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Abstract

Artifact-centric systems are a recent paradigm for represent-
ing and implementing business processes. We present further
results on the verification problem of artifact-centric systems
specified by means of FO-CTL specifications. While the gen-
eral problem is known to be undecidable, results in the lit-
erature prove decidability for artifact systems with infinite
domains under boundedness and conditions such as unifor-
mity. We here follow a different approach and investigate the
general case with infinite domains. We show decidability of
the model checking problem for the class of artifact-centric
systems whose database schemas consist of a single unary
relation, and we show that that the problem is undecidable if
artifact systems are defined by using one binary relation or
two unary relations.

1 Introduction
Artifact-centric systems (ACS) have been put forward as
a framework for reasoning about and implementing data-
aware business processes (Alonso et al. 2004; Hull 2008;
Hull et al. 2011). Artifacts are constructs consisting of data
and lifecycles. The data component is given by means of
a relational database, i.e., a set of finite relations with fixed
schema. The lifecycles describe how the artifacts may interact
and evolve over time.

ACS can be programmed via the Guard-Stage-Milestone
(GSM) language (Hull et al. 2011). The iHub (Heath III
et al. 2013) is a production and execution suite for ACS
implemented in GSM. Both GSM and the iHub are designed
to help stakeholders encode business interactions intuitively
and efficiently.

A problem that naturally arises is whether ACS are cor-
rect against specifications. GSMC, a model checking tool
for GSM systems, has recently been put forward (Gonzalez,
Griesmayer, and Lomuscio 2012) to assess this problem.

While GSMC has shown considerable promise, verifying
GSM programs via model checking remains highly problem-
atic. Classical techniques based on model checking (Clarke,
Grumberg, and Peled 1999) are typically insufficient as they
normally tackle finite-state systems. Yet artifacts exhibit in-
finitely many different possible configurations. It is therefore
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important to establish at a fundamental level under what
conditions an artifact-system can actually be verified.

The verification problem for ACS specified by quantified
temporal specifications is known to be undecidable (Deutsch
et al. 2009; Hariri et al. 2011; Belardinelli, Lomuscio, and
Patrizi 2011) and considerable research has gone into the
exploration of decidable fragments.

Contribution. In this paper we explore novel boundaries
in the decidability conditions for the model checking prob-
lem of ACS against quantified, temporal specifications. While
much of the recent work has focused on the identification of
relational properties on the generated models for complete
and decidable abstraction procedures, an alternative avenue of
investigation consists in considering classes of specifications
for the artifacts’ transitions. To this end, we here define the
logic CARL which we use to model the artifacts’ lifecycles.
By using CARL to model the artifacts’ evolutions, we can ex-
press Boolean combinations of the basic relational properties:
“check that the relation is empty, “add one arbitrary element
to the relation”, “remove one arbitrary element”, and “leave
the relation unchanged”. We show that model checking ACS
described via CARL against reachability specifications is un-
decidable thereby providing further insights on the difficulty
of verifying data-aware systems.

We then focus on restricting the database schema appear-
ing in the ACS. We show that the model checking problem
remains undecidable if the schema contain either one rela-
tion of arity greater than one, or at least two arbitrary re-
lations. Our undecidability proofs involve the encoding of
two-counter machines (Minsky 1967).

Finally, we show that the model checking problem is decid-
able if we consider only artifacts whose schema consists of a
single unary relation and sentence-atomic temporal specifi-
cations. We prove this result in three steps. Firstly, we study
the expressive power of first-order logic over unary relations
using Ehrenfeucht-Fraisse games. Then, we show how to
transform an ACS and a specification into an infinite Kripke
structure and a CTL specification. Finally, we prove that the
resulting infinite Kripke structure can be encoded as a push-
down system. We then define a CTL∗ specification that the
pushdown system satisfies if and only if the ACS satisfies
the original FO-CTL specification. Since the former problem
is decidable (Bozzelli 2007), we conclude that the latter is
decidable as well.



Related Work. Previous research on verifying artifact-
centric systems has focused on abstraction techniques where
semantical conditions such as “uniformity” and “weak
acyclicity” are shown to guarantee decidability under the
assumption that systems are bounded, i.e., either the states
or the runs do not contain more than a given number
of predicates (Belardinelli, Lomuscio, and Patrizi 2012b;
Hariri et al. 2013). Differently from these approaches, the
investigation here presented makes no assumption on the
boundedness of the artifact-systems to be studied.

Model checking artifact-centric systems against a quan-
tified version of LTL was studied in (Deutsch et al. 2009).
It was shown that the problem is generally undecidable, but
becomes decidable if one considers guarded artifact systems
and guarded specifications, a form of quantification where
no variables appear free in a temporal context. A PSPACE
model checking algorithm for fixed-arity schemas is also
shown in (Deutsch et al. 2009). While the results presented
are positive, compared to the classes of artifacts studied here,
the expressivity of the fragment studied is limited.

More recently (Hariri et al. 2013) presented results on
the model checking problem against specifications given
in the first-order extension of the µ-calculus. The problem
is undecidable in this setting; however, it is shown that by
adding additional restrictions, including forbidding fresh,
unbounded data along a run, the problem is decidable. Also in
that line, and differently from this paper, systems are assumed
to be bounded and sufficient conditions based on acyclicity
for boundedness are established.

While all results above focus on complete procedures, in
recent work (Belardinelli and Lomuscio 2013) partial model
checking procedures against the universal fragment of FO-
CTL have been explored. Differently from (Belardinelli, Lo-
muscio, and Patrizi 2012b) these are given for bounded but
possibly non-uniform artifact-centric systems. Conversely,
the results established in this paper concern unbounded, but
uniform systems.

Scheme of the paper. In Section 2 we provide the back-
ground on ACS and relevant concepts, and we define the
model checking problem. We observe that the problem is
generally undecidable. In Section 3 we investigate the impli-
cations of restricting the database schemas and the expressive
power of the language used to model the artifacts’ lifecycles.
We show that under various restrictions the problem remains
undecidable. In Section 4 we characterise a scenario in which
the model checking problem is decidable and explore its com-
plexity. Taken together the results in the two sections show
that the conditions we identify can be interpreted as being
maximal for decidability. We conclude in Section 5.

2 Verifying Artifact Systems
Artifacts are operational models of business process (Cohn
and Hull 2009). Each artifact is composed by two parts: a
data model, which captures a fragment of the structure of
the information relevant to the process, and a lifecycle model,
which is a specification of their evolution. In this paper we
follow the formalisation proposed in (Hariri et al. 2011) and
define artifact systems by means of a (relational) database

and a set of artifact transitions, which account for the artifact
data models and the artifact lifecycles, respectively.

