1) {¬B ∧ P} C2 {Q} (G2)

RTS. SF(P) ∧ SF(Q)
By induction hypothesis from G1 we can deduce:
SF(B ∧ P) (I)
SF(Q) (II)
Since B represents a case split assertion, from (I) and property P6 we
can deduce:
SF(P) (III)
From (II) and (III) we can deduce:
SF(P) ∧ SF(Q) as required.

Case Meth P ≡ Pre(m)[x/this][y/u] e ≡ x.m(y) Q ≡ Post(m)[x/this][y/u]

RTS. SF(Pre(m)[x/this][y/u]) ∧ SF(Post(m)[x/this][y/u])
From the premise of the lemma we know: Ver(Prog)
From the definition of Ver we know:
SF(Pre(m)) (I)
SF(Post(m)) (II)
From Lemma 8, (I) and (II) we deduce:
SF(Pre(m)[x/this][y/u]) (III)
SF(Post(m)[x/this][y/u]) (IV)
Hence we can deduce:
Pre(m)[x/this][y/u] ∧ Post(m)[x/this][y/u] as required.

Case Val. e ≡ v
SF(P) (G1)

RTS. SF(P) ∧ SF(P)
From (G1) we trivially have SF(P) as required.

Case New P ≡ True e ≡ x := new C
Q ≡ ∗acc(x.fi, 1) ∗ x.fi = null for fi ∈ FS(C)

RTS. SF(True) ∧ SF(∗[acc(x.fi, 1) ∗ x.fi = null]) for fi ∈ FS(C)
We trivially have: SF(True) (I)
From Lemma 11 we have:
SF(∗[acc(x.fi, 1) ∗ x.fi = null]) (II)
From (I) and (II) we have:
SF(True) ∧ SF(∗[acc(x.fi, 1) ∗ x.fi = null]) for fi ∈ FS(C) as required.

Case Seq e ≡ C1; C2
{P} C1 {R} (G1) {R} C2 {Q} (G2)

RTS. SF(P) ∧ SF(Q)
By induction hypothesis from G1 we can deduce:
SF(P) (I)
By induction hypothesis from G2 we can deduce:
SF(Q) (II)
From (I) and (II) we can deduce:
SF(P) ∧ SF(Q) as required.

Case Acq. P ≡ True e ≡ acquire x Q ≡ A[x/this] where A is the in-
variant of x’s class.

RTS. SF(True) ∧ SF(A[x/this])
We trivially know: SF(True) (I)
From the premise of the lemma we know: Ver(P) and by definition of
Ver, we know:
SF(A) (II)
From II and lemma 8 we can deduce:
SF(A[x/this]) (III)
from I and III we can deduce: SF(True) ∧ SF(A[x/this]) as required.

Case Rel P ≡ A[x/this] e ≡ release x Q ≡ True where A is the invari-
ant of x’s class.

RTS. SF(A[x/this]) ∧ SF(True)
Proof of this case is analogous to the previos case and is left out.

Case Fork P ≡ Pre(m)[x/this][y/u] e ≡ fork tk := x.m(y)
Q ≡ Thread(tk,C,m, x.y) class(m) = C

RTS. SF(Pre(m)[x/this][y/u]) ∧ SF(Thread(tk,C,m, x.y))
From the premise of the lemma we know: Ver(Prog)
From the definition of Ver we know:
SF(Pre(m)) (I)
From Lemma 8 and (I) we deduce:
SF(Pre(m)[x/this][y/u]) (II)
From Lemma 12, we can deduce:
SF(Thread(tk,C,m, x.y)) (III)
From (II) and (III) we can deduce:
SF(Pre(m)[x/this][y/u]) ∧ SF(Thread(tk,C,m, x.y)) as required.

Case Join P ≡ Thread(tk,C,m, x.y)
e ≡ join tk Post(C,m) = A(u) Q ≡ A[x/this][y/u]

RTS. SF(Thread(tk,C,m, x.y)) ∧ SF(A[x/this][y/u])
From the premise of the lemma we know: Ver(Prog)
From the definition of Ver we know:
SF(Post(m)) (I)
From Lemma 8 and (I) we deduce:
SF(Post(m)[x/this][y/u]) (II)
From Lemma 12, we can deduce:

SF(Thread(tk,C,m, x.y)) (III)
From (II) and (III) we can deduce:
SF(Thread(tk,C,m, x.y)) ∧ SF(A[x/this][y/u]) as required.

Case Con.
SF(P) ∧ SF(Q) (G1)

RTS. SF(P) ∧ SF(Q)
This is trivially obtained from (G1).

Case Frm.
{P} e {Q} (G1)
SF(R) (G2)

RTS. SF(P ∗ R) ∧ SF(Q ∗ R)
From G1 and by the induction hypothesis, we can deduce:
SF(P) (I)
SF(Q) (II)
From G2, (I) and P8, we can deduce:
SF(P ∗ R) (III)
From G2, (II) and P8, we can deduce:
SF(Q ∗ R) (IV)
From (III) and (IV), we deduce:
SF(P ∗ R) ∧ SF(Q ∗ R) as required.

C.8 Lemma 8
∀ A.[SF(A) =⇒ SF(A[x/y])]

Proof. By Contradiction.
Take A′ ≡ A[x/y] (I), where we have: ¬SF(A′)
By definition of SF, this means:

∃H,H′, π, σ′, ι.f[H, π, σ′ |= A′ ∧ H
P(H,σ′,A′)
≡ H′ ∧ H′(ι.f) 6= H(ι.f)] (II)

Take σ ≡ σ′[y 7→ σ′(x)]

In other words: σ′ = σ[x 7→ σ(y)] (III)
From (I), (II), (III) and property P1a we know:
H, π, σ |= A (IV)
From (I), (II), (III) and property P1b we know:
P(H, σ′,A′) = P(H, σ,A) (V)
From (IV) and (V), we can rewrite (II) as:

∃H,H′, π, σ, ι.f[H, π, σ |= A ∧ H
P(H,σ,A)
≡ H′ ∧ H′(ι.f) 6= H(ι.f)]

In other words: ¬SF(A)
However, from the premise of the lemma we know: SF(A)
Contradiction!
We can hence deduce: SF(A[x/y])]) as required.

C.9 Lemma 9
H, π, σ1 |= A =⇒ H, π, σ1] σ2 |= A

Proof.
Assume: H, π, σ1 |= A (I)
RTS. H, π, σ1] σ2 |= A

Let FV(A) = x (II)
and σ′ = σ1] σ2. (III)
From the definition of σ1] σ2, we know:
σ′(x) = σ(x) (IV)
From (I), (II), (IV) and property P1a we can derive:
H, π, σ′ |= A[x/x], in other words:
H, π, σ′ |= A.
Finally, from (III) we have:
H, π, σ1] σ2 |= A as required.

C.10 Lemma 10
∀x, f, n[SF(acc(x.f, n))]

Proof.
Take an arbitrary x, f, n.

RTS. ∀H,H′, σ, π[H, π, σ |= acc(x.f, n) ∧ H
P(H,σ,acc(x.f,n))

≡ H′

=⇒ H′, π, σ |= acc(x.f, n)]

Take an arbitrary H,H′, σ, π such that:
H, π, σ |= acc(x.f, n) (I)

H
P(H,σ,acc(x.f,n))

≡ H′

RTS. H′, π, σ |= acc(x.f, n)
From (I) and property P4b we can deduce:
π(σ(x), f) ≥ n (II)

From (II) and property P4b we can deduce: H′, π, σ |= acc(x.f, n), that
is:
SF(acc(x.f, n)) as required.

C.11 Lemma 11
∀x, fi, yi, ni.[

V
(ni > 0) =⇒ SF(∗(acc(x.fi, ni) ∗ x.fi = yi))]

for i ∈ {1...m}

Proof.
Take arbitrary x, f1, ..., fm, y1, ..., ym, n1, .., nm such that:
n1 > 0 ∧ ... ∧ nm > 0
RTS. SF(acc(x.f1, n1) ∗ x.f1 = y1 ∗ ... ∗ acc(x.fm, nm) ∗ x.fm = ym)
In other words,

RTS. ∀H,H′, π, σ[H, π, σ |= A ∧ H
P(H,σ,A)
≡ H′ =⇒ H′, π, σ |= A]

where A ≡ acc(x.f1, n1) ∗ x.f1 = y1 ∗ ... ∗ acc(x.fm, nm) ∗ x.fm = ym)

Take an arbitrary H,H′, π, σ such that:
H, π, σ |= (acc(x.f1, n1) ∗ x.f1 = y1 ∗ ... ∗ acc(x.fm, nm) ∗ x.fm = ym) (I)

H
P(H,σ,(acc(x.f1,n1)∗x.f1=y1∗...∗acc(x.fm,nm)∗x.fm=ym))

≡ H′ (II)

RTS. H′, π, σ |= (acc(x.f1, n1) ∗ x.f1 = y1 ∗ ... ∗ acc(x.fm, nm) ∗ x.fm = ym)
From (I) and applying property P5 m times we can deduce:
H, π1, σ |= acc(x.f1, n1) ∗ x.f1 = y1 (1)
...
H, πm, σ |= acc(x.fm, nm) ∗ x.fm = ym (m)
where π = π1] ...] πm (III)

From (1) and property P5 we know:
H, πa, σ |= acc(x.f1, n1) (IV)
H, πb, σ |= x.f1 = y1 (V)
where π1 = πa] πb (VI)
From (IV) and property P4b we can deduce:
πa(σ(x), f1) ≥ n1 (VII)
From (VII) and property P4b we can deduce:
H′, πa, σ |= acc(x.f1, n1) (VIII)
On the other hand, from (1) and property P9 we have:
P(H, σ, acc(x.f1, n1) ∗ x.f1 = y1)(σ(x).f1) ≥ n1 (IX):
We also know from our assumption that: n1 > 0 (X)

From (II), (IX), (X) and the definition of
π
≡ we can deduce:

H′(σ(x).f1) = H(σ(x).f1) (XI)
From (V) and property P4a we can deduce:
H(σ(x).f1) = σ(y1) (XII)
From (XI) and (XII) we can deduce:
H′(σ(x).f1) = σ(y1) (XIII)
From (XIII) and property P4a we can deduce:
H′, πb, σ |= x.f1 = y1 (XIV)
From (VI), (VIII), (XIV) and property P5 we can deduce:
H′, π1, σ |= acc(x.f1, n1) ∗ x.f1 = y1 (XV)

In the similar manner to (IV)-(XV), we can show that:
H′, π2, σ |= acc(x.f2, n2) ∗ x.f1 = y1 (2-a)
...
H′, πm, σ |= acc(x.fm, nm) ∗ x.fm = ym (m-a)
From (XV), (2-a),..., (m-a), (III) and property P5 we can deduce:
H′, π, σ |= acc(x.f1, n1) ∗ x.f1 = y1 ∗ ... ∗ acc(x.fm, nm) ∗ x.fm = ym

as required.

