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Abstract. We solve the problem left open in [6] by providing a com-
plete axiomatisation of deontic interpreted systems on a language that
includes full CTL as well as the K;, O; and K{ modalities. Addition-
ally we show that the logic employed enjoys the finite model property,
hence decidability is guaranteed. To achieve these results we follow the
technique used by Halpern and Emerson in [2].

1 Introduction

Concepts based on deontic notions are increasingly being used in specification
and verification of large multi-agent systems. Because of their open and self-
interested nature it is unrealistic to assume that a team of engineers in a single
organisation may maintain control of a whole multi-agent system. This makes it
difficult, even a priori, to verify either off-line or at runtime that each individual
agent complies with a set of specifications. It seems more feasible, instead, to
permit the agents to perform incorrect/unwanted/undesirable actions, only to
flag all unwanted behaviours and reason about the properties that these may
bring about in the system.

In other words, by adding a suitable set of deontic notions we can aim to
verify not only what properties the system enjoys when each individual agent
is performing following the intended specifications (as it is traditionally done in
Software Engineering), but also what consequences result from the violation of
some of these specifications by some agents. This shift to a more liberal, finer
grained approach requires the introduction of suitable formal machinery both in
terms of specification languages and verification tools.

Deontic interpreted systems [6] have recently been introduced for this objec-
tive. In their basic form they provide a computationally grounded semantics [12]
to interpret a logic capturing epistemic, temporal and correctness notions. By us-
ing this formalism it is possible to give a semantical description of key scenarios
[7] and use the logic to check whether or not particular properties hold on these
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specifications. Specifically, deontic interpreted systems can be used to interpret a
language that includes CTL modalities AU, EU, EX [2], epistemic modalities K;
[3], modalities representing correct functioning behaviour O;, and modalities Kf
representing knowledge under the assumption of correct behaviour. Automatic
model checking tools for deontic interpreted systems have been developed [9, 8]
supporting the automatic verification of state spaces of the region of 10*° and
beyond [10,11,13, 8].

While the above results concern specification patters, verification tools, and

concrete scenarios, important theoretical issues have so far been left open. In
particular, the axiomatisation of deontic interpreted systems originally provided
in [6]was limited to a language that did not include temporal operators. Further-
more, the bi-indexed modality Kf , whose importance in practical verification is
now well recognised, was not included in the language.
__ The difficulty of the problem is linked to two issues. First, the modality
K] is defined in terms of the intersection between two relations with different
properties: modalities like these are known to be hard to treat. Second, any
axiomatisation for deontic interpreted systems would have to include a logic for
branching-time, but the standard procedure for axiomatising CTL involves a
non-standard filtration procedure [2].

The contribution of the present work is to solve the problem left open in
[6], i.e., to provide a complete axiomatisation of deontic interpreted systems on
a language that includes full CTL as well as the K;, O; and IA{f modalities.
Additionally we show that the logic employed enjoys the finite model property,
hence it is decidable. To show these results we extend the technique originally
presented by Halpern and Emerson in [2] to the richer language above.

The rest of the paper is organised as follows. In Section 2 we present syn-
tax and semantics of the logic. Section 3 is devoted to the construction of the
underlying machinery to prove the main results of the paper. Sections 4 and 5
present a decidability theorem and a completeness proof for the logic.

2 Deontic interpreted systems

Deontic interpreted systems [6] constitute a semantics to interpret epistemic,
correctness and temporal operators in a computational setting. They extend the
framework of interpreted systems [3], popularised by Halpern and colleagues in
the 90s to reason about knowledge, to modalities expressing correctness and
knowledge under assumptions of correctness. Technically, deontic interpreted
systems provide an interpretation to the operators Q; (O;¢ representing “when-
ever agent 4 is working correctly ¢ is the case”) and I?i (KZ ¢ representing “agent
1 knows that ¢ under the assumption that agent j is working correctly”) as well
as the standard epistemic operators K; and branching time operators of CTL
already supported by interpreted systems. Semantically this is achieved simply
by assuming that the local states of the agents are composed by two disjoint sets
of allowed (or “green”) and disallowed (or “red”) local states. Loosely speaking
an agent “is working correctly” whenever it is following its protocol (defined in



interpreted systems as a function from local states to sets of actions) in its choice
of actions. Given that the focus of this paper is to axiomatise the result trace
based semantics resulting from this we refer to [6] and related papers for more
details.