Definition 1 (Database schema). A database schema is a set
D = {P1/a1, . . . , Pn/an} of relation (or predicate) symbols
Pi, each associated with its arity ai ∈ N.

Definition 2 (Database interpretation). Given a database
schema D, a D-interpretation (or D-instance) over an count-
able interpretation domain U is a mapping D associating
each relation symbol Pi with a finite ai-ary relation over U ,
i.e., D(Pi) ⊆ Uai .

The set of all D-interpretations over a given domain U is
denoted by ID(U). The active domain of D, adom(D), is
the set of all U -elements occurring in some tuple of some
predicate interpretation D(Pi).

2.1 Artifact systems
To model transitions between states of the underlying
databases, we use unprimed and primed relational symbols
fromD, that refer to relations in the current and the successor
state, respectively. Intuitively, given two states (i.e., two D-
interpretations) D and D′, the operator ⊕ constructs a new
“joint” interpretationD⊕D′, interpreting unprimed relational
symbols in D, and primed in D′.

As we study artifacts systems whose transitions are de-
scribed by various logics, below we introduce the notion of
an artifact system over a logic LD.

Definition 3 (LD-artifact system). An LD-artifact system is
a tuple S = 〈D, U,D0,T〉, where:

• D = {P1/a1, . . . , Pn/an} is a database schema;
• U is a countable interpretation domain;
• D0 is an initial database instance;
• T is a finite set of sentences of the logic LD, called artifact

transitions.

In the definition above we assume that the sentences of
the logic LD state properties of D ⊕ D′, i.e., the notion
“D ⊕D′ |=LD Φ” is defined for every sentence Φ of LD.

The semantics of an artifact system is given in terms of its
possible executions, captured by a Kripke structure, whose
states are instances of the database schema and whose transi-
tions correspond to executions of artifact transitions.

Definition 4 (Kripke structures). A Kripke structure is a tuple
K = 〈Σ,D0, τ, π〉, where Σ is the set of states; D0 ∈ Σ is
the initial state; τ ⊆ Σ×Σ is the transition relation; π is the
labelling function.

For convenience, we assume a single initial state, but all
the results presented below also hold if we allow any finite
number of initial states. When the labelling function is irrel-
evant, we will drop it and represent a Kripke structure as a
triple K = 〈Σ,D0, τ〉.

Note that in the definition above we include states not
reachable from D0 by τ . This is not the case below.

Definition 5 (Model of an artifact system). Given an artifact
system S = 〈D, U,D0,T〉 over LD, the model of S is the
Kripke structure KS = 〈Σ,D0, τ〉, where:



• Σ ⊆ ID(U) is the set of states reachable from D0 using
τ ;

• D0 ∈ Σ is the initial state;
• τ is the transition relation such that τ(D,D′) for some

artifact transition Φ ∈ T, D ⊕D′ |=LD Φ.

We denote the unique model of an artifact system S by
KS .

Following (Belardinelli, Lomuscio, and Patrizi 2011), we
define runs on a Kripke structure.

Definition 6 (K-runs). Given an artifact system S and its
model K = 〈Σ,D0, τ〉, a K-run r from a K-state D ∈ Σ is
an infinite sequence of K-states r = D0 → D1 → · · · such
that D0 = D and τ(Di, Di+1), for i ≥ 0. For every run r
and i ≥ 0, we define r(i) as Di.

Note that, unlike much of the literature on the subject, we
do not require the runs to be bounded.

Also note that we consider only infinite, countable inter-
pretation domains. To make the notation lighter, we assume
without loss of generality that the interpretation domain is
always the set of naturals N.

2.2 Model checking artifact systems
In the following we use the logic FOVD,C to define the tran-
sitions of artifact-centric systems. The logic FOVD,C is the
fragment of first-order logic in which formulae are built by us-
ing predicates from D ⊕D′, constants from C, and variables
from V .

Definition 7 (Logic FOVD,C ). Given a database schemaD =

{P1/a1, . . . , Pn/an}, the language of the logic FOVD,C is
defined by the following BNF:

Φ ::= t = t′ | Pi(~t) | P ′i (~t) | ¬Φ | Φ ∨ Φ | ∀xΦ,

where t, t ∈ C ∪ V and ~t is an ai-tuple of elements from
C ∪ V .

We use parentheses as standard when required.
Let * = {x, y, z, x1, . . . } be a countable set of variables

and 2 = {x, y}. We consider the following logics: FO*
D,N,

FO*
D,∅, and FO2

D,∅. We denote formulae in these logics with
Greek upper case letters Φ, Ψ , while specifications against
which systems are checked will be denoted by Greek lower
case letters ϕ, ψ.

We use the standard abbreviations ∃, >, ⊥, ∧,⇒, and 6=.
Free and bound variables are defined as standard. A sentence
is a formula with no free variables.

A U -assignment is a total function σ : V 7→ U . For
technical convenience, we assume that every U -assignment σ
is extended to C and is the identity on it, i.e., ∀c ∈ C, σ(c) =
c. Given an assignment σ, we denote by σxu the U -assignment
s.t. σxu(x) = u and σxu(x) = σ(x), for every x ∈ V s.t.
x 6= x.

We adjust the standard active-domain semantics used in
the artifact systems literature (Belardinelli, Lomuscio, and
Patrizi 2011; 2012a) to the setting here defined.

Definition 8 (Active-Domain Semantics for FO-formulae).
Given a database schema D, two D-interpretations D,D′

over N, an N-assignment σ, and a FO-formula Φ ∈ FO∗D,C
over D, we inductively define whether D ⊕ D′ satisfies Φ
under σ, written (D ⊕D′, σ) |= Φ, as follows:

(D ⊕D′, σ) |= t = t iff σ(t) = σ(t)

(D ⊕D′, σ) |= Pi(~t) iff 〈σ(t1), . . . , σ(t`)〉 ∈ D(Pi)

(D ⊕D′, σ) |= P ′i (~t) iff 〈σ(t1), . . . , σ(t`)〉 ∈ D′(Pi)
(D ⊕D′, σ) |= ¬Φ iff (D ⊕D′, σ) 6|= Φ

(D ⊕D′, σ) |= Φ ∨ Ψ iff (D ⊕D′, σ) |= Φ

or (D ⊕D′, σ) |= Ψ

(D ⊕D′, σ) |= ∀xΦ iff for every u ∈ adom(D)

(D ⊕D′, σxu) |= Φ

A formula Φ is true in D ⊕D′, written D ⊕D′ |= Φ, iff
(D ⊕D′, σ) |= Φ for all N-assignments σ.

Notice that two constants map the same element iff they
are the same constant.

