An Abstraction Technique for the Verification of Multi-Agent Systems
against ATL Specifications

Alessio Lomuscio and Jakub Michaliszyn
Department of Computing, Imperial College London, UK

Abstract

We introduce an abstraction methodology for the verification
of multi-agent systems against specifications expressed in
alternating-time temporal logic (ATL). Inspired by methodolo-
gies such as predicate abstraction, we define a three-valued
semantics for the interpretation of ATL formulas on concurrent
game structures and compare it to the standard two-valued se-
mantics. We define abstract models and establish preservation
results on the three-valued semantics between abstract models
and their concrete counterparts. We illustrate the methodology
on the large state spaces resulting from a card game.

1 Introduction

In logic-based approaches to multi-agent systems (MAS)
there is a long tradition concerned with the development and
use of formalisms aimed at expressing the strategic abili-
ties of agents in a system. This interest goes back to earlier
work in philosophical logic where formalisms such as STIT
have been developed to analyse what agents can bring about
in a multi-agent system (Belnap and Perloff 1990). Against
this context the framework of Alternating-Time Temporal
Logic (ATL) was developed in the late 90s in theoretical com-
puter science to reason about paths representing particular
outcomes in games (Alur, Henzinger, and Kupferman 2002).
For example, by means of an ATL formula one can express
whether two agents in a game can always enforce a certain
state of affairs irrespective of the actions of the others.

The semantics of ATL is traditionally given in terms of con-
current game structures, which are transition-based systems
whereby all choices of the agents as well as their strategies
are explicitly provided. Concurrent game structures are very
close to interpreted systems, a popular semantics for rea-
soning about knowledge in multi-agent systems (Fagin et
al. 1995). Combining the two approaches provides a natural
and intuitive setting for the practical verification of MAS
epistemic and ATL specifications under incomplete informa-
tion (Lomuscio and Raimondi 2006b).

One key attractiveness of ATL is that key system prop-
erties such as controllability and realisability can be formu-
lated as model checking particular ATL formulas. In the
original setting, i.e., without fairness constraints, the algo-
rithm for model checking models against CTL formulas can

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

easily be extended to ATL, thereby resulting in the ATL
model checking problem being linear against the size of the
model and the formula to be considered. The complexity
increases for ATL* and more powerful logics. Indeed in the
past ten years a range of logics which extend ATL have
been put forward, ranging from ATL™' to ATL*, to combi-
nations with knowledge, and to the very recent family of
strategy logic (Chatterjee, Henzinger, and Piterman 2007;
Mogavero et al. 2012), and their complexity analysed. Fur-
thermore, different assumptions can be made on the observ-
ability of the states in the game and the states of the players,
as well as their ability to recall the moves they played, thereby
leading to several possible variants. The precise set-up has
considerable consequences on the resulting complexity of the
model checking problem. Certain cases, e.g., perfect recall
under incomplete information, are known to be undecidable.
For more details we refer to (Alur, Henzinger, and Kupfer-
man 2002; Schobbens 2004; Jamroga and Agomes 2007;
Bulling, Dix, and Chesifievar 2008).

Much is known at theoretical level about these variants.
However, practical model checking of systems against ATL
specifications has somewhat lagged behind. IMOCHA (Alur
et al. 2001), a revised version of the original MOCHA model
checker for reactive modules against ATL specifications, sup-
ports advanced features such as compositional and modu-
lar verification. MCMAS (Lomuscio and Raimondi 2006b;
Lomuscio, Qu, and Raimondi 2009), a model checker for
multi-agent systems, supports epistemic and ATL specifica-
tions in the context of incomplete information. However, they
both lack abstraction features thereby making them prone to
be constrained by the state-explosion problem.

The aim of this paper is to lay the foundations for an
abstraction methodology for verifying multi-agent systems
with incomplete information against ATL specifications.

Contribution. Since our overall aim is to develop under-
and over-approximations for multi-agent systems, we begin
in Section 2 by developing a novel three-valued semantics
for ATL which we show to be a conservative extension of the
classic two-valued semantics. In Section 3 we define abstrac-
tions of ATL models. Abstraction is conducted modularly
both on the local states and the local actions associated with
the agents, thereby generating considerably smaller models.
We show that the values true and false are preserved in three-
valued semantics between abstract and concrete models. We

turn to the model checking problem in Section 4 by exploring
its complexity in a three-valued setting and by providing con-
structive definitions for the initial abstraction and algorithms
for successive refinements. We exemplify these constructions
in Section 5 by showing how the technique put forward here
can reduce the state space considerably. We conclude in Sec-
tion 6 where we also discuss the future work.

Related work. As discussed above, while model checking
systems against ATL specifications has been explored in the
literature, practical model checking has received consider-
able less attention. While model checkers such as IMOCHA
and MCMAS have been made available, one of the key prob-
lems remains the state-space explosion. To the best of our
knowledge the only previous paper in the literature tackling
abstraction in the context of ATL is (Koster and Lohmann
2012). However, their approach is based on modular inter-
preted systems where complete information is assumed. By
contrast here we deal with the general class of interpreted
systems and we work in a more general, three-valued seman-
tics, thereby laying the foundation for predicate abstraction
techniques.

2 Three-Valued Alternating-Time
Temporal Logic

In this section we recall the technical set-up for ATL and
provide it with a novel, three-valued semantics.

We assume a set of agents Ag = {1,...,m}. For simplic-
ity, and without loss of generality, note we do not consider
the environment here. We use I' C Ag to denote subsets
of agents. By I' we denote the complementation of I, i.e.,
Ag\T.

We also assume a set of propositional variables V; by V
we denote the set of all the literals containing propositional
variables from V, ie., V = {q,~q | ¢ € V}.

2.1 Interpreted systems and associated models
We are interested in the following structures.

Definition 1 (Interpreted system). An interpreted system is a

tuple IS = ({L;, Act;, P;,t; }icag, I, IT) such that for each

agent i:

e [, is a set of possible local states;

e Act; is a set of possible local actions;

o P;: L; — 24\ {0} is a local protocol;

e t; C L; x ACT x 2% s g local transition relation with
ACT = Acty X -+ X Actyns

o] C Ly x---X Ly, is a set of global initial states;

Il : Ly x---x Ly, — Vis alabelling function such that
for any q, s we either have q & II(s) or ~q & II(s).

Note that the transition relation is normally considered to
be a function. We here consider a more liberal definition to
allow for a uniform presentation with abstract models (see
Section 2.4). For the same reason the definition of a labelling
function is more general than usual as it allows a state to be
labelled by neither ¢ nor —gq.

