
Journal of Artificial Intelligence Research 45 (2012) 1-45 Submitted 11/11; published 9/12

Interactions between Knowledge and Time in
a First-Order Logic for Multi-Agent Systems:

Completeness Results

F. Belardinelli f.belardinelli@imperial.ac.uk

A. Lomuscio a.lomuscio@imperial.ac.uk

Department of Computing
Imperial College London, UK

Abstract

We investigate a class of first-order temporal-epistemic logics for reasoning about multi-
agent systems. We encode typical properties of systems including perfect recall, synchronic-
ity, no learning, and having a unique initial state in terms of variants of quantified inter-
preted systems, a first-order extension of interpreted systems. We identify several monodic
fragments of first-order temporal-epistemic logic and show their completeness with respect
to their corresponding classes of quantified interpreted systems.

1. Introduction

While reactive systems (Pnueli, 1977) are traditionally specified using plain temporal logic,
there is a well-established tradition in Artificial Intelligence (AI) and, in particular, Multi-
Agent Systems (MAS) research to adopt more expressive languages. Much of this tradition
is inspired by the earlier, seminal work in AI by McCarthy (1979, 1990) and others aimed at
adopting an “intentional stance” (Dennett, 1987) when reasoning about intelligent systems.
Specifically, logics for knowledge (Fagin, Halpern, Moses, & Vardi, 1995), beliefs, desires,
intentions, obligations, etc., have been put forward to represent the informational and
motivational attitudes of agents in the system. Theoretical explorations have focused on
the soundness and completeness of a number of axiomatisations as well as the decidability
and computational complexity of the corresponding logics.

The great majority of work in these lines focuses on propositional languages. Yet, spec-
ifications supporting quantification are increasingly required in applications. For example,
it is often necessary to refer to different individuals at different instances of time.

Quantified modal languages (Garson, 2001) have long attracted considerable attention.
Early work included analysing the philosophical and logical implications of different se-
tups for the quantification domains, particularly in combination with temporal concepts.
More recently, considerable attention has been given to identifying suitable fragments that
preserve completeness and decidability, and then studying the resulting computational com-
plexity of the satisfiability problem. This article follows this direction.

In more detail, we investigate the meta-theoretical properties of monodic fragments
of quantified temporal-epistemic logic where interactions between quantifiers, time, and
knowledge of the agents are present. There is a deep-rooted interest (Fagin et al., 1995;
Meyden, 1994) in understanding the implications of interaction axioms in this context, as
they often express interesting properties of MAS, including “perfect recall”, “synchronicity”,
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and “no learning”. These features are well-understood at the propositional level (Fagin,
Halpern, & Vardi, 1992; Halpern, van der Meyden, & Vardi, 2004) and are commonly used
in several application areas. The technical question this paper aims to resolve is whether a
similar range of results can be provided in the presence of (limited forms of) quantification.
As we shall demonstrate, the answer to this question is largely positive.

1.1 State of the Art

The analysis and application of temporal-epistemic logic in a first-order setting has an
established tradition in AI. One of the early contributions is the work of Moore (1990),
which presents a theory of action that takes into consideration the epistemic preconditions
to actions and their effects on knowledge. More recently, a number of first-order temporal-
epistemic logics for reasoning about MAS were introduced by Wooldridge et al. (2002,
2006, 1999), often in the context of the MABLE programming language for agents. The
same authors introduced a first-order branching time temporal logic for MAS (Wooldridge
& Fisher, 1992), and developed it in a series of papers (Wooldridge et al., 2002, 2006).
First-order multi-modal logics also constitute the conceptual base of a number of other
agent theories, such as BDI logics (Rao & Georgeff, 1991), the KQML framework (Cohen
& Levesque, 1995), and the LORA framework (Wooldridge, 2000b). All of these include
operators for mental attitudes (e.g., knowledge, belief, intention, desire, etc.), as well as
temporal and dynamic operators with some form of quantification. However, most of the
current literature has so far fallen short of a systematic analysis of the formal properties of
these frameworks. Some of the frameworks above are so rich that they are unlikely to be
finitely axiomatisable, let alone decidable. Still, these earlier contributions are an inspiration
to the present investigation, as they are among the few to have explicitly addressed the
subject of first-order temporal-epistemic languages in a MAS setting.

At a purely theoretical level, first-order temporal and epistemic logics have also re-
ceived increasing attention with a range of contributions on axiomatisability (Degtyarev
et al., 2003; Sturm et al., 2000; Wolter & Zakharyaschev, 2002), decidability (Degtyarev
et al., 2002; Hodkinson et al., 2000; Wolter & Zakharyaschev, 2001), and complexity (Hod-
kinson, 2006; Hodkinson et al., 2003). Wolter and Zakharyaschev (2001) introduced the
monodic fragment of quantified modal logic, where the modal operators are restricted to
formulas with at most one free variable, and they proved the decidability of various frag-
ments. Similar results have been obtained for monodic fragments of first-order temporal
logic (Hodkinson, 2002; Hodkinson et al., 2000), and the computational complexity of these
formalisms have been analysed (Hodkinson, 2006; Hodkinson et al., 2003). Further, Wolter
and Zakharyaschev (2002) provided a complete axiomatisation of the monodic first-order
validities on the natural numbers. The monodic fragment of first-order epistemic logic has
also been explored (Sturm et al., 2000; Sturm, Wolter, & Zakharyaschev, 2002), and an
axiomatisation including common knowledge has been provided. These lines of research
constitute the theoretical background against which this research is set.

The contributions discussed previously used plain Kripke models as the underlying se-
mantics. However, it has been argued though that in applications a “computationally-
grounded” semantics (Wooldridge, 2000a) is preferable, as this enables systems to be mod-
elled directly. We introduced quantified interpreted systems (QIS) to fill this gap (Belar-
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dinelli & Lomuscio, 2009). This enabled us to provide a complete axiomatisation of the
monodic fragment of quantified temporal-epistemic logic on linear time (Belardinelli & Lo-
muscio, 2011). However, no interaction between temporal and epistemic modalities was
studied. Preliminary investigations into the interactions between temporal and epistemic
operators in a first-order setting have already appeared (Belardinelli & Lomuscio, 2010). In
this paper we extend the previous results and also consider epistemic languages containing
the common knowledge operator.

1.2 The Present Contribution

This paper extends the current state of the art in first-order temporal-epistemic logic by
introducing a family of provably complete calculi for a variety of quantified interpreted sys-
tems characterising a range of properties including perfect recall, no learning, synchronicity,
and having a unique initial state. We prove the completeness of the presented first-order
temporal-epistemic logics via a quasimodel construction, which has previously been used
(Hodkinson, Wolter, & Zakharyaschev, 2002; Hodkinson et al., 2000) to prove decidability
for monodic fragments of first-order temporal logic (FoTL). Quasimodels have also been
applied to first-order temporal as well as epistemic logic (Sturm et al., 2000; Wolter & Za-
kharyaschev, 2002). Wolter et al. (2002) present a complete axiomatisation for the monodic
fragment of FoTL on the natural numbers; a similar result for a variety of first-order epis-
temic logics with common knowledge has also appeared (Sturm et al., 2000). However, the
interaction between temporal and epistemic modalities in a first order setting has not been
taken into account yet, nor has the interpreted systems semantics. Nonetheless, both of
these features are essential for applications to multi-agent systems and are the subject of
analysis here.

1.2.1 Structure of the Paper.

In Section 2 we first introduce the first-order temporal-epistemic languages Lm and LCm
with common knowledge for a set Ag = {1, . . . ,m} of agents. We then present the relevant
classes of QIS as well as the monodic fragments of Lm and LCm. In Sections 3 we introduce
the axiomatisations for these classes of QIS, while the details of the completeness proofs
are presented in Sections 4 and 5. Finally, in Section 6 we elaborate on the results obtained
and discuss possible extensions and future work.

2. First-Order Temporal-Epistemic Logics

Interpreted systems are a standard semantics for interpreting temporal-epistemic logics in a
multi-agent setting (Fagin et al., 1995; Parikh & Ramanujam, 1985). We extend interpreted
systems to the first-order case by enriching these structures with a domain of individuals.
We first investigated “static” quantified interpreted systems, where no account for the
evolution of the system is given (Belardinelli & Lomuscio, 2008, 2009). Then, fully-fledged
QIS on a language with also temporal modalities were introduced (Belardinelli & Lomuscio,
2010, 2011). We follow the definition of QIS provided in the references.
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2.1 First-Order Temporal-Epistemic Languages

Given a set Ag = {1, . . . ,m} of agents, the first-order temporal-epistemic language Lm
contains individual variables x1, x2, . . ., individual constants c1, c2, . . ., n-ary predicate con-
stants Pn1 , P

n
2 , . . ., for n ∈ N, the propositional connectives ¬ and →, the quantifier ∀, the

linear time operators © and U , and the epistemic operator Ki for each agent i ∈ Ag. The
language LCm also contains the common knowledge operator C (Fagin et al., 1992). For
simplicity we consider only one group of agents for the common knowledge modality, that
is, the whole of Ag; C is really tantamount to CAg. The extension to proper non-empty
subsets of Ag is not problematic.

The languages Lm and LCm contain no symbol for functions; so all terms t1, t2, . . . in
these languages are either individual variables or constants.

Definition 1. Formulas in Lm are defined in the Backus-Naur form as follows:

φ ::= P k(t1, . . . , tk) | ¬ψ | ψ → ψ′ | ∀xψ | ©ψ | ψUψ′ | Kiψ

The language LCm extends Lm with the following clause:

• if φ is a formula in LCm, then also Cφ is a formula in LCm.

The formulas©φ and φUφ′ are read as “at the next step φ” and “eventually φ′ and until
then φ” respectively. The formula Kiφ represents “agent i knows φ”, while Cφ stands for
“φ is common knowledge” in the set Ag of agents.

We define the symbols ∧, ∨,↔, ∃, G (always in the future), F (some time in the future)
as standard. Further, we introduce some abbreviations. The operator K̄i is dual to Ki,
that is, K̄iφ is defined as ¬Ki¬φ, while Eφ is a shorthand for

∧
i∈AgKiφ. For k ∈ N, Ekφ

is defined as follows: E0φ = φ and Ek+1φ = EEkφ. The formulas K̄iφ and Eφ are read as
“agent i considers φ possible” and “every agent knows φ” respectively.

Free and bound variables are defined as standard. By φ[~y] we mean that ~y = y1, . . . , yn
are all the free variables in φ. Additionally, φ[~y/~t] is the formula obtained by substitut-
ing simultaneously some, possibly all, free occurrences of ~y in φ with ~t = t1, . . . , tn while
renaming bound variables. A sentence is a formula with no free variables.

2.2 Quantified Interpreted Systems

To introduce quantified interpreted systems we assume a set Li of local states li, l′i, . . . for
each agent i ∈ Ag in a multi-agent system. We consider a set Le of local states for the
environment e as well. The set S ⊆ Le×L1× . . .×Lm contains all and only the global states
of the multi-agent system. To represent the temporal evolution of the MAS we consider
the flow of time N of natural numbers; a run is a function r : N → S. Intuitively, a run
represents one possible evolution of the MAS assuming N as the flow of time. Given the
above, we define quantified interpreted systems for the languages Lm and LCm as follows:

Definition 2 (QIS). A quantified interpreted system is a triple P = 〈R,D, I〉 where:

• R is a non-empty set of runs;

• D is a non-empty set of individuals;
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• for r ∈ R, n ∈ N, I is a first-order interpretation, that is, a function such that

– for every constant c, I(c, r(n)) ∈ D,

– for every predicate constant P k, I(P k, r(n)) is a k-ary relation on D.

Further, for every r, r′ ∈ R, n, n′ ∈ N, I(c, r(n)) = I(c, r′(n′)).

Notice that we assume a unique domain of interpretation, as well as a fixed interpretation
for individual constants; so we simply write I(c). Following standard notation (Fagin et al.,
1995), for r ∈ R and n ∈ N, a pair (r, n) is a point in P. If r(n) = 〈le, l1, . . . , lm〉 is the
global state at point (r, n) then re(n) = le and ri(n) = li are the environment’s and agent
i’s local state at (r, n) respectively. Further, for i ∈ Ag the epistemic equivalence relation
∼i is defined such that (r, n) ∼i (r′, n′) iff ri(n) = r′i(n

′). Clearly, each ∼i is an equivalence
relation. Two points (r, n) and (r′, n′) are said to be epistemically reachable, or simply
reachable, if (r, n) ∼ (r′, n′) where ∼ is the transitive closure of

⋃
i∈Ag ∼i.

In this paper we consider the following classes of QIS.

Definition 3. A quantified interpreted system P satisfies

synchronicity iff for every i ∈ Ag, for all points (r, n), (r′, n′),
(r, n) ∼i (r′, n′) implies n = n′

perfect recall for agent i iff for all points (r, n), (r′, n′), if (r, n) ∼i (r′, n′) and n > 0
then either (r, n− 1) ∼i (r′, n′) or
there is k < n′ such that (r, n− 1) ∼i (r′, k) and
for all k′, k < k′ ≤ n′ implies (r, n) ∼i (r′, k′)

no learning for agent i iff for all points (r, n), (r′, n′), if (r, n) ∼i (r′, n′)
then either (r, n+ 1) ∼i (r′, n′) or
there is k > n′ such that (r, n+ 1) ∼i (r′, k) and
for all k′, k > k′ ≥ n′ implies (r, n) ∼i (r′, k′)

unique initial state iff for all r, r′ ∈ R, r(0) = r′(0)

These conditions have extensively been discussed in the literature (Halpern et al., 2004)
together with equivalent formulations. Intuitively, a QIS is synchronous if time is part of
the local state of each agent. A QIS satisfies perfect recall for agent i if i’s local state records
everything that has happened to him (from the agent’s point of view) so far in the run. No
learning is dual to perfect recall: agent i does not acquire any new knowledge during a run.
Finally, a QIS has a unique initial state if all runs start from the same global state.

A QIS P satisfies perfect recall (resp. no learning) if P satisfies perfect recall (resp. no
learning) for all agents. We denote the class of QIS with m agents asQISm; the superscripts
pr, nl, sync, uis denote the subclasses of QISm satisfying perfect recall, no learning,
synchronicity, and having a unique initial state respectively. For instance, QISsync,uism is
the class of all synchronous QIS with m agents and having a unique initial state.

We now assign an interpretation to the formulas in Lm and LCm by means of quantified
interpreted systems. Let σ be an assignment from variables to individuals inD, the valuation
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Iσ(t) of a term t is defined as σ(y) for t = y, and Iσ(t) = I(c) for t = c. A variant σxa of an
assignment σ assigns a ∈ D to x and agrees with σ on all other variables.

Definition 4. The satisfaction of a formula φ ∈ Lm at point (r, n) ∈ P under an assignment
σ, denoted (Pσ, r, n) |= φ, is defined inductively as follows:

(Pσ, r, n) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r(n))
(Pσ, r, n) |= ¬ψ iff (Pσ, r, n) 6|= ψ
(Pσ, r, n) |= ψ → ψ′ iff (Pσ, r, n) 6|= ψ or (Pσ, r, n) |= ψ′

(Pσ, r, n) |= ∀xψ iff for all a ∈ D, (Pσx
a , r, n) |= ψ

(Pσ, r, n) |=©ψ iff (Pσ, r, n+ 1) |= ψ
(Pσ, r, n) |= ψUψ′ iff there is n′ ≥ n such that (Pσ, r, n′) |= ψ′

and (Pσ, r, n′′) |= ψ for all n ≤ n′′ < n′

(Pσ, r, n) |= Kiψ iff for all r′, n′, (r, n) ∼i (r′, n′) implies (Pσ, r′, n′) |= ψ

For φ ∈ LCm we have to consider also the case for the common knowledge operator:

(Pσ, r, n) |= Cψ iff for all k ∈ N, (Pσ, r, n) |= Ekψ

The truth conditions for ∧, ∨, ↔, ∃, G and F are defined from those above. From
the definition above it follows that (Pσ, r, n) |= Cψ iff for all (r′, n′) reachable from (r, n),
(Pσ, r′, n′) |= ψ.

A formula φ is true at a point (r, n) if it is satisfied at (r, n) by every assignment σ; φ is
true on a QIS P if it is true at every point in P; φ is valid on a class C of QIS if it is true
on every QIS in C. Further, a formula φ is satisfiable on a QIS P if it is satisfied at some
point in P, for some assignment σ; φ is satisfiable on a class C of QIS if it is satisfiable on
some QIS in C.