C.12 Lemma 12
∀tk,C,m, x, y.[SF(Thread(tk,C,m, x.y))]

Proof.
Take an arbitrary tk,C,m, x, y
RTS. SF(Thread(tk,C,m, x.y))
In other words, show:

∀H,H′, π, σ.[H, π, σ |= Thread(tk,C,m, x.y) ∧ H
P(H,σ,Thread(tk,C,m,x.y))

≡ H′

=⇒ H′, π, σ |= Thread(tk,C,m, x.y)]
Take an arbitrary H,H′, π, σ such that:
H, π, σ |= Thread(tk,C,m, x.y) (I)

H
P(H,σ,Thread(tk,C,m,x.y))

≡ H′ (II)
RTS. H′, π, σ |= Thread(tk,C,m, x.y)
From (I) an property P12 we have:
H, π, σ |= acc(tk.c, 1) ∗ tk.c = C

∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y (III)

From (III) and applying property P5 twice, we have:
H, π1, σ |= acc(tk.c, 1) ∗ tk.c = C (IV)

H, π2, σ |= acc(tk.m, 1) ∗ tk.m = m (V)
H, π3, σ |= acc(tk.args, 1) ∗ tk.args = args (VI)
where π = π1] π2] π3 (VII)
From (IV) and property P5 we know:
H, π4, σ |= acc(tk.c, 1) ∧ H, π5, σ |= tk.c = C (VIII)
for some π4, π5 s.t. π1 = π4] π5 (IX)
From (VIII) we have:
H, π4, σ |= acc(tk.c, 1) (X)
H, π5, σ |= tk.c = C (XI)
π1 = π4] π5 (XII)
From (X) and property P4b we can deduce:
π4(σ(tk), c) ≥ 1 (XIII)
From (XIII) and property P4b we can deduce:
H′, π4, σ |= acc(tk.c, 1) (XIV)
On the other hand, from (IV) and property P9 we have:
P(H, σ, acc(tk.c, 1) ∗ tk.c = C)(σ(tk).c) ≥ 1 (XV):

From (II), (XV) and the definition of
π
≡ we can deduce:

H′(σ(tk).c) = H(σ(tk).c) (XVII)
From (XI) and property P4a we can deduce:
H(σ(tk).c) = C (XVIII)
From (XVII) and (XVIII) we can deduce:
H′(σ(tk).c) = C) (XIX)
From (XIX) and property P4a we can deduce:
H′, π5, σ |= tk.c = C (XX)
From (XII), (XIV), (XX) and property P5 we can deduce:
H′, π1, σ |= acc(tk.c, 1) ∗ tk.c = C (XXI)

In the similar manner to (VIII)-(XXI), we can show that:

H′, π2, σ |= acc(tk.m, 1) ∗ tk.m = m (XXII)

H′, π3, σ |= acc(tk.args, 1) ∗ tk.args = x.y (XXIII)

From (XXI), (XXII), (XXIII), (VII) and property P5 we can deduce:

H′, π, σ |= acc(tk.c, 1) ∗ tk.c = C

∗ acc(tk.m, 1) ∗ tk.m = m

∗ acc(tk.args, 1) ∗ tk.args = x.y that is:

H′, π, σ |= Thread(tk,C,m, x.y) (XXIV)

Hence from (I), (II), (XXIV) and the definition of SF we can deduce:

SF(Thread(tk,C,m, x.y)) as required

C.13 Lemma 13
a. H, π1, σ |= A =⇒ H, π1] π2, σ |= A

Proof.
Assume: H, π1, σ |= A (I)

RTS. H, π1] π2, σ |= A

We know:∀H′, π′, σ′.[H′, π′, σ′ |= True]

Hence, we can derive H, π2, σ |= True (II)

From (I), (II) and property P5 we can deduce:

H, π1] π2, σ |= A ∗ True (III)

Since A ∗ True ≡ A, we can deduce:

H, π1] π2, σ |= A as required.

b. H, π1, σ |= A ∧ π1 ⊆ π2 =⇒ H, π2, σ |= A

Proof.
Assume: H, π1, σ |= A (I)
π1 ⊆ π2 (II)
RTS. H, π2, σ |= A

Let us define permission mask π3 as follows.
Dom(π3) = Dom(π)

π3(ι.f) =


π2(ι.f) if (ι.f) 6∈ Dom(π1)
π2(ι.f)− π1(ι.f) otherwise

Then from (II) and the definition of π3 we have: π2 = π1] π2.
(III)
From (I), (III) and lemma 13a we can deduce:
H, π2, σ |= A as required.

C.14 Lemma 14
H,Π, σ, τ |= Thread(tk,C1,m1, x.y) (G1)
H,Π, σ, τ |= Thread(tk,C2,m2,w.z) (G2)

=⇒
C1 = C2 ∧ m1 = m2 ∧ σ(x) = σ(w) ∧ σ(y) = σ(z)

Proof.
From (G1) and the definition of the |= judgement we have:
H,Π(τ), σ |= Thread(tk,C1,m1, x.y) (1)
From (1) and property P12 we have:
H,Π, σ, τ |= acc(tk.c, 1) ∗ tk.c = C1

∗ acc(tk.m, 1) ∗ tk.m = m1

∗ acc(tk.args, 1) ∗ tk.args = σ(x).σ(y) (2)
From (2) and property P5 we have:
H, π1, σ |= tk.c = C1 (3)
H, π2, σ, τ |= acc(tk.c, 1)

∗ acc(tk.m, 1) ∗ tk.m = m1

∗ acc(tk.args, 1) ∗ tk.args = σ(x).σ(y) (4)
Π(τ) = π1] π2 (5)
From (3) we have:
H(σ(tk)) ↓2= C1 (6)
In the similar fashion to (1)-(6), we can deduce:
H(σ(tk)) ↓2= C2 (7)
From (6) and (7) we can deduce:
C1 = C2 (8)
In the similar fashion to (1)-(8) we can deduce:
m1 = m2 (9)

σ(x) = σ(w) ∧ σ(y) = σ(z) (10)
From (8), (9) and (10) we have:

C1 = C2 ∧ m1 = m2 ∧ σ(x) = σ(w) ∧ σ(y) = σ(z)
as required.

D. SOUNDNESS THEOREM PROOF
In order to prove Theorem 1, we first start by proving the

following auxiliary theorem that would help us in proving
the first soundness theorem.

D.1 Theorem 1a
Ver(Prog) (G1)
{Pi} ei {Qi} for i ∈ 0...n (G2)
H,Π, σi, τi |= Pi for i ∈ 0...n (G3)
(e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ

′
0)|(e, τ, σ1...n),H′,Π′ (G4)

WF(H,Π, (e, τ, σ0...n)) (G5)
=⇒

1. H′,Π′, σ′i , τi |= Pi for i ∈ 1...n
2. ∃P′0.[{P

′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

3a. ∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

where Post(m) = A(u)

3b. ∀ι.f[
P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

3c. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

3d. ∀κ, κ′.[H(κ) ↓3= τ ∧ H(κ′) ↓3= τ =⇒ κ = κ′]

Proof. By induction over the Hoare Logic Triplets.
In all the following cases (1) is obtained from Lemma 4.

Furthermore, in all the following cases we know that:
τ0 6= τg (G6)
since τg is the ghost thread that does not take part in exe-
cution. In other words, we cannot have:
H,Π, (e0, τg, σ0) ; (e′0, τg, σ

′
0),H′,Π′.

Moreover, since from G2 we have:
{Pi} ei {Qi} for i ∈ 0...n
From Lemma 7 we an deduce:
SF(Pi) for i ∈ 0...n (G7)

Case FldAss.
P0 ≡ acc(x.f, 1) e0 ≡ x.f := y Q0 ≡ acc(x.f, 1) ∗ x.f = y
H′ = H[σ(x) ↓2 (f) 7→ y] Π′ = Π σ′0 = σ0 e′ = null

RTS. 2. ∃P′0.[{P
′
0} null {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = acc(x.f, 1) ∗ x.f = y then we clearly have:
{P′0} null {Q0} .
We know that Π′(τ)(x.f) = Π(τ)(x.f) and since
H,Π, σ0, τ0 |= acc(x.f, 1) , we can deduce H′,Π′, σ′0, τ0 |= acc(x.f, 1).
Furthermore since H′ = H[(x) ↓2 (f) 7→ σ0(y)], we know
H′,Π′, σ′0, τ0 |= x.f = y holds.
Therefore, H′,Π′, σ′0, τ0 |= (acc(x.f, 1) ∗ x.f = y) holds.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (I)
τ 6= τ0 (II)
RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P

∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]
where Post(m) = A(u)

Since H’ is exactly the same as H except for the value of σ(x).f, from
(I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
Now, from G5, we can deduce:
∃P∃j ∈ {1...n}[τ = τj ∧ {P} ej {Post(m)} (III)
H,Π, τj, σj |= P] (IV)
σj(this) = ι′ ∧ σj(u) = ι (V)
From (III), (IV), (II), (G2), (G3), (G4), (G5) and applying Lemma 4
we get:
H′,Π′, τj, σj |= P (VI)
Finally, by putting together (III), (V) and (VI) we can deduce:
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)} ∧ σj(this) = ι′ ∧ σj(u) = ι]
as required.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Since Π′ = Π from G5 we can deduce: ∀ι.f[
P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ is exactly the same as H, except for the value of ι.f, we can
deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Finally, from (5), (G2)-(G7) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H’ is exactly the same as H except for the value of σ(x).f, from
(I) and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)

From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case VarAss.
P0 ≡ acc(x.f, z) e0 ≡ y := x.f Q0 ≡ acc(x.f, z) ∗ y = x.f where z > 0
H′ = H Π′ = Π v = H(σ0(x)) ↓2 (f) σ′0 = σ0[y 7→ v] e′ = v

RTS. 2. ∃P′0.[{P
′
0} null {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = acc(x.f, z) ∗ y = x.f where z > 0
RTS. {acc(x.f, z) ∗ y = x.f} null {acc(x.f, z) ∗ y = x.f}
From Lemma 11 we know that:
SF(acc(x.f, z) ∗ y = x.f) (I)
From (I) and the Hoare judgement(Val.) we know:
{acc(x.f, z) ∗ y = x.f} null {acc(x.f, z) ∗ y = x.f} as required.

RTS. H′,Π′, σ′0, τ0 |= (acc(x.f, z) ∗ y = x.f)
From (G2) we have:
H,Π, σ0, τ0 |= acc(x.f, z) (II)
From (II) and the definition of the |= judgement we have:
H,Π(τ0), σ0 |= acc(x.f, z) (III)
From (III) and property P4b we know:
Π(τ0)(σ0(x).f) ≥ z (IV)
Since Π′ = Π, from (IV) we have:
Π′(τ0)(σ0(x).f) ≥ z (V)
Since σ′0 i exactly the same as σ0 except for the value of y, we can
deduce:
σ′0(x) = σ0(x) (VI)
From (V) and (VI) we have:
Π′(τ0)(σ′0(x).f) ≥ z (VII)
From (VII) and property P4b we have:
H,Π′(τ0), σ′0 |= acc(x.f, z) (VIII)
From the definition of σ′0 we know:
σ′0(y) = H(σ0(x).f) (IX)
From (VI) and (IX) we have:
σ′0(y) = H(σ′0(x).f) (X)
Since H′ = H, from (X) we have:
σ′0(y) = H′(σ′0(x).f) (XI)
From (XI) and property P4a we have:
H′, ε, σ′0 |= y = x.f (XII)
From (VIII), (XII) and property P5 we have:
H,Π′(τ0)] ε, σ′0 |= acc(x.f, z) ∗ y = x.f (XIII)
From the definition of] on permission masks we know:
Π′(τ0)] ε = Π′(τ0) (XIV)
From (XIII) and (XIV) we have:
H,Π′(τ0), σ′0 |= acc(x.f, z) ∗ y = x.f (XV)
From (XV) and the definition of |= we have:
H,Π′, σ′0, τ0 |= acc(x.f, z) ∗ y = x.f as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ)
τ 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

where Post(m) = A(u)

Since H′ = H, we also have:
H(κ) = (TK, {c : C,m : m, args : ι.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Since Π′ = Π, and from G5 we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1] as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ = H, we can deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Finally, from (5), (G2)-(G7) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ = H, from (I) and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case NewC.
P0 ≡ True e0 ≡ x := new C Q0 ≡ ∗acc(x.fi, 1) ∗ x.fi = null
ι 6∈ H H′ = H[ι 7→ (C, {f1 : null, ..., fr : null}, τ0) σ′ = σ[x 7→ ι] e′ = ι
Π′ = Π[(τ0)(ι, fi) 7→ 1]

RTS. 2. ∃P′0.[{P
′
0} ι {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = ∗acc(x.fi, 1) ∗ x.fi = null
RTS. {P′0} ι {Q0}.
From Lemma 11 we know that P′0 is self-framing.
Hence, from the hoare logic judgement (Val.) we know:
{P′0} ι {Q0} . as required.

