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Abstract. We propose a novel verification method for high-
dimensional feed-forward neural networks governed by ReLU, Sig-
moid and Tanh activation functions. We show that the method is
complete for ReLU networks and sound for other activation func-
tions. The technique extends symbolic interval propagation by using
gradient-descent to locate counter-examples from spurious solutions
generated by the associated LP problems. The approach includes a
novel adaptive splitting strategy intended to refine the nodes with the
greatest impact on the output of the network. The resulting imple-
mentation, called VERINET, achieved speed-ups of approximately
one order of magnitude for safe cases and three orders of magnitude
for unsafe cases on MNIST models against SoA complete methods.
VERINET could verify networks of over 50,000 ReLU nodes trained
on the CIFAR-10 data-set; these are larger than networks that could
previously verified via complete methods.

1 INTRODUCTION
There is a growing trend in safety-critical applications to employ the
latest advances from Artificial Intelligence (AI). In particular, appli-
cation domains such as autonomous vehicles and robotics can greatly
benefit from machine-learning methods, notably in vision and in au-
tomated decision making.

State-of-the art machine-learning approaches, however, suffer
from well-known shortcomings including difficulties in terms of ex-
plainability and repair. Most importantly, solutions based on neural
networks cannot presently be checked for correctness. Yet, if AI is
to be used in mainstream safety-critical applications, it needs to be
safe, particularly whenever certification is required.

Several approaches have recently been put forward to verify sys-
tems based on neural networks against their specifications. Ap-
proaches have targeted both neural networks in isolation [3, 10, 16,
24] and cyber-physical systems (CPS) where neural networks realise
a particular component [1, 2, 6, 8, 27]. The verification problems
analysed have largely consisted of reachability analysis for CPS and
reachability and local robustness for neural networks only. The meth-
ods proposed so far differ in whether they are complete or incom-
plete. In complete methods all counter-examples can theoretically be
found; incomplete methods provide no such guarantee, but tend to
scale better at present. There is a need for both classes of methods,
depending on the requirements from the application domain.

While much progress has been made in both classes of meth-
ods, several key challenges remain. Firstly, and most importantly,
no method can presently scale to the size of the neural networks
presently being used in key applications, such as object detection.
Secondly, the most scalable methods only support networks governed

1 Department of Computing, Imperial College London, UK

by ReLU-activation functions. The present contribution introduces
advances towards both these limitations.

Specifically, this paper proposes a method for the verification of
neural networks; in particular we focus on networks with high input-
dimensionality, as is the case in mainstream computer vision deep
neural networks. We build on symbolic interval propagation paired
with node splitting refinement, which is presently the best perform-
ing technique for high-dimensional inputs [24]. We extend this ap-
proach in three key aspects. Firstly, we augment this with local search
based on gradient descent to identify counter-examples. Secondly,
we develop a heuristic approach for adaptive node splitting based on
interval propagation and error estimation. Thirdly, we overcome the
limitations to ReLU networks of present interval propagation meth-
ods by extending these to Sigmoid activation functions.

The rest of the paper is organised as follows. In Section 2, we recall
the basic notions on verification of neural networks and, in particular,
a method for symbolic interval propagation. In Section 3, we develop
the theoretical results on linear relaxations, including for Sigmoid
functions, that are used in the rest of the paper. In Section 4, we
present the verification algorithm and discuss various heuristics used.
In Section 5, we present VERINET, the resulting implementation,
and present experimental results.

Related work. We refer to [15] for a comprehensive survey of
recent work on formal verification for neural networks. Formal ver-
ification algorithms can be categorised as complete or incomplete.
Incomplete approaches introduce over-approximating relaxations for
the network and may thus only be able to verify a subset of the in-
puts. In contrast, complete algorithms encode the exact network and
can in principle solve any verification problem.

Complete algorithms are usually based on Mixed Integer Linear
Programming (MILP), Satisfiability Modulo Theory (SMT) or Sym-
bolic Interval Propagation (SIP). MILP-based approaches [1, 2, 22]
often utilise efficient off-the-shelf solvers by encoding piecewise
linear activation functions with integer constraints. In comparison,
SMT-based approaches initially reason over a relaxed network and
combine this with a branch-and-bound refinement to iteratively re-
move the overestimation. The relaxed network can be obtained by
extending the Simplex algorithm to support relaxed ReLU con-
straints [9, 10] or by directly relaxing the activation functions [3].

Both SMT and MILP based approaches encode the whole net-
work in the resulting problem. SIP-based approaches aim at re-
ducing the resulting complexity by calculating symbolic bounds
for the network’s output nodes in a separate phase. These output-
bounds are then used as constraints in an LP-solver, eliminating
the need to encode the hidden nodes. At time of writing SIP-
based algorithms [24, 25] are the most scalable approaches for high-
dimensional input networks. In this paper we make a contribution to



this line of work in several ways. Differently from these approaches,
we introduce a novel method of performing gradient-based adversar-
ial local search to locate valid counter-examples from spurious ones.
Secondly, we introduce a novel adaptive splitting strategy aimed at
splitting the node with the most impact on the output bounds, rather
than a hierarchical way as in present SIP-based approaches [23].

While complete methods only support piecewise linear activation
functions, some sound but incomplete algorithms also support Sig-
moid and Tanh activation functions. Among the most relevant to the
present contribution are the abstract interpretation-based algorithms
from [19, 20] and the SIP- based approach from [28]. These algo-
rithms differ from our approach in that they do not use an iterative
refinement step to improve the relaxed network and they do not pro-
duce counter-examples for unsafe cases. In contrast, the SMT-based
algorithm introduced in [18] implements an iterative refinement step;
however, it does not scale to larger networks.