We focus on the problem of verifying an artifact system
against a temporal specification of interest. We adjust the
notion of sentence-atomic FO-CTL (Belardinelli, Lomuscio,
and Patrizi 2011) to the case of logic FO*

D,N.
Definition 9 (FO saCTL formulae). Given an artifact system
S = 〈D,N, D0,T〉, the language of sentence-atomic FO-
CTL (denoted by FO saCTL) formulae over S is inductively
defined as follows:

ϕ ::= ΦP | ¬ϕ | ϕ ∨ ϕ | AXϕ | AϕUϕ | EϕUϕ
where ΦP is an FO*

D,N sentence where no primed terms nor
primed predicates appear.

Note from above that while we use the FO*
D,N logic as

the building block for artifacts’ descriptions we do not use
primed variables in the specifications.

The notions of free and bound variables can be extended
in the obvious way to FO saCTL. We use the standard ab-
breviations EXϕ ≡ ¬AX¬ϕ, AFϕ ≡ A>Uϕ, AGϕ ≡
¬E>U¬ϕ, EFϕ ≡ E>Uϕ, and EGϕ ≡ ¬A>U¬ϕ.

For a system S, the semantics of FO saCTL formulae is
provided in terms of its model KS .
Definition 10 (Satisfaction for FO saCTL). Consider a sys-
tem S and its model KS , a formula ϕ of FO saCTL and a
KS-state D ∈ Σ, the satisfaction relation |= is inductively
defined as follows:

(KS , D) |= ΦP iff D |= ΦP

(KS , D) |= ¬ϕ iff (KS , D) 6|= ϕ

(KS , D) |= ϕ ∨ ψ iff (KS , D) |= ϕ or (KS , D) |= ψ

(KS , D) |= AXϕ iff for all KS -runs r s.t. r(0) = D,
(KS , r(1)) |= ϕ

(KS , D) |= AϕUψ iff for all KS -runs r s.t. r(0) = D,

∃k ≥ 0 s.t. (KS , r(k)) |= ψ and
∀j s.t. 0 ≤ j < k, (KS , r(j)) |= ϕ

(KS , D) |= EϕUψ iff for some KS -run r, r(0) = D,
∃k ≥ 0 s.t. (KS , r(k)) |= ψ, and
∀j s.t. 0 ≤ j < k, (KS , r(j)) |= ϕ



A formula ϕ is true in KS , written KS |= ϕ, iff (KS , D0) |=
ϕ. We say that S satisfies ϕ, written S |= ϕ, iff KS |= ϕ.

Observe that satisfaction of FO*
D,N is defined on joins

D ⊕ D′ as it deals with primed and unprimed predicates.
Here we write D |= ΦP because we only need to interpret
only the unprimed predicates.

In the rest of this paper we focus on the following problem.
Definition 11 (Model checking problem). Given a logic LD,
an LD-artifact system S and a FO saCTL specification ϕ,
the model checking problem involves establishing whether
KS |= ϕ.

Observe that the input can be given in finite terms, as the
description of an LD-artifact system is finite; so the problem
is well-defined. This problem can be shown to be undecidable
in the general case.
Theorem 12. Model checking an arbitrary FO*

D,N-artifact
system against a FO saCTL specification is undecidable.

Proof idea. The proof in (Belardinelli, Lomuscio, and Patrizi
2011) can be adapted to this case.

In the following we will explore the decidability for re-
strictions of the problem above.

3 Model Checking CARLD,N–Artifact
Systems

One possibility to obtain decidability is to consider a weak
form of quantification when writing artifacts’ descriptions.
For example we could consider the two variable fragment
of first-order logic (Grädel, Kolaitis, and Vardi 1997) or the
guarded fragment (Grädel 1999).

In this paper we follow a different approach and address
the question of whether one can choose a reasonable logic
LD in the artifacts’ descriptions so that model checking LD-
artifact systems is decidable.

First, we identify some essential properties of the artifact
systems. Then, we define the logic capable of expressing only
Boolean combinations of such properties. Finally, we show
that in most cases model checking artifact systems defined
using this logic is undecidable.

In the proofs that follow, we often use the FO saCTL spec-
ification EG>. This is intended to show that the negative
results we present cannot be overcome by adopting a weaker
specification language.

3.1 The logic CARLD,N
The logic CARLD,N describes properties of unary relations
only. CARLD,N expresses Boolean combinations of the fol-
lowing properties of an unary relation P :
• P contains a constant c;
• P is empty;
• One element is added to P , i.e., P ′ = P ∪ {x} for some
x 6∈ P ;

• One element is removed from P , i.e., P = P ′ ∪ {x} for
some x 6∈ P ′;

• P does not change, i.e., P = P ′.

These properties are very basic and natural, but are sufficient
to express interesting properties for artifact systems. However,
as we see below, even the properties above already induce
undecidability of the model checking problem.
Definition 13 (LogicCARLD,C ). Given a database schema
D = {P1/1, . . . , Pn/1}, the language of the logic
CARLD,C is inductively defined by the following BNF:

Φ ::= ¬Φ | Φ ∨ Φ | Pi(c) | P ′i (c) | EMPTY(Pi) |
EQUAL(Pi) | INSERT(Pi) | DELETE(Pi)

where c is an element of the set of constants C.
Recall that Pi(c) refers to the relation Pi before the transi-

tion, and P ′i (c) refers to the relation after the transition. For
convenience the formal semantics of CARLD,C is given by
translating it into FO2

D,N.

Definition 14 (Semantics of CARLD,N). We define a trans-
lation of T to FO2

D,N as follows.

T(¬Φ) = ¬T(Φ)
T(Φ1 ∨ Φ2) = T(Φ1) ∨ T(Φ2)

T(Pi(c)) = Pi(c)

T(P ′i (c)) = P ′i (c)

T(EMPTY(Pi)) = ∀x.¬Pi(x)
T(EQUAL(Pi)) = ∀x.P ′i (x)⇔ Pi(x)

T(INSERT(Pi)) = ∃x.¬Pi(x) ∧ P ′i (x)
∧ ∀y.y 6= x⇒ (Pi(y)⇔ P ′i (y))

T(DELETE(Pi)) = ∃x.Pi(x) ∧ ¬P ′i (x)
∧ ∀y.y 6= x⇒ (Pi(y)⇔ P ′i (y))

Then, the semantics of CARLD,N is defined using the se-
mantics of FO*

D,N by considering (D⊕D′, σ) |= Φ iff (D⊕
D′, σ) |= T(Φ).

3.2 Undecidability of model checking
CARLD,N-artifacts systems

A key result of this section is the following theorem.
Theorem 15. For any database schema D that contains two
unary relation symbols, model checking CARLD,N-artifact
systems against FO saCTL is undecidable.

