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Abstract. We investigate quantified interpreted systems, a semantics to
model multi-agent systems in which agents can reason about individuals,
their properties, and relationships among them. The semantics naturally
extends interpreted systems to first-order by introducing a domain of
individuals. We analyse a first-order epistemic language interpreted on
this semantics and show soundness and completeness of the quantified
modal system QS5D

n , an axiomatisation for these structures. Finally, we
exemplify the use of the logic by modelling message passing systems, a
typical class of interpreted systems analysed in epistemic logic.

1 Introduction

Modal epistemic logic has been widely studied in multi-agent systems (MAS)
both on its own and in combination with other modalities, very often temporal
ones. The typical language extends propositional logic by adding n modalities Ki

representing the knowledge of agent i, as well as other modalities representing
different mental states for the agents (distributed and common knowledge, be-
liefs, etc) and/or the temporal flow of time [6, 17]. The use of modal propositional
logic as a specification language is so routine to require little justification: it is a
rather expressive language, well-understood from a theoretical point of view. Still
it is hard to counterargue the remark, often raised by practitioners in Software
Engineering, that quantification in specifications is so natural and convenient
that it really should be brought explicitly into the language. Even when working
with finite domains of individuals, without quantification one is often forced to
introduce ad-hoc propositions to emulate basic relations among individuals (as
to express specifications like “the child of process p can send a message to all
the processes that are allowed to invoke p”). Not always quantification is simply
syntactic sugar: certain expressivity needs do require infinite domains (e.g., see
section 4 below). Further, epistemic modalities can be combined with quantifiers
to express concepts such as knowledge de re/de dicto [8].
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Irrespective of the above, the use of first-order modal logic in MAS specifi-
cations is normally frowned upon by theoreticians. Why should we use an un-
decidable language when a decidable one does the job reasonably well already?
While these objections are certainly sensible, we believe that their strength has
been increasingly weakened by recent progress in the verification of MAS by
model checking [9, 18]. In the model checking approach [5] the verification prob-
lem is tackled not by checking theoremhood but simply model satisfaction. In
other words, we do not check whether a formula representing a specification is a
theorem in some logic (or, given completeness, whether a formula is satisfiable),
but simply whether a formula is true on the model representing all possible evo-
lutions of the system. While the former problem is undecidable for first-order
modal logic, the latter is decidable at least in some suitable fragment.

This paper takes inspiration from the considerations above and aims to make
progress on the subject of first-order epistemic logic. The main contribution of
the paper is the axiomatisation presented in section 5, where a sound and com-
plete system for quantified interpreted systems (QIS) is presented. We argue that
QIS are the natural extension to first-order of Interpreted Systems semantics,
the usual formalism for epistemic logic in MAS [6].

While completeness results for quantified modal logic are customarily proved
with respect to Kripke semantics [8, 13], we should state clearly that QML has
been discussed in a MAS setting before. In [6] quantified epistemic logic is briefly
discussed, along with its Kripke semantics and some significant validities; in [15]
the authors introduce a quantified logic of belief, in which the doxastic modalities
are indexed to terms of a first-order language; in [1] a limited form of quantifi-
cation is added to Coalition Logic. However, in most of the works above com-
pleteness is not tackled. This may be due to the technical difficulties associated
with QML and the relatively poor status of the metatheoretical investigation in
comparison with the propositional case. We hope this contribution will be the
first in a line of work in which a systematic analysis of these logics is provided.

Scheme of the paper. In section 2 we present two classes of first-order
structures: systems of global states and Kripke frames. In section 3 we introduce
the first-order modal language LD

n and interpret it on quantified interpreted
systems, a valued version of systems of global states. In section 4 we exemplify
syntax and semantics by describing a formal model for message-passing systems
and discuss some specification patterns in LD

n . In section 5 we introduce the first-
order modal system Q.S5D

n , and prove the main result of this paper: Q.S5D
n is

a sound and complete axiomatisation of the validities in the structures of global
states. Finally, section 6 outlines some extensions of the present formalism.

2 Systems of Global States and Kripke Frames

In this section we introduce the systems of global states and Kripke frames
in a first-order setting. While the first ones are used in computer science to
model the behaviour of MAS [6, 10], Kripke frames are best employed to get a
deeper understanding of the formal properties of these systems [3, 4]. Technically,



we extend the corresponding propositional structures to the first-order. This
extension is entirely not trivial, as there are many ways of performing it: for
instance, we have to choose between a single or several quantifying domains
for each agent and/or for each computational state, not to mention domains
of intensional objects [2]. In this paper we consider the simplest construction,
where we have just a single quantification domain D common to all the agents
and states, which contains all possible objects. We leave other options for further
work. In what follows we assume a set of agents A = {1, . . . , n}.

2.1 Systems of Global States

This paper is primarily concerned with the representation of knowledge in MAS,
not their temporal evolution. Given this, we adopt the “static” perspective on
the systems of global states [16], rather than the “dynamic” version [6]. So,
while we assume that the states of the system result from the evolution given by
protocols and transitions, for the time being we do not consider them explicitly.
More formally, consider a set Li of local states li, l′i, . . ., for each agent i ∈ A,
and a set Le containing the local states of the environment le, l′e, . . .. We define
a system of global states as follows:

Definition 1 (SGS). A system of global states S is a couple 〈S,D〉 such that
S ⊆ Le×L1× . . .×Ln is a non-empty set of global states, and D is a non-empty
domain of individuals. SGS is the class of the systems of global states.