RTS. H′,Π′, σ′0, τ0 |= P′0
Given the definition of Π′, we know:
Π′(τ0)(ι, f1) = 1. (1-a)
...
Π′(τ0)(ι, fr) = 1. (r-a)

Let us divide Π′(τ0) into r+1 distinct permission masks (π1, ..., πr+1),
such that:

for i ∈ {1...r} we have:
Dom(πi) = (ι.fi) and

πi(ι
′
.f) =


Π′(τ0)(ι.fi) if ι′.f = ι.fi
⊥ otherwise

and for πr+1 we have:
Dom(πr+1) = Dom(Π′(τ0)) \ {Dom(π1) ∪ ... ∪ Dom(πr)} and

πr+1(ι
′
.f) =

8<: Π′(τ0)(ι′.f) if ι′.f ∈ Dom(Π′(τ0))
∧ ι′.f 6= ι.f1 ∧ ∧ ι′.f 6= ι.fr

⊥ otherwise

Then from the definition of] on permission masks we have:
Π′(τ0) = π1] ...] πr+1 (II)
From the definition of σ′0, we know:
σ′0(x) = ι (III)
From (1-a)...(r-a) and the definitions of π1...πr we can deduce:
π1(ι, f1) = 1 (1-b)
...
πr(ι, fr) = 1 (r-b)
From (III), (1-b),...,(r-b) and property P4b we can deduce:
H′, π1, σ

′
0 |= acc(x.f1, 1) (1-c)

...
H′, πr, σ

′
0 |= acc(x.fr, 1) (r-c)

From (1-c),...,(r-c) and property P5 we can deduce:
H′, π1] ...] πr, σ

′
0 |= acc(x.f1, 1) ∗ ... ∗ acc(x.fr, 1), that is:

H′, π1] ...] πr, σ
′
0 |= ∗(acc(x.fi, 1)) (IV)

From definition of H′, we know:
H′(ι) = (C, {f1 : null, ..., fr : null}, τ0) . (V)
Therefore, from (III), (V) and property P4a we can deduce:
H′, ε, σ′0 |= x.f1 = null (1-d)
...

H′, ε, σ′0 |= x.fr = null (r-d)
From the definition of] for permission masks we can deduce:
ε] ε = ε (VI)
From (1-d), ..., (r-d), (VI) and property P5 we can deduce:
H′, ε, σ′0 |= x.f1 = null ∗ ... ∗ x.fr = null, that is:
H′, ε, σ′0 |= ∗(x.fi = null) (VII)
From (VII) and Lemma 13 we can deduce:
H′, ε] πr+1, σ

′
0 |= ∗(x.fi = null) (VIII)

From the definition of] for permission masks we can deduce:
πr+1 = ε] πr+1 (IX)
From (VIII) and (IX) we can deduce:
H′, πr+1, σ

′
0 |= ∗(x.fi = null) (X)

From (IV), (X) and property P5 we can deduce:
H′, π1] ...] πr] πr+1, σ

′
0 |= ∗(acc(x.fi, 1) ∗ (x.fi = null) (XI)

From (II) and (XI) we have:
H′,Π′(τ0), σ′0 |= ∗(acc(x.fi, 1) ∗ (x.fi = null) (XII)
From (XII) and the definition of the |= judgement we have:
H′,Π′, σ′0, τ0 |= ∗(acc(x.fi, 1) ∗ (x.fi = null), that is:
H′,Π′, σ′0, τ0 |= P′0 as required.

RTS. 3a.
RTS.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
τ 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]

where Post(m) = A(u)

Since H’ is exactly the same as H except for the new address ι, we
also have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Π′ is exactly the same as Π except for addition of new permissions
to the fields of new location (ι). In other words, for those locations
already in H, Π′ is the same as Π. Therefore, we can deduce:
∀ι′[ι′ ∈ H =⇒

P
τi∈DOM(Π′) Π′(τi)(ι

′.f) ≤ 1 (I)

∀κ′[
P
τi∈DOM(Π′) Π′(τi)(κ

′.g) ≤ 1 (II)

On the other hand, for the new location ι, we add a new entry for
each field f of that object under the current thread (τ0). Since ι did
not exist in the heap before this point, no other thread could have
had any permissions to any of its fields. Furthermore, since we gave
τ0 full permission (denoted by 1) to all fields of ι, we can deduce:P
τi∈DOM(Π′) Π′(τi)(ι.f) ≤ 1 (III)

Finally, from (I), (II) and (III) we can deduce:
∀ι.f[

P
τi∈DOM(Π′) Π′(τi)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
From the operational semantic of New we know that H′(ι) ↓3 6= τg and
hence we can deduce:
ι′ 6= ι
Since H′ is exactly the same as H, except for the value of ι, and since
ι′ 6= ι, we can deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Finally, from (5), (G2)-(G7) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ is exactly the same as H except for the value of ι, from (I)
and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case Meth.
P0 ≡ Pre(m)[x/this][y/u] e0 ≡ x.m(y) Q0 ≡ Post(m)[y/u]
H′ = H Π′ = Π σ′0 = σ0 e′ = fork tk := x.m(y); join tk tk 6∈ σ0

RTS. 2. ∃P′0.[{P
′
0} e′ {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = P0 = Pre(m)[x/this][y/u]
RTS. H′,Π′, σ′0, τ0 |= Pre(m)[x/this][y/u] From (G3) we have:
H,Π, σ0, τ0 |= Pre(m)[x/this][y/u] (I)
Since H′ = H, σ′0 = σ0 and Π′ = Π, from (I) we have:
H′,Π′, σ′0, τ0 |= Pre(m)[x/this][y/u] as required.

RTS. {P′0} e′ {Q0}, that is to show:
{Pre(m)[x/this][y/u]} fork tk := x.m(y); join tk

{Post(m)[x/this][y/u]}. (II)

According to the Hoare logic Seq. judgement, (II) holds if and only
if:
∃D.[{Pre(m)[x/this][y/u]} fork tk := x.m(y) {D} (III)

∧ {D} join tk {Post(m)[x/this][y/u}] (IV)

Take D ≡ Thread(tk,C,m, x.y) where Class(x) = C.
RTS.
{Pre(m)[x/this][y/u]} fork tk := x.m(y) {Thread(tk,C,m, x.y)} (V)
∧ {Thread(tk,C,m, x.y)} join tk {Post(m)[x/this][y/u} (VI)

By Hoare logic fork judgement (V) holds.
By Hoare logic join judgement (VI) holds.
Hence, (I) holds as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
τj 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]

where Post(m) = A(u)

Since H′ = H, we also have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Since Π′ = Π, from G5 we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)

for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ = H is exactly the same as H, except for the value of ι.f, we
can deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Finally, from (5), (G2)-(G7) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ = H, from (I) and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case If.
e0 ≡ if(B) then e1 else e2

H′ = H σ′0 = σ0 Π′ = Π
{P0 ∧ B} C1 {Q0} (a)
{P0 ∧ ¬B} C2 {Q0} (b)

Case a. B ≡ True (c)
e′ = e1 (d)

RTS. 2. ∃P′0.[{P
′
0} e1 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = P0

RTS. H′,Π′, σ′0, τ0 |= P0.
From (G3) we have:
H,Π, σ0, τ0 |= P0. (I)
SinceH′ = H, σ′ = σ and Π′ = Π, from (I) we have:
H′,Π′, σ′0, τ0 |= P0 as required.

RTS. {P0} e1 {Q0}
We know (a) and (c), we have:
{P0 ∧ True} e1 {Q0}, that is:
{P0} e1 {Q0} as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
τ 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]

where Post(m) = A(u)

Since H′ = H, we also have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Since Π′ = Π, from G5 we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i

for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ is exactly the same as H, except for the value of ι.f, we can
deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Finally, from (5), (G2)-(G7) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ = H , from (I) and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case Acquire
P0 ≡ True e0 ≡ acquire x Q0 ≡ A[x/this] where A = Invariant(σ0(x).class)
σ0(x) = ι H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τ)] σ′0 = σ0 e′ = null
Π′ = Π[τ+ = P(H, σ0,A), τg− = P(H, σ0,A)]

RTS. 2. ∃P′0.[{P
′
0} e′ {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = A[x/this]

RTS. {A[x/this]} null {A[x/this]}
From (G1) we know and the definition of Ver(Prog), we have:
SF(A) (I)
From Lemma 8 and (I) we have:
SF(A[x/this]) (II)
From (II) and the Hoare logic judgement (Val.) we have:
{A[x/this]} null {A[x/this]} as required.

RTS. H′,Π′, σ′0, τ0 |= A[x/this]

First we show that: H
P(H,σ0,A)
≡ H′

RTS. ∀(ι′.f).[P(H, σ0,A)(ι′.f) = n ∧ n > 0 =⇒ H(ι′.f) = H′(ι′.f)]
∧ ∀(κ.g)[π(H, σ,A)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]

Take an arbitrary (ι′.f) such that P(H, σ,A)(ι′.f) = n ∧ n > 0 (III)
RTS. H(ι′.f) = H′(ι′.f)
There are two cases:

Case 1. ι′ 6= ι
Since H′ is exactly the same as H except for the value of ι, from the
case assumption we know:
H′(ι′) = H(ι′) and hence:
H′(ι′.f) = H(ι′.f) (IV).

Case 2. ι′ = ι
From the definition of H′, we know:
H′(ι) ↓2= H(ι) ↓2 and hence:
H′(ι′.f) = H(ι′.f) (V).

RTS. ∀(κ.g)[π(H, σ,A)(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]
Take an arbitrary κ.g such that π(H, σ,A)(κ, g) = n ∧ n > 0. (VI)
RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the value of ι′, we can
deuce:
H(κ.g) = H′(κ.g) (VII)

From (III)-(VII) we can deduce:

H
P(H,σ0,A)
≡ H′ (VIII)

On the other hand from (G1) and the definition of Ver(Prog), we can
deduce:
SF(A) (IX)
From G5 we know that:
H,Π, σg, τg |= A (X)
where σg = this 7→ ι (XI)
From (VIII), (IX), (X) and the definition of self-framing assertions
we have:
H′,Π, σg, τg |= A (XII)
From (XII) and the definition of the |= judgement we have:
H′,Π(τg), σg |= A (XIII)
From (XI) we know that:
fv(σg) = {this} (XIV)
We also have: σ0(x) = σg(this) = ι (XV)
From (XIII), (XIV), (XV) and property P1 of the |= judgement we
can deduce:
H′,Π(τg), σ0 |= A[x/this] (XVI)
From (XVI) and definition of the |= judgement we have:
H′,Π, σ0, τg |= A[x/this] (XVII)
Given (XVII), definition of Π′ and Lemma 5 we have:
H′,Π′, σ0, τ0 |= A[x/this] (XVIII)
Finally, since σ′0 = σ0, from (XVIII) we have:
H′,Π′, σ′0, τ0 |= A[x/this] as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
τ 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]

where Post(m) = A(u)

Since H’ is exactly the same as H except for the new address ι, we
also have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Π′ is exactly the same as Π except for the permissions of current
thread τ0 and the ghost thread τg . In Π′ we have stripped τg from
the permissions of object x’s monitor and granted these permissions
to τ0. In other words, the sum of permissions have not changed from
Π and we have just changed the owner of these permissions. Hence
we can deduce:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) =

P
τ∈DOM(Π′) Π′(τ)(ι.f)] (1)

∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) =

P
τ∈DOM(Π′) Π′(τ)(κ.g)] (2)

From G5 we have:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) ≤ 1] (3)

∧ ∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) ≤ 1] (4)

From (1), (2), (3) and (4) we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
∀ ι.[H′(ι) ↓3= τg =⇒ H′,Π′, [this 7→ ι], τg |= A]
where A = invariant(ι.class)
Take an arbitrary ι′ such that: H′(ι′) ↓3= τg. (1)
RTS. H′,Π′, [this 7→ ι′], τg |= A

From definition of H’, we know that H′(σ0(x)) ↓3= τ0. Hence we can
deduce:
ι′ 6= σ0(x) (2)
Since H′ is exactly the same as H, except for the monitor of σ0(x),
from (2) we know that:
H(ι′) ↓3= τg. (3)
From (G5), (3) and the definition of WF we know:
H,Π, [this 7→ ι′], τg |= A (4)
Also from (G5) and the definition of WF we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

Since from operational semantics of acquire we know H(σ0(x)) ↓3= τg

and σ0(x) = ι from (6) we can deduce:
ι ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (8)
From (8) we can rewrite (5) as: H,Π, [xj 7→ ιj, xι 7→ ι], τg |= (∗A′j) ∗ A′ι
(9)
for ιj ∈ {ι′′|ι′′ ∈ Dom(H) ∧ ι′′ 6= ι ∧ H(ι′′) ↓3= τg} (10) where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

A′ι = Aι[xι/this] Aι = invariant(ι.class) (11)
From (9) and the definition of |= we have:
H,Π(τg), [xj 7→ ιj, xι 7→ ι] |= (∗A′j) ∗ A′ι (12)