The proof uses two-counter finite automata (Minsky ma-
chines) defined as follows.
Definition 16. A two-counter automaton is a tuple A =
〈Q, q0, qf , R〉, where Q = {q0, q1, . . . , qf}, q0 is an initial
state, qf is a final state, and R : Q × {>,⊥} × {>,⊥} ×
Q× {−1, 0, 1} × {−1, 0, 1} is the transition relation.

A configuration for a two-counter automata is a triple
(qi, n,m) where qi ∈ Q and n,m ∈ N. Let Empty(x)
be equal > if x = 0 and ⊥ otherwise. We define a rela-
tion →R such that for two configuration β1 = (qi, n,m),
β2 = (qj , n

′,m′) we have β1 →R β2 iff we have
(qi, Empty(n), Empty(m), qj , n

′ − n,m′ − m) ∈ R. A
run is a possibly infinite sequence of configurations such that
for all consecutive configurations β1, β2 we have β1 →R β2.



A run is accepting if it contains a configuration containing
qf .

The following lemma follows from (Minsky 1967).

Lemma 17. The problem whether there exists an infinite run
of a given two-counter automaton is undecidable.

We can now we prove Theorem 15.

Proof. For a given two-counter automaton A =
〈Q, q0, qf , R〉, we show how to define a CARLD,N-
artifact systems SA and an FO saCTL formula ϕ such that
SA |= ϕ iff A has an infinite run. Firstly, we construct a
system with tree relations, and then we show how one of the
relations can be removed.

Three relations. Let SA = 〈DA,N, DA0 ,TA〉, where
DA = {P1/1, P2/1, P3/1}, DA0 be such that P1 and P2

are empty and P3 is a singleton relation containing 0. Our
aim is to define the set TA so that each database interpre-
tation D = {PD1 , PD2 , PD3 } in the model KSA of SA satis-
fies |PD3 ∩ {0, . . . , f}| = 1 and represents a configuration
(qi, |PD1 |, |PD2 |) where qi ∈ PD3 . In other words, the size of
PD1 /PD2 represents the value of the first/second counter and
PD3 contains the state.

Let empty>(R) = EMPTY(R) and empty⊥(R) =
¬EMPTY(R). Let modify−1(R) = DELETE(R),
modify0(R) = EQUAL(R), and modify+1(R) =
INSERT(R).

For each tuple t = (qi, φ1, φ2, qj , ∆1, ∆2) ∈ R, we define
an artifact transition αt as:

P3(i) ∧ emptyφ1
(P1) ∧ emptyφ2

(P2) ∧ P ′3(j)

∧
∧

k 6=j,k≤f

¬P3(k) ∧modify∆1
(P1) ∧modify∆2

(P2)

Finally, let TA be the set of all αt. It can be observed that
paths in KSA represent the computations of A. Therefore,
there is an infinite path in KSA if and only if there is an infi-
nite run in ofA. The existence of an infinite path corresponds
to the truth of the formula EG>.

Two relations. We show that we do not need a relation to
store the states. The configuration description of a configura-
tion (q, n1, n2) of A is a triple (q, v1, v2) for vi ∈ {>,⊥, ?}
s.t. if vi = > then ni = 0, and if vi = ⊥ then ni > 0.
The transition description is a triple (q,∆1, ∆2) for ∆i ∈
{−1, 0, 1} that is intended to represent the artifact transition
“change the value of the i-th counter by ∆i and change the
state to q”.

Let Zc = {0, 1, . . . , 9|Q| − 1} and Za =
{9|Q|, . . . , 18|Q| − 1}. We choose an arbitrary bijection
function encodec : Q × {⊥,>, ?} × {⊥,>, ?} → Zc
to encode the configuration descriptions as numbers and
encodea : Q × {−1, 0,+1} × {−1, 0,+1} → Za to en-
code transition descriptions. Below we identify descriptions
with their encodings.

To simplify the proof, we describe the set T informally.
For X ⊆ Za ∪Zc, let exactly(X,R) be a formula stating

that R ∩ (Za ∪ Zc) = X . For R ∈ {P1, P
′
1, P2, P

′
2}, such a

formula can be easily expressed in CARLD,N.

A configuration β = (qi, n,m) will be encoded as
a database interpretation Dβ = (P β1 , P

β
2 ) such that

exactly({(q, ?, ?)}, P1), exactly(∅, P2), |P β1 | = n+ 1 and
|P β2 | = m. So, the initial interpretation of SA will be s.t.
P1 = {(q0, ?, ?)} and P2 = ∅.

The update of a configuration is performed in several steps
by using the rules described below. We will denote transi-
tions informally; e.g., “add n to P1” stands for ¬P1(n) ∧
P ′1(n) ∧ INSERT(P1), etc. The rules below should be de-
fined for all appropriate q, q′ ∈ Q, e1, e2 ∈ {⊥,>} and
∆1, ∆2 ∈ {−1, 0, 1}.

We use the following example to illustrate the encoding.
Let ν = (q1, 0, 1), ν′ = (q2, 1, 1), be such ν →R ν′ and
assume that |Q| = 5, i.e. Z contains only numbers less than
90. Assume that ν is encoded as P1 = {(q1, ?, ?)}, P2 =
{95}.

1. If P1((q, ?, ?)), then if EMPTY(P2), add (q, ?,>) to P2,
otherwise add (q, ?,⊥) to P2. In both cases, remove
(q, ?, ?) from P1.
In the example, P1 and P2 change as follows: P1 =
{}, P2 = {95, (q1, ?,>)}.

2. If EMPTY(P1) and P2((q, ?, e2)), add (q,>, e2) to P1,
otherwise add (q,⊥, e2) to P1. In both cases, remove
(q, ?,⊥) from P2.
In the example, P1 and P2 change as follows: P1 =
{(q,>,⊥)}, P2 = {95}.

3. If P1((q, e1, e2)) and (q, e1, e1, q
′, ∆1, ∆2) ∈ R, then add

(q′, ∆1, ∆2) to P1.
In the example, P1 and P2 change as follows: P1 =
{(q,>,⊥), (q′,+1, 0)}, P2 = {95}.

4. If P1((q
′, ∆1, ∆2)) and P1((q, e1, e2)), remove (q, e1, e2)

from P1 and modify P2 according to ∆2, i.e., if ∆2 = −1
then remove one element and so forth.
In the example, P1 and P2 change as follows: P1 =
{(q′,+1, 0)}, P2 = {95}.

5. If P1((q
′, ∆1, ∆2)) and P2 does not contain (q, e′1, e

′
2)

for any e′1, e
′
2, and ¬P2((q

′, ∆1, ∆2)), add (q′, ∆1, ∆2)
to P2.
In the example, P1 and P2 change as follows: P1 =
{(q′,+1, 0)}, P2 = {95, (q′,+1, 0)}.