Let N ={0,1,2,...},IN. = {1,2,...}, PV be a set of propositional variables,
and AG = {1,...,n} a set of agents, for n € IN;.

Definition 1 (Syntax). Let p € PV and i € AG. The language L is defined by
the following grammar:

:=pl-¢|eVe|EXe|E(pUp) | A(eUy) | Kip | Oip | Kip

The language above extends CTL [1] with a standard epistemic operator
K; [3], and two further modalities: O; and IA(f [6]. The formula EXa is read as
“there exists a computation path such that at the next step of the path a holds”,
E(aUp) is read as “there exists a computation path such that 8 eventually occurs
and a continuously holds until then”, K;a is read as “agent ¢ knows that a”, O;a
is read as “whenever agent ¢ is functioning correctly « holds”, and K/« is read
as “agent ¢ knows that o under the assumption that the agent j is functioning
correctly”.

The remaining operators can be introduced via abbreviations as usual, i.e.,
alAp = —(~aV-8),a= 4 = -aVp, ae B = (a=BANB = a), AXa = —-EX-q,

EFa 2 E(TUa), AFa € A(TUa), EGa € -AF-q, AGa ¥ -EF-a, A(aWp) &

—E(-aU-8), E(aWg) ¥ ~A(-aU-8), Kia ¥ -K;(-a), Oia ¥ ~0;(-a).

Since most of the proofs of the paper are by induction on the length of the
formula, below we give a definition of length that will be used throughout the
paper.

Definition 2 (Length). Let ¢ € L. The length of ¢ (denoted by |p|) is defined
inductively as follows:

If ¢ € PV, then |p| =1,

If ¢ is of the form —a, K;a, O;a, or ﬁfa, then |¢| = |a| + 1,

If v is of the form EXa, then || = |a| + 2,

If ¢ is of the form aV B then |p| = |a| + |B] + 1,

If ¢ is of the form A(aUp) or E(aUp), then |p| = |a| + |B] + 2.

Let ¢ and ¢ be L formulas. We say that v is a subformula of ¢ and denote by
1 € Sub(yp) if either (a) ¥ = ¢; or (b) ¢ is of the form —a, EXa, K;a, O;a,
or I/ifoz, and 7 is a subformula of «; or (c) ¢ is of the form a V 8, E(aUpB), or
A(aUpB) and ¢ is a subformula of either « or S.

Following [6] we interpret £ on deontic interpreted systems. Whenever reason-
ing about models and other semantic structures (such as Hintikka’s structures
below) we assume that each agent i € AG (respectively the environment e) is
associated with a set of local states L; (respectively L.). These are partitioned
into allowed (or green) G; (respectively G.) and disallowed (red) R; (respectively
R.) states. The selection and execution of actions on global states generates by
means of a transition function runs, or computational paths, that are repre-
sented below by means of the temporal relation T'. Given our current interest is



presently concerned with axiomatisations we will focus at the level of models as
defined below. For more details on what below we refer to [3, 6].

Definition 3 (Deontic Interpreted Systems). A deontic interpreted system
(or a model) is a tuple M = (S, T, (RE)icag, (R)icag, R?)ijecag, V) where S
is a set of states; T C S x S is a serial relation on S; RE C S x S is an
equivalence relation for each agent i € AS; RY C S x S is a serial, i-j Buclidean
and transitive relation for each agent ¢ € AG; Rf C S x S is a relation for each
agent i € AS defined by: (s,s') € R iff (s,s') € REn RP;V:8 — 2PV is
a valuation function, which assigns to each state a set of proposition variables
that are assumed to be true at that state.