From (12) and property P5 we have:
H, π1, [xj 7→ ιj, xι 7→ ι] |= (∗A′j) (13)

H, π2, [xj 7→ ιj, xι 7→ ι] |= A′ι (14)
Π(τg) = π1] π2 (15)
From (15) and the definition of] on permission masks we know:
∀(ι′.f) ∈ Dom(π1)[π1(ι′.f) = Π(τg)(ι′.f)− π2(ι′.f)] (16)
On the other hand, from the definition of Π′, we know that:
∀(ι′.f)[Π′(τg)(ι′.f) = Π(τg)(ι′.f)− P(H, [this 7→ ι],Aι)] (17)
From property P1b we know that:
P(H, [this 7→ ι],Aι) = P(H, [xι 7→ ι, xj 7→ ιj],Aι[xι/this]) (18)
From (11), (17) and (18) we have:
∀(ι′.f)[Π′(τg)(ι′.f) = Π(τg)(ι′.f)− P(H, [xι 7→ ι, xj 7→ ιj],A′ι)(ι

′.f)] (19)
From (14) and property P2a we have:
∀(ι′f)[π2(ι′.f) ≥ P(H, [xι 7→ ι, xj 7→ ιj],A′ι)] (20)
From (20) we have:
∀(ι′.f)
[Π(τg)(ι′.f)− π2(ι′.f) ≤ Π(τg)(ι′.f)− P(H, [xι 7→ ι, xj 7→ ιj],A′ι)(ι

′.f)] (21)
From (19) and (21) we have:
∀(ι′.f)[Π′(τg)(ι′.f) ≥ Π(τg)(ι′.f)− π2(ι′.f)] (22)
From (16) and (22) we have:
∀(ι′.f) ∈ Dom(π1)[π1(ι′.f) ≤ Π′(τg)(ι′.f)] (23)
From (23) and the definition of ⊆ on permission masks we have:
π1 ⊆ Π′(τg) (24)
From (13), (24) and Lemma 13b we have:
H,Π′(τg), [xj 7→ ιj, xι 7→ ι] |= (∗A′j) (24)

for ιj ∈ {ι′′|ι′′ ∈ Dom(H) ∧ ι′′ 6= ι ∧ H(ι′′) ↓3= τg} (25) where
A′j = Aj[xj/this] Aj = Invariant(ιj.class) (26)

Since H’ is exactly the same as H except for the value of (ι) and since
H′(ι) ↓3 6= τg, we can rewrite (25)-(26) as:
H,Π′(τg), [xj 7→ ιj] |= (∗A′j) (27)

for ιj ∈ {ι′′|ι′′ ∈ Dom(H′) ∧ H′(ι′′) ↓3= τg} (28) where
A′j = Aj[xj/this] Aj = Invariant(ιj.class) (29)

We now show : H
P(H,[xj 7→ιj],(∗A′j))

≡ H′, that is:
∀(ι.f)[P(H, [xj 7→ ιj], (∗A′j))(ι.f) > 0 =⇒ H(ι.f) = H′(ι.f)]

∀(κ.g)[P(H, [xj 7→ ιj], (∗A′j))(κ.g) > 0 =⇒ H(κ.g) = H′(κ.g)]

RTS. ∀(ι′.f)[P(H, [xj 7→ ιj], (∗A′j))(ι
′.f) > 0 =⇒ H(ι′.f) = H′(ι′.f)]

Take an arbitrary ι′.f such that P(H, [xj 7→ ιj], (∗A′j))(ι
′.f) > 0

RTS. H(ι′.f) = H′(ι′.f)
Since H′ is exactly the same as H except for the monitor of ι, we can
deduce:
H(ι′.f) = H′(ι′.f) as required. (30)

RTS. ∀(κ.g)[P(H, [xj 7→ ιj], (∗A′j))(κ.g) > 0 =⇒ H(κ.g) = H′(κ.g)]

Take an arbitrary κ.g such that P(H, [xj 7→ ιj], (∗A′j))(κ.g) > 0

RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the monitor of ι, we can
deduce:
H(κ.g) = H′(κ.g) as required. (31)

From (30) and (31) we can deduce:

H
P(H,[xj 7→ιj],(∗A′j))

≡ H′ (32)
On the other hand, from (G1) and the definition of Ver(Prog) for each
of the invariants we can deduce:
SF(Aj) (33)
From (33) and lemma 8 we have:
SF(Aj[xj/this]), that is:
SF(A′j) (34)

From (34) and property P8 we have:
SF(∗(A′j)) (35)

From (35), (32), (27), (28), (29) and the definition of self-framing as-
sertions we have:
H′,Π′(τg), [xj 7→ ιj] |= (∗A′j)
for ιj ∈ {ι′′|ι′′ ∈ Dom(H′) ∧ H′(ι′′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ is exactly the same as H except for the value of ι′, from (I)
and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case Release
P0 ≡ A[x/this] e0 ≡ release x Q0 ≡ True σ0(x) = ι
H′ = H[ι 7→ (H(ι) ↓1,H(ι) ↓2, τg)] σ′ = σ e′ = null
Π′ = Π[τ− = P(H, σ0,A), τg+ = P(H, σ0,A)]

RTS. 2. ∃P′0.[{P
′
0} e′ {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = True , it is clear that {P′0} null {Q0} holds.
Furthermore, H′,Π′, σ′0, τ0 |= True holds trivially.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
τ 6= τ0

RTS. ∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι′ ∧ σj(u) = ι]

where Post(m) = A(u)

Since H’ is exactly the same as H except for the new address ι, we
also have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ).
The rest of the proof is identical to the FldAss case.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

Π′ is exactly the same as Π except for the permissions of current
thread τ0 and the ghost thread τg . In Π′ we have stripped τ0 from
the permissions of object o’s monitor and granted these permissions
to τg . In other words, the sum of permissions have not changed from
Π and we have just changed the owner of these permissions. Hence
we can deduce:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) =

P
τ∈DOM(Π′) Π′(τ)(ι.f)] (1)

∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.gf) =

P
τ∈DOM(Π′) Π′(τ)(κ.g)] (2)

From G5 we have:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) ≤ 1] (3)

∧ ∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) ≤ 1] (4)

From (1), (2), (3) and (4) we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
There are now two cases:
Case 1. ι′ 6= ι
Since H′ is exactly the same as H, except for the monitor of ι, we can
deduce:
H(ι′) ↓3= τg (4)
Case 2. ι′ = ι
From the operational semantics of Release we know:
H(ι) ↓3 6= τg ∧ H′(ι) ↓3= τg (5)
From (4) and (5) we have:
{ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} ∪ {ι}
(6)

Since P0 ≡ Aι[x/this], from G3 we know that:

H,Π, σ0, τ0 |= Aι[x/this] (7)
where Aι = invariant(ι.class)
Given the definition of Π′, (7) and lemma 5 we have:
H,Π′, σ0, τg |= Aι[x/this] (8)
Since Aι is the invariant of a class, we know that its only free variable
is this, that is:
FV(Aι) = {this}, that is:
FV(Aι[x/this] = {x}) (9)
From (8) and (9) and since σ0(x) = ι we have:
H,Π′, [this 7→ ι], τg |= Aι[x/this][this/x] , that is:
H,Π′, [this 7→ ι], τg |= Aι from the definition of |=, that is:
H,Π′(τg), [this 7→ ι] |= Aι (10)
From (10) and property P2 we have:
H,P(H, [this 7→ ι],Aι), [this 7→ ι] |= Aι (11)
From the definition of Π′, we know:
Π′(τg) = Π(τg)] P(H, σ0,Aι[x/this]) (12)
From (9) and (12) and since σ0(x) = ι, we know:
Π′(τg) = Π(τg)] P(H, [x 7→ ι],Aι[x/this]) (13)
From property P1b we have:
P(H, [x 7→ ι],Aι[x/this]) = P(H, [this 7→ ι],Aι[x/this][this/x]), that is:
P(H, [x 7→ ι],Aι[x/this]) = P(H, [this 7→ ι],Aι) (14)
From (13) and (14) we have:
Π′(τg) = Π(τg)] P(H, [this 7→ ι],Aι) (15)
Take a free variable xι such that:
xι 6∈ {xi}
From (9), (11) and property P1a we have:
H,P(H, [this 7→ ι],Aι), [xι 7→ ι] |= Aι[xι/this] (16)
From property P2 we have:
P(H, [this 7→ ι],Aι) = P(H, [xι 7→ ι],Aι[xι/this]) (17)
From (16) and (17) we have:
H,P(H, [xι 7→ ι],Aι[xι/this]), [xι 7→ ι] |= Aι[xι/this] (18)
From (17) and (15) we have:
Π′(τg) = Π(τg)] P(H, [xι 7→ ι],Aι[xι/this]) (19)
Take σ ≡ [xι 7→ ι]] [xi 7→ ιi] (20)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg}
From (18), (20) and lemma 9 we have:
H,P(H, [xι 7→ ι],Aι[xι/this]), σ |= Aι[xι/this] (21)
From (1)-(3) and the definition of |= we have:
H,Π(τg), [xi 7→ ιi] |= ∗A′i (22)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (23) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (24)
From (22)-(24), (20) and lemma 9 we have:
H,Π(τg), σ, |= ∗A′i (25)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (26) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (27)
From (19), (21), (25) and property P5 we have:
H,Π′(τg), σ, |= (∗A′i) ∗ A′ι (28)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (29) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (30)
A′ι = Aι[xι/this] Aι = Invariant(ι.class) (31)
We can rewrite (28)-(31) as:
H,Π′(τg), σ, |= (∗A′j) (32)

for ιj ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} ∪ {ι} (33) where
A′j = Aj[xj/this] Aj = Invariant(ιj.class) (34)

A′ι = Aι[xι/this] Aι = Invariant(ι.class) (35)

We now show: H
P(H,σ,∗A′j)
≡ H′, that is:

∀(ι.f)[P(H, σ, (∗A′j))(ι.f) > 0 =⇒ H(ι.f) = H′(ι.f)]

∀(κ.g)[P(H, σ, (∗A′j))(κ.g) > 0 =⇒ H(κ.g) = H′(κ.g)]

RTS. ∀(ι′.f)[P(H, σ, (∗A′j))(ι
′.f) > 0 =⇒ H(ι′.f) = H′(ι′.f)]

Take an arbitrary ι′.f such that P(H, σ, (∗A′j))(ι
′.f) > 0

RTS. H(ι′.f) = H′(ι′.f)
Since H′ is exactly the same as H except for the monitor of ι, we can
deduce:
H(ι′.f) = H′(ι′.f) as required. (36)

RTS. ∀(κ.g)[P(H, σ, (∗A′j))(κ.g) > 0 =⇒ H(κ.g) = H′(κ.g)]

Take an arbitrary κ.g such that P(H, σ, (∗A′j))(κ.g) > 0

RTS. H(κ.g) = H′(κ.g)
Since H′ is exactly the same as H except for the monitor of ι, we can
deduce:
H(κ.g) = H′(κ.g) as required. (37)

From (36) and (37) we can deduce:

H
P(H,σ,(∗A′j))

≡ H′ (38)
On the other hand, from (G1) and the definition of Ver(Prog) for each
of the invariants we can deduce:
SF(Aj) (39)

From (39) and lemma 8 we have:
SF(Aj[xj/this]), that is:
SF(A′j) (40)

From (40) and property P8 we have:
SF(∗(A′j)) (41)

From (41), (38), (32) and the definition of self-framing assertions we
have:
H′,Π′(τg), σ |= (∗A′j) (42)

From (42) and the definition of |= we have:
H′,Π′, σ, τg |= (∗A′j) (43)

From (43) and (33)-(35) we have:
H′,Π′, σ, τg |= (∗A′j) (44)

for ιj ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} ∪ {ι} (45) where
A′j = Aj[xj/this] Aj = Invariant(ιj.class) (46)

A′ι = Aι[xι/this] Aι = Invariant(ι.class) (47)
From (6) and (20), we can rewrite (44)-(47) as:
H′,Π′, [xj 7→ ιj], τg |= (∗A′j)
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
Take arbitrary κ, κ′ such that:
H′(κ) ↓3= τ (I)
H′(κ′) ↓3= τ (II)
Since H′ is exactly the same as H except for the value of ι, from (I)
and (II) we have:
H(κ) ↓3= τ (III)
H(κ′) ↓3= τ (IV)
From (G5), (III) and (IV) we have:
κ = κ′ as required.