All these elements combined allow us to obtain an implementation
that generally outperforms present approaches by more than an order
of magnitude on MNIST networks. In our experiments the imple-
mentation also locates all unsafe cases in less than one second, while
comparable algorithms time out after one hour for several of these
data-points. In common with much of the literature on the subject we
focus on verification of local robustness.

2 PRELIMINARIES
In this section we briefly introduce general concepts related to veri-
fication of feed-forward neural networks, a specific method for sym-
bolic interval propagation [24, 25], and some related notions.

A deep feed-forward neural network (FFNN) consists of an in-
put layer, several hidden layers, and an output layer [4]. Each layer
has one or more nodes; hidden nodes are endowed via an activation
function σi : R → R. The input to a node zik in layer i and position
k is a linear combination of outputs from previous layers; the node’s
output is determined by the expression yik = σi(z

i
k). By combining

the computation on all layers an FFFN can be formally be associ-
ated with a function f : Rn → Rm representing the layer by layer
computation [4].

In common with most verification algorithms for neural networks,
we assume that the output layer does not have an activation function.
This is not a very restrictive assumption, since most activation func-
tions are monotonically increasing, and thus do not change the rela-
tive ordering of the output nodes. For the hidden layers, we consider
the three most common activation functions, Relu(z) = max(0, z),
Sigmoid(z) = 1/(1 + e−z) and Tanh(z) = (e2z − 1)/(e2z + 1).

In this paper we are concerned with verifying whether FFNNs are
locally robust. More specifically, given a neural network, a set of in-
puts, and a classification c, we consider whether the network’s output
for classification c is larger than the output of all other classes. This
is formalised in the definition below.

Definition 1 (Local robustness). Let 〈f, ψx, c〉 be a tuple where
f : Rn → Rm is an FFNN, ψx = {li ≤ xi ≤ ui | li, ui ∈
R}∀i∈{1,...,n} is a set of constraints specifying the lower and upper
bounds on the input to f and c ∈ {1, 2, ...,m} is a classification.
Moreover, let f(x)i denote the ith output of the network. The ver-
ification of local robustness is the decision problem of determining
whether it is the case that f(x′)c > f(x′)t for all x′ satisfying ψx

and all classifications t 6= c. If this condition holds, we say that the
FFNN f is safe for c with respect to the condition ψx. Otherwise,
f is unsafe and exhibits a counter-example x satisfying ψx, with
f(x)c ≤ f(x)t for some classification t 6= c.

Any non-linearity in an FFNNs complicates the verification task
above. A method to address this involves over-approximating the net-
work’s outputs by linearly relaxing the activation functions [3, 24]
and symbolic interval propagation [24, 25]. We here introduce a ver-
sion of the relaxations above, based on two constraints only.

Definition 2 (Two-constraint relaxation). Let zl, zu ∈ R be con-
crete lower and upper bounds on the input of an activation function
σ : [zl, zu] → R, where [zl, zu] ⊆ R denotes the closed real inter-
val between zl and zu. A two-constraint linear relaxation is a tuple
〈rl, ru〉, where rl : [zl, zu]→ R is a lower bounding linear function
such that rl(z) ≤ σ(z) and ru : [zl, zu]→ R is an upper bounding
linear function such that ru(z) ≥ σ(z) for all z ∈ [zl, zu].

In Section 3 we derive two-constraint linear relaxations for sev-
eral common activation functions. The relaxations are then used dur-
ing symbolic interval propagation to propagate linear bounding equa-
tions through the network’s non-linearities.

As mentioned in the related work section, the purpose of symbolic
interval propagation is to calculate linear bounding equations for the
network’s output nodes. These bounding equations depend only on
the network’s input variables, thus removing the need to consider
the network’s hidden nodes in later phases of the verification algo-
rithm. The method proposed in this work is based on error-based
symbolic interval propagation (ESIP) [23]. ESIP differs from the
symbolic interval propagation from [24, 25] by calculating only one
linear equation for each node instead of a lower and upper bound-
ing equation. We denote the resulting equation for a node in layer
i and position k as qi(x)k. This equation represents the node’s at-
tainable input values when all nodes in the preceding layers operate
at their lower linear relaxation. The latest version of Neurify [23]
implements ESIP as described here.

In the EISP method, to account for the possibility of nodes oper-
ating at their upper relaxation, an additional concrete error value is
calculated for each relaxation. The errors at layer i are represented
by an error-matrix Eiin ∈ Rmi×m′i where mi is the number of
nodes in layer i and m′i is the total number of nodes in all previ-
ous layers. An element Eik,h represents the maximum value that the
equation qi(x)k would change if the equation had been propagated
through the upper relaxation of node h instead of the lower one. The
resulting lower symbolic bound on the input of node k in layer i
is zil (x)k = qi(x)k +

∑
h| Ei

k,h
<0E

i
k,h and the upper bound is

ziu(x)k = qi(x)k +
∑
h| Ei

k,h
>0E

i
k,h. So, if zi(x)k is the node’s

input value as calculated in the FFNN, then zil (x)k ≤ zi(x)k ≤
ziu(x)k for all x satisfying ψx.