This definition of SGS is based on two assumptions. First, the domain D
of individuals is the same for every agent i, so that all the agents effectively
reason about the same objects. This choice is justified by the external account of
knowledge usually adopted in the framework of interpreted systems. If knowledge
is ascribed to the agents by an external observer, it seems natural to focus on
a unique set of individuals: the ones assumed to exist by the external observer.
Second, the domain D is assumed to be the same for every global state, i.e.,
no individual appears nor disappears in moving from one state to another. This
also is consistent with the external account of knowledge: all the individuals
are supposed to be existing from the observer’s viewpoint. We discuss further
options in section 6. Finally, it can be the case that A ⊆ D. This means that
the agents can reason about themselves, their properties, and relationships.

2.2 Kripke Frames

While Kripke frames are less intuitive than interpreted systems to model MAS,
they are more convenient for the purpose of formal analysis, notably complete-
ness investigations. We work with frames with equivalence relations, so we take
the following definition:

Definition 2. An equivalence frame F is a n+2-tuple 〈W,∼1, . . . ,∼n, D〉 such
that W is a non-empty set; ∼i is an equivalence relation on W , for every i ∈ A;
D is a non-empty set of individuals. FE is the class of all the equivalence frames.



Now we have systems of global states modelling MAS and equivalence frames.
In order to axiomatise SGS, it is useful to map SGSs into equivalence frames.

2.3 Maps between SGS and FE

We explore the relationship between these structures by means of two maps f
and g from SGS to FE and viceversa. We show that every SGS S is isomorphic
to g(f(S)), that is, there is a one-to-one correspondence onto the sets of global
states and the domains of individuals. Further, we prove that every equivalence
frame F = 〈W,∼1, . . . ,∼n, D〉 is isomorphic to f(g(F)) = 〈W ′,∼′

1, . . . ,∼′
n, D

′〉,
that is, there are bijections between W and W ′ and between D and D′; in
addition w ∼i w

′ iff (f ◦ g)(w) ∼′
i (f ◦ g)(w′). As a consequence, every sound

and complete axiomatisation of the equivalence frames is also an axiomatisation
of the systems of global states.

We start with the map f : SGS → FE . Let S = 〈S,D〉 be an SGS, define
f(S) as the n+ 2-tuple 〈S,∼1, . . . ,∼n, D〉, where S is the set of possible states
and D is the domain of individuals. Moreover, for each i ∈ A, the relation ∼i on
S such that 〈le, l1, . . . , ln〉 ∼i 〈l′e, l′1, . . . , l′n〉 iff li = l′i is an equivalence relation.
So f(S) is an equivalence frame.

For the converse map g : FE → SGS, let F = 〈W,∼1, . . . ,∼n, D〉 be an equiv-
alence frame. For every epistemic state w ∈ W , for every equivalence relation
∼i, let the equivalence class [w]∼i = {w′|w ∼i w

′} be the set of local states for
agent i and W the set of local states for the environment. Define g(F) = 〈S,D〉,
where S contains all n + 1-tuples 〈w, [w]∼1 , . . . , [w]∼n

〉, for w ∈ W , while D is
as above. The structure g(F) is trivially an SGS.

We prove that the composition of the two maps gives isomorphic structures.

Lemma 1. Every equivalence frame F is isomorphic to f(g(F)).

Proof. If F = 〈W,∼1, . . . ,∼n, D〉 is an equivalence frame, then f(g(F)) =
〈W ′,∼′

1, . . . ,∼′
n, D〉 is such thatW ′ is the set of n+1-tuples 〈w, [w]∼1 , . . . , [w]∼n

〉,
for w ∈ W . The composition f ◦ g is a bijection between W and W ′: it is one-
to-one as if w,w′ ∈ W ′ and w = w′, then in particular the first components of
w and w′ are equal. It is onto as the first component w1 of w ∈W ′ is such that
w1 ∈ W and f(g(w1)) = w. Also, the identity on D is a bijection. Moreover,
w ∼i w

′ iff [w]∼i
= [w′]∼i

iff 〈w, [w]∼1 , . . . , [w]∼n
〉 ∼′

i 〈w′, [w′]∼1 , . . . , [w
′]∼n

〉.
Thus, the two structures are isomorphic. ut

By Lemma 1 we will show in section 5 that a sound and complete axiomati-
sation of equivalence frames is adequate also with respect to SGSs.

3 Syntax and Semantics

In this section we introduce the first-order multi-modal language LD
n containing

individual variables and constants, as well as quantifiers, n epistemic operators,
the distributed knowledge operator, and the identity. The language LD

n is inter-
preted on models based on equivalence frames. Finally, we present the quantified
interpreted systems, a valued version of the systems of global states.



3.1 Syntax

Our first-order multi-modal formulas are defined on an alphabet containing indi-
vidual variables x1, x2, . . ., n-ary functors fn

1 , f
n
2 , . . . and n-ary predicative letters

Pn
1 , P

n
2 , . . ., for n ∈ N, the identity =, the propositional connectives ¬ and→, the

universal quantifier ∀, the epistemic operators Ki, for i ∈ A, and the distributed
knowledge operator DG, for G ⊆ A. Terms and formulas in the language LD

n are
defined as follows:

t ::= x | fk(t1, . . . , tk)
φ ::= P k(t1, . . . , tk) | t = t′ | ¬φ | φ→ ψ | Kiφ | DGφ | ∀xφ

The symbols ⊥, ∧, ∨, ↔ and ∃ are defined by means of the other logical
constants; we refer to the 0-ary functors as individual constants c1, c2, . . . A
closed term v is a term where no variable appears, the closed terms are only
constants and terms obtained by applying functors to closed terms. By t[~y] (resp.
φ[~y]) we mean that ~y = y1, . . . , yn are all the free variables in t (resp. φ); while
t[~y/~t] (resp. φ[~y/~t]) denotes the term (resp. formula) obtained by simultaneously
substituting some, possibly all, free occurrences of ~y in t (resp. φ) with ~t =
t1, . . . , tn, renaming bounded variables if necessary.