Case Frame
P0 ≡ A ∗ C Q0 ≡ B ∗ C
{A} e0 {B} (I)
SF(C) (II)

From (G2) and the definition of P0 we know:
H,Π, σ0, τ0 |= A ∗ C (1)
From (1) and the definition of |= we have:
H,Π(τ0), σ0 |= A ∗ C (2)
From (2) and property P5 we have:
H, π1, σ0 |= A (3)
H, π2, σ0 |= C (4)
Π(τ0) = π1] π2 (5)
From (3), (5) and lemma 13a we have:
H,Π(τ0), σ0 |= A (6)

RTS. 2.∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
∃A′.[{A′} e′0 {B} (III)
∧ H′,Π′, σ′0, τ0 |= A′] (IV)

Take P′0 = A′ ∗ C.

1.RTS. {A′ ∗ C} e′0 {B ∗ C}
From (II), (III) and the Hoare logic judgement (Frame) we can de-
duce:
{A′ ∗ C} e′0 {B ∗ C}

2. RTS. H′,Π′, σ′0, τ0 |= A′ ∗ C
From (G2) we have:
H,Π, σ0, τ0 |= A ∗ C (V)
From (I), (V), G4 and Lemma 2 we deduce:
∃Π1,Π2.[Π = Π1] Π2 (VI)
∧ H,Π1, σ0, τ0 |= A (VII)
∧ H,Π2, σ0, τ0 |= C (VIII)
∧ H,Π1, (e0, σ0, τ0) ; (e′0, σ

′
0, τ0),H′,Π′1] (IX)

Furthermore, from G4, (VI), (IX) and Lemma 1 we know:
Π′ = Π′1] Π2 (X)

On the other hand, given (G1), (I), (VII) , (IX), (G5) and the induc-
tion hypothesis, we can deduce
H′,Π′1, σ

′
0, τ0 |= A′ (XI)

Finally, Given (VIII), (X), (XI) and property P5, we can deduce:
H′,Π′, σ′0, τ0 |= A′ ∗ C as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

as requitred.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
as required.

Case Seq.
P0 ≡ A Q0 ≡ B e0 ≡ C1; C2

e′0 = C′1; C2 where H,Π, (C1, τ0, σ0) ; (C′1, τ0, σ
′
0),H′,Π′ (I)

{A} C1 {D} (II) {D} C2 {B} (III)

RTS. 2. ∃P′0.[{P
′
0} C′1; C2 {B} ∧ H′,Π′σ′0, τ0 |= P′0]

From (G1)-(G5), (I), (II) and the induction hypothesis we deduce:
∃R.[{R} C′1 {D} (IV)
∧ H′,Π′σ′0, τ0 |= R] (V)

Take P′0 ≡ R
RTS. {R} C′1; C2 {B} ∧ H′,Π′σ′0, τ0 |= R
From (III), (IV) and the hoare logic judgement (Seq.) we have:
{R} C′1; C2 {B} (VI)
From (V) and (VI) we have:
{R} C′1; C2 {B} ∧ H′,Π′σ′0, τ0 |= R as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

From (G1)-(G5), (I), (II) and the induction hypothesis we can de-
duce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

as requitred.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

From (G1)-(G5), (I), (II) and the induction hypothesis we can de-
duce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

From (G1)-(G5), (I), (II) and the induction hypothesis we can de-
duce:
H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]

From (G1)-(G5), (I), (II) and the induction hypothesis we can de-
duce:
∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
as required.

Case Conseq.
P0 →a A (I) B→a Q0 (II)
{A} e0 {B} (III)

From G3, we know that: H,Π, σ0, τ0 |= P0 (IV)
From (I), (IV) and Property P3 of the |= judgement we know that:
H,Π, σ0, τ0 |= A (V)

RTS. 2. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= P′0]

By (G1),...,(G5), (III), (V) and induction hypothesis we can deduce:
∃R.[{R} e′0 {B} (VI)
∧ H′,Π′σ′0, τ0 |= R] (VII)

Take P′0 ≡ R
RTS. {R} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= R
From (G2) we have:
{P0} e0 {Q0} (VIII)
From (VIII) and lemma 7 we can deduce:
SF(Q0) (IX)
From (II), (VI), (IX) and the Hoare logic rule of consequence, we can
deduce that:
{R} e′0 {Q0} (X)
Combining (VII) and (X) we get:
{R} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= R as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

From (III), (V), (G1)-(G5) and the induction hypothesis we can de-
duce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

as requitred.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

From (III), (V), (G1)-(G5) and the induction hypothesis we can de-
duce:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

as required.

RTS. 3c.
RTS. H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)

From (III), (V), (G1)-(G5) and the induction hypothesis we can de-
duce:
H′,Π′, [xj 7→ ιj], τg |= ∗A′j
for ιj ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′j = Aj[xj/this] Aj = Invariant(ιj.class)
as required.

RTS. 3d. ∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]

From (III), (V), (G1)-(G5) and the induction hypothesis we can de-
duce:
∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′]
as required.

D.2 Theorem 1
Ver(Prog) (G1)
{Pi} ei {Qi} for i ∈ 0...n (G2)
H,Π, σi, τi |= Pi for i ∈ 0...n (G3)
(e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ

′
0)|(e, τ, σ1...n),H′,Π′ (G4)

WF(H,Π, (e, τ, σ0...n)) (G5)
=⇒

1. H′,Π′, σ′i , τi |= Pi for i ∈ 1...n
2. ∃P′0.[{P

′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

3. WF(H′,Π′, (e′0, τ0, σ
′
0)|(e, τ, σ1...n))

Proof.
RTS. 1. H′,Π′, σ′i , τi |= Pi for i ∈ 1...n

This can be obtained from (G1)-(G5) and theorem 1a.

RTS. 2. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

This can be obtained from (G1)-(G5) and theorem 1a.

RTS. 3a. ∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ)
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

where Post(m) = A(u)

There are now two cases:
Case 1. τ 6= τ0

This follows immediately from (G1)-(G5) and theorem 1a.

Case 2. τ = τ0

RTS. ∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ0) =⇒
∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)}] ∧ σ′0(this) = ι ∧ σ′0(u) = ι]

Take an arbitrary κ such that:
H′(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ0) (I)
RTS. ∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι′ ∧ σ′0(u) = ι]

Proof. By induction over the Hoare logic Triplets ({P0} e0 {Q0}).

Case FldAss.
Since H′ is exactly the same as H except for the value of σ0(x).f, from
(I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
From (II) and (G5) we have:
∃P.[H,Π, τ0, σ0 |= P (III)
{P} e0 {Post(m)} (IV)
σ0(this) = ι′ (V)
σ0(u) = ι (VI)
Since we have σ′0 = σ0, from (V) and (VI) we can deduce:
σ′0(this) = ι′ (VII)
σ′0(u) = ι (VIII)

On the other hand, from (III), (IV), (G1)-(G5) and theorem 1a we
can deduce:
∃P′.[{P′} e′0 {Post(m)} ∧ H′,Π′, σ′0, τ0 |= P′ (IX)
By putting together (VII), (VIII) and (IX) we have:
∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι′ ∧ σ′0(u) = ι]
as required.

Case VarAss.
Since H′ = H, from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case NewC
Since H′ is exactly the same as H except for the value of the new
address ι, from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case Meth
Since H′ = H, from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case IfT, IfF
Since H′ = H, from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case Acquire
Since H′ is exactly the same as H except for the monitor of address ι,
from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case Release

Since H′ is exactly the same as H except for the monitor of address ι,
from (I) we have:
H(κ) = (TK, {c : C,m : m, args : ι′.ι}, τ). (II)
The rest of the proof is identical to the FldAss. case.

Case Frame
From Hoare logic judgement Frame we have:
{A} e0 {B} (I)

From (G2) and the definition of P0 we know:
H,Π, σ0, τ0 |= A ∗ C (1)
From (1) and the definition of |= we have:
H,Π(τ0), σ0 |= A ∗ C (2)
From (2) and property P5 we have:
H, π1, σ0 |= A (3)
H, π2, σ0 |= C (4)
Π(τ0) = π1] π2 (5)
From (3), (5) and lemma 13a we have:
H,Π(τ0), σ0 |= A (6)

From (I), (6), (G1)-(G5) and the induction hypothesis we can deduce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ0) =⇒
∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)}] ∧ σ′0(this) = ι ∧ σ′0(u) = ι]
as required.

Case Seq.
From Hoare logic judgement Seq. we have:
e′0 = C′1; C2 where H,Π, (C1, τ0, σ0) ; (C′1, τ0, σ

′
0),H′,Π′ (I)

{P0} C1 {D} (II) {D} C2 {Q0} (III)

From (G1)-(G5), (I), (II) and the induction hypothesis we can de-
duce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ0) =⇒
∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)}] ∧ σ′0(this) = ι ∧ σ′0(u) = ι]
as required.

Case Conseq.
From Hoare logic judgement Conseq. we have:
P0 →a A (I) B→a Q0 (II)
{A} e0 {B} (III)

From G3, we know that: H,Π, σ0, τ0 |= P0 (IV)
From (I), (IV) and Property P3 of the |= judgement we know that:
H,Π, σ0, τ0 |= A (V)

From (G1)-(G5), (III), (V) and induction hypothesis we can de-
duce:
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ0) =⇒
∃P.[H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)}] ∧ σ′0(this) = ι ∧ σ′0(u) = ι]
as required.

RTS. 3b. ∀ι.f[
P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

This can be obtained from (G1)-(G5) and theorem 1a.

RTS. 3c. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

This can be obtained from (G1)-(G5) and theorem 1a.

RTS. 3d. ∀κ, κ′.[H(κ) ↓3= τ ∧ H(κ′) ↓3= τ =⇒ κ = κ′]

This can be obtained from (G1)-(G5) and theorem 1a.

D.3 Theorem 2a
In order to prove Theorem 2, we first start by proving the following

auxiliary theorem that would help us in proving the second soundness
theorem.

Ver(Prog) (G1)
{Pi} ei {Qi} for i ∈ 0...n− 1 (G2)
H,Π, σi, τi |= Pi for i ∈ 0...n− 1 (G3)

(e0, τ0, σ0)|(e, τ, σ1...n−1),H,Π ;

(e′0, τ0, σ
′
0)|(e, τ, σ1...n−1)|(en, τn, σn),H′,Π′ (G4)

WF(H,Π, (e, τ, σ0...n−1)) (G5)
=⇒

1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1
2. ∃Pn,Qn.[{Pn} en {Qn} ∧ H′,Π′, σn, τn |= Pn]

3. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

4a. ∀ κ.[H′(κ) = (Tk, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

where Post(m) = A(u)

4b. ∀ι.f[
P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

4c. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

4d. ∀κ, κ′.[H(κ) ↓3= τ ∧ H(κ′) ↓3= τ =⇒ κ = κ′]

Proof. By induction over the Hoare Logic triplets.
The only applicable case is when:
P0 ≡ Pre(m)[x/this][y/u] e0 ≡ fork tk := x.m(y)
Q0 ≡ Thread(tk,C,m, x.y) H(σ0(x)) ↓1= C Pre(m) = A(u)

τn 6∈ Π κ 6∈ H H′ = H[κ 7→ (TK, {c : C,m : m, args : σ0(x).σ0(y)}, τn)]
σ′0 = σ0[tk 7→ κ] e′0 = null
σn = [this 7→ σ0(x), u 7→ σ0(y)] en = mBody(m)
Π′′ = Π[τ0− = P(H, σ0,Pre(m)[x/this][y/u])

τn+ = P(H, σ0,Pre(m)[x/this][y/u])]
Π′ = Π′′[(τ0)(κ.c) 7→ 1

(τ0)(κ.m) 7→ 1
(τ0)(κ.args) 7→ 1]

RTS. 1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1
This can be derived from Lemma 4.

RTS. 2. ∃Pn,Qn.[{Pn} en {Qn} ∧ H′,Π′, σn, τn |= Pn]
Take Pn = Pre(m), Qn = Post(m)
RTS. {Pre(m)} mBody(m) {Post(m)}
From (G1) and the definition of Ver(Prog) we have:
{Pre(m)} mBody(m) {Post(m)} as required.