By considering all combinations of pr, nl, sync and uis we obtain 16 subclasses of QISm
for any m ∈ N. Not all of them are independent, nor axiomatisable. Indeed, some of these
are not axiomatisable even at the propositional level (Halpern & Moses, 1992; Halpern &
Vardi, 1989). In the first column of Table 1 we group together the classes of QIS that share
the same set of validities on the languages Lm and LCm. The proofs of these equivalences
are similar to those of the propositional case (Halpern et al., 2004) and are not reported
here. Further, we define the languages PLm and PLCm as the propositional fragments of
Lm and LCm respectively (formally, PLm and PLCm are obtained by restricting atomic
formulas to 0-ary predicate constants p1, p2, . . .). Table 1 summarises the results by Halpern
et al. (2004) concerning the axiomatisability of propositional validities in PLm and PLCm.
Observe that, as regards the language PLm, for m = 1 all sets of validities on the various
classes of QIS are axiomatisable, while for m ≥ 2 no axiomatisation can be given for
QISnl,uism and QISnl,pr,uism (Halpern & Vardi, 1986, 1989). As to the language PLCm, we
restrict to the case for m ≥ 2, as for m = 1 PLCm has the same expressive power as
PLm. For m ≥ 2 no class of validities on PLCm has a recursive axiomatisation but QISm,
QISsyncm , QISuism , QISsync,uism and QISnl,sync,uism , QISnl,pr,sync,uism .

In the next section we show that the axiomatisability results at the propositional level
can be lifted to the monodic fragment of the languages Lm and LCm.
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QIS PL1 PLm, m ≥ 2 PLCm, m ≥ 2
QISm, QISsyncm , QISuism , QISsync,uism X X X
QISprm , QISpr,uism X X 7

QISpr,syncm , QISpr,sync,uism X X 7

QISnlm X X 7

QISnl,syncm X X 7

QISnl,prm X X 7

QISnl,pr,syncm X X 7

QISnl,uism X 7 7

QISnl,pr,uism X 7 7

QISnl,sync,uism , QISnl,pr,sync,uism X X X

Table 1: Equivalences between classes of QIS and axiomatisability results for the proposi-
tional fragments PLm and PLCm. The sign X indicates that the set of validities
on a specific class is axiomatisable; while 7 indicates that it is not.

2.3 The Monodic Fragment

In the rest of the paper we will show that a sufficient condition for lifting the results in
Table 1 to the first-order case is to restrict the languages Lm and LCm to their monodic
fragments.

Definition 5. The monodic fragment L1
m is the set of formulas φ ∈ Lm such that any sub-

formula of φ of the form Kiψ, ©ψ, or ψ1Uψ2 contains at most one free variable. Similarly,
the monodic fragment LC1

m is the set of formulas φ ∈ LCm such that any subformula of φ
of the form Kiψ, Cψ, ©ψ, or ψ1Uψ2 contains at most one free variable.

The monodic fragments of a number of first-order modal logics have been thoroughly
investigated in the literature (Hodkinson et al., 2000, 2003; Wolter & Zakharyaschev, 2001,
2002). In the case of Lm and LCm these fragments are quite expressive as they contain
formulas like the following:

∀y C(∀zAvailable(y, z)U∃xRequest(x, y)) (1)

Ki©∀xyz(Request(x, y)→ Available(y, z))→
→©Ki∀xyz(Request(x, y)→ Available(y, z)) (2)

Formula (1) intuitively states that it is common knowledge that every resource y will
eventually be requested by somebody, but until that time the resource remains available to
everybody. Notice that y is the only free variable within the scope of modal operators U
and C. Formula (2) represents that if agent i knows that at the next step every resource is
available whenever it is requested, then at the next step agent i knows that this is indeed
the case. However, note that the formula

∀xKi(Process(x)→ ∀yFAccess(x, y))
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which intuitively means that agent i knows that every process will eventually try to access
every resource, is not in L1

m as both x and y occur free within the scope of modal operator
F . Still, the monodic fragments of Lm and LCm are quite expressive as they contain all
de dicto formulas, i.e., formulas where no free variable appears in the scope of any modal
operator, as in (2). So, the limitation is really only on de re formulas.

We stress the fact that the formulas above have no propositional equivalent in the
case that they are interepreted on quantified interpreted systems in which the domain of
quantification is infinite, or its cardinality cannot be bounded in advance.

Finally, observe that the Barcan formulas ©∀xφ ↔ ∀x © φ and Ki∀xφ ↔ ∀xKiφ
are both true in all quantified interpreted systems, as each QIS includes a unique domain
of quantification. This implies that the universal quantifier commutes with the temporal
modality© and the epistemic modality Ki. Thus, it can be the case that for some formulas
ψ, ψ′ ∈ Lm, we have that ψ ↔ ψ′ is a validity, but ψ ∈ L1

m and ψ′ /∈ L1
m. For instance,

consider ψ = ©∀xP (x, y) and ψ′ = ∀x© P (x, y). We will see that this remark does not
interfere with our results.

3. Axiomatisations

In this section we present sound and complete axiomatisations of the sets of monodic va-
lidities for the classes of quantified interpreted systems in Section 2. First, we introduce
the basic system QKTm that extends to the first-order case the multi-modal epistemic logic
S5m combined with the linear temporal logic LTL.

Definition 6. The system QKTm contains the following schemes of axioms and rules,
where φ, ψ and χ are formulas in L1

m and =⇒ is the inference relation.

First-order logic Taut classical propositional tautologies
MP φ→ ψ, φ =⇒ ψ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] =⇒ φ→ ∀xψ, where x is not free in φ

Temporal logic K ©(φ→ ψ)→ (©φ→©ψ)
T1 ©¬φ↔ ¬© φ
T2 φUψ ↔ ψ ∨ (φ ∧©(φUψ))
Nec φ =⇒©φ
T3 χ→ ¬ψ ∧©χ =⇒ χ→ ¬(φUψ)

Epistemic logic K Ki(φ→ ψ)→ (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
Nec φ =⇒ Kiφ

The operator Ki is an S5 modality, while the next© and until U operators are axioma-
tised as linear-time modalities (Fagin et al., 1995). To this we add the classical postulates
Ex and Gen for quantification, which are both sound as we consider a unique domain of
individuals in the quantified interpreted systems.
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Definition 7. The system QKTCm extends QKTm with the following schemes of axioms
for common knowledge, where φ, ψ and χ are formulas in LC1

m and =⇒ is the inference
relation.

C1 Cφ↔ (φ ∧ ECφ)
C2 φ→ (ψ ∧ Eφ) =⇒ φ→ Cψ

We consider the standard definitions of proof and theorem; `S φ means that the formula
φ is a theorem in the formal system S. We remark that the Barcan formula (BF ) 2∀xφ↔
∀x2φ is provable for any unary modal operator 2 by the axioms K and Ex, and the rules
MP and Gen. The notions of soundness and completeness of a system S with respect to a
class C of QIS are defined as standard: S is sound w.r.t. C if for all φ, S ` φ implies C |= φ.
Similarly, S is complete w.r.t. C if for all φ, C |= φ implies S ` φ.

In this paper we focus on the schemes of axioms in Table 2 that specify key interactions
between time and knowledge (Halpern et al., 2004). We use 1, . . . , 5 as superscripts to denote

KT1 Kiφ ∧©(Kiψ ∧ ¬Kiχ)→ K̄i((Kiφ)U((Kiψ)U¬χ))
KT2 Ki© φ→©Kiφ
KT3 (Kiφ)UKiψ → Ki((Kiφ)UKiψ)
KT4 ©Kiφ→ Ki© φ
KT5 Kiφ↔ Kjφ

Table 2: the axioms KT1-KT5.

the systems obtained by adding to QKTm or QKTCm any combination of KT1-KT5. For
instance, the system QKTC2,3

m extends QKTCm with the axioms KT2 and KT3.
It is straightforward to check that the axioms of QKTm and QKTCm are valid on every

QIS and the inference rules preserve validity. However, the axioms KT1-KT5 are valid only
on specific classes of QIS as stated in the following Remark.

Remark 1. A QIS P satisfies any of the axioms KT1-KT5 in the first column if P satisfies
the corresponding semantical condition in the second column.

Axiom Condition on QIS
KT1 perfect recall
KT2 perfect recall, synchronicity
KT3 no learning
KT4 no learning, synchronicity
KT5 all agents share the same knowledge, i.e.,

for all i, j ∈ Ag, (r, n) ∼i (r′, n′) iff (r, n) ∼j (r′, n′).

These results can be shown in a similar way to the propositional case (Halpern et al.,
2004); so the proofs are omitted.

By using Remark 1 we can prove soundness results for all our first-order temporal-
epistemic systems.

Theorem 1 (Soundness). The systems reported in the first and second column of the fol-
lowing table are sound w.r.t. the corresponding classes of QIS in the third column.
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Systems QIS
QKTm QKTCm QISm, QISsyncm , QISuism , QISsync,uism

QKT 1
m QKTC1

m QISprm , QISpr,uism

QKT 2
m QKTC2

m QISpr,syncm , QISpr,sync,uism

QKT 3
m QKTC3

m QISnlm, QISnl,uism

QKT 4
m QKTC4

m QISnl,syncm

QKT 2,3
m QKTC2,3

m QISnl,prm , QISnl,pr,uism

QKT 1,4
m QKTC1,4

m QISnl,pr,syncm

QKT 1,4,5
m QKTC1,4,5

m QISnl,sync,uism , QISnl,pr,sync,uism

Proof. These results follow from Remark 1 by a line of reasoning similar to that used in
the propositional case (Fagin et al., 1995; Halpern et al., 2004). Notice that if a quantified
interpreted systems P satisfies no learning, synchronicity, and has a unique initial state,
then P satisfies also perfect recall, that is, P ∈ QISnl,sync,uism implies P ∈ QISnl,pr,sync,uism .
Further, all agents share the same knowledge, therefore KT5 holds in P.

As we anticipated above, not all calculi are complete w.r.t. the corresponding classes
of quantified interpreted systems in Theorem 1. In the next theorem we summarise the
completeness results that will be proved in the rest of this paper.

Theorem 2 (Completeness). The systems reported in the first and second column of the
following table are complete w.r.t. the corresponding classes of QIS in the third column.

Systems QIS
QKTm QKTCm QISm, QISsyncm , QISuism , QISsync,uism

QKT 1
m QISprm , QISpr,uism

QKT 2
m QISpr,syncm , QISpr,sync,uism

QKT 3
m QISnlm

QKT 4
m QISnl,syncm

QKT 2,3
m QISnl,prm

QKT 1,4
m QISnl,pr,syncm

QKT 2,3
1 QISnl,uis1 , QISnl,pr,uis1

QKT 1,4,5
m QKTC1,4,5

m QISnl,sync,uism , QISnl,pr,sync,uism

We observe that, as regards the language L1
m, the sets of monodic validities are ax-

iomatisable for all classes introduced but QISnl,uism and QISnl,pr,uism . However, for L1
1 we

have that QISnl,uis1 and QISnl,pr,uis1 are equivalent to QISnl,pr1 . Thus, the sets of monodic
validities on QISnl,pr,uis1 and QISnl,uis1 are axiomatised by QKT2,3

1 .
As regards the language LC1

m, only the set of monodic validities on QISm, QISsyncm ,
QISuism ,QISsync,uism are axiomatisable, as well as those onQISnl,sync,uism andQISnl,pr,sync,uism .
All other classes are not recursively axiomatisable, as this is the case already at the propo-
sitional level (Halpern & Moses, 1992; Halpern & Vardi, 1986, 1989).

For proving the completeness results reported above we introduce Kripke models as a
generalisation of quantified interpreted systems.

10
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3.1 Kripke Models

To prove the completeness results in Theorem 2, we first introduce an appropriate class of
Kripke models as a generalisation of QIS and prove completeness for these models. Then
we apply a correspondence result between Kripke models and QIS to obtain the desired
results.

Definition 8 (Kripke model). A Kripke model is a tuple M = 〈W,RW , {∼i}i∈Ag,D, I〉
such that

• W is a non-empty set of states;

• RW is a non-empty set of functions r : N→W ;

• for every agent i ∈ Ag, ∼i is an equivalence relation on W ;

• D is a non-empty set of individuals;

• for every w ∈W , I is a first-order interpretation, that is, a function such that

– for every constant c, I(c, w) ∈ D,
– for every predicate constant P k, I(P k, w) is a k-ary relation on D.

Further, for every w,w′ ∈W , I(c, w) = I(c, w′).

Notice that Def. 8 differs from other notions of Kripke model in that it includes the
set RW of functions to guarantee that the correspondence between Kripke models and
QIS is one-to-one. We also assume a unique domain of interpretation, as well as a fixed
interpretation for individual constants, so also in this case we simply write I(c). Kripke
models are a generalisation of QIS in that they do not specify the inner structure of the states
in W . Also for Kripke models we introduce points as pairs (r, n) for r ∈ RW and n ∈ N.
A point derives its properties from the corresponding state; for instance, (r, n) ∼i (r′, n′) if
r(n) ∼i r′(n′).

We consider Kripke models satisfying synchronicity, perfect recall, no learning, and
having a unique initial state. The definition of these subclasses is analogous to Def. 3.

Definition 9. A Kripke model M satisfies

synchronicity iff for every i ∈ Ag, for all points (r, n), (r′, n′),
(r, n) ∼i (r′, n′) implies n = n′

perfect recall for agent i iff for all points (r, n), (r′, n′), if (r, n) ∼i (r′, n′) and n > 0
then either (r, n− 1) ∼i (r′, n′) or
there is k < n′ such that (r, n− 1) ∼i (r′, k) and
for all k′, k < k′ ≤ n′ implies (r, n) ∼i (r′, k′).

no learning for agent i iff for all points (r, n), (r′, n′), if (r, n) ∼i (r′, n′)
then either (r, n+ 1) ∼i (r′, n′) or
there is k > n′ such that (r, n+ 1) ∼i (r′, k) and
for all k′, k > k′ ≥ n′ implies (r, n) ∼i (r′, k′).

unique initial state iff for all r, r′ ∈ RW , r(0) = r′(0).

11
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Now let Km be the class of Kripke models with m agents. Hereafter we adopt the same
naming conventions as for QIS; for instance, Ksync,uism is the class of synchronous Kripke
models with m agents and having a unique initial state. Further, the inductive clauses for
the satisfaction relation |= with respect to an assignment σ are straightforwardly defined
from those for QIS, as well as the notions of truth and validity.

Definition 10. The satisfaction of a formula φ ∈ Lm (resp. LCm) at point (r, n) ∈M for
an assignment σ, or (Mσ, r, n) |= φ, is inductively defined as follows:

(Mσ, r, n) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r(n))
(Mσ, r, n) |= ¬ψ iff (Mσ, r, n) 6|= ψ
(Mσ, r, n) |= ψ → ψ′ iff (Mσ, r, n) 6|= ψ or (Mσ, r, n) |= ψ′

(Mσ, r, n) |= ∀xψ iff for all a ∈ D, (Mσx
a , r, n) |= ψ

(Mσ, r, n) |=©ψ iff (Mσ, r, n+ 1) |= ψ
(Mσ, r, n) |= ψUψ′ iff there is n′ ≥ n such that (Mσ, r, n′) |= ψ′

and n ≤ n′′ < n′ implies (Mσ, r, n′′) |= ψ
(Mσ, r, n) |= Kiψ iff for all r′, n′, (r, n) ∼i (r′, n′) implies (Mσ, r′, n′) |= ψ
(Mσ, r, n) |= Cψ iff for all k ∈ N, (Mσ, r, n) |= Ekψ

A formula φ is true at a point (r, n) if it is satisfied at (r, n) by every assignment σ; φ
is true on a Kripke model M if it is true at every point in M; φ is valid on a class C of
Kripke models if it is true on every Kripke model in C. Further, a formula φ is satisfiable
on a Kripke model M if it is satisfied at some point in M, for some assignment σ; φ is
satisfiable on a class C of Kripke models if it is satisfiable on some Kripke model in C.

We relate Kripke models and quantified interpreted systems by means of a map g :
Km → QISm (Lomuscio & Ryan, 1998). Let M = 〈W,RW , {∼i}i∈Ag,D, I〉 be a Kripke
model. For every agent i ∈ Ag, for (r, n) ∈M, let the equivalence class [(r, n)]i = {(r′, n′) |
(r, n) ∼i (r′, n′)} be a local state for agent i; while each (r, n) is a local state for the
environment. Then define g(M) as the tuple 〈R′,D, I ′〉 where R′ contains the runs rr for
r ∈ RW such that rr(n) = 〈(r, n), [(r, n)]1, . . . , [(r, n)]m〉. Further, D is the same as in M,
and for every constant c, I ′(c, rr(n)) = I(c, r(n)), and I ′(P k, rr(n)) = I(P k, r(n)). The
structure g(M) is a QIS that satisfies the following result:

Lemma 1. For every φ in Lm (resp. LCm),

(Mσ, r, n) |= φ iff (g(M)σ, rr, n) |= φ

Proof. The proof is by induction on the structure of φ. If φ is an atomic for-
mula P k(t1, . . . , tk), then (Mσ, r, n) |= φ iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, r(n)), iff we have
〈I ′σ(t1), . . . , I ′σ(tk)〉 ∈ I ′(P k, rr(n)), iff (g(M)σ, rr, n) |= φ. The inductive cases for the
propositional connectives and quantifiers are straightforward, as well as those for the tem-
poral operators © and U . As to φ = Kiψ, we have that (Mσ, r, n) |= φ iff (r, n) ∼i (r′, n′)
implies (Mσ, r′, n′) |= ψ, but (r, n) ∼i (r′, n′) iff rri (n) = rr

′
i (n′). Thus, (Mσ, r, n) |= φ iff

(rr, n) ∼′i (rr
′
, n′) implies (Mσ, r′, n′) |= ψ. Again, by the induction hypothesis (Mσ, r, n) |=

φ iff (rr, n) ∼′i (rr
′
, n′) implies (g(M)σ, rr

′
, n′) |= ψ, i.e., iff (g(M)σ, rr, n) |= φ. The case

for φ = Cψ is treated similarly by considering the epistemic reachability relation.
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Notice that ifM satisfies synchronicity, or perfect recall, or no learning, or has a unique
initial state, then also g(M) satisfies the same property. This follows from the fact that
(r, n) ∼i (r′, n′) iff (rri , n) ∼′i (rr

′
, n′). Thus, g defines a map from each of the 16 subclasses

of Km outlined in Def. 9 to the corresponding subclass of QISm and we obtain the following
corollary to Lemma 1.