For a tuple t = (t1,...,tm), by t.i we denote its ith
element ¢;, with ¢+ < m. We will use this notation to identify
individual local states and local actions.

We associate standard temporal models to interpreted sys-
tems.

Definition 2 (Model). Given an interpreted system 1S =
({L;, Act;, P;,t; }icag, I, IT), its associated model Mg =
(S, T,1,1II) is a tuple such that:

e S C Ly X -+ X Ly, is the set of global states reachable
via T from the set of initial global states I C S,

o T'C SxACT x S is a global transition relation such that
T((l, .y lm),a, (1,2, 0) iff ti(li, a,1)) and a.i €
P;(1;) forall i € Ag.

When IS is clear from the context we write M for M;g.

In the following we assume that all locally enabled joint
actions can be executed, i.e., that for all global states s € .S
and joint actions a € ACT such that a.i € P;(s.i) for all
i € Ag, there exists an s’ € S such that T'(s, a, s').

2.2 Alternating-time temporal logic

Alternating-Time Temporal Logic (ATL) was introduced to
reason about agents and their strategies in the context of
perfect information (Alur, Henzinger, and Kupferman 2002).
In this setting agents’ strategies depend on the global state of
the system. ATL’s semantics has been recast on incomplete
information in the context of interpreted systems (see, e.g.,
(Schobbens 2004)).

The syntax of ATL is given by the following BNF:
pi=q|tt] | e Ae | (D) Xe | (D)(Up) | ()G
where ¢ is a propositional variable and I' C Ag. We abbrevi-
ate (') (t6Up) by (') Fep.

The formula (T') X ¢ is read as “{I")) has a strategy to
enforce ¢ in the next state (irrespective of the actions of the
agents in Ag \ I')”; (') Gy means “(T")) has a strategy to
enforce ¢ forever in the future”; and ((T")¢1 U¢o represents
“{T")) has a strategy to enforce that ¢, holds at some point in
the future and can ensure that ¢ holds until then."

2.3 Two- and three-valued semantics for ATL

Let IS = ({L;, Act;, P,,t;}icaq,I,II) be an interpreted
system. A strategy for an agent i € I is a function f; :
L — 24¢t\ {(} such that for each sequence of states
Iy ...l all the actions in f;(l; ...ls) are in P;(I5).

A strategy is called memoryless if it depends only on the
last state, i.e., if f;(l1...lsl) = fi(l) for any natural number
s and any states l1, ..., [, [.

Given a set of agents I' and an indexed set of strategies
Fr = {fi | i € T'}, we define out(s, FT) to be the set of
infinite paths sgs; ... such that s9 = s and for all j there
exists an action a such that T'(s;,a, sj+1) and forall ¢ € T,
a.i € f(sp.i...s;5.9).

Interpreted systems with imperfect recall are those in
which agents are required to use only memoryless strate-
gies; while agents in interpreted systems with perfect recall
can use arbitrary strategies.

For a path p = sps1..., by pi we denote s;, the ¢-th
element of p.

The following is the standard semantics for ATL.

Definition 3 (Two-valued semantics). Given an interpreted
system IS = ({L;, Act,, P;,t,}icag,1,II), its associated

model M and a global state s € S, the two-valued satisfac-
tion relation 5 is inductively defined as follows.

M,sk5q iff g € (s)
M,s 5~ iff M,s %5 ¢
M.skeiNe2 iffM,sk5 erand M, s 5 o2

iff for some Fr and all p €
out(s, Fr) we have M,p' 5 ¢

M,s 5 (T)o1Ups ifffor some Fr and all p €
out(s, Fr), there isa k > 0 s.t. we
have M,p* |5 o2 and for all
0§]<k7Map]):2801

iff for some Fr and all p €
out(s, Fr) and for all i > 0 we
have M, p' |5 ¢

We now introduce a novel, three-valued semantics for ATL.
Each ATL formula ¢ is associated with three possible values
(tt for true, I for false, uu for undefined) when evaluated on
an interpreted system .S at a given state. We will later show
that the three-valued semantics agrees with the two-valued
one whenever the truth value is not undefined.

M, s):2 <<F>>XSO

M;s 5 () Gy

Definition 4 (Three-valued semantics). Given an interpreted
system IS = ({L;, Act,, P;,t;}icag,1,II), its associated
model M and a global state s € S, the three-valued satisfac-
tion relation 5 is inductively defined as follows.

tt iff q € 11(s),
ft lﬁc_'q € H(S)a
uu otherwise

ttiff M,s |5 o =ff

fFif M,s 5 o =tt

uu otherwise

ttiff M,s |5 o1 = tt and
M,s |5 @2 =tt

ffif M,s 5 ¢1 = ff or
M,s 5 o =ff

uu otherwise

M,sEq =

M,s |5 - =

M,slg p1 N2 =

tt iff for some strategy Fr and
all p € out(s,Fr) we have
M,p'E p=tt

¥ iff for some strategy Fy and
all p € out(s, Fr) we have
M, pt Ee=ff

uu otherwise

Ms 5 (D) Xe =

tt iff for some strategy Fr and all
p € out(s, Fr) there is k € N
s.t. M,pF | o = tt and for
allj <k, M,p’ |5 o1 = tt

ft iff for some strategy F and all
p € out(s, Fr), k € Nwe have
M,p* & ¢o = ff or there is
j<kst M,p) 5 o =1

uu otherwise

M,s 5 (D)p1Up2 =

tt iff for some strategy Fr and all
p € out(s, Ir), i € N we have
M,p' 5 ¢ =tt

ft iff for some strategy = and all
p € out(s, Ff), there isi € N
st. Mip' 5 p=1f

uu otherwise

M,s 5 ()G =

We write I.S |5 iff for all the initial states s we have that
M, s |5 . Similarly, IS |5 ¢ = tt iff for all the initial states
s, M, s |5 ¢ = tt. We illustrate the differences between the
two semantics on an example.

Example 1. Consider the interpreted system /.S defined
on Ag = {1,2}. Each agent i € {1,2} is associated
with two actions Act; = {aa,ap}, two local states
L; = {la,lg}, a protocol function P; s.t. P;(l) =
Act; for any | € L;, and the transition relation ¢; =
{(la,aa,la),(la,aB,lB),(IB,aa,l4),(IB,aB,lB)}.