We now show how the input equations qi+1(x) and error-matrix
Ei+1 at layer i+ 1 are calculated given qi(x) and Ei. The first
step is to calculate the lower and upper linear relaxations ril,k, r

i
u,k

for each node k in layer i. These relaxations require a concrete
lower and upper bound zil,k, z

i
u,k ∈ R on the node’s input. Since

the input equations are linear, this can be calculated trivially as
zil,k = minx|ψx(zil (x)k) and ziu,k = maxx|ψx(ziu(x)k), where
ψx are the input-constraints as defined in Definition 1. Indeed, this
is the approach used in [23] for ReLU networks. In Section 3 we
will extend the supported activation functions by introducing novel
relaxations for the Sigmoid and Tanh.

The lower relaxations are then used to propagate the equations
qi(x) and error matrix Ei through the activation functions in layer
i. So, if ril,k(z) = az + b then qi,out(x)k = aqi(x)k + b and
Êi,outk,: = aEi+1

k,: . The new errors introduced from only using the
lower relaxation εik = maxz∈[zi

l,k
,zi

u,k
](r

i
u,k(z)− ril,k(z)) are con-



catenated with the old errors to create the new output error matrix
Ei,out = [Êi,out, diag(εi)]. Finally, the input errors and equations
to the next layer are calculated by propagating them through the
affine layer. So, qi+1(x) = W i+1qi,out(x) + bi+1 and Ei+1 =
W i+1Ei,out where W i+1 is the weight matrix and bi+1 is the bias.

By repeating this process for all hidden layers, we can calculate
linear bounding equations for the network’s output. We use the no-
tation yl(x) = zol (x) and yu(x) = zou(x) to explicitly denote the
symbolic bounds for the output layer of an FFNN with o layers.

While this is not stated in [24], it can be shown that ESIP, as im-
plemented in [23], is sound in the sense that yl(x)k ≤ f(x)k ≤
yu(x)k ∀x|ψx and output nodes k. It follows that a network is
safe for a classification c if the lower bound for c is larger than the
upper bound for all other classes, or equivalently yu(x)t−yl(x)c =
(qo(x)t +

∑
h| Eo

t,h
>0E

o
t,h)− (qo(x)c +

∑
h| Eo

c,h
<0E

o
c,h) < 0.

However, in [23] a slight variation is used where the individual errors
are subtracted first to achieve tighter bounds. We now formalise this
in a way that is in line with the presentation in the rest of this paper.

Lemma 1. Let 〈f, ψx, c〉 be the verification input as defined in Def-
inition 1 and let qo(x), Eo be the associated equations and errors
at the output layer calculated by ESIP. If yl(x)t−c = qo(x)t −
qo(x)c +

∑
h| (Eo

t,h
−Eo

c,h
)<0(Eot,h − Eoc,h)) < 0 for all t 6= c and

x satisfying ψx, then f is safe for c with respect to ψx as defined in
Definition 1.

We conclude by recalling that a linear programming (LP) prob-
lem concerns the minimisation of a linear objective function while
satisfying some linear constraints. In this paper we use satisfiabil-
ity calls to efficient off-the-shelf LP-solvers in an attempt to locate
counter-examples or to prove that no counter-examples exist. For
more information on linear programming, we refer to [26].

In Section 4 we show how ESIP and LP can be combined with
novel techniques to solve the robustness problem from Definition 1.
However, first we derive the linear relaxations necessary for ESIP.

3 LINEAR RELAXATIONS
As discussed in the previous section, the ESIP method requires lin-
ear relaxation for all non-linear activation functions. One of the key
contributions of this paper lies in the support of a wide class of acti-
vation functions. For ReLU-based activations we use the relaxation
introduced in [24], defining the lower relaxation as rl(z) = zu

zu−zl
z

and the upper relaxation as ru(z) = zu
zu−zl

(z − zl). In the rest
of this section we introduce optimal upper linear relaxations for S-
shaped activation functions such as Sigmoid and Tanh; the lower re-
laxations are calculated similarly. Notice that we also support batch-
normalisation; however, batch-normalisation acts linearly during in-
ference and does not require relaxations. We formally introduce S-
shaped functions as follows.

Definition 3. A continuous function σ : R→ R is S-shaped iff:

1. σ′′(z)


> 0 if z < 0

< 0 if z > 0

= 0 if z = 0

2. σ′(z) ≥ 0 for all z.
3. σ′(z) = σ′(−z) for all z.
4. σ′′(z) is differentiable for all z.

Definition 4. An upper linear relaxation ru : [zl, zu] → R for σ :
[zl, zu]→ R is optimal iff it is minimal w.r.t.

∫ zu
zl

ru(z)− σ(z) dz.

zl zu

(a) Intercepting line (Lemma 2).

zl zt zu

(b) Tangent at zt (Lemma 4).

zl zot z
∗
t zu

(c) Tangent at z∗t . (Lemma 5).

Figure 1: Optimal upper relaxations.

So, the optimal upper linear relaxation minimises the area between
the relaxation and the activation function. Note that finding optimal
linear relaxations is difficult due to the non-linear integral and the
constraint ru(z) > σ(z) for all z ∈ [zl, zu].

In the rest of the section we show the following three results.

1. If the line intercepting the endpoints (zl, σ(zl)) and (zu, σ(zu))
is a valid upper relaxation, then it is the optimal upper linear re-
laxation (see Figure 1a).