3.2 Semantics

In order to assign a meaning to the formulas in LD
n we make use of Kripke

models. We define validity on quantified interpreted systems in terms of validity
on Kripke models.

Definition 3 (model). A Kripke model M - or simply a model - based on an
equivalence frame F , is a couple 〈F , I〉 where I is an interpretation such that:

– if fk is a k-ary functor, then I(fk) is a function from Dk to D;
– if P k is a k-ary predicative letter and w ∈ W , then I(P k, w) is a k-ary

relation on D, i.e. I(P k, w) ⊆ Dk;
– the interpretation I(=, w) of the identity = in w is the equality on D.

Note that function symbols are interpreted rigidly, that is, for every w,w′ ∈
W the interpretation of a functor fk in w is the same as the interpretation of
fk in w′. Given that our approach is the one of the external observer, rigid
designators seem appropriate.

Let σ be an assignment, i.e., any function from the set of variables in LD
n to

the domain D, the valuation Iσ(t) of a term t is defined as follows:

Iσ(y) = σ(y)
Iσ(fk(t1, . . . , tk)) = I(fk)(Iσ(t1), . . . , Iσ(tk))

In particular, the valuation Iσ(d) of constant d is I(d) ∈ D. The variant σ
(
x
a

)
of

the assignment σ differs from σ at most on x and assigns element a ∈ D to x.
Now we define the truth conditions for the formulas in LD

n .



Definition 4 (Satisfaction). The satisfaction relation |= for a formula φ ∈
LD

n , a world w ∈M and an assignment σ is inductively defined as follows:

(Mσ, w) |= P k(~t) if 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, w)
(Mσ, w) |= t = t′ if Iσ(t) = Iσ(t′)
(Mσ, w) |= ¬ψ if (Mσ, w) 6|= ψ
(Mσ, w) |= ψ → ψ′ if (Mσ, w) 6|= ψ or (Mσ, w) |= ψ′

(Mσ, w) |= Kiψ if for all w′ ∈W, w ∼i w
′ implies (Mσ, w′) |= ψ

(Mσ, w) |= DGψ if for all w′ ∈W, (w,w′) ∈
⋂

i∈G ∼i implies (Mσ, w′) |= ψ

(Mσ, w) |= ∀xψ if for all a ∈ D, (Mσ(x
a), w) |= ψ

The truth conditions for the formulas containing the symbols ⊥ ∧, ∨, ↔ and
∃ are standardly defined from the ones above. Further, a formula φ in LD

n is said
to be true at a world w if it is satisfied at w by every assignment σ; valid on a
model M if it is true at every world in M; valid on a frame F if it is valid on
every model on F ; valid on a class C of frames if it is valid on every frame in C.

Let ∆ be a set of formulas in LD
n , we say that M is a model for ∆ if every

formula in ∆ is valid on M. Moreover, F is a frame for ∆ if every model based
on F is a model for ∆.

Now we have all the preliminary definitions to introduce the quantified in-
terpreted systems (QIS).

Definition 5 (QIS). A quantified interpreted systems P based on an SGS S,
is a couple 〈S, I〉 such that I is an interpretation of LD

n in f(S).

The notions of satisfaction, truth and validity are defined as above, i.e., let Pf =
〈f(S), I〉 be the Kripke model for the quantified interpreted system P = 〈S, I〉,
then (Pσ, s) |= φ if (Pσ

f , s) |= φ. In particular,

(Pσ, 〈le, l1, . . . , ln〉) |= P k(~t) if 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, 〈le, l1, . . . , ln〉)
(Pσ, 〈le, l1, . . . , ln〉) |= Kiψ if li = l′i implies (Pσ, 〈l′e, l′1, . . . , l′n〉) |= ψ
(Pσ, 〈le, l1, . . . , ln〉) |= DGψ if li = l′i for all i ∈ G implies (Pσ, 〈l′e, l′1, . . . , l′n〉) |= ψ

Moreover, a formula φ ∈ LD
n is valid on a quantified interpreted systems P if φ

is valid on Pf , or more formally:

Definition 6 (Validity on QIS). If φ is a formula in LD
n and P is a quantified

interpreted systems, then P |= φ if Pf |= φ.

Thus, we can reason about a multi-agent system by using the expressiveness of
QISs, but rely on Kripke models to prove properties of the system. By the defi-
nition of validity on QISs, if φ ∈ LD

n is a validity on the class FE of equivalence
frames, then φ holds on the class of SGSs.

3.3 Some Validities

We briefly explore the semantics of QISs by considering the traditional Barcan
formulas [8]. Given that the domain of quantification is the same for every global
state, both the Barcan formula and its converse are valid on the class QIS of
all QISs, i.e., they hold in every quantified interpreted system (for a proof see
the reference above):



QIS |= ∀xKiφ→ Ki∀xφ BFi

QIS |= Ki∀xφ→ ∀xKiφ CBFi

QIS |= ∀xDGφ→ DG∀xφ BFG

QIS |= DG∀xφ→ ∀xDGφ CBFG

These validities are in line with the bird’s eye approach usually adopted in
epistemic logic. By BFi if agent i knows that a is φ for each individual a, then she
knows that all the individuals are φ, even if she has not to be aware of this fact.
In other words, agents are assumed to be able to generalise their knowledge, at
least when this is considered from an external point of view. By CBFi if agent
i knows that all the individuals are φ, then she knows that a is φ, for each
individual a ∈ D. Similar considerations apply to BFG and CBFG. Once again
we underline that the external account of knowledge applies both to de re and
de dicto modalities, i.e., whether the quantifier is outside or inside the scope of
a knowledge operator. We have also generalised versions of the Barcan formula
and its converse, for arbitrary strings of epistemic operators:

QIS |= ∀xEj1 . . . Ejm
φ→ Ej1 . . . Ejm

∀xφ BFj1,...,jm

QIS |= Ej1 . . . Ejm
∀xφ→ ∀xEj1 . . . Ejm

φ CBFj1,...,jm

where each Ejk
is either Ki or DG. Even if these principles seem quite strong,

by considering an external notion of knowledge they do not appear problematic
either. They say that agents can generalise and particularise not only their direct
knowledge, but also the knowledge they have of other agents’ knowledge, when
this is considered from the viewpoint of an external observer.