Assume that I = {(la,l4)} and IT is the labelling func-
tion such that I7((14,14)) = IH((lp,lp)) = {q} and
II((Ig,1a)) = I((la,lB)) = {—q}. Then, in the model
Mg of IS we have T = {((la,1p), (Gcyaq), (e, 1la)) |
a,b,c,d € {A, B}}.

Consider a strategy f1 for agent 1. If ax € f1((la)),
then out((la,14),{f1}) contains a path p such that p! =
(la,lB). I aa & f1((l4)), then ap € fi((la,l4)), and
therefore out((la,l4),{f1}) contains a path p’ such that
p'' = (Ig,la). Therefore, IS £ (1) X ¢ and it is not the
case that IS |5 (1) Xq = tt.

Note that {1} = {2}. Consider a strategy fo for agent 2.
If ap € f2((la)), then there is p € out((la,la),{f2}) s.t.
p! = (Ip,la). Otherwise, ay € f2((l4)) and there is p €
out((la,la),{f2}) s.t. pt = (La,lp). So it is not the case
that IS | (1)) X¢ = ff, and therefore IS |5 (1)X¢ = uu.

In other words, IS |5 (1)) Xq means that agent 1 has
no strategy to guarantee ¢ in the next state, while 1.5 =
(1) X q = fI represents that agent 2 has a strategy to avoid ¢
(so it is not the case).

2.4 Relationship between and |5

We show that the three-value semantics agrees with the two-
valued semantics whenever the three-valued semantics re-
turns tt or ff.

Theorem 5. Consider an interpreted system 1S, an ATL
Sformula ¢ and a global state s. We have the following:

1. If M1g,s |5 ¢ =tt, then M1g,s |5 .

2. If Myg,s ':3 Y= ff, then M;g, s I;% ©.

In the proof we use the following lemma.

Lemma 6. For any disjoint groups of agents I, TV, any state
s and any strategies Fr, Fr we have out(s, Fr U Fr/) C
out(s, Fr).

The proof follows from the fact that out(s, Fr U Fp/) rep-
resents the paths that result when agents from I" play accord-
ing to FT and agents from IV play according to Fr, while
out(s, Fr) represents the paths that occur when agents from
T" play according to Fr.

Proof of Theorem 5. The proof is by induction on ¢.

If M;s,s |5 q = tt, then ¢ € II(s), and so M;g,s 5 q.

If Mrs,s |5 g = ff, then ~¢ € II(s). By the definition of
the labelling function, ¢ & I1(s). Therefore, M;g, s % gq.

Assume that M;g,s 5 (I')) X¢' = tt. Then, there is Fp
such that for all p € out(s, Fr) we have My, p* | ¢’ = tt.
By the inductive hypothesis, we have Mg, p' |5 ¢’, and
therefore M1g,s |5 (I')X¢'.

Assume that M;g,s |5 (') X¢’ = ff. So there is a strat-
egy Fy s.t. for all p € out(s, Fr) we have Mg, p' |5 ¢’ =
ff. Consider any strategy Fr of I" and a path p € out(s, Fr U
Fr). By Lemma 6, p € out(s, Fr), so Mg, p* | ¢ = ff.
By the inductive hypothesis, M;g,p' £ ¢'. By Lemma 6,
p € out(s, Fr). So we showed that for any strategy Fr there
is a path p such that Mg, p' [¢'; 50 Myg, s |5 (T)X¢'.

Assume that Mg, s | (I'))p1Up2 = tt. Then, there is
Fr such that for all p € out(s, Fr) there is k s.t. Mg, p* &
o = tt and for all j < k we have M;g,p’ |5 1 = tt. By
the inductive hypothesis we have that M;g, pk):2 o and
for all j < k we have Mg, p’ |5 ¢1. Therefore Mg, s 5
(T Ugn.

Assume that M;g, s |5 (I')¢1Ups = ff and Fy is such
that for all p € out(s, Fr) and all k we have M;g,p* |5
o = ff or there exists j < k s.t. Mrs,p’ 5 ¢1 = ff.
Consider any strategy Fy of I', and let p € out(s, F1 U Ff).
By Lemma 6, p € out(s, Fy) and p € out(s, Fr). By the
inductive assumption, for all k, Mg, pk K5 o or there exists
j < kst Mys,p’ 5 1. Since Fi- was an arbitrary strategy,
we conclude that Mrg, s 5 (I')o1Ups.

The remaining inductive cases can be shown in a similar
manner. 0

Notice that the above proof remains valid if we consider
only memoryless strategies.

In the next Section we will explore how the novel, three-
valued semantics introduced here can be used as part of
an abstraction methodology in order to verify multi-agent
systems against ATL specifications.

3 Abstraction

In this section we provide an abstraction methodology for
constructing abstract interpreted systems. We introduce two
techniques: action abstraction and state abstraction.

Recall that a function is decomposable if for
any xi1,...,T,; we have that f((x1,...,2m,)) =
(fi(z1),..., fm(zm)), for some f;;i = 1,...,m. By
f.i we denote the function f;.

Given an interpreted system 1.5 an action abstraction func-
tion is a surjective and decomposable function o : ACT —

ACT*, for some set ACT®. The set ACT is the set of joint
actions whereas AC'T'™ constitutes the set of abstract joint ac-
tions for the corresponding abstract interpreted system. This
enables us to define the action abstraction of an interpreted
system as follows.

Definition 7 (Action abstraction). Given an interpreted sys-
tem 1S = ({L;, Act;, P;,t;}icag, I, IT) and an action ab-
straction function «, the action abstraction of IS w.r.t. « is
an interpreted system 15 = ({L, Acty, P, t$}icag, 1%,

IT%) such that I* = I, IT* = II, and for each agent i:
o L& =1,

o Act¥ = a.i(Act;),

o P*(l) = a.i(P;(1)) for all states | € Ly,

o foralll,l' €l; and a® € ACT®, t&(1,a®,1") iff for some
a € ACT s.t. ai(a) = a® we have t;(l,a,l’).

In other words the application of an action abstraction
function results in the reduction of the number of actions in
an interpreted system, thereby generating an abstract one.

We now explore a similar concept related to states.

Given an interpreted system 1.5, a state abstraction func-
tion is a surjective and decomposable function o : S — S,
such that for each agent 4 and any two local states [, I’ € L;,
if 0.i(l) = 0.i(l"), then P;(1) = P;(l’), for some set of states
S7. The set S is the set of global states of the associated
model M;g and S constitutes the set of abstract global
states for the corresponding abstract interpreted system.