2. If the intercepting line from point 1 is not a valid upper relaxation,

but the tangent to σ at zt =
z2u−z

2
l

2(zu−zl)
is, then this tangent is the

optimal upper linear relaxation (see Figure 1b).
3. If none of the above relaxations are valid, then the optimal upper

linear relaxation is a tangent at z∗t ∈ [zl, zu] where z∗t is the min-
imal value such that the tangent is a valid upper relaxation (see
Figure 1c).

Similar to the relaxations from [28], all of the cases either use the
line intercepting both endpoints or a tangent as the upper relaxation.
However, the analysis here differs in that we identify when each of
the options is optimal and where the optimal tangent is.

We begin with the first point above by presenting the result below,
which also provides a simple test to check whether the line intercept-
ing both endpoints is a valid upper relaxation.

Lemma 2. Let σ : [zl, zu]→ R be an S-shaped activation function.
If the line ru : [zl, zu] → R intercepting both endpoints (zl, σ(zl))
and (zu, σ(zu)) is a valid upper relaxation, then it is the optimal up-
per linear relaxation. Furthermore, ru is valid iff r′u(zu) ≤ σ′(zu).

Proof sketch. If ru(z) is a valid upper relaxation, it is clearly the
optimal upper linear relaxation since any other valid upper linear re-
laxation l(z) would require l(z) ≥ ru(z) for all z.

As σ(z) is convex for z ≤ 0, concave for z ≥ 0 and ru intercepts
the endpoints, it is clear that if ru(z∗) < σ(z∗) for any z∗ ∈ (zl, zu)
then ru(z) < σ(z) for all z ∈ [z∗, zu). This and the fact that ru
intercepts (zu, σ(zu)) means that r′u(zu) > σ′(zu) for all invalid
upper linear relaxations. So, if r′u(zu) ≤ σ′(zu) then ru is a valid
upper relaxation.



The converse follows easily.

So, the line intercepting both endpoints is a valid and optimal up-
per relaxation if the derivative of σ is larger than the derivative of the
line at the upper endpoint. Otherwise, the following lemma states that
the optimal upper relaxation is a tangent to the activation function.

Lemma 3. Let σ : [zl, zu]→ R be an S-shaped activation function.
If the line intercepting both endpoints (zl, σ(zl)) and (zu, σ(zu)) is
not a valid upper relaxation, then the optimal upper linear relaxation
ru : [zl, zu] → R is a tangent to σ at a tangent point zt ∈ [zl, zu]
with zt > 0. Furthermore, a tangent ru is a valid upper relaxation if
ru(zl) ≥ σ(zl).

Proof sketch. It is clear that the optimal upper linear relaxation is a
tangent to σ at some point zt ∈ [zl, zu]; if it were not, we could
always create a better relaxation by reducing the line’s intercept or
adjusting the derivative. The tangent point has to be at z ≥ 0 since σ
is convex for z < 0.

The only way the tangent ru is not a valid upper relaxation is if
it intercepts σ at some point z∗ ∈ [zl, 0]. If this is the case, then we
also have ru(zl) < σ(zl) due to the convexity. This implies that the
tangent ru is a valid upper relaxation if ru(zl) ≥ σ(zl).

So, in this case, the optimal upper linear relaxation is a tangent to
the S-shaped function at some point zt > 0. Furthermore, a tangent
is a valid upper relaxation if it is valid at the lower endpoint zl. The
following lemma provides a candidate for the optimal tangent.

Lemma 4. Let σ : [zl, zu]→ R be an S-shaped activation function
and assume that the line intercepting both endpoints is not a valid

upper relaxation. If the tangent at zt =
z2u−z

2
l

2(zu−zl)
is a valid upper

relaxation, then it is the optimal upper linear relaxation.

Proof sketch. Let A : [zl, zu] → R be defined by A(zt) =∫ zu
zl

ru(z) − σ(z) dz. Lemma 3 states that the optimal upper linear
relaxation ru is a tangent to σ(z), so ru(z) = σ′(zt)(z−zt)+σ(zt).
To find zt, we minimise A(zt):

A(zt) =

∫ zu

zl

σ′(zt)(z − zt) + σ(zt) dz −
∫ zu

zl

σ(z) dz

=

[
z2

2
σ′(zt)− ztzσ′(zt) + zσ(zt)

]zu
zl

− (Λ(zu)− Λ(zl))

A′(zt) =

[
z2

2
σ′′(zt)− zσ′(zt)− ztzσ′′(zt) + zσ′(zt)

]zu
zl

= σ′′(zt)(zu(
zu
2
− zt)− zl(

zl
2
− zt)) = 0

(1)
This equation has two solutions. Firstly, σ′′(zt) = 0 which only

happens at zt = 0 from the definition of σ. Secondly, we have:

zu(
zu
2
− zt)− zl(

zl
2
− zt) = 0 =⇒ zt =

z2u − z2l
2(zu − zl)

(2)

Furthermore, both of the endpoints zl, zu are potential candidates
for the minima; however, it is easy to show that A′(zu) > 0 and
A′(zl) < 0, which means that they are local maxima, not minima.
The solution zt = 0 is only a valid upper relaxation if zl ≥ 0 and
since zt = zl is not a minima zt = 0 is clearly never a minima either.

This leaves us with zt =
z2u−z

2
l

2(zu−zl)
as the only candidate and since A

is defined on a closed interval it has to be the minima.

Note that the test from Lemma 3 can be used to check whether the
tangent at zt =

z2u−z
2
l

2(zu−zl)
is a valid upper relaxation. If this is not the

case, then the optimal tangent point is given by the next result.