6. If P1 and P2 contain (q′, ∆1, ∆2), remove (q′, ∆1, ∆2)
from P1 and add (q′, ?, ?) to P2. In the example,
P1 and P2 change as follows: P1 = {}, P2 =
{95, (q′,+1, 0), (q′, ?, ?)}.

7. If P2((q
′, ∆1, ∆2)) and ¬P1((q

′, ∆1, ∆2)), then modify
P1 according to ∆1 and remove (q′, ∆1, ∆2) from P2.
In the example, P1 and P2 change as follows: P1 =
{1543}, P2 = {95, (q′, ?, ?)}.

8. If P2((q
′, ?, ?)), remove (q′, ?, ?) from P2 and add it to

P1.
In the example, P1 and P2 change as follows: P1 =
{1543, (q′, ?, ?)}, P2 = {95}.

Clearly, P1 = {1543, (q′, ?, ?)}, P2 = {95} describes the
configuration (q′, 1, 1).



Note that the rules above are formalised by means of con-
junctions. For example, and instance of the rule 1 is for-
malised as P1((q, ?, ?)) ∧ EMPTY(P2) ∧ ¬P2((q, ?,>)) ∧
P ′2((q, ?,>))∧¬P ′1((q, ?, ?))∧ INSERT(P2)∧DELETE(P1).
In this case, the conjunct DELETE(P1) assures that (q, ?, ?)
is the only element deleted from P1, while INSERT(P2) and
¬P2((q, ?,>)) guarantee that (q, ?,>) is the only element
added to P2.

Paths in KSA are such that each 8-th state represents the
configuration of A, and the subpath containing every 8-th
state of paths ofKSA represents computations. So there exists
an infinite path in KSA if and only if there is an infinite run
of A.

3.3 Undecidability of model checking
CARLD,∅-artifacts systems

In the proof of Theorem 15 we use arbitrary many constants.
However, this is not the source of undecidability.

Theorem 18. Model checking CARLD,∅-artifact systems
against FO saCTL is undecidable.

Proof. For a given two-counter automaton A, we show how
to define CARLD,∅-artifact systems SA and an FO saCTL
formula ϕ such that S |= ϕ iff A has an infinite run. The
proof is similar to the proof of Theorem 15 in case of three
relations, except that now we use additional relations to rep-
resent the state of A.

More precisely, we define SA as 〈DA,N, DA0 ,TA〉, where
D = {P1/1, . . . , P|Q|+2/1},D0 is such that all Pi are empty
except for P3 which is a singleton relation containing 0.

For each tuple t = (qi, φ1, φ2, qj , ∆1, ∆2) ∈ R, we
define an artifact transition αt as:
¬EMPTY(Pi+2) ∧ emptyφ1(P1) ∧ emptyφ2(P2) ∧
¬EMPTY(P ′j+2) ∧

∧
k 6=j EMPTY(P ′k+2) ∧

modify∆1(P1) ∧modify∆2(P2)
It can be shown that KSA represent the computations of

A.

3.4 Further results
Since there is a translation from CARLD,N to FO2

D,N, we
obtain the following.

Corollary 19. Model checking FO2
D,N-artifact systems

against FO saCTL whose database schema contains two
unary symbols is undecidable.

Corollary 20. Model checking FO2
D,∅-artifact systems

against FO saCTL is undecidable.

It can also be shown that including a single binary relation
leads to undecidability. This result can be extended to any
relations of arity greater that two.

Theorem 21. Model checking FO2
D,N-artifact systems

whose database contains a single binary relation against
FO saCTL is undecidable.

Proof. We use the constants 1, 2, 3 to simulate three rela-
tions.

As before we define SA as 〈DA,N, DA0 ,TA〉. This time,
we take D = {P1/2} and D0 is such that P1 = {(3, 0)}. We

modify the set of artifact transitions from the proof in case of
three unary relations in the following manner:

• Replace Pi(t) by P1(i, t) and P ′i (t) by P ′1(i, t) .
• Replace EMPTY(Pi) by ∀x¬P1(i, x).
• Replace EQUAL(Pi) by ∀x.P ′1(i, x)⇔ P1(i, x).
• Replace INSERT(Pi) by ∃x.¬P1(i, x)∧P ′1(i, x)∧∀y.y 6=
x⇒ (P1(i, x)⇔ P ′1(i, x)).

• Replace DELETE(Pi) by ∃x.¬P ′1(i, x)∧P1(i, x)∧∀y.y 6=
x⇒ (P1(i, x)⇔ P ′1(i, x)).

It can be checked that paths inKSA represent the computa-
tions ofA. So an infinite path exists iff there exists an infinite
computation of A.

4 Model Checking FO*
D,N–Artifact Systems

with a Single Unary Relation
While the results of the previous section are negative, in
the following we identify a fragment for which the model
checking problem is decidable.

Theorem 22. Model checking FO*
D,N-artifact systems

whose database consists of a single unary relation symbol
against FO saCTL is decidable.

The above identifies a restriction on the database schema,
but allows the most general logic here considered to define
the transitions of the systems. It is instructive to see that
restricting our attention to unary relations still enables us to
define interesting classes of systems.

Example 23. An infinite state counter machine can help or-
ganising queues. The task of the machine is to print numbered
tickets, display the ticket number on a screen, and remove
the number from memory. The machine has three states: ON
where it prints tickets and displays numbers, CLOSING
where it displays numbers but will not print tickets, andOFF
where it remains idle.

The machine can be described as an artifact system with a
database consisting of a single unary relation. We can use the
constants 0, 1 and 2 to represent the statesON ,CLOSING
and OFF , and all other natural numbers to represent tickets.
An example of a property that may be expressed in FO saCTL
is whether it is always possible to remove all numbers from
the machine’s memory. It follows from Theorem 22 that check-
ing this specification is decidable.

The rest of this section is organised as follows. Firstly, we
investigate the expressive power of the logic FO*

D⊕D′,N. In
the following subsection we define the logic Card and we
show that any set of artifact transitions defined in FO*

D⊕D′,N
can be replaced by an equivalent set of formulae from the
logic Card. Then, in Subsection 4.2 we show how to trans-
form an artifact system S into an infinite Kripke structure K′
and an FO saCTL property ϕ into a CTL property ϕ′ such
thatKS |= ϕ iffK′ |= ϕ′. In Subsection 4.3 we define a push-
down system P and a CTL∗ formula ϕ′′ such that K′ |= ϕ′

iff P |= ϕ′′. We conclude in Subsection 4.4 by giving the
algorithm solving the decidability of Theorem 22.

In the following we assume D = {P/1}.