Definition 8 (State abstraction). Given an interpreted sys-
tem IS = ({L;, Act;, P;,t; }icag, I, IT) and a state abstrac-
tion function o, the state abstraction of IS w.r.t. o is the in-
terpreted system 157 = ({L7, Acty, P{ ,t7 Yicag, 17, I17),

where 1° = o(I), 17 (s%) = ﬂsegff({sa}) I (s) and for
each agent i

L] L? = JZ(LZ),
o Act = Act;,
o P7(I7) = Uzea.rl({za}) Pi(1),

o t7(19,a,l'?) iff for some 1,1 such that o.i(l) = 1° and
o.i(l')y = 1" we have t;(1, a,l).

Example 2. Assume that we have two states: s labelled by
{p,~q} and s’ labelled by {p, ¢} such that o(s) = o(s).
The resulting state will be labelled by I7° (o (s)) = {p}.

Similarly to the case above the application of a state ab-
straction function results in the reduction of the number of
states in an interpreted system, thereby generating an abstract
one.

Given an interpreted system .S, an abstraction function is
apair § = (o, o), where « is an action abstraction function
of IS and o is an state abstraction function of 1.5¢.

Definition 9 (Abstraction). Given an interpreted system
IS = ({L;,Act;, P,,t;}icag, I, II) and an abstraction
function § = («,0), the abstraction of 1S w.r.t. 0 is the
interpreted system 1S° that is the state abstraction of 1S®
w.rt. o.

3.1 Preservation Theorem

If o is a state abstraction function and p is a path in an
interpreted system IS, then by o(p) we denote the path
a(p®)o(pt). .., i.e., the corresponding path in the abstract
interpreted system 1.57.

The following lemma illustrates the relationship between
paths in an interpreted system and its state abstraction.

Lemma 10. Given an interpreted system IS, let o be a state
abstraction function of 1S, s € S be a state and F{ be
a strategy for a group of agents I' C Ag. Then there is a
strategy Fr for the agents in T' such that o(out(s, Fr)) C
out(o(s), F).

Proof. Consider 157 and a strategy FZ = {f7 | i
I} Let Fr = {f; | i« € T} where f;(I...1F) =
oi Y (f7(0.i(19) ... 0.i(IF))). It can be checked that FT- is a
strategy on I.5.

Let p € out(s, Fr). So for each state p’ there is a joint
action a such that T'(p’,a,p’*!). By definition we have
that 79 (o(p’),a,(p’*1)) on 159, and therefore o(p) €
out(o(s), FZ). O

m

Lemma 11. Given an interpreted system IS, let o be an
action abstraction function of 1S, s € S be a state and F*
be a strategy for a group of agents I' C Ag. Then there is a
strategy Fr for T such that out(s, Fr) C out(s, F?).

Proof. Let a~! o F denote the set {a~to f* | i € T'},
where o~ ! is the counter-image of the surjective function a.

It can be checked from the definition of action abstraction
that out(s, ! o F¥) C out(s, FY). O

We prove the following theorem.

Theorem 12. Let § = («, o) be an abstraction function for
an interpreted system 1S . Then, for any state s € S

L If Mig,0(s) 5 ¢ = tt, then Mys,s |5 ¢ = tt.
2. If Mig,0(s) |5 ¢ = ff, then Mrs,s |5 ¢ = ff.

Proof. The proof is by induction on .

Consider a state s and the case ¢ = q. If Mg, 0(s) |5
q = tt, then ¢ € IT%(s). It follows by definition that ¢ €
Nsreo—1(o(s)) LL*(o(s")), and so g € 11%(s). Since 1I* =
II, q € II(s), we conclude that Mg, s |5 ¢ = tt.

If M{g,0(s) & q = ff, then =g € II°(s). By similar con-
siderations we can conclude that =g € (¢, -1(5) LI%(s'),
so g € IT*(s) = II(s) and M;s, s 5 ¢ = ff.

Assume that ¢ = —¢'. If Mig,0(s) B —¢' = tt,
then M{g,0(s) & ¢’ = ff. By the inductive assumption
Mis, s 5 ¢ = ff, and therefore Mg, s 5 —¢' = tt. Simi-
larly, if Mg, 0(s) |5 —¢’ = ff, then M;g, s 5 —~¢' = ff.

The case for ¢ = @1 A @2 is straightforward through by
the inductive hypothesis.

The other inductive cases can be shown by using
Lemma 10 and 11. We only report the case of MYy, 0(s) |5
{T)p1Upy = tt; the others can be proven similarly.

Assume that Mg, 0(s) & (IT)p1Ups = tt and let
FS = {f | i € T} be a strategy such that for all

p° € out(o(s), FR), thereis k > 0s.t. Mg, p* & @2 = tt
and for all 0 < j < k we have M{q,p’ & 1 = tt.
Let I be a strategy obtained by applying Lemma 10 to
F?, and Fr be a result of applying Lemma 11 to F2.
Consider any p € out(s, Fr). By Lemmas 10 and 11,
o(p) € out(o(s), FY), and therefore for some k > 0 we

have Mg, 0(p)* | @2 = tt and for all 0 < j < k we have

Mis,o(p) |5 o1 =tt.

By the inductive hypothesis we have that M g, p* E ¢ =
ttand forall 0 < j < k, Mys,p’ |5 ¢1 = tt. It follows that
Mrs, s |5 (T)e1Ugps = tt. O

Observe that the theorem above holds irrespective of any
assumption on the strategies being memoryless or memory-
full.

Remark. There are an interpreted system 1.5, a state abstrac-
tion function o, an action abstraction function «, and an ATL
property ¢ s.t. IS |5 @ but IS |5 ¢ and IS7 | .

Indeed, consider the IS from Example 1 but with a dif-
ferent labelling function: I7((14,14)) = I ((l4,15)) = {q}
and 11((Lp, Lx)) = 11((Ip, 1)) = {~g}. Let 9 = (1) Xq.
Clearly, IS |5 . Consider an action abstraction function
« such that a((a1,a2)) = (¢, ¢) for all a1, as € {aa,ap}.
We have IS £ ¢ since in the initial state 1 can only play
action € which may lead to the state (I,[5) labelled with
—q. Similarly, consider a state abstraction function o such
that o((s1, s2)) = (€, €) for all s1, 82 € {l4,lp}. The state
abstraction 1,57 of IS w.r.t. o contains only one state (e, €)
s.t. IT7((e,€)) = 0, and therefore 157 F .