Lemma 5. Let σ : [zl, zu]→ R be an S-shaped activation function

and assume that the tangent at zt =
z2u−z

2
l

2(zu−zl)
and the line intercept-

ing both endpoints are not valid upper relaxations. Then the tangent
at z∗t is the optimal upper linear relaxation where z∗t ∈ [zl, zu] is the
minimal value such that the tangent is a valid upper relaxation.

Proof sketch. The proof is similar to the proof for Lemma 4 by re-

stricting the interval to [z∗t , zu] instead of [zl, zu]. zt =
z2u−z

2
l

2(zu−zl)
is

not a valid relaxation from the assumptions and zu is not a minima
for the same reasons as in Lemma 4. So, z∗t is the only candidate.

Since z∗t ∈ [zl, zu] is the minimal value such that the tangent
is a valid upper relaxations, it can be shown from Lemma 3 that
the tangent intercepts (zl, σ(zl)). So, z∗t can be found by solving
(σ(z∗t )− σ(zl))/(z

∗
t − zl) = σ′(z∗t ) for z∗t .

We can not solve this equation analytically. Instead, we use an
iterative algorithm to calculate an approximation ẑ∗t ≈ z∗t . The algo-
rithm is initialised with z0 = zu, and given zi−1 we calculate zi by
solving the equation:

σ(zi−1)− σ(zl)

zi−1 − zl
= σ′(zi) (3)

Solving this equation for zi when σ is the Sigmoid results in:

zi = − log(
1

σ(zi)
− 1) σ(zi) =

1±
√

1− 4
σ(zi−1)−σ(zl)

zi−1−zl

2
(4)

And when σ is the Tanh activation function the solution is:

zi =
1

2
log

(
1 + σ(zi)

1− σ(zi)

)
σ(zi) = ±

√
1− σ(zi−1)− σ(zl)

zi−1 − zl
(5)

After calculating zi for i ∈ {0, 1, 2.....m} where m is a prede-
fined number of steps, we use ẑ∗t = zm as our approximation. The
pseudo-code is provided in Algorithm 1, and in the following lemma
we state two important properties of this algorithm.

Lemma 6. Let σ : [zl, zu]→ R be an S-shaped activation function

and assume that the tangent at zt =
z2u−z

2
l

2(zu−zl)
and the line intercept-

ing both endpoints are not valid upper relaxations. Furthermore, let
zi be as calculated by Algorithm 1 and z∗t be the minimal value such
that the tangent at z∗t is a valid upper relaxation. Then zi satisfies
zi < zi−1 and zi > z∗t for all i.

Proof sketch. The derivative σ′(zi) is equal to the slope of the line
intercepting (zl, σ(zl)) and (zi−1, σ(zi−1)) (see Equation 3). This
intercepting line is not a valid upper relaxation since zi−1 > z∗t , so
it is clear from Lemma 2 that σ′(zi) > σ′(zi−1). Since zi and zi−1

are in the concave part of σ, this implies that zi < zi−1.
Furthermore, as z∗t is the minimal value such that the tangent

is a valid upper relaxation it is clear that this tangent intercepts
(zl, σ(zl)), so σ′(z∗t ) =

σ(z∗t )−σ(zl)
z∗t−zl

. Since both z∗t and zi−1 are
in the concave part of σ and z∗t < zi−1, the slope of the line in-
tercepting (zl, σ(zl)) and (zi−1, σ(zi−1)) is clearly smaller than the
slope of the line intercepting (zl, σ(zl)) and (z∗t , σ(z∗t )). Combin-
ing this, we get: σ′(z∗t ) =

σ(z∗t )−σ(zl)
z∗t−zl

≥ σ(zi−1)−σ(zl)
zi−1−zl

= σ′(zi),
where the last equality is from Equation 3. Again, since zi and z∗t are
in the concave part of σ, this implies zi > z∗t .



The previous lemma states that zi > z∗t , so the tangent at zi is
a valid upper relaxation for all i. Furthermore, as zi < zi−1, the
solution improves at each iteration since zi is closer to z∗t than zi−1

was.
This concludes the last of the three cases outlined in the beginning

of this section, thus defining the necessary linear relaxations for S-
shaped activation functions.

Algorithm 1 Iterative approximation of z∗t
z0,m← zu, Number of iterations
for i = 1...m do
zi ← update step(zi−1) //Given in Equation 2 & 3

end for
ẑ∗t ← zm

4 VERIFICATION ALGORITHM
Having derived the linear relaxations for the symbolic interval prop-
agation, we now introduce an efficient verification algorithm for the
local robustness problem from Definition 1. We begin by providing a
high-level overview of the algorithm, followed by a detailed account
of each step. The pipeline of the procedure is presented in Figure 2.

Symbolic interval
propagation

Satisfiability
check classification t

Local searchBranch and
bound

For each classification
t 6= c

〈f, ψx, c〉

Constraints

Possible
counterexample

All calls ”unsat”

Backtrack/Safe

Counter-
example

Unsafe

Split
constraints

Undetermined

Timeout

Figure 2: The verification pipeline.