4.1 The logic Card
A grounded literal over D is one of the following formulae:
P (c), ¬P (c), P ′(c), ¬P ′(c), where c stands for any constant.
Definition 24. A formula is called a Card-transition if it is
of the form Υ ∧

∧
i∈I ∃γibixΦi where Υ is a conjunction

of grounded literals, γi ∈ {≥,≤}, bi are natural numbers
(including 0), and Φi are a boolean combinations of P (x)
and P ′(x).

The formulae of the logic Card are disjunctions of Card-
transitions.

Intuitively, ∃≤bxΦ(x) represents the fact that there are at
most b distinct elements satisfying Φ; conversely ∃≥bxΦ(x)
signifies that there are at least b distinct elements satisfying
Φ. The formal semantics of the logic Card is defined by the
translation into FO*

D,N that simply replaces each ∃≥bΦ(x)
with ∃x1, . . . , xb.

∧
i 6=j xi 6= xj ∧

∧
i Φ(xi) and ∃≤bΦ(x)

with ∀x1, . . . , xb+1.
∧
i 6=j xi 6= xj ⇒

∨
i ¬Φ(xi).

As we prove below, the logics Card and FO*
D,N have the

same expressive power.
Example 25. Consider the formula ∀y(y 6= c1 ⇒ (P (y)⇔
P ′(y))). This is equivalent to the disjunction of the following
formulae:
• P (c1) ∧ P ′(c1) ∧ ∃≤0x(P (x)⇔ ¬P ′(x))
• ¬P (c1) ∧ ¬P ′(c1) ∧ ∃≤0x(P (x)⇔ ¬P ′(x))
• P (c1) ∧ ¬P ′(c1) ∧ ∃=1x(P (x) ∧ ¬P ′(x))
∧ ∃≤0x(¬P (x) ∧ P ′(x))

• ¬P (c1) ∧ P ′(c1) ∧ ∃≤0x(P (x) ∧ ¬P ′(x))
∧ ∃=1x(¬P (x) ∧ P ′(x))

where ∃=1Φ stands for ∃≤1Φ ∧ ∃≥1Φ.

Lemma 26. Let Ψ be a FO*
D⊕D′,N sentence. Then, there is

a Card formula Ψ ′ equivalent to Ψ such that the size of Ψ ′ is
exponential in the size of Ψ .

Proof. The logic FO*
D⊕D′,N is a fragment of first-order

logic, so we can use standard tools. The result follows by
applying Ehrenfeucht-Fraisse games to the case of unary re-
lations. Indeed, for any property Ψ of FO*

D⊕D′,N there is a
number n ≤ |Ψ | such that if duplicator wins an n rounds
game on the two structures, then both structures satisfy Ψ or
none of them does.

Let C be the set of constants from Ψ . Given two structures
A,B we write A ∼C B if for all constants c ∈ C we have
PA(c) iff PB(c) and P ′A(c) iff P ′B(c).

Let cnt(Φ(x)) be the number of elements not from C
satisfying Φ(x) and cntn(Φ(X)) be equal to min(n +
1, cnt(Φ(x))). For each model A, we define cntn(A) as a
tuple (r, s, t, u) where

r = cntn(PA(x) ∧ P ′A(x))
s = cntn(PA(x) ∧ ¬P ′A(x))
t = cntn(¬PA(x) ∧ P ′A(x))
u = cntn(¬PA(x) ∧ ¬P ′A(x))
That is, if cntn(A) = (1, n + 1, 3, 4), then A contains 1

world not from C satisfying PA(x) ∧ P ′A(x), more than n
worlds not from C satisfying PA(x) ∧ ¬P ′A(x) and so on.

Let A and B be two structures such that A ∼C B and
cntn(A) = cntn(B). On these structures, duplicator has a
winning strategy and therefore Ψ cannot distinguish them.

We construct a Card-transition ΨA,A′,r,s,t,u such that A
satisfies ΨA,A′,r,s,t,u iff cntn(A) = (r, s, t, u) and A ∼C B.
Let r′ = r + |A ∩ (C \ A′)|, s′ = s + |(C \ A) ∩ A′|,
t′ = t + |A ∩ A′| and u′ = u + |(C \ A) ∩ (C \ A′)|. Let
ΨA,A′,r,s,t,u be the conjunction of the following formulae:

1.
∧
c∈A P (c) ∧

∧
c∈C\A ¬P (c)

2.
∧
c∈A′ P ′(c) ∧

∧
c∈C\A′ ¬P ′(c)

3. ∃≥r′x(P (x) ∧ P ′(x))
4. only if r < n+ 1: ∃≤r′x(P (x) ∧ P ′(x))
5. ∃≥s′x(P (x) ∧ ¬P ′(x))
6. only if s < n+ 1: ∃≤s′x(P (x) ∧ ¬P ′(x))
7. ∃≥t′x(¬P (x) ∧ P ′(x))
8. only if t < n+ 1: ∃≤t′x(¬P (x) ∧ P ′(x))
9. ∃≥u′x(¬P (x) ∧ ¬P ′(x))

10. only if u < n+ 1: ∃≤u′x(¬P (x) ∧ ¬P ′(x))

The formula ΨA,A′,r,s,t,u is indeed a Card-transition.
Let XΨ be the set of all the formulae of the form

ΨA,A′,r,s,t,u such that there is a structure that satisfies
Ψ ∧ ΨA,A′,r,s,t,u, and let Ψ ′ be the disjunction of all the
formulae in XΨ . We show that any structure A satisfies Ψ if
and only if it satisfies Ψ ′.

Assume that A satisfies Ψ . Let A = {c ∈ C | PA(c)},
A′ = {c ∈ C | P ′A(c)} and (r, s, t, u) = cntn(A). Obvi-
ously, A satisfies ΨA,A′,r,s,t,u ∧ Ψ , therefore ΨA,A′,r,s,t,u is
in XΨ and A satisfies Ψ ′.

Assume that A satisfies Ψ ′. It follows that A satisfies
ΨA,A′,r,s,t,u for some A,A′, r, s, t, u such that there is a
structure B satisfying ΨA,A′,r,s,t,u ∧ Ψ . So A ∼C B and
cntn(A) = cntn(B), and therefore, by the Ehrenfeucht-
Fraisse argument presented above, A satisfies Ψ .

Therefore we have constructed a Card formula Ψ ′ that
is equivalent to Ψ . A quick check shows that the number of
elements in XΨ is bounded by 22|C| ·n4, which is exponential
in size of Ψ . Note that if we consider formulae with a fixed
number of constants, then the resulting formula is polynomial
in size of Φ.

The above proof is constructive and can be mechanised.
As remarked, the construction gives a Card formula which is
exponential in the size of the original FO*

D⊕D′,N formula.
Note that for any set of artifact transitions T and formulae

Ψ , Ψ ′, the sets T∪ {Ψ, Ψ ′} and T∪ {Ψ ∨ Ψ ′} are equivalent;
i.e., they prescribe the same transitions. Therefore, in the rest
of this section we assume without loss of generality that all
the artifact transitions are Card-transitions.