4 Model Checking Using Abstraction

In this section we put forward a methodology based on the
abstraction results of the previous Section to model check
multi-agent systems against ATL specifications. Recall that
the model checking problem is defined as follows.

Definition 13 (Model checking problem). Given an inter-
preted system 1S and an ATL specification o, the model
checking problem involves establishing whether 1S |5 .

The following theorem was stated in (Alur, Henzinger, and
Kupferman 2002) and, to the best of our knowledge, showed
in (Dima and Tiplea 2011).

Theorem 14. Model checking interpreted systems with per-
fect recall and imperfect information against ATL specifica-
tions is undecidable.

However, the problem is decidable if memoryless (as op-
posed to perfect recall) strategies are considered (Schobbens
2004). Recall that AL = PN? is the class of problems that
can be solved in polynomial time by a deterministic Turing
machine with an NP oracle.

Theorem 15. Model checking interpreted systems with im-
perfect information and memoryless strategies against ATL
specifications is decidable in AY .

The above complexity is given in the size of the model
associated with an interpreted system (observe that the com-
plexity on the size of the interpreted system itself is likely to
be harder (Lomuscio and Raimondi 2006a)). However, note

that models of interpreted systems may be exponential in size
of the interpreted system that generates them. Since model
checkers typically work on the generated models, this creates
the well-known difficulty of the state-space explosion.

To mitigate this difficulty in the following we develop
a technique that allows us to avoid the construction of the
(concrete) model associated with an interpreted system and
consider its abstraction instead. By the results of the previous
section, in several cases this will prove sufficient.

More specifically we proceed as follows. Given an inter-
preted system and a formula to be verified, firstly we build
an action abstraction, then a state abstraction from it (see
Subsection 4.2) and attempt verification on the result (see
Subsection 4.1). If the result is either tt or ff we know that
(via Theorem 12) this is also the result of the check on the
concrete model. Otherwise, we perform a refinement proce-
dure (see Subsection 4.3) to obtain a further abstract model
and attempt verification again. We repeat this procedure until
we obtain a model in which the specification can be verified.

4.1 Three-valued model checking interpreted
systems

We extend the classical model checking problem recalled
above into the more general formulation below.

Definition 16 (Three-valued model checking problem).
Given an interpreted system 1.S, an ATL specification v and a
truth value b € {ff, uu, tt}, the three-valued model checking
problem involves establishing whether IS |5 ¢ = b.

We can show that model checking interpreted systems
against ATL specifications under a three-valued semantics
and memoryless strategies is also in AL,

Proposition 17. Three-valued model checking interpreted
systems with imperfect information and memoryless strate-
gies against ATL specifications is decidable in A¥ .

Proof. For each subformula, starting from the propositions,
label all the states with the value of the formula in this state,
using the values of its subformulas. This is straightforward
in all cases except the subformulas of the form (IT"); in these
cases call a non-deterministic oracle a polynomial number of
times to obtain a strategy as required. Since AL = PNP we
obtain the result. O

Notice that the above procedure establishes the value of
each subformula in each state. We will use this property later
to define the refinement procedure.

4.2 Initial abstraction

Let A(y) denote the set of agents in ¢ and V(i) be the set
of propositional variables in ¢. For an interpreted system
IS and a local state [; € L;, the labelling of [; is IT(l;) =
Mses,s.i=t; 1(5)-

For a set of agents I', we define ol 4(T) to be the action
abstraction function « for 1.5 such that for every agent i € I’
we define a..i(a;) = a;, and for every i ¢ I" we let a.i(a;) =
€. So, in other words, !¢ (T') returns an interpreted system
disregarding all actions not in I'.

Given an action abstraction function « and a set of literals
V, let of4(ar, V) denote the state abstraction function o for
IS5® such that for each agent i € Ag, 0.i(l) = o.i(l') iff
HU)NV =H{")NV and P(l) = P*(I'). So oig(a, V)
defines an interpreted system in which states agreeing on
literals in V' are collapsed onto a single abstract state as long
as all agents have the same protocol in these states.

Definition 18 (Initial abstraction function). Let IS be an
interpreted system and @ be an ATL specification. The
initial abstraction function for IS is the pair 6tg(¢) =

(ads(A(9)), ol s(ads(A(9)), V(). 15%(%) denotes the
initial abstraction of the interpreted system IS w.r.t. 5*5(p).

In summary the initial abstraction function collapses all
actions of agents not referred to in the specification; from
this interpreted system all states with the same labelling and
the same protocol are further collapsed.

We exemplify this definition in Section 5.

4.3 Refinement

As mentioned earlier, it may be that 1.5 815(#) E p = uu,
i.e., the initial abstraction is not sufficient to determine the
value of ¢. In these cases we need to refine 67¢(¢). Unlike
the classic technique (Clarke et al. 2000), our refinement
procedure focuses on the states for which the value of some
subformula of ¢ is uu.

Let < be any linear order on formulas of ATL such that
if ¢ is a subformula of ¢/, then ¢ < ¢’. Let Sub(y) stand
for the set of all the subformulas of ¢ (including ¢ itself).
An evaluation of ¢ on an interpreted system IS is a function
L:S x Sub(p) — {ff,uu, tt} such that forall s € S, ¢’ €
Sub(p) we have L(s, ¢’) is the result of the M;g,s | ¢’
Note that one can easily adjust the model checking algorithm
presented in Proposition 17 to return the evaluation.

We now discuss the refinement procedure REFINE (see
Algorithm 1) that takes as input an interpreted system /.5, an
abstraction function 4, a specification ¢, an evaluation L of
@ on 159 and returns an abstraction function §’.

Firstly, REFINE computes the set @ of subformulas ¢’ of
o s.t. for some s° s.t. there are at least two states s, s’ € S
st. 0(s) = o(s') = s° we have L(s°,) = uu. If @ is
not empty, we take the smallest element v and split all the
abstract states s° s.t. L(s?,4) = uu by using the function
SPLITS_STATES. If @ is empty, we refine the action abstraction
function.

The function SPLITS_STATES(IS, o, Su.) defines a state
abstraction function ¢’ that agrees with ¢ on all the local
states not in Sy,. For the remaining states, there are two
possibilities. If there are two states s, s’ € Sy, and an agent
i such that 0.i(s.7) = 0.i(s".4) and II(s.i) # II(s'.i), then
o’ splits the abstracted states into states corresponding to
different labelling; otherwise ¢’ separates all the local states
in Syy.