The algorithm takes as input a tuple 〈f, ψx, c〉, where f : Rn →
Rm is an FFNN, ψx = {lk ≤ xk ≤ uk|lk, uk ∈ R}∀k∈{1,...,n} is
a set of constraints on the input to f and c ∈ {1, 2, ...,m} is a clas-
sification as defined in Definition 1. The first block of the pipeline
uses error-based symbolic interval propagation to calculate linear
constraints on the network’s output as explained in Section 2. The
output-constraints are then used in a satisfiability call to an LP-solver
in order to locate an input-assignment misclassified as t for each in-
correct classification t 6= c. If the solver determines all calls to be
unsatisfiable, then the network is safe and the algorithm terminates.
Otherwise, the algorithm checks whether each assignment is spurious
by running them through the FFNN. For each assignment found to be
spurious, the method launches a gradient-based local search to locate
a valid counter-example. If a valid counter-example is found, then the
network is provably unsafe and the algorithm terminates. Otherwise,
the branch and bound phase is launched by splitting the input to a

node and branching. The constraints from the split are added back
to the LP-solver and the symbolic interval propagation, and the al-
gorithm is repeated for each branch. The verification loop terminates
when either the network is proven safe in all branches, or a valid
counter-example is found, or a timeout criterion is reached.

The rest of this section covers each step of the pipeline in detail.
Symbolic interval propagation. The first phase of the verifica-

tion algorithm implements error-based symbolic interval propagation
(ESIP) on the FFNN f and input constraints ψx as explained in Sec-
tion 2. Recall that this produces lower symbolic bounds yl(x)k (up-
per, yu(x)k, respectively) constraining each of the network’s outputs
f(x)k under the given input constraints ψx. Formally;

yl(x)k ≤ f(x)k ≤ yu(x)k ∀x|ψx, k ∈ {1, ...m} (6)

Lemma 1 states that the network is safe for the input-constraints ψx

and classification c if the upper bounds of all classifications t 6= c
are smaller than the lower bound of c. The next phase aims at either
proving that this condition holds, or locating a counter-example if it
does not.

Satisfiability check. The second block of the pipeline takes as in-
put the symbolic bounds calculated by ESIP, the input constraints ψx

and the classification c. For each classification t 6= c, a satisfiability
call is made to an LP-solver with the constraints ψx and the inequal-
ity yl(x)t−c ≥ 0 where yl(x)t−c is as defined in Lemma 1.

If the solver determines that all calls are unsatisfiable, then
yl(x)t−c < 0 for all t 6= c. From Lemma 1 this means that f is
safe for c with respect to ψx and the algorithm terminates.

Otherwise, the solver’s assignments xt are treated as potential
counter-examples. Indeed, as the bounds from ESIP are not exact,
we may obtain spurious counter-examples such that yl(xt)t−c ≥ 0
even though f(xt)k < f(xt)c for all k 6= c. The next phase tests
whether this is the case and, if so, attempts to locate a valid counter-
example.

Local search. The third block of the procedure is devoted to
checking whether the assignments xt from the LP-solver constitute
valid counter-examples by running them on the network and deter-
mining whether f(xt)k > f(xt)c for any k 6= c. If this is not the
case, then a gradient descent-based local search is launched in an at-
tempt to locate a valid counter-example by minimising the loss func-
tion L(x) = f(x)c−f(x)t with respect to x. After each step of the
gradient descent, the assignment xi is clipped to the input bounds ψx

and checked to see whether it is a valid counter-example. If this is the
case, then f is unsafe for c with respect to ψx and the algorithm ter-
minates. Otherwise, the local search terminates after a predetermined
number of steps or when the loss changes less than a given fraction.

Branch and bound. If the local search does not find a valid
counter-example and at least one of the calls to the LP-solver is satis-
fiable, then the verification problem is still undefined at this point. In
this case a branch and bound refinement phase is launched by split-
ting the input to a node.

The method aims at splitting the node with the most impact on the
lower bound of the given classification yl(x)c and the upper bounds
of other classifications yu(x)t for t 6= c. This is done in an attempt
to satisfy the condition for Lemma 1, yl(x)t−c ≥ 0 for all t 6= c and
x satisfying ψx. We use a novel heuristic to quantify the impact of a
hidden node on these bounds.

Definition 5. Let 〈f, ψx, c〉 be the verification input as defined
in Definition 1 and let Em, yl(x)k and yu(x)k be the asso-
ciated error matrix and bounds at the output layer as calcu-
lated by ESIP. Moreover, let H be the set of all hidden nodes



in the network and let T = {t ∈ {1, ...,m} | t 6=
c,
(
minx|ψx(yl(x)c) < maxx|ψx(yu(x)k)

)
} be the set of poten-

tial counter-example classifications. Then the impact-score s :
H → R for node h is defined as s(h) = |T ||min(Emc,h, 0)| +∑
t∈T max(Emt,h, 0), where |T | is the cardinality of T .

During ESIP, the negative values of Emc,h are added to yl(x)c and
positive values of Emt,h are added to yu(x)t as explained in Sec-
tion 2 , so the impact-score indicates how the relevant bounds change
after a split. Notice that improving yl(x)c works towards proving
yu(x)t < yl(x)c for all other classifications t 6= c at once, which is
the reason for the weighing factor |T | in the impact-score.

After calculating the impact-score for all hidden nodes, the node
k with the largest impact-score is split by constraining the node’s
input in a lower and upper bounding branch. If zl(x)k and zu(x)k
are the lower and upper symbolic bounds for the input to node k
as calculated by ESIP and p ∈ R is the split-value, then the split-
constraints zl(x)k ≤ p and zu(x)k ≥ p are added to the LP-solver
in the lower and upper branch, respectively. For ReLU nodes we use
p = 0 and for s-shaped activation functions σ : [zl, zu]→ R we use
the midpoint such that σ(p) = (σ(zu) + σ(zl))/2.