Corollary 1. Let X be any subset of {pr, nl, sync, uis}. For every monodic formula φ ∈ L1
m

(resp. LC1
m), if φ is satisfiable in KXm, then φ is satisfiable in QISXm.

For reasoning about the monodic fragments of Lm and LCm when we are dealing with no
learning and perfect recall, we introduce the following class of “monodic friendly” Kripke
models. These structures are motivated by the fact that KT1 and KT3 are too weak
to enforce either perfect recall or no learning on Kripke models when these axioms are
restricted to monodic formulas. However, they suffice for monodic friendly structures. In
the following, we also prove that satisfiability in Kripke models is equivalent to satisfability
in monodic friendly structures when we restrict our languages to monodic formulas.

Definition 11 (mf-model). A monodic friendly Kripke model is a tuple
Mmf = 〈W,RW , {∼i,a}i∈Ag,a∈D,D, I〉 such that

• W , RW , D and I are defined as for Kripke models;

• for i ∈ Ag, a ∈ D, ∼i,a is an equivalence relation on W .

We can define synchronicity, perfect recall, no learning, and having a unique initial state
also for mf-models by parametrising Def. 9 to each relation ∼i,a. For instance, an mf-model
satisfies perfect recall for agent i if for all points (r, n), (r′, n′), for all a ∈ D, whenever
(r, n) ∼i,a (r′, n′) and n > 0 then either (r, n − 1) ∼i,a (r′, n′) or there is k < n′ such that
(r, n − 1) ∼i,a (r′, k) and for all k′, k < k′ ≤ n′ implies (r, n) ∼i,a (r′, k′). As regards the
subclasses of the class MFm of all mf-models with m agents, we adopt the same naming
conventions as for QIS and Kripke models. Notice that Kripke models can be seen as
mf-models such that for all i ∈ Ag, a, b ∈ D, ∼i,a is equal to ∼i,b.

Finally, the satisfaction relation |= for φ ∈ L1
m (resp. LC1

m) in a mf-model Mmf is
defined in the same way as in Kripke models, except for the epistemic operators:

(Mσ
mf , r, n) |= Kiψ[y] iff for all r′, n′, (r, n) ∼i,σ(y) (r′, n′) implies (Mσ

mf , r
′, n′) |= ψ[y]

where at most y appears free in ψ. Notice that if ψ is a sentence, then (Mσ
mf , r, n) |= Kiψ

iff (r, n) ∼i,a (r′, n′) implies (Mσ
mf , r

′, n′) |= ψ for all a ∈ D. The case for the common
knowledge operator C is straightforward by definition of Ek. In particular, two points (r, n)
and (r′, n′) are epistemically reachable for a ∈ D, or simply reachable, if (r, n) ∼a (r′, n′),
where ∼a is the transitive closure of

⋃
i∈Ag ∼i,a.

We remark that the converse of the Barcan formula, or CBF , Ki∀xψ → ∀xKiψ holds
in all mf-models; while the Barcan formula, or BF , ∀xKiψ → Ki∀xψ does not. To check
this consider the mf-model M = 〈W,RW , {∼i,a}i∈Ag,a∈D,D, I〉 in Fig.1(a) such that

- W = {w,w′, w′′}

- RW = {r, r′, r′′} and r(0) = w, r′(0) = w′, and r′′(0) = w′′
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w′

P (a)

...

w

P (a), P (b)

...

w′′

P (b)

...

∼i,a ∼i,b

(a) The mf-modelM.

v′

Q(c)

...

v

Q(c)

...

v′′

...

∼i,c ∼i,d

(b) The mf-modelM′.

Figure 1: Arrows represent the system runs; while epistemically related states are grouped
together.

- D = {a, b}

- I(P 1, r(0)) = {a, b}, I(P 1, r′(0)) = {a} and I(P 1, r′′(0)) = {b}

- ∼i,a and ∼i,b are equivalence relations such that (r, 0) ∼i,a (r′, 0) and (r, 0) ∼i,b (r′′, 0).

We can see that (M, r, 0) |= ∀xKiP (x), but (M, r, 0) 6|= Ki∀xP (x) as (r, 0) ∼i,a (r′, 0) and
(Mσ, r′, 0) 6|= P (x) for σ(x) = b.

Furthermore, the K axiom Ki(ψ → ψ′) → (Kiψ → Kiψ
′) is not valid on mf-models

either. In fact, consider the mf-model M′ = 〈W ′,R′W ′ , {∼′i,a}i∈Ag,a∈D′ ,D′, I ′〉 in Fig.1(b)
such that

- W ′ = {v, v′, v′′}

- R′W ′ = {q, q′, q′′} and q(0) = v, q′(0) = v′, and q′′(0) = v′′

- D′ = {c, d}

- I ′(Q1, q(0)) = {c}, I ′(Q1, q′(0)) = {c} and I ′(Q1, q′′(0)) = ∅

- ∼i,c and ∼i,d are equivalence relations such that (q, 0) ∼i,c (q′, 0) and (q, 0) ∼i,d (q′′, 0).

Finally, let σ(x) = c. We can check that (Mσ, q, 0) |= (Q(x) → ∃xQ(x)) ∧ Q(x) and
(Mσ, q′, 0) |= (Q(x)→ ∃xQ(x))∧Q(x). Thus, (Mσ, q, 0) |= Ki(Q(x)→ ∃xQ(x))∧KiQ(x).
But (M, q′′, 0) 6|= ∃xQ(x), so (Mσ, q, 0) 6|= Ki∃xQ(x).

We now prove the following lemma, which will be used in the completeness proof for
systems satisfying perfect recall or no learning. The lemma states that, when we deal with
satisfability of monodic formulas, mf-models suffice.

Lemma 2. Let MFK,BFm be the class of all mf-models validating the formulas K and BF .
For every monodic formula φ ∈ L1

m (resp. LC1
m),

Km |= φ iff MFK,BFm |= φ
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Proof. The implication from right to left follows from the fact that the class Km of all
Kripke models is isomorphic to the subclass of monodic friendly Kripke models such that
for all i ∈ Ag, a, b ∈ D, ∼i,a is equal to ∼i,b. In other words, given a Kripke model M =
〈W,RW , {∼i}i∈Ag,D, I〉 we can define the mf-model M′ = 〈W,RW , {∼i,a}i∈Ag,a∈D,D, I〉,
where for every a ∈ D, ∼i,a is equal to ∼i. It is straightforward to see that M′ validates
both K and BF (in particular, the counterexamples in Fig. 1 are ruled out). Further, if
M 6|= φ then M′ 6|= φ. Thus, if MFK,BFm |= φ, then Km |= φ.

For the implication from left to right, assume that Mmf = 〈W,RW ,
{∼i,a}i∈Ag,a∈D,D, I〉 is an mf-model validating K and BF such that (Mσ

mf , r, n) 6|= φ
for some point (r, n) and some assignment σ. We can then build a Kripke model M′ =
〈W ′,R′W ′ , {∼′i}i∈Ag,D′, I ′〉 from Mmf such that (M′σ, r, n) 6|= φ as follows. We start by
assuming W ′ = W , R′ = R and D′ = D. Further, for each i ∈ Ag, define ∼′i as the
transitive closure of

⋃
a∈D ∼i,a. Finally, set I ′ = I. We now have to check that the Kripke

model M′ is well defined and does not validate φ.
First of all, we point out the following issue associated with the construction above: it

can be the case that for some point (q, k) and some monodic formula ψ[x], it happens that
(Mσ

mf , q, k) |= Kiψ[x], (q, k) ∼i,σ(x) (q′, k′) and (q, k) ∼i,σ(y) (q′′, k′′) for some σ(x) 6= σ(y).
Further, suppose that (Mσ

mf , q
′′, k′′) 6|= ψ[x], while we obviously have that (Mσ

mf , q
′, k′) |=

ψ[x]. Now by the definition of ∼′i we have that (M′σ, q, k) 6|= Kiψ[x]; so the two models do
not satisfy the same formulas. We can solve this problem by modifying the interpretation I
according to the structure of the monodic formula ψ[x], while keeping the same truth value
for ψ[x] at point (q, k). We consider the relevant cases according to the structure of ψ[x];
the induction hypothesis consists of the fact that we are able to find such an interpretation
I for all subformulas of ψ[x].

For ψ[x] = P (x) we simply assume that σ(x) ∈ I(P, q′′(k′′)), so that (M′σ, q′′, k′′) |=
ψ[x] and (M′σ, q, k) |= Kiψ[x]. Note that this does not change the truth value of any
epistemic formula in (q, k) as we assumed that (q, k) 6∼i,σ(x) (q′′, k′′) (otherwise ψ[x] would
be satisfied in (q′′, k′′)). The cases for propositional connectives and modal operators are
similarly dealt with by applying the induction hypothesis. For ψ[x] = ∀yθ[x, y] we have

that (Mσ
mf , q

′′, k′′) 6|= ψ[x], therefore there exists b ∈ D such that (Mσy
b
mf , q

′′, k′′) 6|= θ[x, y].
Now we have to consider 4 different cases depending on whether (q, k) satisfies any of these
4 formulas:

Ki ∀x ¬θ[x, y] (3)
K̄i ∀x ¬θ[x, y] (4)
Ki ∃x ¬θ[x, y] (5)
K̄i ∃x ¬θ[x, y] (6)

By using the axioms and inference rules in QKTm for Formula (3) we can show what
follows (where ⇒ is used for entailment):

(Mσ
mf , q, k) |= Ki∀yθ[x, y] ∧Ki∀x¬θ[x, y]⇒

⇒ (Mσ
mf , q, k) |= ∃xKi∀yθ[x, y] ∧ ∃yKi∀x¬θ[x, y] by Ex

⇒ (Mσ
mf , q, k) |= Ki∃x∀yθ[x, y] ∧Ki∃y∀x¬θ[x, y] by ∃zKiφ→ Ki∃zφ

⇒ (Mσ
mf , q, k) |= Ki(∃x∀yθ[x, y] ∧ ∃y∀x¬θ[x, y]) by Ki(φ ∧ ψ)↔ Kiφ ∧Kiψ
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⇒ (Mσ
mf , q, k) |= Ki(∃x∀uθ[x, u] ∧ ∃y∀v¬θ[v, y]) by change of variables

⇒ (Mσ
mf , q, k) |= Ki∃x∃y∀u∀v(θ[x, u] ∧ ¬θ[v, y]) by prefixing

⇒ (Mσ
mf , q, k) |= Ki∃x∃y(θ[x, y] ∧ ¬θ[x, y]) by Ex

but the last formula is a contradiction; so (3) cannot hold in (q, k). Similarly, Formula
(4) cannot hold in (q, k) either because:

(Mσ
mf , q, k) |= Ki∀yθ[x, y] ∧ K̄i∀x¬θ[x, y]

⇒ (Mσ
mf , q, k) |= ∃xKi∀yθ[x, y] ∧ ∃yK̄i∀x¬θ[x, y] by Ex

⇒ (Mσ
mf , q, k) |= Ki∃x∀yθ[x, y] ∧ ∃yK̄i∀x¬θ[x, y] by ∃zKiφ→ Ki∃zφ

⇒ (Mσ
mf , q, k) |= Ki∃x∀yθ[x, y] ∧ K̄i∃y∀x¬θ[x, y] by ∃zK̄iφ↔ K̄i∃zφ

⇒ (Mσ
mf , q, k) |= K̄i(∃x∀yθ[x, y] ∧ ∃y∀x¬θ[x, y]) by Kiφ ∧ K̄iψ → K̄i(φ ∧ ψ)

⇒ (Mσ
mf , q, k) |= K̄i∃x∃y(θ[x, y] ∧ ¬θ[x, y]) similarly to above

Note that in both derivations we make use of the formulas K and BF (for instance, to
prove the theorems Ki(φ ∧ ψ) ↔ Kiφ ∧Kiψ and ∃zKiφ → Ki∃zφ). Finally, to satify the
Formulas (5) and (6) in (q, k), we have to guarantee the existence of an individual x while
avoiding the clash with σ(x). So, we introduce a new individual a′ in the domain D′ such
that a′ and σ(x) satisfy the same formulas at all points. Thus, a′ can be seen as a copy
of σ(x). Finally, by the induction hypothesis we can modify the interpretation I ′ so that
(M′σ, q′′, k′′) |= θ[x, y].

The case for the common knowledge operator derives from the one for Ki. As a result,
we obtain a Kripke model M′ such that (M′σ, r, n) 6|= φ.

Moreover, by the procedure described above, ifMmf satisfies perfect recall, or no learn-
ing, or synchronicity, or has unique initial state, then also M′ satisfies the same property.
Thus, by Lemma 2 we can prove the following result.

Corollary 2. Let X be any subset of {pr, nl, sync, uis}. For every monodic formula φ ∈ L1
m

(resp. LC1
m), if φ is satisfiable in MFXm also validating the formulas K and BF , then φ is

satisfiable in KXm.

Proof. It is easy to see that if Mmf satisfies either synchronicity or has a unique
initial state, then M′ does as well by the way it is defined. Further, suppose that Mmf

satisfies perfect recall, and (r, n) ∼′i (r′, n′) for n > 0. This means that there is a sequence
a1, . . . , ak of individuals in D and a sequence (q1,m1), . . . , (qk,mk) of points such that (i)
(r, n) = (q1,m1) and (r′, n′) = (qk,mk); and (ii) (qj ,mj) ∼i,aj (qj+1,mj+1) for j < k. We
show the result for k = 3, the case for k > 3 follows by a straightforward generalisation.

If (q1,m1 − 1) ∼i,a1 (q2,m2), then by the definition of ∼′i we have that (q1,m1 − 1) ∼′i
(q3,m3) as well. Hence, Mmf satisfies perfect recall. Otherwise, suppose that by perfect
recall there is l2 < m2 such that (q1,m1 − 1) ∼i,a1 (q2, l2), and for all l′2, l2 < l′2 ≤ m2

implies (q1,m1) ∼i,a1 (q2, l
′
2). Now consider each l′2(h) = m2 − h, for 0 ≤ h < m2 −

l2. By perfect recall, either (i) there exists p3(h) such that (q2, l
′
2(h)) ∼i,a2 (q3, p3(h)),

and for all p′3(h), p3(h) < p′3(h) ≤ p3(h − 1) implies (q2, l2(h)) ∼i,a2 (q3, p
′
3(h)), or (ii)

(q2, l
′
2(h) − 1) ∼i,a2 (q3, p3(h − 1)), where p3(−1) = m3. Notice that in both cases, by

the definition of ∼′i, we have that (q1,m1) ∼′i (q3, p
′
3(h)) for all 0 ≤ h < m2 − l2, that is,

(q1,m1) ∼′i (q3, p
′
3) for all p3[l2 +1] < p′3 ≤ m3. Further, for l2, either (i) there exists l3 such
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that (q2, l2 − 1) ∼i,a2 (q3, l3), and for all l′3, l3 < l′3 ≤ p3[l2 + 1] implies (q2, l2) ∼i,a2 (q3, l
′
3),

or (ii) (q2, l2 − 1) ∼i,a2 (q3, p3[l2 + 1]). In the first case, if some l′3 is strictly less than
m3, then there is l′3 such that (q1,m1 − 1) ∼′i (q3, l

′
3) and for all l′′3 , l′3 < l′′3 ≤ m3 implies

(q1,m1) ∼′i (q3, l
′′
3). Otherwise, we have that (q1,m1− 1) ∼′i (q3,m3). Hence,Mmf satisfies

perfect recall.
The proof for no learning is similar.

Finally, by combining Corollaries 1 and 2 we immediately obtain the following result.

Corollary 3. Let X be any subset of {pr, nl, sync, uis}. For every monodic formula φ ∈ L1
m

(resp. LC1
m), if φ is satisfiable in MFXm also validating the formulas K and BF , then φ is

satisfiable in QISXm.