RTS. H′,Π′, σn, τn |= Pre(m)
From G3 we have:
H,Π, σ0, τ0 |= Pre(m)[x/this][y/u] (I)
Since Pre(m) = A(u), we can deduce:
FV(Pre(m)) = {this, u} (II)
Now given the definition of σn, from (I), (II) and property P1, we can
deduce:
H,Π, σn, τ0 |= Pre(m)[x/this][y/u][this/x][u/y], that is:
H,Π, σn, τ0 |= Pre(m) (III)
From (III), the definition of Π′′ and lemma 5 we can deduce:
H,Π′′, σn, τn |= Pre(m) (IV)
From (IV) and the definition of |= we have:
H,Π′′(τn), σn |= Pre(m) (V)
From definition of Π′, we know:
Π′(τn) = Π′′(τn) (VI)
From (V) and (VI) we have:
H,Π′(τn), σn |= Pre(m) (VII)
From (VII) and the definition of |= we have:
H,Π′, σn, τn |= Pre(m) (VIII)

We now show: H
P(H,σn,Pre(m))

≡ H′

In other words, show:
∀(ι.f)[P(H, σn,Pre(m))(ι.f) > 0 =⇒ H′(ι.f) = H(ι.f)]
∧ ∀(κ.g)[P(H, σn,Pre(m))(κ.g) > 0 =⇒ H′(κ.g) = H(κ.g)]

RTS. ∀(ι.f)[P(H, σn,Pre(m))(ι.f) > 0 =⇒ H′(ι.f) = H(ι.f)]
Take an arbitrary (ι.f) such that P(H, σn,Pre(m))(ι.f) > 0
RTS. H(ι.f) = H′(ι.f)
Since H is exactly the same as H′ except for the value of κ, we can
deduce:
H(ι.f) = H′(ι.f) (IX)

RTS. ∧ ∀(κ.g)[P(H, σn,Pre(m))(κ.g) > 0 =⇒ H′(κ.g) = H(κ.g)]
Take an arbitrary (κ′.g) such that P(H, σn,Pre(m))(κ′.g) > 0
RTS. H(κ′.g) = H′(κ′.g)
Since P(H, σn,Pre(m))(κ′.g) > 0, from property P11 we can deduce:
κ′ ∈ Dom(H) (X)
On the other hand from our given we know that:
κ 6∈ Dom(H) (XI)
From (X) and (XI) we can deduce:
κ′ 6= κ (XII)
Since H is exactly the same as H′ except for the value of κ, from (XII)
we can deduce:
H(κ′.g) = H′(κ′.g) (XIII)
From (IX) and (XIII) we can deduce:

H
P(H,σn,Pre(m))

≡ H′ (XIV)
On the other hand from (G1) and the definition of Ver(Prog) we know:
SF(Pre(m)) (XV)
From (XV), (VIII), (XIV) and the definition of self-framing assertions
we have:
H′,Π′, σn, τn |= Pre(m) as required.

RTS. 3. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 ≡ Q0 ≡ Thread(tk,C,m, x.y).

RTS. {Thread(tk,C,m, x.y)} null {Thread(tk,C,m, x.y)}
From Lemma 12 we know:
SF(Thread(tk,C,m, x.y)) (I)
From (XI) and the Hoare judgement (Val.) we can deduce:
{Thread(tk,C,m, x.y)} null {Thread(tk,C,m, x.y)} as required.

RTS. H′,Π′, σ′0, τ0 |= Thread(tk,C,m, x.y).
Let us divide Π′(τ0) into 4 distinct permission masks (π1, ..., π4), such
that:

Dom(π1) = (κ.c) and

π1(κ
′
.g) =


Π′(τ0)(κ.c) if κ′.g = κ.c
⊥ otherwise

Dom(π2) = (κ.m) and

π2(κ
′
.g) =


Π′(τ0)(κ.m) if κ′.g = κ.m
⊥ otherwise

Dom(π3) = (κ.args) and

π3(κ
′
.g) =


Π′(τ0)(κ.args) if κ′.g = κ.args
⊥ otherwise

Dom(π4) = Dom(Π′(τ0)) \ {Dom(π1) ∪ Dom(π2) ∪ Dom(π3)} and

π4(ι
′
.f) =

8<: Π′(τ0)(ι′.f) if ι′.f ∈ Dom(Π′(τ0)) ∧ ι′.f 6= κ.c
∧ ι′.f 6= κ.m ∧ ι′.f 6= κ.args

⊥ otherwise

Then from the definition of] on permission masks we have:
Π′(τ0) = π1] π2] π3] π4 (II)
From the definition of σ′0, we know:
σ′0(tk) = κ (III)
From the definition of H′ we know that:
H′(κ) = (TK, {c : C,m : m, args : σ0(x).σ0(y)}, τn) (IV)
Since σ′0 is exactly the same as σ except for the value of tk, we can
deduce:
σ′0(x) = σ0(x) σ′0(y) = σ0(y) (V)
From (IV) and (V) we have:

H′(κ) = (TK, {c : C,m : m, args : σ′0(x).σ′0(y)}, τn) (VI)
From (III), (VI) and property P4a we can deduce:
H′, ε, σ′0 |= tk.c = C (VII)
H′, ε, σ′0 |= tk.m = m (VIII)
H′, ε, σ′0 |= tk.args = x.y (IX)
From (VII), (VIII), (IX) and applying property P5 two times, we
know:
H′, ε] ε] ε, σ′0 |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y (X)
From the definition of] on permission masks we have: ε] ε] ε = ε
and hence from (X) we have:
H′, ε, σ′0 |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y (XI)
From (XI) and lemma 13 we have:
H′, ε] π4, σ

′
0 |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y (XII)

From the definition of] on permission masks we have:
π4 = ε] π4 (XIII)
From (XII), (XIII) we have:
H′, π4, σ

′
0 |= tk.c = C ∗ tk.m = m ∗ tk.args = x.y (XIV)

From the definition of Π′ we know:
Π′(τ0)(κ.c) = 1 (XV)
Π′(τ0)(κ.m) = 1 (XVI)
Π′(τ0)(κ.args) = 1 (XVII)
From (XV) and the definition of π1 we have:
π1(κ.c) = 1 (XVIII)
From (XVI) and the definition of π2 we have:
π2(κ.m) = 1 (XIX)
From (XVII) and the definition of π3 we have:
π3(κ.args) = 1 (XX)
From (III), (XVIII) and property P4b we have:
H′, π1, σ

′
0 |= acc(tk.c, 1) (XXI)

From (XIII), (XIX) and property P4b we have:
H′, π2, σ

′
0 |= acc(tk.m, 1) (XXII)

From (XIII), (XX) and property P4b we have:
H′, π3, σ

′
0 |= acc(tk.args, 1) (XXIII)

From (XIV), (XXI), (XXII), (XXIII) and applying property P5 three
times we have:
H′, π1] π2] π3] π4, σ

′
0 |= acc(tk.c, 1) ∗ tk.c = C
∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y (XXIV)

From (II) and (XXIV) we have:
H′,Π′(τ0), σ′0 |= acc(tk.c, 1) ∗ tk.c = C

∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y (XXV)

From (XXV) and property P12 we have:
H′,Π′(τ0), σ′0 |= Thread(tk,C,m, x.y) (XXVI)
From (XXVI) and the definition of the |= judgement we have:
H′,Π′, σ′0, τ0 |= Thread(tk,C,m, x.y) as required.

RTS. 4a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃j ∈ {1...n}, ∃P.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ′ such that:
H′(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ). (1)
τ 6= τ0 (2)
RTS.
∃j ∈ {1...n}, ∃P.[τ = τj ∧ H′,Π′, τj, σj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]

We have the following cases:
Case 1.
κ′ refers to a token other than the newly created token κ. That is:
κ′ 6= κ (3)
Since H′ is exactly the same as H except for the value of κ, from (1)
and (2) we can deduce:
H(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ). (4)
From G5 and (4) we have:
∃P.∃j ∈ {1...n− 1}.[τ = τj ∧ H,Π, τj, σj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]) (5)
From (5) and (2) we have:
{P} ej {Post} (6)
H,Π, τj, σj |= P (7)
σj(this) = ι ∧ σj(u) = ι (8)
j ∈ {1...n− 1} (9)
From (6), (7), (G2)-(G5) and applying Lemma 4 we get:
H′,Π′, σj, τj |= P (10)
By putting together (6) and (8) - (10) we have:
∃P.∃j ∈ {1...n− 1}.[τ = τj ∧ H′,Π′, σj, τj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι] (11)

Case 2.
κ′ refers to the newly created token κ. That is:
κ′ = κ (12)
From the definition of H′ we have:
H′(κ) = (TK, {c : C,m : m, args : σ0(x).σ0(y)}, τn) (13)
From (12) and (13) we have:

H′(κ′) = (TK, {c : C,m : m, args : σ0(x).σ0(y)}, τn) (14)
From (1) and (14) we have:
τ = τn (15)

σ0(x) = ι σ0(y)) = ι (16)
From the definition of σn we have:
σn(this) = σ0(x) σn(u)) = σ0(y)) (17)
From (16) and (17) we have:

σn(this) = ι σn(u)) = ι (18)
In part 2 of the proof for the Fork case we showed that:
{Pre(m)} en {Post(m)} (19)
H′,Π′, σn, τn |= Pre(m) (20)
From (19) and (20) we have:
∃ P.[H′,Π′, σn, τn |= P ∧ {P} en {Post(m)}] (21)
By putting together (15), (18) and (21) we have:
∃P.[τ = τn ∧ H′,Π′, σn, τn |= P

∧ {P} en {Post(m)} ∧ σn(this) = ι ∧ σn(u) = ι] (22)

From (11) and (22) we have:
∃P.∃j ∈ {1...n}.[τ = τj ∧ H′,Π′, σj, τj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]
as required.

RTS. 4b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1] where g ∈ {c,m, args}

From G5 we have:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) ≤ 1] where g ∈ {c,m, args} (I)

From definition of Π′′, we know Π′′ is exactly the same as Π except
for the permissions of current thread τ0 and the newly created thread
τn. In Π′′ we have stripped τ0 from the permissions of method m’s
precondition and granted these permissions to τn. In other words, the
sum of permissions has not changed from Π and we have just changed
the owner of these permissions. That is:
∀ι.f[

P
τ∈DOM(Π′′) Π′′(τ)(ι.f) =

P
τ∈DOM(Π) Π(τ)(ι.f)]

∀κ.g[
P
τ∈DOM(Π′′) Π′′(τ)(κ.g) =

P
τ∈DOM(Π) Π(τ)(κ.g)] (II)

From (I) and (II) we have:
∀ι.f[

P
τ∈DOM(Π′′) Π′′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′′) Π′′(τ)(κ.g) ≤ 1] where g ∈ {c,m, args} (III)

On the other hand we know Π′ is exactly the same as Π′′ except for
addition of new permissions for κ. In other words, for those locations
already in H, Π′ is the same as Π′′. Therefore, from (III) we can
deduce:
∀ι′.f[

P
τ∈DOM(Π′) Π′(τ)(ι′.f) ≤ 1

∧ ∀κ′.g[κ′ ∈ H =⇒
P
τ∈DOM(Π′) Π′(τ)(κ′.g) ≤ 1] (IV)

where g ∈ {c,m, args}
On the other hand, for the new location κ, we add a new entry for
each of {c, m, args} under (τ0). Since κ did not exist in the heap before
this point (κ 6∈ H), no other thread could have had any permissions
to any of its fields, that is:P
τ∈DOM(Π′)\{τ0}

Π′(τ)(κ.g) = 0 where g ∈ {c,m, args} (V)

Furthermore, we gave τ0 full permission (denoted by 1) to κ.c, κ.m, κ.args.
That is:
Π′(τ0)(κ.g) = 1 where g ∈ {c,m, args} (VI)
From (V) and (VI) we have:P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1 where g ∈ {c,m, args} (VII)

From (IV) and (VII) we have:
∀ι′.f[

P
τ∈DOM(Π′) Π′(τ)(ι′.f) ≤ 1

∧ ∀κ′.g[
P
τ∈DOM(Π′) Π′(τ)(κ′.g) ≤ 1] where g ∈ {c,m, args}

as required.