Furthermore, the split-constraints are used during ESIP to improve
the concrete bounds used to calculate linear relaxations. So, for the
lower branch the maximum of the lower bound zl calculated by ESIP
and the split-value p is used as a lower bound for the split-node, and
analogously for the upper branch with the upper bound.

After adding the split constraints, both branches are restarted from
the symbolic interval propagation with two optimisations. First, only
the symbolic bounds for nodes in layers after the split-node change,
so the symbolic interval propagation is only performed for those lay-
ers. Second, if the satisfiability call to the LP-solver is determined to
be unsatisfiable for a classification t, then we know from Lemma 1
that no counter-example xt exists such that f(xt)t ≥ f(xt)c, so
classification t is not reconsidered in subsequent branches.

Soundness and completeness. We end this section by showing
that the proposed algorithm is sound for all networks and complete
for ReLU networks.

Theorem 1. Let V be the set of possible inputs on
the form 〈f, ψx, c〉 as defined in Definition 1 and let
A : V → {“safe”, “unsafe”, “timeout”} be the algorithm de-
scribed in this section. Furthermore, let Yo = f({x|ψx}) be the
set of possible outputs and Ym = {y ∈ Rm | ∃t 6= c,yt ≥ yc}
be the set of misclassified outputs. If A(〈f, ψx, c〉) = “safe” then
Yo ∩ Ym = ∅.

Proof sketch. Before branching, A(〈f, ψx, c〉) = “safe” requires
that the satisfiability call to the LP-solver with the constraints
{ψx,yu(x)t−c ≥ 0} is unsatisfiable. It follows directly from
Lemma 1 that Yo ∩ Ym = ∅.

The proof after branching is similar, using the fact that the branch-
ing exhaustively explores all options and the algorithm only returns
“safe” if all branches are “safe”.

Theorem 2. Let A,V,Yo and Ym be defined as in Theorem 1. If
fReLU is an FFNN with only ReLU activation functions, then there
exists a finite timeout setting such that Yo ∩ Ym = ∅ implies that
A(〈fReLU , ψx, c〉) = “safe”.

Proof sketch. It is clear that A(〈fReLU , ψx, c〉) 6= “unsafe” when
Yo∩Ym = ∅ since all potential counter-examples are checked in the
local search. The only thing remaining is to prove that the solution is
determined in finite time. This follows from the fact that splitting a

ReLU node at 0 results in two branches where the node operates lin-
early in each branch, thus removing all overestimation for that node.
So, by splitting all nodes the symbolic interval propagation becomes
exact, which means that the problem can be solved by exploring a
maximum of 2N branches where N is the number of nodes.

In summary, the algorithm proposed in this section is complete
for ReLU networks, and sound for all other networks. Further-
more, it extends current symbolic interval propagation based algo-
rithms [25, 24] with three major novel contributions. Firstly, we in-
troduce a local search to detect counter-examples. Secondly, we use
a novel adaptive splitting strategy aiming at always splitting the most
influential node. Finally, with the optimal linear relaxations derived
in the previous chapter, our algorithm also supports Sigmoid and
Tanh activation functions. In the following section we show that a
toolkit implementing this algorithm significantly outperforms com-
parable state-of-the-art verification toolkits.

5 IMPLEMENTATION AND EXPERIMENTAL
RESULTS

We implemented the algorithm presented in Section 4 into VER-
INET [7], a toolkit for robustness verification. The toolkit takes as
input a problem specification as defined in Definition 1 and de-
termines whether or not the network is robust by outputting either
“safe” or “unsafe”. The algorithm may also output either “timeout”
or “underflow”, thereby indicating that a timeout has been reached
(see Section 4) in the first case, and that the algorithm finished split-
ting all nodes without finding a solution due to floating point pre-
cision, in the latter case. If “unsafe” is outputted, then a counter-
example is also returned.

VERINET utilises NumPy with the OpenBLAS-backend [17] for
an efficient implementation of the ESIP method, the Gurobi solver
version 8.1.1 [5] for the LP-phase, and the PyTorch implementation
of the Adam optimiser [11] for the local search. Furthermore, paral-
lelisation is implemented with Python’s multiprocessing module to
take advantage of the highly parallel nature of the branching phase.

We evaluated the performance of VERINET against three state-of-
the-art verification toolkits, NEURIFY [23]2, MARABOU [10], and
ERAN [21] on several networks trained on the MNIST [14] and
CIFAR-10 [13] datasets. Due to the extensive runtime of the experi-
ments we used two benchmarking environments. For the experiments
on fully-connected MNIST networks, we used a workstation with an
Intel Core i9 9900X 3.5 GHz 10-core CPU, 128 GB ram running
Fedora 30 with Linux kernel 5.3.6. Experiments on CIFAR-10 and
MNIST with convolutional layers were run on a workstation with
a Ryzen 3700X 3.6 GHz 8-core CPU, 64 GB ram running Ubuntu
18.04 with Linux kernel 4.18.0. All experiments were performed
with L∞ ≤ ε bounds on the input and a timeout of 3600 seconds.