The refinement procedure above focuses mostly on the
state abstraction function, revising the action abstraction func-
tion only if no further updates to the state abstraction function
are useful. This is optimised for ATL specifications of the
form (T"))¢’, where ¢’ does not contain a further ()) operator.
Most concrete ATL specifications follow this pattern. Indeed,

Algorithm 1 The refinement procedure.

1: procedure REFINE(]S, § = (o, 0), ¢, L)
2: MS?® {55 e 59 | |a‘1({35})i > 1}

3 D+ {@ €Sub(p) | Is® € MS°.L(s°,¢") = uu}
4 if @ is not empty then

5: o+ a

6: Suu + {s € S| L(o(s), min<(P)) = uu}
7: o’ < SPLIT_STATES(IS, o, Suu)

8 else if « = aly(A(p)) then

9: o ajs(Ag\ A(p))

10 o« oly(a/V(p))

11: else if « = aly(Ag\ A(p)) then

12: o +—id L

13: o'+ ols(a/V(p))

14: else 0/ «— id, o/ + id

15: return (o, 0”)

16: procedure SPLIT_STATES(IS, o, Suy)

17: split_all « Vs,s' € Sw.Vi € Ag.o.i(s.i) =
0.i(s'4) = II(s.i) = II(s".4)

18: for i € Ag, l; € L;do

19: if 3s € Suu s.i = [; then

20: if split_all then o”.i(1;) < I;
21: else o’.i(l;) « (o.i(l;), I1(1;))
22: else o'.i(l;) « o.i(l;))

23: return o’

when evaluating whether M;g, s |5 (I')¢’ = tt the labels
of the actions for the agents not in I' are irrelevant. This is
why the initial abstraction collapses them. Conversely, when
evaluating Mg, s |5 (I'))¢’ = ff the actions that matter are
those of Ag \ I'; this is reflected in the first refinement of the
action abstraction function. If none of the above is effective,
we use the identity.

4.4 Model Checking with Refinement

In view of the constructions above, we can now give the
overall model checking algorithm for verifying an interpreted
system IS against an ATL specification ¢ as the procedure
VERIFY at Algorithm 2. The procedure calls the function EVAL-
UATE which labels the structure, as discussed in Proposition
17, and returns the appropriate evaluation function.

Algorithm 2 The verification procedure.

1: procedure VERIFY(/.S,)

2 0 dys(y)

3 while § # (id,id) do

4: L <EVALUATE(1S?, ©)

5: if 3s € I.L(0(s),¢) = ff then return ff
6.

7

8

else if Vs € I.L(o(s),¢) = tt then return tt
else 0 <—REFINE(]S, 6, L)

return uu

The algorithm proposed first constructs the initial abstrac-
tion 07. A first check is made for the truth value of ¢ on
5t g- If one abstract state corresponding to a concrete initial

state does not satisfy ¢, by Theorem 12 we deduce that the
specification does not hold on the concrete interpreted system.
Similarly if ¢ is satisfied in all abstract states corresponding
to all concrete initial states, we deduce that the specification
is satisfied on the original model. If neither of these cases
holds, we refine the initial abstraction by following the RE-
FINE procedure above and repeat the evaluation tests. Note
that the procedure always terminates; in the worst case it will
attempt to perform the verification on the original, concrete
model.

While in the worst case the procedure is worse than a sin-
gle initial check on the concrete model, it is possible that
either the initial abstraction or one of its refinements will
determine the value of the specifications. The reduced mod-
els may be much smaller than the original concrete model,
which may be too large to be verified even by using symbolic
techniques. Even if the concrete model can be handled by
concrete techniques, the procedure above offers an attractive
methodology for reducing the time and memory footprint of
the verification step.

5 Verification of Simbridge

In this section we exemplify the methodology above on Sim-
bridge, a simple two player trick-taking game. We encode
the game as an interpreted system and verify a specification
by using the abstraction technique presented above.

The game is played with a deck of 26 cards (13 red and 13
black). Cards are numbered from 1 to 13. The goal of each
player is to win the most number of rounds, or tricks.

Each player is initially given 13 cards by the croupier. The
game is played in 13 rounds. The first player is called the
lead player of the first round; in all the other rounds the
lead player is the player who won the previous trick. In each
round the lead player plays any card from his hand; the other
player has to respond by playing a card in the same colour.
The player who played the card with the higher number wins
the trick. If a player cannot play a card in the colour of the
card played by the first player, he can respond by playing
any card and he loses the trick. If a player has a card in the
required colour but plays a card in a different colour, he loses
for cheating.

5.1 Game encoding

We model the game as an interpreted system /.S comprising
four agents: Croupier, Player 1, Player 2 and Scorekeeper.

Croupier. The game begins with Croupier distributing
the cards to the players as follows. For each card, starting
from 1 Red, Croupier assigns the card to a player by either
using the action 1 or 2. If a player has already been given
13 cards, all remaining cards are given, one by one, to the
other player. After distributing all the cards, Croupier plays
the action e for the rest of the game.

Croupier’s 142 local states are tuples where each local
state (k, [) represents the situation where Player 1 was given
k cards and Player 2 was given [cards. The Croupier’s pro-
tocol is defined as follows: in a state (k,!) Croupier can
perform action 1 (resp. 2) if k& < 13 (resp. [< 13). If action 1
(resp. 2) is performed, Croupier moves to the state (k + 1,1)

Structure Actions States
Original structure (I.5) 2187 1027
Initial abstraction (I.5%) 3 10°
Refinement (IS%) 3 108

Table 1: Estimated sizes of the interpreted systems from
Section 5.

(resp. (k, 1+ 1)) regardless on the other agents’ actions. Once
Croupier is in the state (13, 13) he loops in this state by per-
forming the action e. Note that in this formalisation Croupier
does not remember the cards’ distribution.

Players. The players are symmetrical and follow the
same formalisation. We represent the player’s local states
as (Ip,pc, H), where H is the set of cards in the player’s
hand, Ip € {1,2,C} and pc € {Redy, ..., Blackiz} U {0}.
If Ip = C then the game is in the phase when the cards are
being distributed and pc represents the previously distributed
card. If [p # C, then tricks are being played, [p represents
the current lead player and pc encodes the first card played in
the current round. It can be computed that there are approxi-
mately 225 combinations; so each player has approximately
231 possible local states.

The set of local actions contains €, which players use when
it is not their turn, and the actions Red, ..., Black;s that
the players use to play a card when it is their turn. We assume
that the protocol only insists on playing cards in the players’
hands, i.e., players may not follow the colour played.