4 Message-Passing QIS

In this section we show how to model a message-passing system (MPS) in the
framework of QISs. An MPS is a multi-agent system where the most relevant
actions are sending and receiving messages. In an MPS the local state of an
agent i contains information about its initial state, the messages it has sent
and received, and the internal actions it has taken. For the formal presentation
of message-passing systems we refer to [6], par. 4.4.5–6, although here we do
not explicitly consider the temporal evolution of MPSs. The main result of this
section consists in showing that Proposition 4.4.3 in [6] can be reformulated as
a validity on the class of QISs modelling MPSs.

More formally, for every agent i ∈ A we introduce an initial event init(i), a
set INTi of internal actions α1, α2, . . ., and a set MSG of messages µ1, µ2, . . .
A local state li for agent i is a sequence of events whose first element is init(i)
and whose following elements are events of the form send(i, j, µ), rec(i, j, µ) or
int(i, α), for j ∈ A, µ ∈ MSG and α ∈ INTi, describing the actions performed
by i. Intuitively, send(i, j, µ) represents the event agent i sends message µ to
j, while rec(i, j, µ) represents the event agent i receives message µ from j, and
int(i, α) represents the event agent i performs internal action α.

A global state s is an n-tuple 〈le, l1, . . . , ln〉, where le contains all the events
in l1, . . . , ln. We now define a reflexive, transitive and anti-symmetric relation



≤ on the local states of agent i such that li ≤ l′i iff li is a prefix of l′i. This
order extends to global states, so that s ≤ s′ iff li ≤ l′i, for every i ∈ A. The
message-passing QISs (MPQISs) we consider are linearly ordered, that is, for
every s, s′ ∈ P, either s ≤ s′ or s′ ≤ s, and contain the initial global state
〈init(e), init(1), . . . , init(n)〉. These constraints correspond to the assumption
that every MPQIS models the evolution of a single MPS: starting from the
initial state, the MPQIS contains all the states reachable during the execution
of the MPS. The temporal evolution of an MPS can be represented as a sequence
s0, s1, . . . of global states such that s0 = 〈init(e), init(1), . . . , init(n)〉, and for
every n ∈ N, either sn+1 is identical to sn or there is an i such that li(sn) ≤
li(sn+1) but li(sn) 6= li(sn+1). Note that a single MPQIS represents various
temporal evolutions differing on the number of idle steps. Finally, in each MPQIS
the domain D of individuals comprises all agents in A, the messages in MSG,
the actions in the various INTi, and the events e1, e2, . . .

We assume that the language LD
n has terms and predicative letters for repre-

senting the objects in the domain D and the relations among them. In particular,
e1, e2, . . . are metaterms ranging over events: we write ∀eφ[e] as a shorthand for
∀i, j, µ, α(φ[send(i, j, µ)] ∧ φ[rec(i, j, µ)] ∧ φ[init(i)] ∧ φ[int(i, α)]). We use the
same notation for the objects in the model and the syntactic elements, as the
ones mirror the others; the distinction will be made clear by the context. We
immediately give some examples of the expressiveness of our language. In LD

n
we can define events by formulas which are provably valid in every MPQIS (the
existence of a unique individual ∃! can be defined by means of =):

∀e∃!i, j, µ, α (i 6= j)∧ (e = send(i, j, µ) ∨ e = rec(i, j, µ) ∨ e = init(i) ∨ e = int(i, α));
∀i, j, µ, α∃!e1, e2, e3, e4 (send(i, j, µ) = e1 ∧ rec(i, j, µ) = e2 ∧ init(i) = e3 ∧ int(i, α) = e4∧

e1 6= e2 ∧ e1 6= e3 ∧ e1 6= e4 ∧ e2 6= e3 ∧ e2 6= e4 ∧ e3 6= e4).

The first formula expresses the fact that every event is either a send or receive
event, where the sender is different from the receiver, or an initial event, or an in-
ternal action. Thus, it cannot be the case that e = send(i, j, µ) = send(i′, j′, µ′),
for distinct agents and messages. The second formula says that every send or
receive event, initial event, and internal action are distinct events. Thus, we can-
not have send(i, j, µ) = e = rec(i′, j′, µ′). It is easy to check that our MPQISs
validates these specifications.

It is more interesting to consider specifications involving epistemic opera-
tors. In [6], p. 132, the authors list three constraints on MPSs, the third one
involves runs in an SGS. Nonetheless, we can reformulate the first two without
introducing runs:

MP1 every li(s) contains only events over init(i), INTi and MSG;
MP2 for every event rec(i, j, µ) in li(s) there exists a corresponding event send(j, i, µ)

in lj(s).