RTS. 4c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ is exactly the same as H, except for the value of κ, we can
deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

On the other hand, from (G1) and the definition of Ver(Prog), for each
one of the Ai we have:
SF(Ai) (8)
From (8), definitions of A′i and lemma 8 we have:
SF(A′i) (9)
From (9) and property P8 we have:
SF(∗(A′i)) (10)

Furthermore, we know that:
τ0 6= τg (11)
Since τg is the ghost thread that does not take part in execution. In
other words, we cannot have:
H,Π, (e0, τg, σ0) ; (e′0, τg, σ

′
0)|(en, τn, σn),H′,Π′.

Finally, from (5), (10), (11), (G2)-(G5) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 4d.
∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′

Take arbitrary κ1, κ2 such that:
H′(κ1) ↓3= τ (1)
H′(κ2) ↓3= τ (2)
There are now three cases to consider:

Case 1.
κ1 6= κκ2 6= κ (3)
Since H′ is exactly the same as H except for the value of κ, from (3)
we can deduce:
H(κ1) ↓3= τ (4)
H(κ2) ↓3= τ (5)
From (4), (5) and (G5) we have:
κ1 = κ2 as required.

Case 2. κ1 = κ ∧ κ2 6= κ (6)
From the operational semantics of Acquire we know that:
H′(κ) ↓3= τn (7)
From (7) and (6) and (1) we have:
τ = τn (8)
On the other hand, since H′ is exactly the same as H except for the
value of κ, from (6) we can deduce:
H′(κ2) = H(κ2) (9)
From (2) and (8) we have:
H′(κ2) ↓3= τn (10)
From (9) and (1) we can deduce:
H(κ2) ↓3= τn (11)
From (11) we can deduce:
τn ∈ range(H) (12)
From operational semantics of Acquire we have:
τn 6∈ range(H) (13)
Contradiction!!
Hence we can deduce:
κ1 = κ2 as required.

Case 3. κ1 = κ ∧ κ2 = κ (14)
From (14) we trivially have:
κ1 = κ2 as required.

D.4 Soundness Theorem 2
Ver(Prog) (G1)
{Pi} ei {Qi} for i ∈ 0...n− 1 (G2)
H,Π, σi, τi |= Pi for i ∈ 0...n− 1 (G3)

(e0, τ0, σ0)|(e, τ, σ1...n−1),H,Π ;

(e′0, τ0, σ
′
0)|(e, τ, σ1...n−1)|(en, τn, σn),H′,Π′ (G4)

WF(H,Π, (e, τ, σ0...n−1)) (G5)
=⇒

1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1
2. ∃Pn,Qn.[{Pn} en {Qn} ∧ H′,Π′, σn, τn |= Pn]
3. ∃P′0.[{P

′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

4. WF(H′,Π′, (e′0, τ0, σ
′
0)|(e, τ, σ1...n))

Proof. By induction over the Hoare triplets ({P0} e0 {Q0}).

The only applicable case is when:
P0 ≡ Pre(m)[x/this][y/u] e0 ≡ fork tk := x.m(y)
Q0 ≡ Thread(tk,C,m, x.y) H(σ0(x)) ↓1= C Pre(m) = A(u)

τn 6∈ Π κ 6∈ H H′ = H[κ 7→ (TK, {c : C,m : m, args : σ0(x).σ0(y)}, τn)]
σ′0 = σ0[tk 7→ κ] e′0 = null
σn = [this 7→ σ0(x), u 7→ σ0(y)] en = mBody(m)
Π′′ = Π[τ0− = P(H, σ0,Pre(m)[x/this][y/u])

τn+ = P(H, σ0,Pre(m)[x/this][y/u])]
Π′ = Π′′[(τ0)(κ.c) 7→ 1

(τ0)(κ.m) 7→ 1
(τ0)(κ.args) 7→ 1]

RTS. 1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1

This can be derived from (G1)-(G5) and Theorem 2a.

RTS. 2. ∃Pn,Qn.[{Pn} en {Qn} ∧ H′,Π′, σn, τn |= Pn]

This can be derived from (G1)-(G5) and Theorem 2a.

RTS. 3. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

This can be derived from (G1)-(G5) and Theorem 2a.

RTS. 4a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) =⇒
∃j ∈ {1...n}, ∃P.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]

∨∃P.[τ = τ0 ∧ H′,Π′, τ0, σ
′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι ∧ σ′0(u) = ι]

Take an arbitrary κ′ such that:
H′(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ). (1)
There a re now two cases two consider:

Case 1. τ 6= τ0

This can be derived from (G1)-(G5) and Theorem 2a.

Case 2.
τ = τ0 (2)
From the operational semantics of Acquire we know that:
H′(κ) ↓3= τn (3)
From (1) and (2) we have:
H′(κ′) ↓3= τ0 (4)
Hence we can deduce:
κ′ 6= κ (5)

Since H′ is exactly the same as H except for the value of κ, from
(1) and (2) and (5) we can deduce:
H(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ0). (6)
From G5 and (6) we have:
∃P.∃j ∈ {0...n− 1}.[τ = τj ∧ H,Π, τj, σj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]) (7)
From (2) and (7) we have:
{P} e0 {Post(m)} (8)
H,Π, τ0, σ0 |= P (9)
σ0(this) = ι ∧ σ0(u) = ι (10)
On the other hand from the definition of σ′0 we know:
σ′0(this) = σ0(this) ∧ σ′0(u) = σ0(u) (11)
From (10) and (11) we have:
σ′0(this) = ι ∧ σ′0(u) = ι (12)
From (G1)-(G5), (8), (9) and Theorem 2a we have:
∃P.[{P} e′0 {Post(m)} ∧ H′,Π′, σ′0, τ0 |= P] (13)
By putting together (2), (12) and (13) we have:
∃P.[τ = τ0 ∧ H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι ∧ σ′0(u) = ι])
as required.

RTS. 4b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1] where g ∈ {c,m, args}

This can be derived from (G1)-(G5) and Theorem 2a.

RTS. 4c.

This can be derived from (G1)-(G5) and Theorem 2a.

RTS. 4d.

This can be derived from (G1)-(G5) and Theorem 2a.

D.5 Theorem 3a
In order to prove Theorem 3, we first start by proving the following

auxiliary theorem that would help us in proving the third soundness
theorem.

Ver(Prog) (G1)
({Pi} ei {Qi})i∈{0...n} (G2)
(H,Π, σi, τi |= Pi)i∈{0...n} (G3)

(e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ
′
0)|(e, τ, σ1...n−1),H′,Π′ (G4)

WF(H,Π, (e, τ, σ0...n)) (G5)
=⇒

1. (H′,Π′, σi, τi |= Pi)i∈{1...n−1}
2. ∃P′0.[{P

′
0} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= P′0]

3a. ∀ κ.[H′(κ) = (Tk, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃P, ∃j ∈ {1...n− 1}.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)}] ∧ σj(this) = ι ∧ σj(u) = ι]

where Post(m) = A(u)

3b. ∀ι.f[
P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]

3c. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

3d. ∀κ, κ′.[H(κ) ↓3= τ ∧ H(κ′) ↓3= τ =⇒ κ = κ′]

Proof.
By induction over the Hoare logic triplets. The only applicable case
is when:
P0 ≡ Thread(tk,C,m, x.y) (a)
e0 ≡ join tk (b)
Q0 ≡ Post(m)[x/this][y/u] where Post(m) = A(u) (c)
σ0(tk) = κ (d)
H′ = H[κ 7→ ε] (e)
σ′0 = σ0 (f)
e′0 = null (g)
Π′ = Π[τ0+ = P(H, σ0,Post(m)[x/this][y/u])

τn− = P(H, σ0,Post(m)[x/this][y/u])] (h)

RTS. 1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1
This can be derived from Lemma 4.

RTS. 2. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

Take P′0 = Q0 = Post(m)[x/this][y/u]
RTS. {Post(m)[x/this][y/u]} null {Post(m)[x/this][y/u]}
From (G1) and the definition of Ver(Prog), we have:
SF(Post(m)) (1)
From (1) and lemma 8 we have:
SF(Post(m)[x/this][y/u]) (2)
From (2) and the Hoare logic judgement (Val.) we have:
{Post(m)[x/this][y/u]} null {Post(m)[x/this][y/u]} as required.

RTS. H′,Π′, σ′0, τ0 |= Post(m)[x/this][y/u]
By looking at the operational semantics of the join rule, we can de-
duce:
en ≡ v (1)
H(σ0(tk)) = (TK, {c : C′,m : m′, args : α.α}, τn) (2)
From G3 and (a) we know:
H,Π, σ0, τ0 |= Thread(tk,C,m, x.y) (3):
From (3) and definition of |= we have:
H,Π(τ0), σ0 |= Thread(tk,C,m, x.y) (4)
From (4) and property P12 we have:
H,Π(τ0), σ0 |= acc(tk.c, 1) ∗ tk.c = C

∗ acc(tk.m, 1) ∗ tk.m = m
∗ acc(tk.args, 1) ∗ tk.args = x.y (5)

From (5) and applying property P5 three times we have:
H, π1, σ0 |= tk.c = C (6)
H, π2, σ0 |= tk.m = m (7)

H, π3, σ0 |= tk.args = x.(y) (8)
H, π4, σ0 |= acc(tk, 1) ∗ acc(tk.m, 1) ∗ acc(tk.args, 1)
where Π(τ0) = π1] π2] π3] π4

From (6), (7), (8) and property P4a we have:
H(σ0(tk).c) = C (9)
H(σ0(tk).m) = m (10)

H(σ0(tk).args) = σ0(x).σ0(y) (11)
From (2) and (9)-(11) we have:
H(σ0(tk)) = (TK, {c : C,m : m, args : α.α}, τn), from d we have:
H(κ) = (TK, {c : C,m : m, args : α.α}, τn), (12):

where σ0(x) = α ∧ σ0(y) = α (13)
From (12) and (G5) we have:
∃P, ∃j ∈ {1...n}.[τn = τj ∧ H,Π, τj, σj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]
In other words, we have:
∃P.[H,Π, σn, τn |= P (14)
∧ {P} en {Post(m)}] (15)

σn(this) = α σn(u) = α (16)
From (1) and (15) we have:
∃P.[{P} v {Post(m)} (17)
From (17) and the Hoare judgement (Val.) we have:
P ≡ Post(m) (18)
From (14) and (18) we have:
H,Π, σn, τn |= Post(m) (19)
From (17) and (18) we have:
{Post(m)} v {Post(m)} (20)

We now show that H
P(H,σ,Post(m))

≡ H′

∀(ι, f).[P(H, σ,Post(m))(ι, f) = n ∧ n > 0 =⇒ H(ι.f) = H′(ι.f)]
∧ ∀(κ, g)[P(H, σ,Post(m))(κ, g) = n ∧ n > 0 =⇒ H(κ.g) = H′(κ.g)]

Take an arbitrary (ι, f) such that:
P(H, σ,P)(ι, f) = n ∧ n > 0
Since H′ is exactly the same as H except for the value of κ, we know
that:
H′(ι.f) = H(ι.f) (I)

Now take an arbitrary (κ′.g) such that: P(H, σ′,P)(κ′.g) = n ∧ n > 0
(G6)

where g ∈ {c,m, args}.
There are now two cases:
Case 1. κ′ 6= κ
RTS. H′(κ′.g) = H(κ′.g)
Since H′ is exactly the same as H except for the value of κ, we can
deduce that:
H′(κ′.g) = H(κ′.g) (II)

Case 2. κ′ = κ = σ0(tk)
RTS. H′(κ.g) = H(κ.g) From (a) and (G3) we know:
H,Π, σ0, τ0 |= Thread(tk,C,m, args)
From the definition of |= we know:
H,Π(τ0), σ0 |= Thread(tk,C,m, args) (III)
From P12 and (III) we derive:
H,Π(τ0), σ0 |= acc(tk.c, 1) ∗ acc(tk.m, 1) ∗ acc(tk.args, 1)

∗ tk.c = C ∗ tk.m = m ∗ tk.args = x.y (IV)
From property P5 and (IV) we can write:
H, π1, σ0 |= acc(tk.c, 1) (V)
H, π2, σ0 |= acc(tk.m, 1) ∗ acc(tk.args, 1)