In the next section we show that it is indeed possible to build such an mf-model.

4. The Completeness Proof

In this section we outline the main steps of the completeness proof, which is based on
a quasimodel construction (Gabbay, Kurucz, Wolter, & Zakharyaschev, 2003; Hodkinson
et al., 2000). Differently from these contributions, here we explicitly take into account
the interaction between temporal and epistemic modalities. Intuitively, a quasimodel for
a monodic formula φ is a relational structure whose points are sets of sets of subformulas
of φ. Each set of sets of subformulas describes a “possible state of affairs”, and contains
sets of subformulas defining the individuals in that state. More formally, given a formula
φ ∈ LC1

n we define

subCφ = subφ ∪ {ECψ | Cψ ∈ subφ} ∪ {KiCψ | Cψ ∈ subφ, i ∈ Ag}

where subφ is the set of subformulas of φ. For φ ∈ L1
n, subCφ is simply subφ. Further, we

define

subC©¬φ = subCφ ∪ {¬ψ | ψ ∈ subCφ} ∪ {©ψ | ψ ∈ subCφ} ∪ {©¬ψ | ψ ∈ subCφ}

Observe that subC©¬φ is closed under negation modulo equivalences φ↔ ¬¬φ and T1,
that is, for all ψ ∈ subC©¬φ, if ψ is not of the form ¬θ then ¬ψ ∈ subC©¬φ; otherwise,
θ ∈ subC©¬φ. Finally, let subnφ be the subset of subC©¬φ containing formulas with at most
n free variables. So, sub0φ is the set of sentences in subnφ. If x is a variable not occurring
in φ, we define subxφ = {ψ[y/x] | ψ[y] ∈ sub1φ}. Clearly, x is the only free variable in the
formulas in subxφ. By conφ we denote the set of all constants occurring in φ. In Table 3
we report the set subyφ for φ equal to Formula (1) thus abbreviated:

∀y C(∀zAv(y, z)U∃xReq(x, y))

Further, for k ∈ N we define the closures clkφ and clk,iφ by mutual recursion.

Definition 12. Let cl0φ = subxφ and for k ≥ 0, clk+1φ =
⋃
i∈Ag clk,iφ. For k ≥ 0, i ∈ Ag,

clk,iφ = clkφ ∪ {Ki(ψ1 ∨ . . . ∨ ψn),¬Ki(ψ1 ∨ . . . ∨ ψn) | ψ1, . . . , ψn ∈ clkφ}.
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subyφ {φ, C(∀zAv(y, z)U∃xReq(x, y)), EC(∀zAv(y, z)U∃xReq(x, y)),
{KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ∀zAv(y, z)U∃xReq(x, y), ∀zAv(y, z), ∃xReq(x, y),
¬φ, ¬C(∀zAv(y, z)U∃xReq(x, y)), ¬EC(∀zAv(y, z)U∃xReq(x, y)),
{¬KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ¬∀zAv(y, z)U∃xReq(x, y), ¬∀zAv(y, z),
¬∃xReq(x, y),
©φ, ©C(∀zAv(y, z)U∃xReq(x, y)), ©EC(∀zAv(y, z)U∃xReq(x, y)),
{©KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ©∀zAv(y, z)U∃xReq(x, y), ©∀zAv(y, z),
©∃xReq(x, y),
©¬φ, ©¬C(∀zAv(y, z)U∃xReq(x, y)), ©¬EC(∀zAv(y, z)U∃xReq(x, y)),
{©¬KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ©¬∀zAv(y, z)U∃xReq(x, y), ©¬∀zAv(y, z),
©¬∃xReq(x, y)}

Table 3: the set subyφ for φ equal to Formula (1).

t {φ, C(∀zAv(y, z)U∃xReq(x, y)), EC(∀zAv(y, z)U∃xReq(x, y)),
{KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ∀zAv(y, z)U∃xReq(x, y), ∀zAv(y, z), ∃xReq(x, y),
©¬φ, ©¬C(∀zAv(y, z)U∃xReq(x, y)), ©¬EC(∀zAv(y, z)U∃xReq(x, y)),
{©¬KiC(∀zAv(y, z)U∃xReq(x, y))}i∈Ag, ©¬∀zAv(y, z)U∃xReq(x, y), ©∀zAv(y, z),
©¬∃xReq(x, y)}

Table 4: a type t in cl0φ, for φ equal to Formula (1).

We define ad(φ) as the greatest number of alternations of distinct Ki’s along any branch
in φ’s parse tree (Halpern et al., 2004). Further, an index is any finite sequence ι = i1, . . . , ik
of agents such that in 6= in+1, for 1 ≤ n < k; the length of ι is denoted by |ι|. Also, ι]i is
the absorptive concatenation of indexes ι and i such that ι]i = ι if ik = i. Finally, Kιψ is a
shorthand for Ki1 . . .Kikψ. Now let ι be an index such that |ι| ≤ ad(φ). If ι is the empty
sequence ε then clιφ = clad(φ)φ. If ι = ι′]i, then clιφ = clk,iφ for k = ad(φ) − |ι|. We now
introduce types for quasimodels, which intuitively can be seen as individuals described by
maximal and consistent sets of formulas.

Definition 13 (Type). A ι-type t for φ is any maximal and consistent subset of clιφ, i.e.,
for every monodic formulas ψ and ψ′ in clιφ,

(i) ¬ψ ∈ t iff ψ /∈ t;

(ii) ψ ∧ ψ′ ∈ t iff ψ, ψ′ ∈ t.

Two ι-types t, t′ are said to agree on sub0φ if t ∩ sub0φ = t′ ∩ sub0φ, i.e., if they share
the same sentences. Given a ι-type t for φ and a constant c ∈ conφ, 〈t, c〉 is an indexed type
for φ, abbreviated as tc. In Table 4 we report a type t in cl0φ, for φ equal to Formula (1).

We now introduce state candidates, which intuitively represent the states of a quasi-
model.

Definition 14 (State candidate). A ι-state candidate for φ is a pair C = 〈T, T con〉 such
that

(i) T is a set of ι-types for φ that agree on sub0φ;

(ii) T con is a set containing for each c ∈ conφ an indexed type tc such that t ∈ T .
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We also introduce the notion of point, which describes a state candidate from the per-
spective of a particular type.

Definition 15 (Point). A ι-point for φ is a pair P = 〈C, t〉 such that

(i) C = 〈T, T con〉 is a ι-state candidate for φ;

(ii) t ∈ T is a ι-type.

Note that, by a slight abuse of notation, we call points both the pairs (r, n) in QIS and
the pairs P = 〈C, t〉. This is to be consistent with previous work (Fagin et al., 1995; Halpern
et al., 2004); the context will disambiguate. Also, we write t ∈ C for C = 〈T, T con〉 and
t ∈ T . Similarly for t ∈ P. Given a ι-state candidate C = 〈T, T con〉 and a point P = 〈C, t〉
we define the formulas αC and βP as follows:

αC :=
∧
t∈T
∃xt[x] ∧ ∀x

∨
t∈T

t[x] ∧
∧

tc∈T con

t[x/c]

βP := αC ∧ t

where we do not distinguish between a type t and the conjuction of formulas it contains.
A ι-state candidate C is S-consistent if the formula αC is consistent w.r.t. the system S,

i.e., if 0S ¬αC. Similarly, a ι-point P is S-consistent if the formula βP is consistent w.r.t. S.
We refer to plain consistency whenever the system S of reference is understood. Consistent
state candidates represent the states of our quasimodels. We now define the relations of
suitability that constitute the relational part of quasimodels.

Definition 16. • A ι1-type t1 and a ι2-type t2 are ©-suitable, or t1 ⇒ t2, iff ι1 = ι2
and t1∧©t2 is consistent. They are i-suitable, or t1 ≈i t2, iff ι1]i = ι2]i and t1∧K̄it2
is consistent.

• A ι1-state candidate C1 and a ι2-state candidate C2 are ©-suitable, or C1 ⇒ C2, iff
ι1 = ι2 and αC1 ∧©αC2 is consistent. They are i-suitable, or C1 ≈i C2, iff ι1]i = ι2]i
and αC1 ∧ K̄iαC2 is consistent.

• A ι1-point P1 and a ι2-point P2 are ©-suitable, or P1 ⇒ P2, iff ι1 = ι2 and βP1 ∧
©βP2 is consistent. They are i-suitable, or P1 ≈i P2, iff ι1]i = ι2]i and βP1 ∧ K̄iβP2

is consistent.

• A ι1-point P1 = 〈C1, t1〉 and a ι2-point P2 = 〈C2, t2〉 are ©-suitable for a constant
c ∈ conφ, or P1 ⇒c P2, iff P1 ⇒ P2, tc1 ∈ T con1 and tc2 ∈ T con2 . They are i-suitable
for c, or P1 ≈ci P2, iff P1 ≈i P2, tc1 ∈ T con1 and tc2 ∈ T con2 .

By using the axioms T , 4 and 5 it can be shown that the relation ≈i is reflexive,
transitive and symmetric, that is, an equivalence relation. Also, the relation ⇒ is serial.
In the following lemma we list some properties of relations ⇒ and ≈i that will be useful in
what follows.

Lemma 3. (i) Let ©ψ ∈ subxφ, if t1 ⇒ t2 then ©ψ ∈ t1 iff ψ ∈ t2.
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(ii) Let Kiψ ∈ subxφ and let t be a ι-type, Kiψ ∈ t iff for all ι-types t′, t ≈i t′ implies
ψ ∈ t′. Moreover, let |ι]i| ≤ ad(φ), then Kiψ ∈ t iff for all ι]i-types t′, t ≈i t′ implies
ψ ∈ t′.

Proof.

(i) The proof is similar to the one for Lemma 9(i) in the work of Wolter et al. (2002). If
©ψ ∈ t1 and ψ /∈ t2 then ¬ψ ∈ t2 and since t1∧©t2 is consistent, then also©ψ∧©¬ψ
is consistent, which is a contradiction. From right to left, if ψ ∈ t2 and ©ψ /∈ t1 then
¬© ψ ∈ t1. Since t1 ∧©t2 is consistent, then also ¬© ψ ∧©ψ is consistent, which
is a contradiction.

(ii) From left to right, if Kiψ ∈ t and ψ /∈ t′ then ¬ψ ∈ t′ and since t ∧ K̄it
′ is consistent,

then also Kiψ ∧ K̄i¬ψ is consistent, which is a contradiction. From right to left, if
Kiψ /∈ t then we can extend the set {¬ψ} ∪ {θ | Kiθ ∈ t} to a ι-type t′. In particular,
t ≈i t′ and ¬ψ ∈ t′. Moreover, if |ι]i| ≤ ad(φ) then we can similarly prove that Kiψ ∈ t

iff for all ι]i-types t′, t ≈i t′ implies ψ ∈ t′.

We now present the frame underlying the quasimodel for φ.

Definition 17 (Frame). A frame F is a tuple 〈R,D, {∼i,a}i∈Ag,a∈D, f〉 where

(i) R is a non-empty set of indexes r, r′, . . .;

(ii) D is a non-empty set of individuals;

(iii) for every i ∈ Ag, a ∈ D, ∼i,a is an equivalence relation on the set of points (r, n) for
r ∈ R and n ∈ N;

(iv) f is a partial function associating to each point (r, n) a consistent state candidate
f(r, n) = Cr,n such that

(a) the domain of f is not empty;

(b) if f is defined on (r, n), then it is defined on (r, n+ 1);

(c) if f is defined on (r, n) and (r, n) ∼i,a (r′, n′), then f is defined on (r′, n′).

The function f is partial to take into consideration the case of synchronous systems. Also,
it is straightforward to introduce frames satisfying perfect recall, no learning, synchronicity,
or having a unique initial state, by following the same definitions given for mf-models. Next,
we provide the definition of objects, which correspond to the runs of Gabbay et al. (2003).
We choose this terminology to avoid confusion with the runs in QIS.

Definition 18 (Object). Given an individual a ∈ D, an object in the frame F is a map ρa
associating a type ρa(r, n) ∈ Tr,n to every (r, n) ∈ Dom(f) with f(r, n) = Cr,n = 〈Tr,n, T conr,n 〉
such that

1. ρa(r, n)⇒ ρa(r, n+ 1)

2. if (r, n) ∼i,a (r′, n′) then ρa(r, n) ≈i ρa(r′, n′)
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3. χUψ ∈ ρa(r, n) iff there is n′ ≥ n such that ψ ∈ ρa(r, n′) and for all n′′, n ≤ n′′ < n′

implies χ ∈ ρa(r, n′′)

4. if ρa(r, n) ≈i t are ι-types, then for some (r′, n′), (r, n) ∼i,a (r′, n′) and ρa(r′, n′) = t

5. if ¬Cψ ∈ ρa(r, n) then there exists a point (r′, n′) reachable from (r, n) such that
¬ψ ∈ ρa(r′, n′)

An object+ satisfies (1), (2), (3), (5) above and (4′) below instead of (4).

(4′) if ρa(r, n) is a ι-type, t is a ι]i-type and ρa(r, n) ≈i t, then for some (r′, n′) ∼i,a (r, n),
ρa(r′, n′) = t.

Intuitively, an object identifies the same individual, here represented by types, across
different state candidates. Now we have all the elements to give the definition of quasimodel.

Definition 19 (Quasimodel). A quasimodel for φ is a tuple Q = 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉
such that 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame, and

1. φ ∈ t for some t ∈ Tr,n and Tr,n ∈ Cr,n

2. Cr,n ⇒ Cr,n+1

3. if (r, n) ∼i,ρ (r′, n′) then ρ(r, n) ≈i ρ(r′, n′)

4. for every t ∈ Tr,n there exists an object ρ ∈ O such that ρ(r, n) = t

5. for every c ∈ conφ, the function ρc such that ρc(r, n) = tc ∈ T conr,n is an object in O.

A quasimodel+ is defined as a quasimodel but where clauses (4) and (5) refer to objects+

rather than objects. We can define quasimodels (resp. quasimodel+) satisfying perfect recall,
no learning, synchronicity, or having a unique initial state, by assuming the corresponding
condition on the underlying frame. The difference between objects (resp. quasimodel) and
objects+ (resp. quasimodel+) is purely technical. In particular, the latter are needed for
systems satisfying perfect recall and no learning as it will become apparent in Section 5.
In the following lemma we list some properties of quasimodels that will be useful in what
follows.

Lemma 4. In every quasimodel Q, for every object ρ ∈ O,

(i) Kiχ ∈ ρ(r, n) iff for all (r′, n′), (r′, n′) ∼i,ρ (r, n) implies χ ∈ ρ(r′, n′).

(ii) Cχ ∈ ρ(r, n) iff for all points (r′, n′) reachable from (r, n) we have that χ ∈ ρ(r′, n′).

Proof.

(i) The implication from left to right follows from the fact that (r′, n′) ∼i,ρ (r, n) implies
ρ(r, n) ≈i ρ(r′, n′). For the implication from right to left, if Kiχ /∈ ρ(r, n) then by
Lemma 3(ii) there is a ι-type t such that ρ(r, n) ≈i t and ¬χ ∈ t. By Definition 18 for
some (r′, n′), (r, n) ∼i,ρ (r′, n′) and ¬χ ∈ ρ(r′, n′) = t.
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(ii) The implication from left to right is proved by induction on the length of the path
from (r, n) to (r′, n′). Both the base case and the inductive step follow by axiom C1.
The implication from right to left follows from Definition 18.

We now state the main result of this section, that is, satisfability in quasimodels implies
satisfability in mf-models. In what follows a quasimodel Q validates a formula φ if φ belongs
to every type in every state-candidate in Q.

Theorem 3. If there is a quasimodel (resp. quasimodel+) Q for a monodic formula φ, then
φ is satisfiable in a mf-modelMmf . Moreover, if Q validates the formulas K and BF , then
so does Mmf . Finally, if Q satisfies perfect recall, or no learning, or synchronicity, or has
a unique initial state, then so does Mmf .