4.2 Infinite Kripke structures
Let S = 〈D,N, D0,T〉 be a Card-artifact system and let
KS = 〈Σ,D0, τ〉 be the model of S . Let ϕ be an FO saCTL
formula and Ca be the set of all constants appearing in T and
ϕ. We define a Kripke structure K′ and a CTL specification
ϕ′ such that KS |= ϕ iff K′ |= ϕ′.



Recall that the states of KS , the model of S, are in fact
instances of P . The aim of this section is to define a Kripke
structure K whose states represent the instances of P in the
following way: an instance D = {P} is represented by a pair
abs(D) = (P ∩ Ca, |P |), where P ∩ Ca is the set of relevant
constants that are in P and |P | is the number of elements in
P .

Let us consider K′ = 〈Σ′, s′0, τ ′, π′〉 where:
• Σ′ = {abs(s) | s ∈ Σ} is the set of abstractions of all

states in Σ,
• s′0 = abs(D0),
• π′ : Σ′ → Ca ∪ {e0, e1, . . . } is a labelling such that
π((A,n)) = A ∪ {e0, e1, . . . , en},

• τ ′ = {(abs(D), abs(D′)) | τ(D,D′)}.
We define a translation TCTL from FO saCTL formulae

into CTL formulae. Let Ψ be a FO*
D,N sentence and Ψ ′ be an

equivalent sentence that is a disjunction of Card-transitions.
We translate Ψ ′ into a CTL formula Ψ ′′ by replacing every
P (ci) with ci, ∃≥kxP (x) with ek, ∃≤kxP (x) with ¬ek+1,
∃≥kx¬P (x) with > (recall that P is always finite), and
∃≤kx¬P (x) with ⊥. Finally, we replace Ψ with Ψ ′′.

We define TCTL(ψ) as the result of applying the above
translation to all the FO*

D,N sentences in ψ, and we define
ϕ′ = TCTL(ϕ).

The following lemma follows from the fact that the logic
Card cannot distinguish between elements other than con-
stants. So when checking for satisfaction there is no need to
keep the precise information about the content of P .
Lemma 27. For an artifact system S, its model KS , an
FO saCTL specification ϕ, let K ′ and ϕ′ be the infinite
Kripke structure and the CTL specification defined as above.
Then, KS |= ϕ iff K′ |= ϕ′.

Proof (sketch). We show by induction that for every subfor-
mula ψ of ϕ and every D ∈ Σ, we have KS , D |= ψ iff
K′, abs(D) |= TCTL(ψ).

Consider the case when ψ = AXψ1 and let D
be any state of Σ. Firstly, assume that K′, abs(D) |=
TCTL(ψ). Let D1, . . . , Dn be all successors of D (i.e.
τ(D,Di) for all i). By the definition of τ ′, for each
i we have τ ′(abs(D), abs(Di)). Since abs(D) satisfies
TCTL(AXψ1), abs(Di) satisfies ψ1 and, by inductive as-
sumption, Di satisfies ψ1. Therefore, D satisfies ψ.

Assume that KS , D |= ψ. Let (A′, n′) be a successor of
abs(D) = (A,n). This means that there are two states E,
E′ such that abs(E) = (A,n), abs(E′) = (A′, n′), and
τ(E,E′). Let nc = |PE ∩ PE′ \ Ca| be the number of
common elements in the relation P of E and E′ except for
constants from Ca. Let D′ be such that PD

′
is a sum of A′,

any nc elements of D and n′ − nc − |A′| elements that are
not in PD or Ca. Then, for any Card-transition Φ defined
by using the constants from Ca we have E,E′ |= Φ iff
D,D′ |= Φ.

Therefore, we have τ(D,D′); so D′ satisfies ψ1 and,
by the induction hypothesis, abs(D′) = (A′, n′) satisfies
TCTL(ψ1). Since (A′, n′) was an arbitrary successor of
abs(D), we conclude that K′, abs(D) |= TCTL(ψ).

The remaining cases are similar and omitted.

Finite representation. For convenience above we as-
sumed that the labelling π′ has an infinite codomain. How-
ever, ϕ′ uses only finitely many propositional variables. In
the rest of this section we assume that the codomain of π′ is
Ca ∪ {e0, . . . , el}, where l is the greatest index such that el
appears in ϕ′.

While the relation τ ′ is infinite, we can give a finite de-
scription for it. To do this, let b be the smallest natural number
greater than all the numbers that appear in Card-transitions
of S. Let boundb(n) = max(−b,min(n, b)) be a function
that returns −b if n < −b, b is n > b and n otherwise.

Let T be a set of tuples such that (A,nb, A′, n′b, ∆) ∈ T if
and only if for some n, n′ such that nb = boundb(n), n′b =
boundb(n

′), ∆ = boundb(n
′ − n) and τ ′((A,n, ), (A′, n′)).

This representation is sufficient since τ ′ is defined
by Card-transitions that do not distinguish sets larger
than b. In other words, given a set T , we can con-
struct τ ′ as follows: τ ′((A,n, ), (A′, n′)) if and only if
(A, boundb(nb), A

′, boundb(n
′
b), boundb(n

′ − n)) ∈ T .
Clearly, for any (A,nb, A

′, n′b, ∆) ∈ T we have A,A′ ⊆
Ca, n, n′ ∈ {0, . . . , b} and ∆ ∈ {−b, . . . , b}, so T is finite.

4.3 Pushdown systems
Definition 28. A pushdown system is a tuple P =
(ΣP , qP0 , Γ

P ,⊥P , τP , πP), where ΣP is a set of states con-
taining qP0 , ΓP is a set of stack symbols containing the
stack bottom symbol ⊥P , ∆P ⊆ (ΣP × ΓP) × (ΣP ×
(ΓP \ {⊥P})∗) is a finite set of transition rules, and πP :
ΣP × ΓP → V ar is a labelling function for some fixed set
of propositional variables V ar.

A configuration of a pushdown system is a pair (s, α),
where s ∈ ΣP and α ∈ ΓP∗ starts from ⊥P and does not
contain ⊥P at any other position. We define the transition
relation→P as follows: (s, αγ) →P (s′, αα′), where γ ∈
ΓP and α, α′ ∈ ΓP∗, iff (s, γ, s′, α′) ∈ τP .

Runs are defined as usual (Hopcroft and Ullman 1979).
It is known that model checking pushdown systems against
CTL∗ is decidable (Bozzelli 2007).