We formalise these specifications in the language of MPQISs. First, we intro-
duce a predicative constant H for ’happened’ such that (Pσ, s) |= H(e) iff e
is an event in s. The formulas Send(i, j, µ), Rec(i, j, µ), Init(i), and Int(i, α)
are shorthands for H(send(i, j, µ)), H(rec(i, j, µ)), H(init(i)), and H(int(i, α))
respectively. Now we formalise our specification as follows:



MP1’ ∀e(KiH(e) → ∃α, j, µ(e = init(i) ∨ e = int(i, α) ∨ e = send(i, j, µ) ∨ e =
rec(i, j, µ)))

MP2’ ∀j, µ(Rec(i, j, µ) → KiSend(j, i, µ))

If e ∈ li(s) then (Pσ, s) |= KiH(e). By MP1’ (Pσ, s) |= e = init(i) ∨
∃α, j, µ(e = int(i, α) ∨ e = send(i, j, µ) ∨ e = rec(i, j, µ)), which means that if
event e belongs to the local state of agent i, then it is either i’s initial event, or it is
an internal action of i, or it is a send or receive event of i, that is, MP1 holds. Fur-
ther, if event rec(i, j, µ) appears in li(s), then by MP2’ (Pσ, s) |= KiSend(j, i, µ),
which means that in particular send(j, i, µ) ∈ lj(s), that is, MP2 holds.

It is easy to check that MP1’ holds in the class of all MPQISs by the way
they are defined, while MP2’ in general can fail. Moreover, in [6] the authors
single out the reliable MPSs, where every message sent is eventually received.
Modified from [6], an MPS is reliable iff it satisfies the specification below:

MP4 for all agents i, j and all states s, if send(i, j, µ) is in li(s), then there exists
a s′ such that rec(j, i, µ) is in lj(s′).

We formalise this specification as follows:

MP4’ ∀j, µ(Send(i, j, µ) → ¬Ki¬Rec(j, i, µ))

In fact, if send(i, j, µ) is in li(s), by MP4’ (Pσ, s) |= ¬Ki¬Rec(j, i, µ), this means
that there exists a global state s′ such that (Pσ, s′) |= Rec(j, i, µ), that is,
rec(j, i, µ) ∈ lj(s′). Thus, MP4 holds. Note that MP4’ is far stronger than MP4
as the former requires that the local states of agent i in s and s′ are identical.

We now prove the main result of this section, that is, Proposition 4.4.3 in [6]
can be restated as a validity on the class of MPQISs satisfying MP1, MP2 and
two simplifying assumptions. As to the former, in presenting the MPSs in [6], the
authors model the local state of an agent as a sequence of sets of events. Then
they introduce the semplifying assumption MP5, according to which the sets
of events are actually singletons. Since we defined the local states as tuples of
events, MP5 is already satisfied in the present framework. As regards the latter
assumption:

MP6 All the events in a given agent’s local state are distinct.

Also for MP6 we can find a formula in LD
n whose validity guarantees that this

specification holds. We say that (Pσ, s) |= Prec(e, e′) iff (Pσ, s) |= H(e)∧H(e′)
and for every s′ ≤ s, (Pσ, s′) |= H(e′) → H(e). Intuitively, Prec(e, e′) means
that event e appears no later than e′; while Succ(e, e′) stands for that event e′

happens immediately after event e.

MP6’ ∀e, e′(e 6= e′∧KiH(e)∧KiH(e′) → Ki(¬Succ(e, e)∧¬(Prec(e, e′)∧Prec(e′, e)))

If it is not the case that MP6, then we have two occurrences of event e
in li(s). If these are not separated by any event e′, then Succ(e, e) holds and
we have a contradiction. If they are separated by some other event e′, then
(Pσ, s) |= Prec(e, e′) ∧ Prec(e′, e), that is, MP6’ fails.



Henceforth we consider only MPQISs satisfying the specifications above, ex-
cept MP4. We define a notion of potential causality between events, which is
intended to capture the intuition that event e might have caused event e′. Fix a
subset G of A, the relation 7→ holds between events e, e′ iff:

1. for i, j ∈ G, e′ is a receive event and e is the corresponding send event;
2. for some agent i ∈ G, events e, e′ are both in li(s) for some global state s

and either e = e′ or e comes earlier than e′ in li(s);
3. for some event e′′ we have e 7→ e′′ and e′′ 7→ e′.

Note that 7→ is anti-symmetric because of MP6. We say that (Pσ, s) |= e 7→ e′

if e 7→ e′ (we use the same notation for semantic and syntactic elements).
Now we prove that the potential causality relation 7→ respects the order Prec

of events by showing that the following validity holds in the class of MPQISs
satisfying the specifications above. Note that this is the right to left implication
of Proposition 4.4.3 in [6]:

MPQIS |= ∀e, e′(H(e) ∧H(e′) → ((e 7→ e′) → DGPrec(e, e′)))

Proof. Assume that (Pσ, s) |= H(e) ∧ H(e′) ∧ e 7→ e′. If e′ is a receive event
rec(i, j, µ) and e is the corresponding send event send(j, i, µ), then (s, s′) ∈⋂

i∈G ∼i implies (Pσ, s′) |= H(e) ∧H(e′) and for s′′ ≤ s′, (Pσ, s′′) |= H(e′) →
H(e) by MP2’. Thus, (Pσ, s) |= DGPrec(e, e′).

If e, e′ are both in li(s) and either e = e′ or e comes earlier than e′ in li(s),
then (Pσ, s) |= Ki(H(e) ∧H(e′)) and for s′ ≤ s, (Pσ, s′) |= Ki(H(e′) → H(e)).
Also in this case (Pσ, s) |= DGPrec(e, e′).

Finally, if there exists some event e′′ such that e 7→ e′′ and e′′ 7→ e′, then
(Pσ, s) |= H(e′′) → DGPrec(e, e′′),H(e′′) → DGPrec(e′′, e′). Without loss of
generality we can assume that e′′ 7→ e′ for either case 1 or 2 above, in both cases
(Pσ, s) |= H(e′′). Therefore, for every s′, (s, s′) ∈

⋂
i∈G ∼i implies (Pσ, s′) |=

H(e) ∧H(e′) and for s′′ ≤ s′, (Pσ, s′′) |= H(e′′) → H(e) ∧H(e′) → H(e′′). By
transitivity (Pσ, s′′) |= H(e′) → H(e). Thus, (Pσ, s) |= DGPrec(e, e′). ut

The example of the message-passing systems analysed in this section clearly
shows the advantages of first-order modal languages in comparison with propo-
sitional ones. We were able to formalize in LD

n various constraints on MPSs.
Most important, Proposition 4.4.3 in [6] turned out out be a validity on the
class of QISs modelling MPSs.