Proof. This proof is inspired by those of Lemmas 11.72 and 12.9 in the work of Gabbay
et al. (2003), but here we consider monodic friendly Kripke models rather than standard
Kripke models. First, for every monodic formula ψ of the form Kiχ, Cχ, ©χ or χ1Uχ2

we introduce a k-ary predicate constant P kψ for k equal to 0 or 1, depending whether there
are 0 or 1 free variables in ψ. The formula P kψ(x) is called the surrogate of ψ. Given a
monodic formula φ we denote by φ the formula obtained from φ by substituting all its modal
subformulas which are not within the scope of another modal operator with their surrogates.
Since every state candidate C in the quasimodel Q is consistent and all the system S of
first-order temporal-epistemic logic considered in Section 3 are based on classical first-order
logic, the formula αC is consistent with respect to first-order (non-modal) logic. By Gödel’s
completeness theorem there is a first-order structure I = 〈I,D〉, where D is a non-empty set
of individuals and I is a first-order interpretation on D, that satisfies αC, i.e., Iσ |= αC for
some assignment σ of the variables to the elements in D. We intend to build an mf-model
by joining all these first-order structures. However, it is possible that these structures have
different domains with different cardinalities. To solve this problem, we consider a cardinal
number κ ≥ ℵ0 greater than the cardinality of the set O of all objects in Q and define

D = {〈ρ, ξ〉 | ρ ∈ O, ξ < κ}

Then, for (r, n) ∈ Q, for any ι-type t ∈ Tr,n we have that

|{〈ρ, ξ〉 ∈ D | ρ(r, n) = t}| = κ

By the method described in Claim 11.24 by Gabbay et al. (2003), we can expand each
first-order structure to obtain a structure Ir,n = 〈Ir,n,D〉 with domain D such that Ir,n
satisfies αCr,n and

|{a ∈ D | σ(x) = a and Iσr,n |= t[x]}| = κ

So, we can assume without loss of generality that all first-order structures Ir,n share the
same domain D, and for every t ∈ Tr,n, 〈ρ, ξ〉 ∈ D, we have

ρ(r, n) = t iff Iσr,n |= t[x]

for σ(x) = 〈ρ, ξ〉. Equivalently, for t ∈ Tr,n, σ(x) = 〈ρ, ξ〉 ∈ D,

ρ(r, n) = {ψ ∈ clιφ | Iσr,n |= ψ[x]} (7)
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Moreover, Ir,n(c) = 〈ρc, 0〉 for every c ∈ conφ.
We define the mf-model Mmf as the tuple 〈W,R, {∼i,a}i∈Ag,a∈D,D, I〉 such that W is

the set of points (r, n) for r in R ∈ Q and n ∈ N; R is the set of runs from N to W such that
r(n) = (r, n); D is defined as above; for i ∈ Ag and 〈ρ, ξ〉 ∈ D, ∼i,〈ρ,ξ〉 is defined as ∼i,ρ;
and the interpretation I is obtained by joining the various first-order interpretations Ir,n,
i.e., I(P, r(n)) = Ir,n(P ) for every predicate constant P . We can now prove the following
result for Mmf .

Lemma 5. If the mf-model Mmf is obtained from a quasimodel Q as described above, then
for every ψ ∈ subxφ,

Iσr,n |= ψ iff (Mσ
mf , r, n) |= ψ

Moreover, if Q is a quasimodel+, f(r, n) is a ι-state candidate and ad(Kιψ) ≤ ad(φ) then

Iσr,n |= ψ iff (Mσ
mf , r, n) |= ψ

Proof. The proof is similar to Lemma 12.10 in the work of Gabbay et al. (2003). We
begin with the first part. The base case of induction follows by definition of the interpre-
tation I in the mf-model. The step for propositional connectives and quantifiers follows by
the induction hypothesis and equations ψ1 → ψ2 = ψ1 → ψ2, ¬ψ1 = ¬ψ1, ∀xψ1 = ∀xψ1.

Now let ψ =©χ[x] and assume that σ(x) = 〈ρ, ξ〉, then we have:

Iσr,n |=©χ[x] iff ©χ[x] ∈ ρ(r, n) (8)
iff χ[x] ∈ ρ(r, n+ 1) (9)
iff Iσr,n+1 |= χ[x] (10)
iff (Mσ

mf , r, n+ 1) |= χ[x] (11)
iff (Mσ

mf , r, n) |=©χ[x]

Steps (8) and (10) follow by Equation (7). Step (9) is motivated by Lemma 3(i), and
step (11) follows by the induction hypothesis.

Let ψ = (χUχ′)[x] and σ(x) = 〈ρ, ξ〉, then we have:

Iσr,n |= (χUχ′)[x] iff (χUχ′)[x] ∈ ρ(r, n) (12)
iff there is n′ ≥ n such that χ′[x] ∈ ρ(r, n′)

and χ[x] ∈ ρ(r, n′′) for all n ≤ n′′ < n′ (13)
iff there is n′ ≥ n such that Iσr,n′ |= χ′[x]

and Iσr,n′′ |= χ[x] for all n ≤ n′′ < n′ (14)
iff there is n′ ≥ n such that (Mσ

mf , r, n
′) |= χ′[x]

and (Mσ
mf , r, n

′′) |= χ[x] for all n ≤ n′′ < n′ (15)
iff (Mσ

mf , r, n) |= χUχ′[x]

Steps (12) and (14) follow by Equation (7). Step (13) is motivated by Def. 18, and step
(15) follows by the induction hypothesis.

23



Belardinelli & Lomuscio

Let ψ = Kiχ[x] and σ(x) = 〈ρ, ξ〉, then we have:

Iσr,n |= Kiχ[x] iff Kiχ[x] ∈ ρ(r, n) (16)
iff for all (r′, n′) ∼i,ρ (r, n), χ[x] ∈ ρ(r′, n′) (17)
iff for all (r′, n′) ∼i,〈ρ,ξ〉 (r, n), Iσr′,n′ |= χ[x] (18)
iff for all (r′, n′) ∼i,〈ρ,ξ〉 (r, n), (Mσ

mf , r
′, n′) |= χ[x] (19)

iff (Mσ
mf , r, n) |= Kiχ[x]

Steps (16) and (18) follow by Equation (7). Step (17) is motivated by Lemma 4(i), and step
(19) follows by the induction hypothesis.

Let ψ = Cχ[x] and σ(x) = 〈ρ, ξ〉, then we have:

Iσr,n |= Cχ[x] iff Cχ[x] ∈ ρ(r, n) (20)
iff for all (r′, n′) reachable from (r, n), χ[x] ∈ ρ(r′, n′) (21)
iff for all (r′, n′) reachable from (r, n), Iσr′,n′ |= χ[x] (22)
iff for all (r′, n′) reachable from (r, n), (M, r′, n′) |= χ[x] (23)
iff (M, r, n) |= Cχ[x]

Steps (20) and (22) follow by Equation (7). Step (21) is motivated by Lemma 4(ii), and
step (23) follows by the induction hypothesis.

Now we prove the second part of the lemma. All cases are identical to the first part,
except for ψ = Kiχ. Suppose that f(r, n) is a ι-state candidate and ad(Kιψ) ≤ ad(φ).
For the implication from left to right, if (r, n) ∼i,ρ (r′, n′) then ρ(r′, n′) is a ι′-type such
that ι]i = ι′]i. Thus, ad(Kι′χ) ≤ ad(Kι]iχ) ≤ ad(KιKiχ) ≤ ad(φ). So, we can apply
the induction hypothesis. For the implication from right to left, if ad(KιKiχ) ≤ ad(φ)
then |ι]i| ≤ ad(φ) and by Lemma 3(ii) there is some ι]i-type t such that t ≈i ρ(r, n) and
¬ψ ∈ t. By Def. 18 there is (r′, n′) such that (r, n) ∼i,ρ (r′, n′) and ρ(r′, n′) = t. Since
ad(Kι]iχ) = ad(KιKiχ) ≤ ad(φ) we can apply the induction hypothesis.

To complete the proof of Theorem 3, by definition of quasimodel we have that φ ∈ t for
some t ∈ Tr,n and Tr,n ∈ Cr,n. Therefore, φ is satisfied in the mf-modelMmf at point (r, n).
We also remark that if Q validates the formulas K and BF , so doesMmf . This is the case
as, if K and BF belong to every type in every state-candidate in Q, then by Lemma 5 we
have that Mmf validates K and BF as well.

Finally, if Q satisfies perfect recall, or no learning, or synchronicity, or has a unique
initial state, then the mf-model obtained from Q satisfies the corresponding constraints by
construction. We show this fact for perfect recall: if (r, n) ∼i,〈ρ,ξ〉 (r′, n′) and n > 0, then
in particular (r, n) ∼i,ρ (r′, n′). Since Q satisfies perfect recall, either (r, n− 1) ∼i,ρ (r′, n′),
or there is k < n′ such that (r, n − 1) ∼i,ρ (r′, k) and for all k′, k < k′ ≤ n′ implies
(r, n) ∼i,ρ (r′, k′). By the definition of ∼i,〈ρ,ξ〉 we obtain that either (r, n−1) ∼i,〈ρ,ξ〉 (r′, n′),
or there is k < n′ such that (r, n − 1) ∼i,〈ρ,ξ〉 (r′, k) and for all k′, k < k′ ≤ n′ implies
(r, n) ∼i,〈ρ,ξ〉 (r′, k′), that is, Mmf satisfies perfect recall as well.

We next show the existence of quasimodels for any monodic φ.
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5. Dealing with each System

In this section we consider the completeness proof for each system in Theorem 2. In par-
ticular, we show that if a monodic formula φ is consistent with respect to a system S, then
we can build a quasimodel (or a quasimodel+ in specific cases) for φ based on a frame for
S. In the following sections the symbol ` represents provability in the appropriate system
S. We start with some lemmas that are useful for the construction of the quasimodel for
any system.

Lemma 6. (i) For any consistent monodic formula φ there is a consistent ε-state can-
didate C = 〈T, T con〉 such that φ ∈ t for some t ∈ T .

(ii) Let P = 〈C, t〉 be a consistent ι-point for φ such that C = 〈T, T con〉, and let c ∈ conφ.
Then,

(a) if C⇒ C′ then there exists a ι-point P′ = 〈C′, t′〉 such that P⇒ P′.

(b) if tc ∈ T con and C⇒ C′ then there exists a ι-point P′ = 〈C′, t′〉 such that P⇒c P′.

(c) if ψ1Uψ2 ∈ t then there is a sequence of ι-points Pj = 〈Cj , tj〉 for j ≤ k that
realises ψ1Uψ2, i.e., P = P0 ⇒ . . .⇒ Pk, ψ2 ∈ tk and ψ1 ∈ tj for j < k.

(d) if ψ1Uψ2 ∈ tc then there is a sequence of ι-points Pj = 〈Cj , tj〉 for j ≤ k that
c-realises ψ1Uψ2, i.e., the sequence realises ψ1Uψ2 and P0 ⇒c . . .⇒c Pk.

(e) if ¬Kiψ ∈ t then there is a ι-point P′ = 〈C′, t′〉 such that P ≈i P′ and ¬ψ ∈ t′.

(f) if ¬Kiψ ∈ tc then there is a ι-point P′ = 〈C′, t′〉 such that P ≈ci P′ and ¬ψ ∈ t′.

(g) if ¬Cψ ∈ t then there is a sequence of ι-points Pj = 〈Cj , tj〉 for j ≤ k such that
P = P0 ≈i0 . . . ≈ik−1

Pk and ¬ψ ∈ tk.

(h) if ¬Cψ ∈ tc then there is a sequence of ι-points Pj = 〈Cj , tj〉 for j ≤ k such that
P = P0 ≈ci0 . . . ≈

c
ik−1

Pk and ¬ψ ∈ tk.

Proof. The proof is similar to the one for Claims 11.75, 11.76 and 12.13 in the work
of Gabbay et al. (2003), but here we consider ι-state candidates and ι-points. Let πφ be
the disjunction of all formulas βP for all ι-points P for φ. Consider the formula πφ, which
is obtained by substituting all subformulas of πφ of the form Kiψ, Cψ, ©ψ or ψ1Uψ2 that
are not within the scope of another modal operator with their surrogates. We can check
that πφ is true on all (non-modal) first-order structures. Since both QKTm and QKTCm

extend first-order logic, by the semantical completeness of first-order logic we have that

` πφ (24)

(i) Notice that, by the previous remark, ` πφ also for πφ =
∨
{P|P is a ε-point for φ} βP.

Moreover, φ is consistent and by (24) also πφ ∧ φ is consistent. Therefore, there is a
disjunct βP of πφ such that βP ∧ φ is consistent. So, φ ∈ t for P = 〈C, t〉.

(a) By (24) and Nec we have ` ©πφ. So, βP ∧ ©πφ is consistent and there must be a
ι-point P′ such that βP ∧©βP′ is also consistent.

(b) The proof is similar to (a).
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(c) The proof is by contradiction. Let U be the set of all ι-points P′ such that there exist ι-
points Pj = 〈Cj , tj〉 for j < k and P = P0 ⇒ . . .⇒ Pk = P′. Let θ =

∨
{P′|P′∈U} βP′ .

We can show that
` θ → ¬ψ2 (25)

otherwise, we would have a sequence realising ψ1Uψ2. Moreover, by the definition of
U ,

` θ →©θ (26)

From (25) we obtain
` Gθ → G¬ψ2

and together with (25) and (26) we derive

` θ → (¬ψ2 ∧G¬ψ2) (27)

Now consider any P1 ∈ U such that P⇒ P1. By (27) we have

` βP1 → (¬ψ2 ∧G¬ψ2)
` ©βP1 → G¬ψ2

` (βP ∧©βP1)→ G¬ψ2 (28)

On the other hand, since ψ1Uψ2 ∈ t we have

` (βP ∧©βP1)→ Fψ2 (29)

but (28) and (29) contradict the fact that P⇒ P1.

(d) The proof is similar to (c).

(e) First we remark that βP ∧ K̄i(πφ ∧ ¬ψ) is consistent. Thus, there exists a ι-point
P′ = 〈C′, t′〉 such that βP ∧ K̄i(βP′ ∧ ¬ψ) is consistent. Hence, P ≈i P′ and ¬ψ ∈ t′.

(f) The proof is similar to (e).

(g) The proof is by contradiction. Let V be the minimal set of ι-points D such that (i)
P ∈ V ; (ii) if D ∈ V and D ≈i D′ for some i ∈ Ag, then D′ ∈ V . Let θ =

∨
{D|D∈V } βD.

We can show
` θ → ψ (30)

If (30) did not hold, we would have a sequence as specified in the lemma. Moreover,
by the definition of V ,

` θ → Kiθ (31)

for all i ∈ Ag. From (30) and (31) we obtain

` θ → (ψ ∧ Eθ)

and by axiom C2,
` θ → Cψ (32)

but by definition of P,
` βP → ¬Cψ

which contradicts (32).
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(h) The proof is similar to (g).

By the following result it is always possible to extend the ©-suitability relation ⇒
between types to ©-suitability between points.

Lemma 7. Suppose that t and t′ are ι-types such that t ⇒ t′, then there are ι-points
P = 〈C, t〉 and P′ = 〈C′, t′〉 such that P ⇒ P′. In particular, for any c ∈ conφ, there are
ι-points P = 〈C, t〉 and P′ = 〈C′, t′〉 such that P⇒c P′.

Proof. By Lemma 6 we have that ` πφ and ` ©πφ for πφ =
∨
{P|P is a ι-point for φ} βP.

Since t ⇒ t′, then πφ ∧ t ∧ ©(πφ ∧ t′) is consistent. Thus, there must be ι-points P and
P′ such that βP ∧ t ∧ ©(βP′ ∧ t′) is consistent. Then, it is the case that P = 〈C, t〉 and
P′ = 〈C′, t′〉 for some ι-state candidates C and C′. As a result, P⇒ P′. The second part of
the lemma is proved similarly to the first by observing that if t ⇒ t′ then t[x/c] ∧©t[x/c]
is consistent. Hence, also πφ ∧ t[x/c] ∧©(πφ ∧ t′[x/c]) is consistent. Thus, there must be
ι-points P and P′ such that βP ∧ t[x/c] ∧©(βP′ ∧ t′[x/c]) is consistent. So, tc ∈ T con and
t′c ∈ T ′con, that is, P⇒c P′.

According to Lemma 7 we can always extend a possibly infinite sequence of ι-types t0 ⇒
t1 ⇒ . . . to a possibly infinite sequence of ι-points P0 ⇒ P1 ⇒ . . . such that Pk = 〈Ck, tk〉.

Definition 20. Let a ⇒-sequence be a possibly infinite sequence C0 ⇒ C1 ⇒ . . . of ι-state
candidates. A ⇒-sequence is acceptable if for all k ≥ 0,

(i) if ψ1Uψ2 ∈ tk, for tk ∈ Ck, then ψ1Uψ2 is realised in a sequence of ι-points Pj =
〈Cj , tj〉 for k ≤ j ≤ n;

(ii) if ψ1Uψ2 ∈ tck, for tck ∈ Ck, then ψ1Uψ2 is c-realised in a sequence of ι-points Pj =
〈Cj , tj〉 for k ≤ j ≤ n.

The following lemma entails the completeness result.

Lemma 8. Every finite ⇒-sequence of ι-state candidates can be extended to an infinite
acceptable ⇒-sequence.

Proof. Assume that C0 ⇒ . . .⇒ Cn is a finite ⇒-sequence Σ and ψ1Uψ2 ∈ tk ∈ Ck for
some k ≤ n. Either ψ1Uψ2 is realised in C0 ⇒ . . .⇒ Cn, or by Lemma 6(ii)(c) we can extend
Σ to a ⇒-sequence Σ′ that realises ψ1Uψ2. This procedure is repeated for all formulas of
the form ψ1Uψ2 appearing at some point in the ⇒-sequence. Thus, we obtain a (possibly
infinite) ⇒-sequence C0 ⇒ C1 ⇒ . . . such that property (i) in Definition 20 is satisfied. To
also satisfy property (ii) we reason similarly by using Lemma 6(ii)(d) instead.