In what follows, given a Kripke model we define a push-
down system whose configurations represent states (A,n)
of the Kripke structure by using the system states to en-
code A and the stack to store n. In doing so we will ensure
that the content of the stack is always a prefix of the word
012 . . . (b−1)bω . This will allow us to check easily the exact
value of n if n < b. Since we can remove only one element
from the stack at a time, we will use a number of auxiliary
configurations to simulate a change of state of Kripke struc-
ture.

Formally, let B = {−b, . . . , b}, B+ = {0, . . . , b} and
PC = {A | A ⊆ Ca}. Below we define a pushdown system
P = (PC ∪ PC × B × B, ∅, B+, 0, τ

′′, π′′) and a CTL∗
formula ϕ′′ s.t. P |= ϕ′′ iff K′ |= ϕ′.

We represent a configuration of P of the form (q, α) as
(q, |α|−1). Since (q, 0) is represented by (q, 0), no ambiguity
arises.

A configuration of the form (A,n) represents the state
(A,n) of K′. A configurations of the form ((A,n, k),m) for



|n| < b is an auxiliary configuration that represents an inter-
mediate state such that min(b, n+m) = k and that the state
precedes the state (A,n+m) that will appear in n+ 1 steps.
Similarly, a configuration of the form ((A, b, k),m) repre-
sents the situation where the value stored in the stack can be
increased by any number greater than or equal to b. Finally, a
configuration of the form ((A,−b, k),m) encodes the situa-
tion where the value stored in the stack can be decreased by
any number greater than or equal to b.

Let add_one(m) = m.(min(m+1, b)) where “.” stands
for concatenation. Formally, τ ′′ contains the following rules.
• ((A, b, k),m, (A, b, k), add_one(m)) for all possible
A, k,m.

• ((A,n, k),m, (A,n − 1, k), add_one(m)) for all n > 0
and all possible A, k,m.

• ((A,n, k),m, (A,n+ 1, k), ∅) for all n < 0 and all possi-
ble A, k,m.

• ((A,−b, k),m, (A,−b, k), ∅) for all possible A, k,m.
• (A,nb, (A

′, n, n′b), nb) for all (A,nb, A′, n′b, n) ∈ T .
• ((A, 0, n′b), n

′
b, A, n

′
b) and all possible A,n′b.

Example 29. Assume that τ ′((∅, 4), ({7}, 3)) and
b = 2. The corresponding computation of P
is (∅, 01222) →P (({7},−1, 2), 01222) →P
(({7}, 0, 2), 0122)→P ({7}, 0122).

For τ ′(({7}, 3), (∅, 6)), the corresponding compu-
tation is: ({7}, 0122) →P ((∅, 2, 2), 0122) →P
((∅, 2, 2), 01222) →P ((∅, 1, 2), 012222) →P
((∅, 0, 2), 0122222)→P (∅, 0122222).

Finally, we define π′′ as π′′((A,n, k),m) = ∅ and
π′′(A,m) = A ∪ {e0, . . . , em}.

Note that not all runs of P correspond to runs of K′. For
example, for b = 2 the run
(∅, 0) →P ((∅, 2, 2), 0) →P ((∅, 2, 2), 01) →P
((∅, 2, 2), 012)→P . . . continuously increases the stack and
will never reach a state of the form (A,m). To avoid such
runs, we add a fairness constraint by considering only the
paths satisfying e0 infinitely often.

To transform ϕ′ to a CTL∗ formula ϕ′′, we define a func-
tion T∗ by induction as follows.
T∗(p) = p, where p is a propositional variable
T∗(¬ψ) = ¬T∗(ψ)
T∗(ψ1 ∨ ψ2) = T∗(ψ1) ∨ T∗(ψ2)

T∗(AXψ) = A(GFe0 ⇒ ¬e0U(e0 ∧ T∗(ψ)))

T∗(Aψ1Uψ2) = A(GFe0 ⇒ (e0 ⇒ T∗(ψ1))U

(e0 ∧ T∗(ψ2)))

T∗(Eψ1Uψ2) = E(GFe0 ∧ (e0 ⇒ T∗(ψ1))U

(e0 ∧ T∗(ψ2)))

Consider ϕ′′ = T∗(ϕ′). We have the following.
Lemma 30. For an infinite Kripke structure K ′ and a CTL
specification ϕ′, let P and ϕ′′ be the pushdown system and
the CTL∗ specification defined as above. Then, K′ |= ϕ′ iff
P |= ϕ′′.

The proof of the above lemma follows from the construc-
tion of P and ϕ′′.

4.4 Model checking
In view of the translation defined above we can now give the
algorithm that establishes Theorem 22.

Algorithm Input: FO*
D,N-artifact system S built on a

unary relation, FO saCTL formula ϕ.
Output: TRUE or FALSE.

1. Transform the set of artifact transitions to the set of Card-
transitions as described in Subsection 4.1.

2. Generate a finite representation of the Kripke structure K′
and a CTL formula ϕ′ as described in Subsection 4.2.

3. Generate a pushdown system P and a CTL∗ formula ϕ′′
as defined in Subsection 4.3.

4. Return the result of model checking P against ϕ′′.
The Algorithm above gives the proof of Theorem 22. No-

tice that in the last step we employ the algorithm for model
checking the whole of CTL∗; so it can also be applied against
sentence atomic FO-CTL∗.

An upper bound for the model checking problem of
Theorem 22 can be established by observing that model
checking pushdown systems against CTL∗ is 2EXPTIME-
complete (Bozzelli 2007) and it is applied to a pushdown
system exponential in the size of the input.
Corollary 31. The problem of model checking artifact sys-
tems whose database consists of a single unary relation
against sentence-atomic FO-CTL∗ is in 3EXPTIME.

5 Conclusions
Artifact-centric systems have been put been forward as a new
paradigm in data-aware services and they are increasingly be-
ing used as a user-oriented architecture upon which services
can be deployed. The issue of verification of artifact-centric
systems remains of paramount importance both at theoretical
and at practical level.

A number of classes of artifact-centric systems have been
proposed for which the verification problem is decidable. As
discussed in the related work part of the introduction, a key
requirement made of all these system is boundedness of the
systems’ executions. While it has been shown this can be
imposed on the system at program level (Belardinelli, Lo-
muscio, and Patrizi 2011), there remain classes of scenarios
whereby no bound can in principle be set either on the states
or the runs of the system.

To explore the implications of this we have here addressed
the verification of unbounded artifact-centric systems against
sentence-atomic FO-CTL specifications. Our results show
that not only the problem is undecidable in general, but
that it remains so even when admitting only the simple
artifact-centric descriptions built on the logics CARLD,N
and CARLD,∅.

While this points to a bleak picture for the verification
of unbounded systems in general terms, we were able to
identify a class of unbounded systems for which verification
against sentence-atomic FO-CTL is decidable. This class is in
a way “maximal” with respect to the relations in the database
schema.
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