5 Axiomatisation

In this section we provide a sound and complete axiomatisation of the validi-
ties on the systems of global states. Note that while it is customary in modal
logic to axiomatise unvalued structures (hence our choice of SGS), the same
result applies to QIS. Technically, we first prove the completeness of the first-
order multi-modal system Q.S5D

n with respect to equivalence frames. Then, by
Lemma 1 the completeness of Q.S5D

n with respect to SGS follows.



In [14] Kripke proved the completeness of monomodal Q.S5 without dis-
tributed knowledge (see also [8, 13]). The novelty of this section consists in
showing that the techniques in [7] for propositional S5D

n can be rather straight-
forwardly extended to the first-order for proving the completeness of Q.S5D

n .

5.1 System Q.S5D
n

The system Q.S5D
n on the language LD

n is a first-order multi-modal version of
the propositional system S5. Hereafter we list its postulates; note that ⇒ is the
inference relation between formulas.

Definition 7. The system Q.S5D
n on LD

n contains the following schemes of ax-
ioms and inference rules:

Taut every classic propositional tautology
MP φ→ ψ, φ⇒ ψ
Dist Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
Nec φ⇒ Kiφ
Dist DG(φ→ ψ) → (DGφ→ DGψ)
T DGφ→ φ
4 DGφ→ DGDGφ
5 ¬DGφ→ DG¬DGφ
D1 D{i}φ↔ Kiφ
D2 DGφ→ DG′ , for G ⊆ G′

Nec φ⇒ DGφ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ, x not free in φ
Id t = t
Func t = t′ → (t′′[x/t] = t′′[x/t′])
Subst t = t′ → (φ[x/t] → φ[x/t′]), for atomic φ
KiId t = t′ → Ki(t = t′)
KiDif t 6= t′ → Ki(t 6= t′)

We take the standard definitions of proof and theorem: ` φ stands for formula
φ ∈ LD

n is a theorem in Q.S5D
n . Moreover, φ ∈ LD

n is derivable in Q.S5D
n from

a set ∆ of formulas in LD
n - ∆ ` φ in short - iff there are φ1, . . . , φn ∈ ∆ such

that ` φ1 ∧ . . . ∧ φn → φ. It is easy to check that every equivalence frame F is
a frame for Q.S5D

n . As a consequence, we have the following soundness result.

Lemma 2 (Soundness). The system Q.S5D
n is sound with respect to the class

FE of equivalence frames.

By this lemma and the definition of validity on SGSs, the following implications
hold:

Q.S5D
n ` φ, then FE |= φ, then SGS |= φ



Thus, we have soundness also for the systems of global states.

Corollary 1 (Soundness). The system Q.S5D
n is sound with respect to the

class SGS of systems of global states.

In the next paragraph we show that the axioms in Q.S5D
n are not only necessary,

but also sufficient to prove all the validities on SGS. In conclusion we show that
the converse of the Barcan formula is provable in Q.S5D

n . For a proof of BF , we
refer to [8] p.138.

1. ∀xφ→ φ Ex
2. Ki(∀xφ→ φ) from 1 by Nec
3. Ki(∀xφ→ φ) → (Ki∀xφ→ Kiφ) Dist
4. Ki∀xφ→ Kiφ from 2, 3 by MP
5. Ki∀xφ→ ∀xKiφ from 4 by Gen

5.2 Completeness

We prove the completeness of Q.S5D
n by extending to the first-order the proof

for the propositional system S5D
n in [7]. Specifically, we show that if Q.S5D

n does
not prove a formula φ ∈ LD

n , then the canonical model MQ.S5D
n for Q.S5D

n does
not pseudo-validate φ. It is not guaranteed that the notion of pseudo-validity
(to be defined below) coincides with plain validity, but by the results in [7] we
can obtain from MQ.S5D

n an equivalence model M′ such that MQ.S5D
n pseudo-

validates φ iff M′ |= φ. Thus completeness follows.
To show the first part of the result we rely on two lemmas: the saturation

lemma and the truth lemma. In order to state these partial results we need the
following definitions: let Λ be a set of formulas in LD

n ,

Λ is consistent iff Λ 0 ⊥;
Λ is maximal iff for every φ ∈ LD

n , φ ∈ Λ or ¬φ ∈ Λ;
Λ is max-cons iff Λ is consistent and maximal;
Λ is rich iff ∃xφ ∈ Λ implies φ[x/d] ∈ Λ, for some constant d ∈ LD

n ;
Λ is saturated iff Λ is max-cons and rich.

The worlds w,w′, . . . in the canonical model are saturated sets of formulas
on the language LD+

n , obtained by expanding LD
n with an infinite denumerable

set of new constants. Moreover, for closed terms v, v′ ∈ L+
n , we define v ∼w v′ iff

v = v′ ∈ w. This defines an equivalence relation; we write [v]w = {v′|v = v′ ∈ w}
for the equivalence class of v in w. Since the accessibility relation in MQ.S5D

n

will be defined by wRiw
′ iff {φ|�φ ∈ w} ⊆ w′, by axioms KiId, KiDif and

Func we can show that the definition of [v]w is independent from v and from w
- i.e. wRiw

′ implies [v]w = [v]w′ - so we simply write [v].
The following result follows from Henkin’s and Lindenbaum’s lemmas, a proof

can be found in [13].