Now let X be a new object, a sequence X, . . . ,X,Cn,Cn+1, . . . is acceptable from n if
it starts with n copies of X and Cn,Cn+1, . . . is an acceptable ⇒-sequence. We can now
consider the completeness proof for each single class of QIS.

5.1 The Classes QISm, QISsyncm , QISuism and QISsync,uism

We start with the completeness proof for the systems QKTm and QKTCm, where there is
no interaction between temporal and epistemic operators.
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If a monodic formula φ is consistent, then by Lemma 6(i) there is a consistent ε-state
candidate C = 〈T, T con〉 such that φ ∈ t for some type t ∈ T . Also, by Lemma 8 we
can extend C to an infinite acceptable ⇒-sequence. So, the set of infinite acceptable ⇒-
sequences is non-empty. Let R be the set of all ⇒-sequences acceptable from n, for some
n ∈ N. For r ∈ R, k ∈ N, define the partial function f on R × N as f(r, k) = Ck if r is
the ⇒-sequence X, . . . ,X,Cn,Cn+1, . . . acceptable from n and k ≥ n, undefined otherwise.
Finally, let O be the set of all functions ρ associating every (r, n) ∈ Dom(f) to a type
ρ(r, n) ∈ Tr,n such that

(A) ρ(r, n)⇒ ρ(r, n+ 1);

(B) χUψ ∈ ρ(r, n) iff there is n′ ≥ n such that ψ ∈ ρ(r, n′) and χ ∈ ρ(r, n′′) for all
n ≤ n′′ < n′;

(C) if ρ(r, n) ≈i t are ι-types, then for some (r′, n), ρ(r′, n) = t;

(D) if ¬Cψ ∈ ρ(r, n) then there exists a point (r′, n) and a sequence of ι-points Pj =
〈Cj , tj〉 for j ≤ k, such that 〈f(r, n), ρ(r, n)〉 = P0 ≈i0 . . . ≈ik−1

Pk, ¬ψ ∈ tk, f(r′, n) =
Ck and ρ(r′, n) = tk.

We show that O is non-empty. Condition (A) is guaranteed by Lemma 6(ii)(a), and
condition (B) by the fact that r is an acceptable ⇒-sequence. As regards (C) we remark
that if ρ(r, n) ≈i t then we can find a consistent ι-point P = 〈C, t〉 by reasoning similarly
as in Lemma 6(i), and by Lemma 8, C can be extended to a ⇒-sequence r′ acceptable
from n. Finally, set ρ(r′, n) = t. As to (D) we observe that if ¬Cψ ∈ ρ(r, n) then by
Lemma 6(ii)(g) there exists a sequence of ι-points Pj = 〈Cj , tj〉 for j ≤ k, such that
〈f(r, n), ρ(r, n)〉 = P0 ≈i0 . . . ≈ik−1

Pk and ¬ψ ∈ tk. Now, Ck can be extended to a ⇒-
sequence r′ acceptable from n such that ρ(r′, n) = tk. Finally, for i ∈ Ag, ρ ∈ O, define
(r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′) and n = n′.

Lemma 9. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a synchronous frame.

Proof. We have previously shown that R and O are non-empty. Also, each ∼i,ρ is an
equivalence relation by definition, and f satisfies the conditions in Definition 17. Further,
the frame is synchronous by definition of ∼i,ρ.

Now we can prove the main result.

Lemma 10. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a synchronous quasimodel for φ and it
validates the formulas K and BF .

Proof. By the previous lemma, it remains to prove that the functions in O are objects.
Conditions (1), (3), (4) and (5) on objects are safisfied by remarks (A)-(D) above. Condi-
tion (2) is satisfied by the definition of ∼i,ρ. Furthermore, conditions (1), (2) and (3) on
quasimodels are satisfied by the definitions of R, f and ∼i,ρ. As regards (4), we can extend
the function ρ(r, n) = t to all Dom(f) by using Lemma 6(ii)(a), (c), (e) and (g). As to (5)
the function ρc such that ρc(r, n) = tc is an object by Lemma 6(ii)(b), (d), (f) and (h).
Finally, Q validates both the formulas K and BF , as all t ∈ C, for all C ∈ Q, are consistent
with QKTm (resp. QKTCm).
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The completeness of QKTm and QKTCm with respect to the classesQISm andQISsyncm

of quantified interpreted systems directly follows from Lemma 10 together with Theorem 3.
Thus, we obtain the following item in Theorem 2.

Theorem 4 (Completeness). The system QKTm (resp. QKTCm) is complete w.r.t. the
classes QISm and QISsyncm of QIS.

To prove completeness for QISuism and QISsync,uism we use the next result, which is an
extension from the propositional case (Halpern et al., 2004).

Remark 2. Suppose X is a subset of {pr, sync}. If φ ∈ L1
m (resp. LC1

m) is satisfiable in
QISXm then it is also satisfiable in QISX,uism .

Thus, the system QKTm (resp. QKTCm) is also complete w.r.t. the classes QISuism and
QISsync,uism of QIS.

5.2 The Classes QISprm and QISpr,uism

We now begin to investigate systems where interactions between time and knowledge are
present. The completeness proof for QKT1

m with respect to QISprm and QISpr,uism relies on
the following lemma.

Lemma 11. For all ι-points P1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and ι]i-type t′2, if P1 ⇒ P2 and
t2 ≈i t′2 then there is a ι]i-point P′2 = 〈C′2, t′2〉 and a ⇒-sequence S1 ⇒ . . . ⇒ Sn = P′2
of ι]i-points such that Sk = 〈Dk, sk〉, s1 ≈i t1 and sk ≈i t2 for 1 < k ≤ n. Further, if
P1 ⇒c P2 then sck ∈ T conDk

for k ≤ n.

Proof. We extend the proof of Halpern et al. (2004, Lemma 5.5) to deal with state
candidates and monodic friendly Kripke frames. By the cited result we can prove that if
t1 ⇒ t2 and t2 ≈i t′2 then there is a sequence of ι]i-types s1 ⇒ . . . ⇒ sn = t′2 such that
s1 ≈i t1 and sk ≈i t2 for 1 < k ≤ n. Now by Lemma 7 we can extend this sequence of
ι]i-types to a sequence of ι]i-points S1 ⇒ . . . ⇒ Sn such that Sk = 〈Dk, sk〉 and the
lemma’s statement is satisfied. In particular, if P1 ⇒c P2 also by Lemma 7 we can assume
without loss of generality that sck ∈ T conDk

for k ≤ n.
For any consistent φ ∈ L1

m we define a quasimodel+ for φ to establish the completeness
of QKT1

m with respect to QISprm . Let R be the set of all acceptable⇒-sequences, and define
f such that f(r, k) = Ck if r is the ⇒-sequence C0,C1, . . . . Finally, let O be the set of all
functions ρ associating every (r, n) ∈ Dom(f) to a type ρ(r, n) ∈ Tr,n such that conditions
(A) and (B) above are satisfied and

(C’) if ρ(r, n) is a ι-type, t is a ι]i-type and ρ(r, n) ≈i t, then for some (r′, n′), ρ(r′, n′) = t.

(E) if ρ(r, n) ≈i ρ(r′, n′) and n > 0 then either (a) ρ(r, n − 1) ≈i ρ(r′, n′) or (b) there is
k < n′ such that ρ(r, n − 1) ≈i ρ(r′, k) and for all k′, k < k′ ≤ n′ implies ρ(r, n) ≈i
ρ(r′, k′).

Finally, for i ∈ Ag, ρ ∈ O, we define (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′).
The following lemma shows that the set O is non-empty. In particular, conditions (C’)

and (E) are satisfied by the functions in O.
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Lemma 12. The set O of functions that satisfies conditions (A), (B), (C’) and (E) is
non-empty.

Proof. Conditions (A) and (B) follow respectively from Lemma 6(ii)(a) and the fact
that r is an acceptable⇒-sequence. As regards (C’) and (E), the proof proceeds by induction
on n. The result for n = 0 is immediate, as we can take r′ to be an acceptable ⇒-sequence
starting from C such that t ∈ C. Further, we define ρ(r′, 0) = t. Thus, ρ(r′, 0) ≈i ρ(r, 0) and
both (C’) and (E) are satisfied.

Now suppose that n > 0 and the result holds for n − 1. Since f(r, n − 1) ⇒ f(r, n) and
ρ(r, n) ≈i t, it follows by Lemma 11 that there is a ι]i-point P = 〈C, t〉 and a⇒-sequence of
ι]i-points P′ ⇒ S0 ⇒ . . .⇒ Sk = P such that Sk′ = 〈Dk′ , sk′〉 and sk′ ≈i ρ(r, n) for k′ ≤ k.
By the induction hypothesis, there exists for every ι]i-type s such that ρ(r, n−1) ≈i s a point
(r′, n′) and ρ(r′, n′) = s. In case (a), we take s = t; then we have that ρ(r, n−1) ≈i ρ(r′, n′)
for ρ(r′, n′) = t. Thus, it is also the case that ρ(r, n) ≈i ρ(r′, n′). In case (b), we take s = t′.
Hence, ρ(r, n − 1) ≈i ρ(r′, n′) for ρ(r′, n′) = t′. Now suppose that r′ is derived from the
acceptable ⇒-sequence v0, v1, . . .. Let r′′ be the run derived from an acceptable sequence
with initial segment v0, . . . , vn′ ,D0, . . . ,Dk. Again, such a run exists by Lemma 8. We
define ρ(r′′, n′ + k + 1) = sk = t. Thus, we have ρ(r, n) ≈i ρ(r′′, n′ + k + 1) and both (C’)
and (E) are satisfied.

We can now prove the following lemma.

Lemma 13. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies perfect recall.

Proof. By Lemmas 6(i), 8 and 12 the sets R and O are non-empty. Also, f satisfies the
conditions in Definition 17. Finally, each ∼i,ρ is an equivalence relation by definition, and
it satisfies perfect recall by definition of the functions ρ in O.

Finally, we prove the main result in this section.

Lemma 14. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ with perfect recall
and it validates the formulas K and BF .

Proof. By the previous lemma 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame satisfying perfect
recall; so we are left to prove that the functions in O are objects+. Conditions (1)-(4’) on
objects+ are safisfied by remarks (A)-(E) and the definition of ∼i,ρ. Furthermore, conditions
(1), (2) and (3) on quasimodels+ are satisfied by the definitions of R, f and ∼i,ρ. As
regards (4), it follows from Lemma 11. Finally, condition (5) on quasimodels+ holds by
Lemma 6(ii)(b), (d), (f) and (h) and Lemma 11. Finally, Q validates both the formulas K
and BF , as all t ∈ C, for all C ∈ Q, are consistent with QKTm.

This completes the proof for QISprm . Thus, we obtain the following item in Theorem 2.

Theorem 5 (Completeness). The system QKT1
m is complete w.r.t. the class QISprm of QIS.

The completeness of QKT1
m with respect to QISpr,uism follows by Remark 2.

5.3 The Classes QISpr,syncm and QISpr,sync,uism

The completeness of QKT2
m with respect to QISpr,syncm is proved similarly to the previous

case by using the following lemma instead of Lemma 11.
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Lemma 15. For ι-state candidates C1, C2 and ι]i-state candidate C′2, there is a ι]i-state
candidate C′1 such that

• if C1 ⇒ C2 and C2 ≈i C′2 then C1 ≈i C′1 and C′1 ⇒ C′2.

• for c ∈ conφ, for P1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and P′2 = 〈C′2, t′2〉, if P1 ⇒c P2 and
P2 ≈ci P′2 then for P′1 = 〈C′1, t′1〉, P1 ≈ci P′1 and P′1 ⇒c P′2.

Proof. if C1 ⇒ C2 and C2 ≈i C′2 then there exist t1 ∈ C1, t2 ∈ C2 and t′2 ∈ C′2 such
that t1 ⇒ t2 and t2 ≈i t′2. Moreover, without loss of generality we can assume that for
some c ∈ conφ, tc1 ∈ T con1 , tc2 ∈ T con2 and t′c2 ∈ T ′con2 . Following the proof by Halpern et
al. (2004, Lemma 5.8) we can find a ι]i-type t′1 such that t1 ≈i t′1 and t′1 ⇒ t′2. Define T ′1
as the set of all such t′1 and T ′con1 as the set of t′c1 . We can show that C′1 = 〈T ′1, T ′con1 〉 is a
consistent ι]i-state candidate such that C1 ≈i C′1, C′1 ⇒ C′2, and for c ∈ conφ, P1 ≈ci P′1
and P′1 ⇒c P′2.

For any consistent φ ∈ L1
m we define a quasimodel+ for φ to establish the complete-

ness of QKT2
m with respect to QISpr,syncm . Let R be the set of all ⇒-sequences accept-

able from n, for some n ∈ N, and define f such that f(r, k) = Ck if r is the ⇒-sequence
X, . . . ,X,Cn,Cn+1, . . . acceptable from n and k ≥ n, and undefined otherwise. Finally, let
O be the set of all functions ρ associating every (r, n) ∈ Dom(f) to a type ρ(r, n) ∈ Tr,n
such that conditions (A) and (B) in Section 5.1 are satisfied and

(C”) if ρ(r, n) is a ι-type, t is a ι]i-type and ρ(r, n) ≈i t, then for some (r′, n), ρ(r′, n) = t.

(F) if ρ(r, n) ≈i ρ(r′, n) and n > 0 then ρ(r, n− 1) ≈i ρ(r′, n− 1).

Finally, for i ∈ Ag, ρ ∈ O, we define (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′) and n = n′.
The following remark shows that the set O is non-empty. In particular, conditions (C”)

and (F) are satisfied by the functions in O.

Lemma 16. The set O of functions that satisfies condition (A), (B), (C”) and (F) is
non-empty.

Proof. Conditions (A) and (B) follow from Lemma 6(ii)(a) and the fact that r is an
acceptable ⇒-sequence. As regards (C”) and (F), assume that ρ(r, n) ∈ f(r, n) is a ι-type,
t is a ι]i-type and ρ(r, n) ≈i t. For each s ∈ f(r, n) different from ρ(r, n) consider the set
U = {ψ | Kiψ ∈ s}. We can check that U is consistent and it can be extended to a ι]i-type s′

such that s ≈i s′. Now define T ′ as the collection of all these s′. Further, for each sc ∈ T con,
we set s′c ∈ T ′con. Let C′ = 〈T ′, T ′con〉. Clearly, C ≈i C′ and 〈C, s〉 ≈ci 〈C′, s′〉. By Lemma 15
we can construct a ⇒-sequence C0 ⇒ . . . ⇒ Cn such that Cn = C′ and f(r, k) ≈i Ck for
k ≤ n. By Lemma 8 we can extend this ⇒-sequence to an infinite acceptable ⇒-sequence
r′. In particular, the function ρ can be extended so that for k ≤ n, ρ(r, k) ≈i ρ(r′, k) and
ρ(r′, n) = t. Thus, both (C”) and (F) are satisfied.

We can now show the following lemma.

Lemma 17. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies perfect recall and
synchronicity.
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Proof. By Lemmas 6(i), 8 and 16 the sets R and O are non-empty. Also, f satisfies the
conditions in Definition 17. Finally, each ∼i,ρ is an equivalence relation by definition, and
it satisfies perfect recall and synchronicity by definition of the functions in O.

Now we prove the main result.

Lemma 18. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ with perfect recall
and synchronicity, and it validates the formulas K and BF .

Proof. By the previous lemma 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame satisfying perfect
recall and synchronicity; so we are left to prove that the functions in O are objects+.
Conditions (1)-(4’) on objects+ are safisfied by the remarks (A)-(F) and the definition
of ∼i,ρ. Furthermore, conditions (1), (2) and (3) on quasimodels+ are satisfied by the
definitions of R, f and ∼i,ρ. As regards condition (4), we can make use of Lemma 15 to
show that it holds. Additionally, (5) holds by Lemma 6(ii)(b), (d), (f) and (h) and Lemma
15. Finally, Q validates both the formulas K and BF , as all t ∈ C, for all C ∈ Q, are
consistent with QKTm.

This completes the proof for QKT2
m. Thus, we obtain the following item in Theorem 2.

Theorem 6 (Completeness). The system QKT2
m is complete w.r.t. the class QISpr,syncm of

QIS.

The completeness of QKT2
m with respect to QISpr,sync,uism follows again by Remark 2.

5.4 The Class QISnlm
First, we give the following definitions, which will be used in the completeness proof.

Definition 21. If t is a ι-type, then Φt,i is the conjunction of all ι-types t′ such that t ≈i t′.
Similarly, if P is a ι-point, then ΦP,i is the set of ι-points P′ such that P ≈i P′.