The transitions are defined as expected. Players begin with
Ilp = C and update their state while cards are being dis-
tributed. Then players start playing cards from their hands
and update their state accordingly.

Scorekeeper. The scorekeeper’s local states contain the
states C'heated;, Cheateds to represent situations where
some of the players have cheated during the game, and tuples
of the form (Ip,pc, SG) where Ip € {1,2,C} represents
the lead player, pc € {Redy, ..., Blacki3} U {0} represents
the first card played in the current round, if Ip # C and
the last card distributed if Iip = C. SG is a tuple SG =
(S, R1, R2, B1, B2) representing the state of the game after
each round where no player has cheated. R represents the
number of red cards in the hand of Player ¢; Bt represents the
number of black cards in the hand of Player ¢; S represents
the number of tricks won by Player 2. Some of the local states
of Scorekeeper are not reachable during a game (e.g., states
where R1 + R2 > 13). By considering this we can estimate
that there are approximately 2.5 x 10° ~ 22! states possible
local states for Scorekeeper.

Scorekeeper starts in the state (C, 0, (0,0,0,0,0)) and
then updates his states on the basis of the actions of Croupier
and the players.

Global states and variables. We can define the set of
global states for the system by considering tuples containing
the local states for the agents defined above. The initial states
for the system are those obtained by considering the initial lo-
cal states of the agents defined above. We can ascertain there
are at least 196 - 231 - 231 . 221 ~ 1027 global states defined

0.0 0 0
1,72 7“2 7“2 9, bY 9,09, 1

\b bQ b 712,61 1 S0 7’1,62,50

Figure 1: A fragment M7, the model associated with the
initial abstraction.

as above. This constitutes a size that would normally not be
verifiable even by an advanced, symbolic model checker.

We use the following propositional variables: 1, 2, s%, i,
ri, bi, bh for i € {0,...,13}. Their truth value depends on
the Scorekeeper’s state. So if in a global state the Scorekeeper
is in the local state p7 , (S, Rl R2, B1, B2)), then the
variables Ip, pc, s°, 71 ,r2 ,bBL bB2 hold at that state. The
variable ch; holds at any global state where Scorekeeper’s
local state includes Cheated;.

5.2 A specification of interest

From the description above it is easy to see that Croupier can
ensure that Player 1 wins the game. Croupier can for instance
give all the red cards to Player 1; since Player 1 starts the
game, Player 2 will never win a trick.

For convenience we use the following Boolean formulas.

GameOver = ((1V2) ArY ArIABY ABY) V chy V chy
Winsy =50V vsOVehy

GameQvwer represents that all rounds have been played, i.e.,
either the cards have been distributed and no player has any
card left, or a player has cheated. Wins; encodes a situation
where Player 1 has won the game, i.e., either Player 2 has
cheated or he has won fewer than seven tricks.

Consider the following specifications:

@1 = ((Croupier)G(—~GameOver V Wins)
&5 = (Croupier) F(GameOver A Winsi)

The first formula states that Croupier has a strategy to
ensure that forever in the future either Player 1 wins or the
game does not end. The second states that Croupier can force
the system to reach a final state where Player 1 has won the
game. We now use the abstraction technique to verify the
system against both specifications. As we show below, the
initial abstraction is sufficient to verify @;, whereas to verify
@5 we need to employ the refinement procedure.

5.3 Abstraction for &,

Consider the initial abstraction function 6 = («, o) for @;.
Since A(®1) = {Croupier}, the initial action abstraction
a collapses the actions of all the agents excegt Croupier.
This entails that the set of abstract actions in 15° is ACT? =
{(6’ 67 67 6)’ (67]" 65 6) (6, 27 67 6)}

The initial abstraction function is built by cons1dering the
variables V(®1) = {1,2,79,79,b9,83, chy, cha, s°, ..., s5}.
We do not present the whole abstract model, but only the
fraction that is needed to establish the value of @4.

0,0 1,0 13 .0 13 .0 13 .0
7”177’2 T1,T2 7‘1 sT2 T, T2 7”1 ,7’271
5270 b bm anC b bz, 2 750

OO OO e

T%S 7"8 7"13717 7"17b2
’ 1, 1Red 1,1Red
b1yb2 7"1 ,52 7’1752 7"17b2
1 So 1 80 1 S0 1 So
.< 13 b13

1 13Red 1, 13Red

Figure 2: A fragment of the refined structure. For readability,
some labels are omited. Gy and Csg denote the same state.

We first describe the part of the structure representing the
card distribution. Figure 1 depicts five states of this structure.
C is the initial state of M?q corresponding to exactly one
state in M7g. The abstract state C'y corresponds to the states
in Mg representing situations in which Player 1 received
between 1 and 12 red cards and Player 2 did not receive any.
State C3 corresponds to exactly the state in Mg in which
Player 1 received 13 red cards and Player 2 did not receive
any. Note that the only difference between these states is that
Croupier’s protocol in C'3 does not allow for 1 to be played.
States Cy and C'5 represent configurations in which Player 1
has all the red cards, and Player 2 received either between 1
and 12 (Cy), or 13 (C5) black cards.

Consider F' = {fcroupier} Where foroupier is the fol-
lowing strategy for Croupier: select action 1 in states C
and Cy, play action 2 in states C'5 and Cy, and € in
all the other states. Then, in out(Cy, F)) we have C1CY¥,
010;0302},010;630105,016;03010;08) It can
be easily verified that all the paths satisfy G—(GameOwver A
Winsa).

Therefore, we have that 7.5°):3 @, = tt; so by Theorems 5
and 12 we deduce that IS |5 @;. The system [59 is much
smaller than 1S, its number of states can be bounded by
the number of possible valuations of variables from V(1)
multiplied by the number of possible protocols; this results in
242 - 4 ~ 10° states. This is a size that can easily be verified
on a model checker.

5.4 Abstraction for &,

Since V(®3) = V(&) the initial abstraction function § is
the same as the § for @, (see Figure 1). It can be checked
that Croupier does not have a strategy to force GameQwver.
For example consider F' = { foroupier } Where foroupier is @
strategy according to which action 1 is selected in Cy and C’.
Then we have that C1CY € out(Ch, F), but GameOver
never holds on this path.

Note that the subformulas of &, are
(Croupier) F(GameOver A Winsy), GameOver A

Wins1, GameOver, Wins;, and all the variables in
GameQuver and Wins;. Of these, the only subformula that
is undefined in some of the states of the abstracted structure
is @5. @4 is not undefined only where GameQOver is true.
It follows that we cannot establish whether @5 holds on the
system.