Lemma 3. If ∆ is a consistent set of formulas in LD
n , then it can be extended

to a saturated set Π of formulas on some expansion LD+
n of LD

n .



If we assume that Q.S5D
n 6` φ, the lemma above guarantees that the set W of

possible worlds in the canonical model, defined as follows, is non-empty.

Definition 8 (Canonical model). The canonical model MQ.S5D
n for Q.S5D

n

on the language LD
n , with an expansion LD+

n , is a 4-tuple 〈W,R,D, I〉 such that

– W is the set of saturated sets of formulas in LD+
n ;

– for i ∈ A, Ri is the relation on W such that wRiw
′ iff {φ|Kiφ ∈ w} ⊆ w′;

– for G ⊆ A, RG is the relation on W such that wRGw
′ iff {φ|DGφ ∈ w} ⊆ w′;

– D is the set of equivalence classes [v], for every closed term v ∈ LD+
n ;

– I(fk)([v1], . . . , [vk]) = [fk(v1, . . . , vk)];
– 〈[v1], . . . , [vk]〉 ∈ I(P k, w) iff P k(v1, . . . , vk) ∈ w.

Since T , 4 and 5 are all axioms of Q.S5D
n , it is easy to show that the various

Ri and RG are equivalence relations. Moreover, from D1 it follows that R{i}
is equal to Ri, and RG ⊆

⋂
i∈GRi. However, in general it is not the case that

RG =
⋂

i∈GRi. This remark gives the rationale for the introduction of the
pseudo-satisfaction relation |=p, defined as |= but for the distributed knowledge
operator D (in what follows we simply write M for MQ.S5D

n ):

(Mσ, w) |=p DGψ if for every w′ ∈W, wRGw
′ implies (Mσ, w′) |=p ψ

Now we can prove the truth lemma for the pseudo-satisfaction relation |=p.
To obtain such a result we first observe that for an assignment σ such that
σ(yi) = [vi], for 1 ≤ i ≤ n, we have that Iσ(t[~y]) = [t[~y/~v]].

Lemma 4 (Truth lemma). For every w ∈M, φ ∈ LD+
n , for σ(yi) = [vi],

(Mσ, w) |=p φ[~y] iff φ[~y/~v] ∈ w

Proof. The proof is by induction on the structure of φ ∈ LD+
n .

φ = P k(t1, . . . , tk). By the definitions of pseudo-satisfaction and canonical inter-
pretation (Mσ, w) |=p P k(t1[~y], . . . , tk[~y]) iff 〈Iσ(t1[~y]), . . . , Iσ(tk[~y])〉 ∈ I(P k, w)
iff 〈[t1[~y/~v]], . . . , [tk[~y/~v]]〉 ∈ I(P k, w) iff P k(t1[~y/~v], . . . , tk[~y/~v]) ∈ w.
φ = ¬ψ,ψ → ψ′,∀xψ. The cases for the propositional connectives follows by the
maximality and consistency of the worlds in the canonical model; whereas for
the universal quantifier, the inductive step is proved by the richness of w.
φ = Kiψ. ⇐ Assume that Kiψ[~y/~v] ∈ w and wRiw

′. By definition of Ri,
ψ[~y/~v] ∈ w′ and by the induction hypothesis (Mσ, w′) |=p ψ[~y]. Therefore
(Mσ, w) |=p Kiψ[~y].
⇒ Assume that Kiψ[~y/~v] /∈ w. Note that the set {φ|Kiφ ∈ w} ∪ {¬ψ[~y/~v]}
is consistent. By standard techniques [8, 13] we can extend it to a saturated
set w′ such that {φ|Kiφ ∈ w} ∪ {¬ψ[~y/~v]} ⊆ w′. This means that wRiw

′ and
(Mσ, w′) |=p ¬ψ[~y] by the induction hypothesis. Hence (Mσ, w) 6|=p Kiψ[~y].
φ = DGψ. Similar to the previous case. ut

We remarked that the canonical model may not satisfy
⋂

i∈GRi = RG.
However, it can be unwound to get a structure M′ in such a way that the
same formulas are valid [7]. More formally, given the canonical model M =



〈W,R,D, I〉, there is another structure M∗ = 〈W ∗, R∗, D, I∗〉 and a surjective
function h : W ∗ → W such that (i) M∗ is a tree, that is, for all w,w′ ∈ W ∗,
there is at most one path from w to w′, and no path from w back to itself,
(ii) wR∗

iw
′ implies h(w)Rih(w′) and wR∗

Gw
′ implies h(w)RGh(w′), and (iii)

〈a1, . . . , ak〉 ∈ I∗(P k, w) iff 〈a1, . . . , ak〉 ∈ I(P k, h(w)).
In order to define M∗ and h we need more definitions. Let w,w′ be worlds

in W , a path from w to w′ is a sequence 〈w1, i1, w2, i2, . . . , ik−1, wk〉 such that:

1. w = w1 and w′ = wk;
2. w1, . . . , wk ∈W ;
3. each ij is either an agent or a set of agents;
4. 〈wj , wj+1〉 ∈ R∗

ij
.

We define W ∗ by induction. Let W ∗
1 be W , and define W ∗

k+1 as the set of
worlds vw,i,w′ such that w ∈ Wk, w′ ∈ W and i is an agent or group of agents.
Let W ∗ =

⋃
k∈N W

∗
k , then define h : W ∗ →W by letting h(w) = w, for w ∈W ∗

1

and h(vw,i,w′) = w′, for w ∈ W ∗
k . Further, R∗

i is the reflexive, transitive and
symmetric closure of the relation defined for w,w′ ∈W ∗ if w′ = vw,i,w′′ for some
w′′ ∈ W , and h(w)Rih(w′). Finally, define I∗(P k, w) = I(P k, h(w)). It can be
checked that M∗ and h satisfy (i)-(iii) above, we omit the proof for reasons of
space and refer to [7]. In particular, we can show what follows:

Lemma 5. For every w ∈W ∗, φ ∈ LD
n , (M∗ σ, w) |=p φ iff (Mσ, h(w)) |=p φ.