Definition 22. Two sequences of types Λ and Λ′ are ≈i-concordant if there is some n ∈ N
(or n may be ∞) and non-empty consecutive intervals Λ1, . . . ,Λn of Λ and Λ′1, . . . ,Λ

′
n of Λ′

such that for all s ∈ Λj and s′ ∈ Λ′j we have s ≈i s′ for j ≤ n.
Two sequences Π and Π′ of state candidates are ≈i-concordant if for all t ∈ C, for either

C ∈ Π or C ∈ Π′, there are two sequences Λ and Λ′ of types in Π and Π′ respectively that
are ≈i-concordant.

To prove the completeness of QKT3
m with respect toQISnlm we need the following lemma,

which is dual to Lemma 11.

Lemma 19. For all ι-points P1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and ι]i-type t′1, if P1 ⇒ P2 and
t1 ≈i t′1 then there exists a ι]i-point P′1 = 〈C′1, t′1〉 and a ⇒-sequence P′1 = S1 ⇒ . . .⇒ Sn

of ι]i-points such that Sk = 〈Dk, sk〉, sk ≈i t1 for k < n, and t2 ≈i sn. Further, if P1 ⇒c P2

then sck ∈ T conDk
for k ≤ n.

Proof. By adapting the result of Halpern et al. (2004, Lemma 5.11) to types we can
prove that if t1 ⇒ t2 and t1 ≈i t′1 then there is a sequence of ι]i-types t′1 = s0 ⇒ . . . ⇒ sn
such that sk ≈i t1 for k < n and sn ≈i t2. Now by Lemma 7 we can extend this sequence
of ι]i-types to a sequence of ι]i-points S1 ⇒ . . . ⇒ Sn such that Sk = 〈Dk, sk〉. So, the
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statement of the lemma is satisfied. In particular, if P1 ⇒c P2 then by Lemma 7 we can
assume without loss of generality that sck ∈ T conDk

for k ≤ n.
As pointed out by Halpern et al. (2004), Lemma 19 is not sufficient to construct a

quasimodel+ that satisfies no learning. In fact, given a ⇒-sequence Σ = C0,C1, . . . of ι-
state candidates and a ι]i-type t′0 such that t0 ≈i t′0 for t0 ∈ C0, by Lemma 19 we can find a
⇒-sequence Σ′ = C′0,C

′
1, . . . such that t′0 ∈ C′0 and no learning is satisfied. However, it does

not follow from the acceptability of Σ that Σ′ is also acceptable. So, as in the propositional
case, we have to work with trees of state candidates. Hereafter we extend the definitions
given by Halpern et al. (2004) to be able to deal with points and monodic friendly Kripke
models.

Definition 23. Let k ≤ ad(φ). A k-tree of state candidates for φ is a set Π of ι-state
candidates for φ with |ι| ≤ k that contains a unique ε-state candidate, i.e., the root, and for
every ι-point t in some C ∈ Π,

• if t′ is a ι]i-type such that t ≈i t′ and |ι]i| ≤ k then there is some ι]i-state candidate
C′ ∈ Π such that t′ ∈ C′;

• if ι = ι′]i then there is a ι′-state candidate C′ ∈ Π and a ι′-type t′ ∈ C′ such that
t ≈i t′.

Similarly, we define a k-tree of points for φ as a set Σ of ι-points for φ with |ι| ≤ k that
contains a unique ε-point, and for every ι-point P = 〈C, t〉 ∈ Σ,

• if t′ is a ι]i-type such that t ≈i t′ and |ι]i| ≤ k, then there is some ι]i-point P′ =
〈C′, t′〉 ∈ Σ;

• if ι = ι′]i then there is a ι′-point P′ = 〈C′, t′〉 ∈ Σ such that t ≈i t′.

Intuitively, a k-tree is a view of the epistemic state of our quasimodel from a particular
type t, up to k steps from t. We now extend the ©-suitability relation ⇒ to k-trees.

Definition 24. Let Π and Π′ be k-trees of state candidates for φ. We say that Π ⇒f Π′

whenever f is a function associating with each ι-state candidate C ∈ Π and each ι-type t ∈ C

finite ⇒-sequences of ι-state candidates in Π ∪Π′ and ι-types such that:

1. if f(C) = C0 ⇒ . . . ⇒ Ck then (a) C = C0 and (b) Cj ∈ Π for j < k and Ck ∈ Π′.
Similarly, if f(t) = t0 ⇒ . . . ⇒ tk then (a) t = t0 and (b) tj ∈ Cj for j < k and
tk ∈ Ck.

2. Let t ∈ C and t′ ∈ C′ for some C, C′ ∈ Π. If t ≈i t′ then f(t) and f(t′) are ≈i-
concordant;

3. for at least one C ∈ Π the sequence f(C) has a length of at least 2.

Further, let Σ and Σ′ be k-trees of points for φ. We say that Σ ⇒f Σ′ whenever f is a
function associating with each ι-point P ∈ Σ a finite ⇒-sequence of ι-points in Σ∪Σ′ such
that:

1. if f(P) = P0 ⇒ . . .⇒ Pk then (a) P = P0 and (b) Pj ∈ Σ for j < k and Pk ∈ Σ′;
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2. Let P = 〈C, t〉 and P′ = 〈C′, t′〉 be in Σ. If t ≈i t′ then f(t) and f(t′) are ≈i-concordant;

3. for at least one P ∈ Σ the sequence f(P) has a length of at least 2.

Finally, for any constant c ∈ conφ, we say that Σ ⇒c
f Σ′ whenever Σ ⇒f Σ′ and f(P) =

P0 ⇒c . . .⇒c Pk.

Notice that given a k-tree Π of state candidates with root C and t ∈ C, we can obtain a
k-tree Σ of points such that P′ = 〈C′, t′〉 ∈ Σ iff C′ ∈ Π. Also, if Π, Π′ are k-tree of state
candidates and Π⇒f Π′, then we also have Σ⇒f Σ′ where Σ and Σ′ are k-trees of points
based on Π and Π′ respectively.

We now show how to obtain acceptable sequences of state candidates from sequences
of trees. Given two sequences of ι-state candidates λ = C0, . . . ,Ck and µ = C′0, . . ., where
λ is finite, the fusion λ · µ is defined as C0, . . . ,Ck−1,C

′
0, . . . only if Ck = C′0. Further,

given an infinite sequence Θ = Π0 ⇒f0 Π1 ⇒f1 . . . of k-trees, we say that a sequence λ of
ι-state candidates is compatible with Θ if there exists some h ∈ N and ι-state candidates
Ch,Ch+1, . . ., with Cj ∈ Πj for j ≥ h, such that λ = fh(Ch) · fh+1(Ch+1) · . . .. The sequence
Θ is acceptable if every ⇒-sequence compatible with Θ is infinite and acceptable.

The basic idea of the completeness proof is to define the quasimodel+ starting from an
acceptable sequence Θ. Next we introduce some definitions and lemmas that are essential
for the completeness proof.

Given a k-tree Σ and a ι-point P ∈ Σ we inductively define the formula treeΣ,P that
describes the k-tree Σ from the viewpoint of P.

Definition 25. If P is a ε-point, then treeΣ,P ::= βP. If P is a ι′]i-point with ι′ 6= ι′]i
then

treeΣ,P = βP ∧
∧

{ι′−point P′∈Σ|t′≈it}

K̄itreeΣ,P′

If Σ and Σ′ are k-trees, P ∈ Σ and P′ ∈ Σ′, then we write (Σ,P)⇒+ (Σ′,P′) if there is a
sequence of k-trees Σ0, . . . ,Σl and functions f0, . . . , fl−1 such that (a) Σ = Σ0 ⇒f0 . . .⇒fl−1

Σl = Σ′; (b) fj(P) = P for j ≤ l− 2 and fl−1(P) = (P,P′). Similarly, (Σ,P)⇒c+ (Σ′,P′)
if (Σ,P)⇒+ (Σ′,P′) and (a’) Σ = Σ0 ⇒c

f0
. . .⇒c

fl−1
Σl = Σ′.

We prove the following lemma, which extends a result by Halpern et al. (2004, Lemma 5.12)
to points.

Lemma 20. Suppose Σ is a k-tree of points and P = 〈C, t〉 ∈ Σ is a ι-point with |ι| = k,

(a) If t′ is a ι-type and treeΣ,P ∧©(t′ ∧ ξ) is consistent, then there is a k-tree Σ′ and a
ι-point P′ = 〈C′, t′〉 ∈ Σ′ such that (Σ,P)⇒+ (Σ′,P′) and treeΣ′,P′ ∧ ξ is consistent.
Further, if tc ∈ T con then (Σ,P)⇒c+ (Σ′,P′).

(b) ` treeΣ,P →©
∨
{(Σ′,P′)|(Σ,P)⇒+(Σ′,P′)} treeΣ′,P′

(c) if treeΣ,P ∧ ψUψ′ is consistent, then there is a sequence Σ0, . . . ,Σl of k-trees and
points P0, . . . ,Pl such that (i) Pj ∈ Σj for j ≤ l; (ii) (Σ0,P0) = (Σ,P); (iii)
(Σj ,Pj) ⇒+ (Σj+1,Pj+1) for j < l; (iv) treeΣj ,Pj ∧ ψ is consistent for j < l; (v)
treeΣl,Pl

∧ψ′ is consistent. Further, if tc ∈ T con then (iii’) (Σj ,Pj)⇒c+ (Σj+1,Pj+1)
for j < l.
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Proof. We proceed by induction on k. The case for k = 0 is immediate using standard
arguments as treeΣ,P is just βP.

Assume that k > 0 and ι = ι′]i for ι 6= ι′. We first prove part (a) for ξ = Kiξ
′, then

part (b), then the general case for (a), and finally (c).
As regards part (a) for ξ = Kiξ

′, note that treeΣ,P ∧©(t′ ∧Kiξ
′) implies that

treeΣ,P ∧KiΦP,iUKi(ξ′ ∧ Φt′,i)

By the definition of k-tree there is a ι′-point P∗ ∈ Σ such that t ≈i t∗. Let Σ∗ be the
(k − 1)-tree consisting of all ι∗-points in Σ for |ι∗| ≤ k − 1. By the axiom KT3 also
treeΣ∗,P∗∧KiΦP,iUKi(ξ′∧Φt′,i) is consistent, and by part (c) there is a sequence Σ0, . . . ,Σl

of (k − 1)-trees and points P0, . . . ,Pl such that (i) Pj ∈ Σj for j ≤ l; (ii) (Σ0,P0) =
(Σ∗,P∗); (iii) (Σj ,Pj) ⇒+ (Σj+1,Pj+1) for j < l; (iv) treeΣj ,Pj ∧KiΦP,i is consistent for
j < l; (v) treeΣl,Pl

∧Ki(ξ′ ∧ Φt′,i) is consistent.
Again, by the definition of the relation⇒+ there is a sequence of (k−1)-trees Γ0, . . . ,Γm

and functions f0, . . . , fm−1 such that (a) Σ∗ = Σ0 = Γ0 ⇒f0 . . .⇒fm−1 Γm = Σl. Moreover,
there are (k−1)-points u0, . . . , um such that u0 = P∗, um = Pl, and for j < m, uj = Pj′ for
some j′ ≤ j, and if uj = uj+1 then fj(uj) = uj , while if uj 6= uj+1 then fj(uj) = (uj , uj+1).

We now show how to define the k-tree Γ′j extending Γj for j < m. By (iv) above
βuj ∧ KiΦP,i is consistent for j < m, and we have that uj ≈i P. So P ∈ Γ′j . Similarly,
βum ∧KiΦt′,i is consistent; so there exists P′ = 〈C′, t′〉 such that P′ ∈ Γ′m. Further, we can
saturate each Γ′j so that the conditions on k-trees are satisfied and in particular Γ′0 = Σ. We
now show how to construct f ′j for j < m. For each point S′ = 〈D′, s′〉 ∈ Γ′j \ Γj there must
exist a point S = 〈D, s〉 ∈ Γj and an agent j′ ∈ Ag such that s ≈j′ s′. From Lemma 19 it
follows that there exists a sequence λS′ starting with S′ that is ≈j′-concordant with fj(S).
Moreover, we can take λPj = (P) for j < m− 1, and λPm−1 = (P,P′). We define f ′j such
that it agrees with fj on Γj , and for S′ ∈ Γ′j \ Γj we have f ′j(S

′) = λS′ .
Notice that Γ′0 = Σ by construction. If m > 0 it follows immediately from the definition

that (Σ,P) ⇒+ (Γm,P′) and that treeΓm,P′ ∧ Kiξ
′ is consistent. If m = 0 we can easily

check that we have P′ ∈ Σ as t∗ ≈i t′. Since we also have t∗ ≈i t, it follows that t ≈i t′. We
define f so that f(u) = u for every u 6= P and f(P) = (P,P′). Then (Σ,P) ⇒f (Σ,P′).
Since also P⇒ P′ we have (Σ,P)⇒+ (Σ,P′).

The second part of (a) follows by a similar line of reasoning.
To prove part (b), by contradiction we assume that

0 treeΣ,P →©
∨

{(Σ′,P′)|(Σ,P)⇒+(Σ′,P′)}

treeΣ′,P′

Then treeΣ,P ∧ ©
∧
{(Σ′,P′)|(Σ,P)⇒+(Σ′,P′)} ¬treeΣ′,P′ is consistent. By temporal reasoning

there must be some point u such that

treeΣ,P ∧©(βu ∧
∧

{(Σ′,P′)|(Σ,P)⇒+(Σ′,P′)}

¬treeΣ′,P′) (33)

is consistent. Note that ¬treeΣ′,P′ is equivalent to ¬βP′∨
∨
{ι′−point P∗∈Σ′|t∗≈it′}Ki¬treeΣ′,P∗ .

Thus, the consistency of (33) implies that for each tree Σ′ such that (Σ,P)⇒+ (Σ′, u) there
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exists a ι′-point PΣ′ = 〈CΣ′ , tΣ′〉 such that tΣ′ ≈i tu and

treeΣ,P ∧©(βu ∧Ki(
∧

{Σ′|(Σ,P)⇒+(Σ′,PΣ′ )}

¬treeΣ′,PΣ′
)) (34)

is consistent. By part (a) there exists a k tree Σ∗ and P∗ ∈ Σ∗ such that (Σ,P)⇒+ (Σ∗,P∗)
and treeΣ∗,P∗∧βu∧Ki(

∧
{Σ′|(Σ,P)⇒+(Σ′,PΣ′ )}

¬treeΣ′,PΣ′
) is consistent. But this means that

P∗ = u. Thus we have a contradiction, since treeΣ∗,u ∧Ki¬treeΣ∗,PΣ∗ is inconsistent.
The general case for (a) follows from (b). Part (c) also follows from (b).
The following lemma is the correspondent of Lemma 8 for k-trees.

Lemma 21. If φ ∈ L1
m is consistent with QKT3

m, then there exists an acceptable sequence
Θ of ad(φ)-trees of state candidates such that φ belongs to the root of the first tree.

Proof. As in Lemma 8 the key part of this proof consists of showing that, given a finite
sequence Σ0 ⇒f0 . . . ⇒fl−1

Σl of d-trees of points and a ι-point P = 〈C, t〉 ∈ Σl such that
ψUψ′ ∈ t (resp. ©ψ ∈ t), by Lemmas 19 and 20 we can extend the sequence of trees to
satisfy acceptability. Specifically, suppose that ψUψ′ ∈ t. Let Σ include P and the ι′-points
P′ = 〈C′, t′〉 ∈ Σl with |ι′| ≤ k = |ι|. Note that Σ is a k-tree. Further, by Lemma 20 we
can find a sequence Θ0, . . . ,Θn of k-trees and points P0, . . . ,Pn such that (i) Pj ∈ Θj for
j ≤ n; (ii) (Θ0,P0) = (Σ,P); (iii) (Θj ,Pj) ⇒+ (Θj+1,Pj+1) for j < l; (iv) treeΘj ,Pj ∧ ψ
is consistent for j < l; and (v) treeΘn,Pl

∧ ψ′ is consistent. By using Lemma 19 we can
extend this to a sequence of ad(φ)-trees starting with Σl that satisfies ψUψ′ as in the proof
of Lemma 20(a). For ©ψ ∈ t the argument is similar. Since φ is consistent, there must be
some tree Σ with root C such that ψ ∈ t for some t ∈ C; we can then extend Σ as above to
complete the proof.

For any consistent φ ∈ L1
m we define a quasimodel+ for φ to establish the completeness

of QKT3
m with respect to QISnlm. Let R consist of all acceptable ⇒-sequences compatible

with the ad(φ)-tree Θ, while the function f is given by f(r, k) = Ck if r is the acceptable
⇒-sequence C0,C1, . . .. Further, let O be the set of functions ρ associating every (r, n) ∈
Dom(f) to a type ρ(r, n) ∈ Tr,n such that conditions (A), (B) and (C’) given previously are
satisfied and the following holds:

(G) if ρ(r, n) ≈i ρ(r′, n′) then either ρ(r, n+ 1) ≈i ρ(r′, n′) or there exists k > n′ such that
ρ(r, n+ 1) ≈i ρ(r′, k) and for all k′, k > k′ ≥ n′ implies ρ(r, n) ≈i ρ(r′, k′).