The MNIST fully-connected experiments consider the three
fully-connected networks from [24] with 48, 100, and 1024 ReLU
nodes. We used ε ∈ {1, 2, 5, 10, 15} and 100 images for each ε-
network combination, except for the 1024 node network where we
used 50 images for ε ∈ {5, 10, 15}. A total of 810 cases were verified
as safe, 453 as unsafe and 81 timed out in both toolkits. Neurify did
not terminate after reaching the one hour timeout for the remaining
six data-points; so we decided to not include them. The verification-
times for safe and unsafe cases are plotted in Figure 3

2 In communication with the author, we found a bug in Neurify which could
have resulted in incorrect results for convolutional networks. We have fixed
this bug to the best of our ability.
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Figure 3: Verification times of NEURIFY vs VERINET for the MNIST
fully-connected experiments. Blue dots are data-points verified as
safe, while red crosses are data-points verified as unsafe.

Note from Figure 3 that VERINET found all unsafe cases in less
than one second, while NEURIFY timed-out for several of those
cases. The total speed-up by calculating the timed-out points as 3600
seconds was ×4068. VERINET only branched for one of the unsafe
data-points, so almost all of the speed-up can be attributed to the lo-
cal search functionality.

For the cases verified as safe, most images that required branching
were solved around an order of magnitude faster in VERINET. As
mentioned in the related work section, NEURIFY implements a hier-
archical splitting strategy, starting from the first layer and moving on
to the next layer only after all nodes in the previous layer have been
split. These experiments indicate that adaptive splitting generally is
favourable for fully-connected networks. However, the real strength
of adaptive splitting will be evident in the convolutional experiments.

Finally, we also compared our results against MARABOU [10] on
the smallest MNIST network. We found that MARABOU is not op-
timised for high-dimensional input networks and did not perform as
well as VERINET or NEURIFY even in the case of small ε.

The MNIST Convolutional experiments were performed on the
network from [24], which has two convolutional layers followed by
two fully-connected layers and a total of 4804 ReLU nodes. The re-
sults are provided in Table 1.

We found that NEURIFY started splitting at the fully-connected
layers, skipping the convolutional layers in the beginning. As a result,
NEURIFY is not complete for this network and returns ”Underflow”
for a significant amount of cases. In contrast, the adaptive splitting
approach employed by VERINET is complete and can split nodes in
small layers, which experiments indicate leads to a performance ad-
vantage. As a result, even in the case of safe cases, VERINET solved
problems that NEURIFY failed to check, see e.g., ε = 5. For ε > 5,
VERINET’s performance further increased due to its ability of per-
forming local search, thereby solving 38% of the cases for ε = 15
against 24% only for NEURIFY.

The CIFAR-10 Convolutional experiments considered a new net-
work with 56,384 ReLU nodes, 7 convolutional layers, 6 batch nor-
malisation layers, and a test-set accuracy of 85.56%. These networks
cannot be checked by NEURIFY nor MARABOU. VERINET was able
to verify several problems on this network as shown in Table 2. To
the best of our knowledge, this is the largest network ever verified by
a complete method.

Table 1: MNIST-convolutional results

VeriNet Neurify
ε Total Safe Unsafe Undec Safe Unsafe Undec
1 50 49 1 0 49 1 0
2 50 49 1 0 49 1 0
5 50 42 2 6 37 2 11*
10 50 1 6 43 1 4 45*
15 50 0 19 31 0 12 38*

Results for the 4804 ReLU node MNIST convolutional network.
* NEURIFY reported an underflow for the images that could not be
verified.

Table 2: CIFAR-10 convolutional results for VERINET

ε Total Safe Unsafe Undec
0.05 50 49 1 0
0.1 50 43 5 2
0.2 50 37 9 4
0.5 50 0 13 37
1 50 0 23 27

The MNIST Sigmoid and Tanh experiments were performed on
the networks from [20] with 3000 hidden nodes. To the best of our
knowledge, existing verification algorithms with iterative refinement
that support the Sigmoid and Tanh activation functions (e.g. [18]) do
not scale to large networks. So, we benchmarked against the ERAN

toolkit [21] paired with the sound but incomplete DeepPoly [20] al-
gorithm. DeepPoly does not locate counter-examples, so we only
compared the number of cases determined to be safe.

VERINET determined significantly more safe-cases, which is most
likely due to the optimal linear relaxations employed. Note, however,
that VERINET, NEURIFY and MARABOU are not sound with respect
to floating point-arithmetic while DeepPoly is. We are not aware of
cases from the literature where floating-point correctness has been an
issue in robustness verification.
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Figure 4: Safe cases proven by VERINET and DeepPoly for the
Sigmoid and Tanh networks. In these experiments, pixel values

range from 0 to 1 to keep the notation as in [20].

In conclusion, VERINET was the most performing among the
complete toolkits checked and offered functionality (such as support
for Sigmoid functions) not present in other toolkits.



6 CONCLUSIONS
It is recognised that for FFNNs to be used in safety-critical AI
applications, such as autonomous vehicles, they need to be verifi-
able. However, the high degree of non-linearity exhibited by FFNNs
makes this particularly challenging. State-of-the-art methods cannot
analyse the networks used in practical applications; this is due to lim-
ited scalability and unsupported architectures or activation functions.

In this paper we have put forward an algorithm based on symbolic
interval propagation approach [24] extending it in several directions.
The experiments demonstrate that the novel local search and adaptive
splitting significantly increase the scalability of the method, particu-
larly in the case of unsafe cases. Differently from related work, the
proposed method also includes support for Sigmoid and Tanh activa-
tion functions by deriving their optimal linear relaxations. Further-
more, the contribution is complete for ReLU networks and sound for
Sigmoid and Tanh networks.

In future work we plan to investigate further verification problems,
such as transformational robustness [12].
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