Proof. The proof is by induction on the length of φ. If φ is an atomic formula,
then the coimplication follows by the definition of I∗. The cases for the propo-
sitional connectives and the universal quantifier are straightforward.

φ = Kiψ. ⇐ Suppose that (M∗ σ, w) 6|=p Kiψ, then there is a world w′ ∈
W ∗ such that wR∗

iw
′ and (M∗ σ, w′) 6|=p ψ. This means that h(w)Rih(w′) and

(Mσ, h(w′)) 6|=p ψ by inductive hypothesis. Thus (Mσ, h(w)) 6|=p Kiψ.
⇒ If (Mσ, h(w)) 6|=p Kiψ, then there is a world w′ ∈W such that h(w)Riw

′ and
(Mσ, w′) 6|=p ψ. By construction vw,i,w′ ∈ W ∗, h(vw,i,w′) = w′ and wR∗

i vw,i,w′ .
By the inductive hypothesis (M∗ σ, vw,i,w′) 6|=p ψ, hence (M∗ σ, w) 6|=p Kiψ.

φ = DGψ. Similar to the previous case.

Now we make use of the structure M∗ to define a model M′ that does not
validate any unprovable formula φ ∈ LD

n . DefineM′ = 〈W ′, R′, D′, I ′〉 as follows:

– W ′ = W ∗, D′ = D and I ′ = I∗;
– R′

i is the transitive closure of R∗
i ∪

⋃
i∈GR

∗
G.

Since the various R∗
i and R∗

G are reflexive and symmetric, it follows that R′
i

is an equivalence relation, and therefore M′ is based on an equivalence frame.
Further, we can prove the following result:

Lemma 6. For every w, φ ∈ LD
n , (M′σ, w) |= φ iff (M∗σ, w) |=p φ.



Proof. Also this proof is by induction on the length of φ. If φ is an atomic for-
mula, then the coimplication follows because I ′ = I∗. The cases for the propo-
sitional connectives are straightforward.

For φ = Kiψ or φ = DGψ, the inductive step goes as in the propositional
case; we refer to [7] for a detailed proof.

φ = ∀xψ. If (M′σ, w) |= φ, then for all a ∈ D′, (M′σ(a
x), w) |= ψ. By inductive

hypothesis (M∗ σ(a
x), w) |=p ψ, and since D′ = D, (M∗ σ, w) |=p φ.

In conclusion, if φ ∈ LD
n is not provable in Q.S5D

n , then the canonical model
M pseudo-satisfies ¬φ by Lemma 4. By Lemma 5 also M∗ pseudo-satisfies ¬φ,
and by the last result above M′ does not validate φ. Thus, we state the following
completeness result.

Theorem 1 (Completeness). The system Q.S5D
n is complete with respect to

the class FE of equivalence frames.

As a consequence, we have completeness also with respect to the systems
of global states. In fact, if 0 φ then by Theorem 1 there exists a model M =
〈F , I〉 based on an equivalence frame F , which falsifies φ. In order to prove that
SGS 6|= φ we have to find a quantified interpreted system P falsifying φ. Define
P as 〈g(F), I〉: by the definition of validity in QISs, P |= φ iff Pf = 〈f(g(F)), I〉
models φ, but by Lemma 1 f(g(F)) is isomorphic to F . Hence P 6|= φ.

As a result, we have the following implications and a further completeness
result:

SGS |= φ, then FE |= φ, then Q.S5D
n ` φ

Corollary 2 (Completeness). The system Q.S5D
n is complete with respect to

the class SGS of systems of global states.

By combining together the soundness and completeness theorems we compare
directly the axiomatisation Q.S5D

n and the systems of global states, so we state
our main result:

Corollary 3 (Soundness and Completeness). A formula φ is valid on the
class SGS of systems of global states iff φ is provable in Q.S5D

n .

6 Conclusions

As we argued in the Introduction, first-order modal formalisms offer expressiv-
ity advantages over propositional modal ones. But the cited explorations already
carried out on this subject in MAS and, more in general, in knowledge represen-
tation and Artificial Intelligence, have so far fallen short of a deep and systematic
analysis of the machinery even in the case of static epistemic logic.

In this paper we believe we have made a first attempt in this direction:
the axiomatisation presented, even if limited to the static case, shows that the
popular system S5D

n extends naturally to first-order. In carrying out this exercise



we tried to remain as close as possible to the original semantics of interpreted
systems, so that fine grained specifications of MAS may be expressed, as recent
work on model checking interpreted systems demonstrates [9, 18].

Different extensions of the present framework seem worth pursuing. First of
all, it seems interesting to relax the assumption on the domain of quantification
and admit a different domain d(w) for every state w. Further, we could assume
a different domain of quantification da(w) for each agent a in a state w. In this
case quantification would be agent-indexed, i.e. we would be using a different
quantifier ∀a for every agent a ∈ A. In such an extended framework we should
check whether the validities on MPQISs in section 4 still hold, and how to modify
the completeness proof for Q.S5D

n . Also, it would be of interest to explore the
completeness issues resulting from term-indexing epistemic operators as in [15].

In an orthogonal dimension to the above, another significant extension would
be to add temporal operators to the formalism. This would open the way for
an exploration of axiomatisations for temporal/epistemic logic for MAS. While
as reported in the Introduction we are not so concerned with the satisfiability
problem, in doing so attention will have to be paid to the results in [11].
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