Finally, for i ∈ Ag, ρ ∈ O, (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′).
As in the previous cases we have the following.

Lemma 22. The set O of functions that satisfies conditions (A), (B), (C’) and (G) is
non-empty.

Proof. Conditions (A) and (B) are guaranteed by Lemma 6(ii) and by the fact that r
is an acceptable ⇒-sequence respectively. As regards (C’) and (G), assume that ρ(r, n) is
a ι-type, t is a ι]i-type and ρ(r, n) ≈i t. By using the proofs of Lemmas 20 and 19 we can
find an acceptable ⇒-sequence r′ compatible with the d-tree Θ such that t ∈ f(r′, 0) and
(G) is satisfied.

We can now show the following lemma.

36



Interactions between Knowledge and Time in a First-Order Logic for MAS

Lemma 23. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies no learning.

Proof. By Lemmas 6(i), 21 and 22 the sets R and O are non-empty. Also, f satisfies
the conditions in Definition 17. Further, each ∼i,ρ is an equivalence relation by definition.
Finally, the no learning condition is satisfied by definition of the functions in O.

Lemma 24. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ that satisfies no
learning and validates the formulas K and BF .

Proof. By the previous lemma 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame satisfying no learning;
so we are left to prove that the functions in O are objects+. Conditions (1)-(4’) on objects+

are safisfied by remarks (A)-(G) and the definition of ∼i,ρ. Furthermore, conditions (1), (2)
and (3) on quasimodels+ are satisfied by the definitions of R, f and ∼i,ρ. As regards (4)
we use Lemma 19 to show that it holds. Finally, (5) holds by Lemma 6(ii)(b), (d), (f) and
(h) and Lemma 19. Finally, Q validates both K and BF , as all t ∈ C, for all C ∈ Q, are
consistent with QKTm.

This completes the proof for QKT3
m. Thus, we obtain the following item in Theorem 2.

Theorem 7 (Completeness). The system QKT3
m is complete w.r.t. the class QISnlm of QIS.

5.5 The Class QISnl,syncm

To show that QKT4
m is a complete axiomatisation for QISnl,syncm , analogously to Lemma 15,

we need the following.

Lemma 25. For ι-state candidate C1, C2 and ι]i-state candidate C′1 there exists a ι]i-state
candidate C′2 such that

• if C1 ⇒ C2 and C1 ≈i C′1 then C′1 ⇒ C′2 and C2 ≈i C′2.

• for all c ∈ conφ, for P1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and P′1 = 〈C′1, t′1〉, if P1 ⇒c P2 and
P1 ≈ci P′1 then P′1 ⇒c P′2 and P2 ≈ci P′2.

Proof. The proof is similar to Lemma 15. If C1 ⇒ C2 and C1 ≈i C′1 then there exist
t1 ∈ C1, t2 ∈ C2 and t′1 ∈ C′1 such that t1 ⇒ t2 and t1 ≈i t′1. Moreover, without loss of
generality, we can assume that for some c ∈ conφ, tc1 ∈ T con1 , tc2 ∈ T con2 and t′c1 ∈ T ′con1 .
By adapting the proof of Halpern et al. (2004, Lemma 5.18) we can find a ι]i-type t′2 such
that t2 ≈i t′2 and t′1 ⇒ t′2. We define T ′2 as the set of all such t′2 and T ′con1 as the set of t′c2 .
Clearly, C′2 = 〈T ′2, T ′con2 〉 is a consistent ι]i-state candidate such that C2 ≈i C′2, C′1 ⇒ C′2,
and for c ∈ conφ, P2 ≈ci P′2 and P′1 ⇒c P′2.

For systems including the axiom KT4
m we can define a synchronous version of the relation

⇒ between k-trees.

Definition 26. If Π and Π′ are k-trees of state candidates for φ then Π ⇒sync
f Π′ iff

Π ⇒f Π′ and for all C ∈ Π, f(C) has exactly a length of 2. Similarly, if Σ and Σ′ are
k-trees of points for φ then Σ⇒sync

f Σ′ iff Σ⇒f Σ′ and for all P ∈ Σ, f(P) has exactly a
length of 2.
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For any c ∈ conφ, the relation ⇒c sync
f is defined similarly. We define a sync-acceptable

sequence of trees as an acceptable sequence where the relation ⇒ is substituted by the
relation⇒sync, that is, the sequence Θ is acceptable if every⇒sync-sequence compatible with
Θ is infinite and acceptable. Similarly, given the relations ⇒+ and ⇒c+ for c ∈ conφ, the
definitions of⇒sync,+ and⇒c sync,+ are straightforward. We now state the following result,
which is a simplified version of Lemma 20. The proof is analogous to that of Lemma 20, in
which Lemma 25 is used instead of Lemma 19.

Lemma 26. Let Σ be a k-tree of points and P ∈ Σ is a ι-point with |ι| = k,

(a) If t′ is a ι-type and treeΣ,P ∧ ©(t′ ∧ ξ) is consistent, then there exists a k-tree Σ′

and a ι-point P′ = 〈C′, t′〉 ∈ Σ′ such that (Σ,P) ⇒sync,+ (Σ′,P′) and treeΣ′,P′ ∧ ξ is
consistent. Further, if tc ∈ T con then (Σ,P)⇒c sync,+ (Σ′,P′).

(b) ` treeΣ,P →©
∨
{(Σ′,P′)|(Σ,P)⇒sync,+(Σ′,P′)} treeΣ′,P′

(c) if treeΣ,P ∧ ψUψ′ is consistent, then there exists a sequence Σ0, . . . ,Σl of k-trees and
points P0, . . . ,Pl such that (i) Pj ∈ Σj for j ≤ l; (ii) (Σ0,P0) = (Σ,P); (iii)
(Σj ,Pj) ⇒sync,+ (Σj+1,Pj+1) for j < l; (iv) treeΣj ,Pj ∧ ψ is consistent for j < l;
and (v) treeΣl,Pl

∧ψ′ is consistent. Further, if tc ∈ T con then (iii’) (Σj ,Pj)⇒c sync,+

(Σj+1,Pj+1) for j < l.

Further, we make use of Lemma 26 to adapt Lemma 21 and obtain the following result.

Lemma 27. If φ ∈ L1
m is consistent with QKT4

m, then there exists a sync-acceptable
sequence Θ of ad(φ)-trees of state candidates such that φ belongs to the root of the first tree.

For any consistent φ ∈ L1
m we define a quasimodel+ for φ to establish the com-

pleteness of QKT4
m with respect to QISnl,syncm . Let X be a new object, a sequence

X, . . . ,X,Cn,Cn+1, . . . is sync-acceptable from n if it starts with n copies ofX and Cn,Cn+1, . . .
is a sync-acceptable⇒-sequence compatible with the ad(φ)-tree Θ. Let R consist of all⇒-
sequences sync-acceptable from n, for some n ∈ N. The function f is defined as f(r, k) = Ck if
r is the⇒-sequence X, . . . ,X,Cn,Cn+1, . . . sync-acceptable from n and k ≥ n; f(r, k) is un-
defined otherwise. Further, Let O be the set of functions ρ associating every (r, n) ∈ Dom(f)
to a type ρ(r, n) ∈ Tr,n such that conditions (A), (B) and (C”) are satisfied and the following
holds:

(H) if ρ(r, n) ≈i ρ(r′, n′) then ρ(r, n+ 1) ≈i ρ(r′, n′ + 1).

Finally, for i ∈ Ag, ρ ∈ O, (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′) and n = n′.
Similarly to Lemma 22, we can show the following.

Lemma 28. The set O of functions that satisfies conditions (A), (B), (C”) and (H) above
is non-empty.

Moreover, the following result follows from Lemmas 6(i), 27 and 28.

Lemma 29. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies no learning and
synchronicity.
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Finally, by adapting the proof for Lemma 24 we can state the following result.

Lemma 30. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ with no learning
and synchronicity, and it validates the formulas K and BF .

This completes the proof for QKT4
m. Thus, we obtain the following item in Theorem 2.

Theorem 8 (Completeness). The system QKT4
m is complete w.r.t. the class QISnl,syncm of

QIS.

5.6 The Classes QISnl,prm and QISnl,pr,uis1

To obtain the completeness proof for QISnl,prm we combine the results shown for QISprm and
QISnlm.

If φ ∈ L1
m is consistent with QKT2,3

m then by Lemma 21 there exists an acceptable
sequence Θ of ad(φ)-trees such that φ belongs to the root of the first tree. Let R be the
set of all acceptable ⇒-sequences that have a suffix that is compatible with Θ, while the
function f is defined as in Section 5.2. Further, O is the set of all functions ρ associating
every (r, n) ∈ Dom(f) to a type ρ(r, n) ∈ Tr,n that satisfies the conditions (A), (B), (C’),
(E) and (G). Finally, for i ∈ Ag, ρ ∈ O, (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′).

Lemma 31. The set O of functions that satisfies conditions (A), (B), (C’), (E) and (G)
is non-empty.

Proof. We can show that all conditions but (C’) are satisfied similarly to the cases of
QISprm and QISnlm. As to (C’), suppose that ρ(r, n) is a ι-type in f(r, n) and t is ι]i-type.
Also, Θ is the sequence of ad(φ)-trees Π0 ⇒f0 Π1 ⇒f1 . . . of state candidates. The run r
is derived by definition from a ⇒-sequence C0,C1, . . . that has a suffix CN ,CN+1, . . . that is
compatible with Θ, and f(r, n) = Cn. We consider two cases.

If n ≥ N , then there exists some k ∈ N such that Cn ∈ Πk. By Lemma 11 there exists
a ⇒-sequence S0 ⇒ . . . ⇒ Sh of ι]i-state candidates such that t ∈ Sh and S0, . . . ,Sh is
≈i-concordant with C0, . . . ,Cn. Further, we can assume that Sh ∈ Πk and let Sh,Sh+1, . . .
be the sequence compatible with Θ. Now consider the ⇒-sequence S0 ⇒ S1 ⇒ . . ..
By construction the run r′ derived from this sequence is in R and we can assume that
ρ(r′, h) = t.

If n < N , then by Lemma 11 there exists a ⇒-sequence S0 ⇒ . . . ⇒ Sh of ι]i-state
candidates such that t ∈ Sh and S0, . . . ,Sh is≈i-concordant with C0, . . . ,Cn. By Lemma 19
we can extend this sequence to a ⇒-sequence S0 ⇒ . . . ⇒ Sk that is ≈i-concordant
with C0, . . . ,CN . Since CN ∈ ΠM for some M ∈ N, we can assume that Sk ∈ ΠM as
well. Let Sh,Sh+1, . . . be the sequence compatible with Θ, and consider the ⇒-sequence
S0 ⇒ S1 ⇒ . . .. As in the previous case, the run r′ derived from this sequence is in R by
construction and we can assume that ρ(r′, h) = t.

By Lemmas 6(i), 21 and 31 we obtain the next result.

Lemma 32. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies perfect recall and
no learning.

Finally, we state the following lemma, whose proof follows the lines of the corresponding
proofs for QISprm and QISnlm and Lemma 31.
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Lemma 33. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ that satisfies perfect
recall and no learning, and validates the formulas K and BF .

This establishes the completeness of QKT2,3. Thus, we obtain the following item in
Theorem 2.

Theorem 9 (Completeness). The system QKT2,3
m is complete w.r.t. the class QISnl,prm of

QIS.

The completeness of QKT2,3
1 with respect to QISnl,pr,uis1 follows from the following

remark, whose proof is analogous to the propositional case.

Remark 3. A formula φ ∈ L1
1 is satisfiable in QISnl,pr1 (resp. QISnl,pr,sync1 ) iff it is

satisfiable in QISnl,pr,uis1 (resp. QISnl,pr,sync,uis1 ).

5.7 The Class QISnl,pr,syncm

To prove the completeness of QKT1,4
m with respect to QISnl,pr,syncm we combine the results

obtained for QISnl,prm in the previous section with those for QISnl,syncm and QISpr,syncm .
Specifically, if φ ∈ L1

m is consistent with QKT1,4
m by Lemma 27 we can construct a sync-

acceptable sequence Θ of ad(φ)-trees such that φ belongs to the root of the first tree. Let R
be the set of all sync-acceptable⇒-sequences with suffixes that are compatible with Θ; and
the function f is defined as in Section 5.2. Further, O is the set of all functions ρ associating
every (r, n) ∈ Dom(f) to a type ρ(r, n) ∈ Tr,n that satisfies the conditions (A), (B), (C”),
(F) and (H). Finally, for i ∈ Ag, ρ ∈ O, (r, n) ∼i,ρ (r′, n′) iff ρ(r, n) ≈i ρ(r′, n′) and n = n′.

By adapting the proof of Lemma 31 by means of Lemmas 15 and 25 we can show the
following result.

Lemma 34. The set O of functions that satisfies conditions (A), (B), (C”), (F) and (H)
is non-empty.

By Lemmas 6(i), 27 and 34 we obtain the following result.

Lemma 35. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a frame that satisfies perfect recall, no
learning and synchronicity.

Finally, we state the following lemma whose proof follows the lines of the corresponding
proofs for QISpr,syncm , QISnl,syncm and Lemma 34.

Lemma 36. The tuple 〈R,O, {∼i,ρ}i∈Ag,ρ∈O, f〉 is a quasimodel+ for φ that satisfies perfect
recall, no learning and synchronicity, and validates the formulas K and BF .

This completes the proof for QKT1,4
m . Thus, we obtain the following item in Theorem 2.

Theorem 10 (Completeness). The system QKT1,4
m is complete w.r.t. the class QISnl,pr,syncm

of QIS.
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5.8 The Classes QISnl,sync,uism and QISnl,pr,sync,uism

We now show that the system QKT1,4,5
m is complete with respect to the classes QISnl,sync,uism

and QISnl,pr,sync,uism . The completeness result follows from next remark.

Remark 4. A formula φ ∈ Lm is valid on QISnl,sync,uism iff it is valid in QISnl,pr,sync,uism .

The proof is a straightforward extension to first-order of a result by Halpern et al. (2004,
Proposition 5.22). Given this remark and the axiom KT5 it is sufficient to prove the
completeness of QKT1,4

1 with respect to QISnl,pr,sync,uis1 . By the result in the previous
section, QKT1,4

1 is indeed complete with respect to QISnl,pr,sync1 . The desired result follows
by Remark 3. Thus, we obtain the following item in Theorem 2.

Theorem 11 (Completeness). The system QKT1,4
m is complete w.r.t. the classes QISnl,sync,uism

and QISnl,pr,sync,uism of QIS.

6. Conclusions and Further Work

In this paper we investigated interaction axioms in the context of monodic first-order
temporal-epistemic logic. Specifically, we explored classes of quantified interpreted systems
satisfying conditions such as synchronicity, no learning, perfect recall, and having a unique
initial state. The contribution of the article concerns the provably complete axiomatisation
of these classes.

The results presented extend previous contributions on first-order epistemic and tem-
poral logic with no interactions (e.g., see Belardinelli & Lomuscio, 2011, Sturm et al., 2000,
Wolter & Zakharyaschev, 2002), in a direction that was previously only explored at the
propositional level (Halpern et al., 2004). Our findings show that the characterisation
axioms considered at the propositional level can be extended to the first-order monodic
setting.

While temporal-epistemic logic in a first-order context has so far mostly attracted the-
oretical contributions, there is evidence in the literature of it being increasingly embraced
in applications. For instance, there is an active interest in verifying artifact-centric systems
against first-order modal specifications (Belardinelli, Lomuscio, & Patrizi, 2011a, 2011b;
Deutsch, Hull, Patrizi, & Vianu, 2009; Deutsch, Sui, & Vianu, 2007; Calvanese, Giacomo,
Lenzerini, & Rosati, 2012; Hariri, Calvanese, Giacomo, Masellis, & Felli, 2011).

Given this, it remains of importance to investigate the questions pertaining to computa-
tional aspects of the formalisms introduced, including their decidability and the computa-
tional complexity of the satisfiability and model checking problems. Work so far (including
Belardinelli & Lomuscio, 2011; Hodkinson at al., 2000; Wolter & Zakharyaschev 2001)
has focused on fragments where no interaction is present, but we know from the litera-
ture (Halpern et al., 2004) that interactions can make these problems harder. We leave this
for further work, particularly in connection with the addition of other epistemic modalities
(e.g., explicit and algorithmic knowledge, see Halpern & Pucella, 2005), or branching-time
modalities. Epistemic variants of branching-time CTL are well understood at the propo-
sitional level (Meyden & Wong, 2003) but their first-order extensions have not yet been
explored.
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