We now therefore execute the refinement procedure RE-
FINE. This returns the same action abstraction function o' =
« and the state abstraction function ¢’ such that o’ (s) = o(s)
for s satisfying GameOQOwver and ¢'(s) = (o(s), II(s)) for
all the remaining states. Let 1.5 be the abstract system ob-
tained by refining the initial abstraction by means of (o, o”).

Like 159, the system I.S™ has only three global actions;
its number of states can be bounded by 30079730 - 4 ~ 108.
A fragment of this structure is presented in Figure 2. This is
a size that can easily be verified by a modern model checker.

Consider now F' = { foroupier } Where foroupier 1S @ strat-
egy for Croupier that selects action 1 in states Cy, ..., C13,
action 2 in states Ciy,...,C55 and € at other points. Fig-
ure 2 shows that out(Cy, F') consists of the paths of the
form Cy . .. Co6Go Gy . . . G12G) 3G 13+, where G, = (G} +

+ G}?). It can be checked that all these paths satisfy
F(GameOver A Winsy). It follows that @, is satisfied in
the refinement and therefore, by Theorem 12, we have that it
also holds on the concrete model 1.S.

6 Conclusions

Model checking multiagent systems is now a well-established
area of research with results ranging from theoretical investi-
gations to sophisticated implementations. While two notable
implementations, JMOCHA and MCMAS, support ATL as a
specification language, neither provides abstraction function-
alities. Yet, it is well known that abstraction is a fundamental
technique to apply when verifying concrete systems.

Abstraction, including refinement, has been developed for
epistemic specifications (Cohen et al. 2009) and, of course,
temporal ones (Clarke, Grumberg, and Long 1994; Clarke
et al. 2000). But in the context of ATL specifications, most
of the work has so far focused on the theoretical aspects of
the model checking problem, including realistic settings with
incomplete information. Yet, to use ATL specifications in
practice there is a compelling need for powerful abstraction
techniques to reduce the state-spaces of concrete systems.
In this paper we intended to make a contribution in this
direction.

Our long-term research objective is to verify concrete sys-
tems via under-/over-approximations. We have laid the foun-
dations of this by defining a novel three-valued semantics
for ATL. We have shown this to be a conservative extension
of the classical two-valued one. We have then provided a
constructive definition to derive a first, coarse, yet potentially
very effective abstraction, and a refinement algorithm that
splits states potentially resolving uncertainty in the truth value
of the specifications being checked. Applying the procedure
to a card game of incomplete information. That showed the
first abstraction reduced the state-space by a factor of over
10%* to a well-manageable state-space of approximately 10°.
The first specification of interest was satisfied on the first
abstraction; the second required us to execute the refinement

algorithm which resulted in a model of approximately 108
states. The refined model enabled us to decide on the truth
of the second specification; also note that state-spaces in the
region of 10® can be verified by a model checker for ATL
such as MCMAS.

References

Alur, R.; de Alfaro, L.; Grosu, R.; Henzinger, T. A.; Kang,
M.; Kirsch, C. M.; Majumdar, R.; Mang, F.; and Wang, B.-Y.
2001. jMocha: A model checking tool that exploits design
structure. In Proceedings of the 23rd International Confer-
ence on Software Engineering (ICSE0I), 835-836. IEEE.

Alur, R.; Henzinger, T. A.; and Kupferman, O. 2002.
Alternating-time temporal logic. Journal of the ACM
49(5):672-713.

Belnap, N., and Perloff, M. 1990. Seeing to it that: A canon-
ical form for agentives. In Knowledge Representation and
Defeasible Reasoning, volume 5 of Studies in Cognitive Sys-
tems, 167-190. Springer.

Bulling, N.; Dix, J.; and Chesiievar, C. I. 2008. Modelling
coalitions: ATL + argumentation. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMASO0S), 681-688. IFAAMAS.

Chatterjee, K.; Henzinger, T.; and Piterman, N. 2007. Strat-
egy logic. In Proceedings of the 18th International Confer-
ence on Concurrency Theory (CONCUROQ7), volume 4703 of
Lecture Notes in Computer Science, 59-73. Springer.

Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-guided abstraction refinement. In
Proceedings of the 12th International Conference on Com-
puter Aided Verification (CAV00), volume 1855 of Lecture
Notes in Computer Science, 154—169. Springer.

Clarke, E. M.; Grumberg, O.; and Long, D. 1994. Model
checking and abstractions. ACM Transactions on Program-
ming Languages and Systems 16(5):1512—1542.

Cohen, M.; Dam, M.; Lomuscio, A.; and Russo, F. 2009.
Abstraction in model checking multi-agent systems. In Pro-
ceedings of the 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS09), 945-952. IFAA-
MAS Press.

Dima, C., and Tiplea, F. L. 2011. Model-checking ATL
under imperfect information and perfect recall semantics is
undecidable. arXiv preprint arXiv:1102.4225.

Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. MIT Press.

Jamroga, W., and Agotnes, T. 2007. Modular interpreted
systems. In Proceedings of the 6th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MASO07), 131-138. IFAAMAS.

Koster, M., and Lohmann, P. 2012. Abstraction for model
checking modular interpreted systems over ATL. In Program-
ming Multi-Agent Systems, volume 7217 of Lecture Notes in
Computer Science. Springer. 95-113.

Lomuscio, A., and Raimondi, F. 2006a. The complexity of
model checking concurrent programs against CTLK spec-

ifications. In DALTO06, volume 4327 of Lecture Notes in
Computer Science, 29—-42.

Lomuscio, A., and Raimondi, F. 2006b. Model checking
knowledge, strategies, and games in multi-agent systems.
In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems (AAMAS06), 161—
168. ACM Press.

Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS: A
model checker for the verification of multi-agent systems. In
Proceedings of the 21th International Conference on Com-
puter Aided Verification (CAV09), volume 5643 of Lecture
Notes in Computer Science, 682—688. Springer.

Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. Y. 2012.
What makes ATL* decidable? A decidable fragment of strat-
egy logic. In Proceedings of the 23th International Confer-
ence on Concurrency Theory (CONCURI2), volume 7454 of
Lecture Notes in Computer Science. Springer. 193-208.

Schobbens, P.-Y. 2004. Alternating-time logic with imperfect
recall. Electronic Notes in Theoretical Computer Science
85(2):82-93.