∗ tk.c = C ∗ tk.m = m ∗ tk.args = x.y (VI)
Π(τ0) = π1] π2 (VII)
From (V), (VII) and lemma 13 a we have:
H,Π(τ0), σ0 |= acc(tk.c, 1) (VIII)
From (VIII) and property P4b we have:
Π(τ0)(σ0(tk).c) ≥ 1, that is:
Π(τ0)(κ.c) ≥ 1 (IX)
On the other hand, From (19) we have:
H,Π, σb, τn |= Post(m), that is:
H,Π(τn), σn |= Post(m) (X)
By definition, we know permission masks are a set of mappings from
locations and field identifiers to (positive) numbers between 0 and 1
inclusively. That is, we know:
Π(τn)(κ.c) ≥ 0 (XI)
From (IX) and (XI) we have:
Π(τ0)(κ.c) + Π(τn)(κ.c) ≥ 1 (XII)
On the other hand from (G8) we know:
Π(τ0)(κ.c) + Π(τn)(κ.c) ≤ 1 (XIII)
From (XII) and (XIII) we know:
Π(τ0)(κ.c) + Π(τn)(κ.c) = 1 (XIV)
From (IX) and (XIV) we can deduce:
Π(τn)(κ.c) = 0 (XV)
From (X), (XV) and property P2 we can deduce:
P(H, σ,Post(m))(κ.c) ≤ 0
However, from (G6) we have:
P(H, σ,Post(m))(κ.c) > 0
Contradiction!!
Hence we can deduce:
H′(κ.g) = H(κ.g) (XVI)

From (I), (II) and (XVI) we can deduce:

H
P(H,σ,Post(m))

≡ H′ (XVII)

From (1), (19), (XVII) and the definition of self-framing assertions
we can deduce:
H′,Π, σn, τn |= Post(m) (21)
Given (h), (21) and Lemma 5 we have:
H′,Π′, σn, τ0 |= Post(m) (22)
From (13) and (16) we have:
σ0(x) = σn(this) = α (23)

σ0(y) = σn(u) = α (24)
From (c) we know that post Post(m) is defined in terms of u.
Hence we can deduce:
FV(Post(m)) = {this, u} (25)
From (22), (23), (24), (25) and property P1 of the |= judgement we
have:
H′,Π′, σ0, τ0 |= Post(m)[x/this][y/u] (26)
Finally, from f and (26) we have:
H′,Π′, σ′0, τ0 |= Post(m)[x/this][y/u]
as required.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) ∧ τ 6= τ0 =⇒
∃j ∈ {1...n− 1}, ∃P.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post} ∧ σj(this) = ι ∧ σj(u) = ι]

Take an arbitrary κ′ such that:
H′(κ′) = (TK, {c : C′,m : m′, args : α.α}, τ) (1)
τ 6= τ0 (2)
From (e) we know that:
H′(κ) = ε (3)
From (1) and (3) we know that:
κ′ 6= κ (4)

Since H’ is exactly the same as H except for the value of κ, from above
we can deduce:
H(κ′) = (TK, {c : C′,m : m′, args : α.α}, τ). (5)
From G5, (5) and (2) we can deduce:
∃P.∃j ∈ {1...n}.[τ = τj ∧ H,Π, τj, σj |= P

∧ {P} ej {Post(m′)} ∧ σj(this) = alpha ∧ σj(u) = α]) (6)
There are now two cases:

Case 1.
τ = τj j ∈ {1...n− 1} (7)
From (6) we have:
{P} ej {Post(m′)} (8)
H,Π, τj, σj |= P (9)
σj(this) = α ∧ σj(u) = α (10)
From (8), (9), (G2)-(G5) and applying Lemma 4 we get:
blahH′,Π′, σj, τj |= P (11)
By putting together (7), (11), (8) and (10) we have:
∃P.∃j ∈ {1...n− 1}.[τ = τj ∧ H′,Π′, σj, τj |= P

∧ {P} ej {Post(m′)} ∧ σj(this) = α ∧ σj(u) = α] (12)

Case 2.
τ = τn (13)
From (5) and (13) we have:
H(κ′) = (TK, {c : C′,m : m′, args : α.α}, τn) (14)
By looking at the operational semantics of the join rule, we can de-
duce:
H(κ) = (TK, {c : C′,m : m′, args : α.α}, τn) (15)
From (14), (15) and (G5) we have:
κ = κ′ (16)
From (4) we have:
κ 6= κ′ (17)
Contradiction!!
Hence we can deduce:
∃P.∃j ∈ {1...n− 1}.[τ = τj ∧ H′,Π′, σj, τj |= P

∧ {P} ej {Post(m′)} ∧ σj(this) = α ∧ σj(u) = α] (18)

From (11) and (18) we can deduce:
∃P.∃j ∈ {1...n− 1}.[τ = τj ∧ H′,Π′, σj, τj |= P

∧ {P} ej {Post(m′)} ∧ σj(this) = α ∧ σj(u) = α]
as required.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1]where g ∈ {c,m, args}

From G5 we have:
∀ι.f[

P
τ∈DOM(Π) Π(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π) Π(τ)(κ.g) ≤ 1]where g ∈ {c,m, args} (I)

From definition of Π′, we know Π′′ is exactly the same as Π except
for the permissions of current thread τ0 and the joined thread τn. In
Π′ we have stripped τn from the permissions of method m’s postcon-
dition and granted these permissions to τ0. In other words, the sum
of permissions has not changed from Π and we have just changed the
owner of these permissions. That is:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) =

P
τ∈DOM(Π) Π(τ)(ι.f)]

∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) =

P
τ∈DOM(Π) Π(τ)(κ.g)] (II)

From (I) and (II) we have:
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1] where g ∈ {c,m, args}

as required.

RTS. 3c.
RTS. H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)

From (G5) we know:
H,Π, [xi 7→ ιi], τg |= ∗A′i (1)
for ιi ∈ {ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} (2) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (3)

Take an arbitrary ι′ such that H′(ι) ↓3= τg.
Since H′ is exactly the same as H, except for the value of κ, we can
deduce:
H(ι′) ↓3= τg.
In other words we have:
{ι′|ι′ ∈ Dom(H) ∧ H(ι′) ↓3= τg} = {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (4)
From (4) we can rewrite (1-3) as:
H,Π, [xi 7→ ιi], τg |= ∗A′i (5)
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} (6) where
A′i = Ai[xi/this] Ai = Invariant(ιi.class) (7)

On the other hand, from (G1) and the definition of Ver(Prog), for each
one of the Ai we have:
SF(Ai) (8)
From (8), definitions of A′i and lemma 8 we have:
SF(A′i) (9)
From (9) and property P8 we have:
SF(∗(A′i)) (10)

Furthermore, we know that:
τ0 6= τg (11)
Since τg is the ghost thread that does not take part in execution. In
other words, we cannot have:
H,Π, (e0, τg, σ0)|(en, τn, σn) ; (e′0, τg, σ

′
0),H′,Π′.

Finally, from (5), (10), (11), (G2)-(G5) and Lemma 6 we can deduce:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i (8)
From (6), (7) and (8) we have:
H′,Π′, [xi 7→ ιi], τg |= ∗A′i
for ιi ∈ {ι′|ι′ ∈ Dom(H′) ∧ H′(ι′) ↓3= τg} where
A′i = Ai[xi/this] Ai = Invariant(ιi.class)
as required.

RTS. 3d.
∀κ, κ′.[H′(κ) ↓3= τ ∧ H′(κ′) ↓3= τ =⇒ κ = κ′

Take arbitrary κ1, κ2 such that:
H′(κ1) ↓3= τ (1)
H′(κ2) ↓3= τ (2)
From the operational semantics of the Join rule we have:
H′(κ) = ε (3)
From (1) (2) and (3) we can deduce:
κ1 6= κ (4)
κ2 6= κ (5)
Since H′ is exactly the same as H except for the value of κ, from (4)
and (5) we can deduce:
H(κ1) ↓3= τ (6)
H(κ2) ↓3= τ (7)
From (6), (7) and (G5) we have:
κ1 = κ2 as required.

D.6 Soundness Theorem 3
Ver(Prog) ∧ ({Pi} ei {Qi})i∈{0...n} ∧ (H,Π, σi, τi |= Pi)i∈{0...n}

(e0, τ0, σ0)|(e, τ, σ1...n),H,Π ; (e′0, τ0, σ
′
0)|(e, τ, σ1...n−1),H′,Π′

WF(H,Π, (e, τ, σ0...n))
=⇒

1. (H′,Π′, σi, τi |= Pi)i∈{1...n−1}
2. ∃P′0.[{P

′
0} e′0 {Q0} ∧ H′,Π′σ′0, τ0 |= P′0]

3. WF(H′,Π′, (e′0, τ0, σ
′
0)|(e, τ, σ1...n−1))

Proof.
By induction over the Hoare logic triplets. The only applicable case
is when:
P0 ≡ Thread(tk,C,m, x.y) (a)
e0 ≡ join tk (b)
Q0 ≡ Post(m)[x/this][y/u] where Post(m) = A(u) (c)
σ0(tk) = κ (d)
H′ = H[κ 7→ ε] (e)
σ′0 = σ0 (f)
e′0 = null (g)
Π′ = Π[τ0+ = P(H, σ0,Post(m)[x/this][y/u])

τn− = P(H, σ0,Post(m)[x/this][y/u])] (h)

RTS. 1. H′,Π′, σi, τi |= Pi for i ∈ 1...n− 1

This can be derived from (G1)-(G5) and Theorem 3a.

RTS. 2. ∃P′0.[{P
′
0} e′0 {Q0} ∧ H′,Π′, σ′0, τ0 |= P′0]

This can be derived from (G1)-(G5) and Theorem 3a.

RTS. 3a.
∀ κ.[H′(κ) = (TK, {c : C,m : m, args : ι.ι}, τ) =⇒
∃j ∈ {1...n− 1}, ∃P.[τ = τj ∧ H′,Π′, τj, σj |= P
∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]

∨∃P.[τ = τ0 ∧ H′,Π′, τ0, σ
′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι ∧ σ′0(u) = ι]

Take an arbitrary κ′ such that:
H′(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ). (1)
There a re now two cases two consider:

Case 1. τ 6= τ0

This can be derived from (G1)-(G5) and Theorem 3a.

Case 2.
τ = τ0 (2)
From the operational semantics of Join we know that:
H′(κ) = ε (3)
From (1) and (3) we have:
κ′ 6= κ (4)

Since H′ is exactly the same as H except for the value of κ, from (1)
and (2) and (4) we can deduce:
H(κ′) = (TK, {c : C,m : m, args : ι.ι}, τ0). (5)
From G5 and (5) we have:
∃P.∃j ∈ {0...n− 1}.[τ = τj ∧ H,Π, τj, σj |= P

∧ {P} ej {Post(m)} ∧ σj(this) = ι ∧ σj(u) = ι]) (6)
From (2) and (6) we have:
{P} e0 {Post(m)} (7)
H,Π, τ0, σ0 |= P (8)
σ0(this) = ι ∧ σ0(u) = ι (9)
On the other hand from the definition of σ′0 we know:
σ′0(this) = σ0(this) ∧ σ′0(u) = σ0(u) (10)
From (9) and (10) we have:
σ′0(this) = ι ∧ σ′0(u) = ι (11)
From (G1)-(G5), (7), (8) and Theorem 3a we have:
∃P.[{P} e′0 {Post(m)} ∧ H′,Π′, σ′0, τ0 |= P] (12)
By putting together (2), (11) and (12) we have:
∃P.[τ = τ0 ∧ H′,Π′, τ0, σ

′
0 |= P

∧ {P} e′0 {Post(m)} ∧ σ′0(this) = ι ∧ σ′0(u) = ι])
as required.

RTS. 3b.
∀ι.f[

P
τ∈DOM(Π′) Π′(τ)(ι.f) ≤ 1]

∧ ∀κ.g[
P
τ∈DOM(Π′) Π′(τ)(κ.g) ≤ 1] where g ∈ {c,m, args}

This can be derived from (G1)-(G5) and Theorem 3a.

RTS. 3c.

This can be derived from (G1)-(G5) and Theorem 3a.

RTS. 3d.

This can be derived from (G1)-(G5) and Theorem 3a.