We call F = (S, T, (Rf)icas, (RY)icag, (R)ijeas) a frame.

Note that in the above definition of the deontic interpreted system we do not
impose any conditions on the set of states, and do not specify how the epistemic
and deontic relations are defined. We do this, because we can always construct
local and environmental states to put any set S, with any equivalence relation
on it, in the form traditionaly used in the multi-agent systems; namly to define
S to be a subset of the product of local sets of states, one per each agent, and
a set of states for environemnt [5, 6].

A path in M is an infinite sequence m = (sg,81,...) of states such that
(si,8i4+1) € T for each i € IN. For a path 7 = (s, s1, - . .), we take w(k) = sg. By
I1(s) we denote the set of all the paths starting at s € S.

Definition 4 (Satisfaction). Let M be a model, s a state, and o, B € L. The
satisfaction relation |=, indicating truth of a formula in model M at state s, is
defined inductively as follows:

(M,s) Ep iffp€V(s), (M, s) EaABiff(M,s) Ea and (M, s) | B,

(M, s) = - iff (M,s) 0, (M,s) = EXa iff (3r € I(s))(M, 7(1)) & o,

(M, s) = E(aUB) iff (3m € II(s))(3m 2> 0)[(M,x(m)) |= B and (Vj < m)(M,=(j)) = a],
(M, s) = A(aUﬂ) Zﬁ‘ (Vm € 11(s))(3m > 0)[(M, m(m)) |= B and (Vj < m)(M,n(j)) | o,
( ff (Vs' € S) (sRKs' implies (M, s') E a),
(M s)E Ola F (Vs' € 8) (sRPs' implies (M, s') = @),
(M, s) E Kja zﬁ (Vs' € S) (sRis' implies (M,s') = ).

We conclude this section with a definition of validity /satisfiability problems.

Definition 5 (Validity and Satisfiability). Let M be a model and ¢ € L.
(a) ¢ is valid in M (written M |= @), if M,s = ¢ for all states s € S. (b) ¢
is satisfiable in M, if M,s |= ¢ for some state s € S. (c) ¢ is valid (written
E v), if ¢ is valid in all the models M. (d) ¢ is satisfiable if it is satisfiable in
some model M. In this case M is said to be a model for .

In the next section we prove that £ has the finite model property (FMP), that
is, we show that any satisfiable £ formula is also satisfiable on a finite model.
This result allows us to provide a decidability algorithm for £ (see Section 4),
which we use later on to prove that the language has a complete axiomatic
system.



3 Finite Model Property (FMP)

The standard procedure for showing the FMP in modal logic is to construct
a filtration of an arbitrary model of a satisfiable formula and show that this
filtrated model is itself a model for the formula. As it is well-known, while this
procedure produces the intended result for a number of logics, it fails in others,
for instance in the case of CTL. More refined techniques for showing the FMP
exist; notably the construction given in [2] via Hintikka structures guarantees
the result. Indeed, given that the logic in study here is an extension of CTL, here
we follow the procedure given in [2] and show it can be extended to extensions
of CTL.

We start by defining two auxiliary structures: a Hintikka structure for a given
L formula, and the quotient structure for a given model. As in the previous
section and in rest of the paper we assume to be dealing with a set of agents
defined on local states, and protocols.

Definition 6 (Hintikka structure). A Hintikka structure for ¢ is a tuple
H = (S,T,(RE)icag, (RY)icag, (R))ijeag,L) where S is a set of states, T,
RK,R? and R! are binary relations on S, andL : S — 2% is a labelling function
assigning a set of formulas to each state such that ¢ € L(s) for some s € S and
the following conditions are satisfied:

H.1. if ~a € L(s), then a & 1(s)

H.2. if ——a € L(s), then a € L(s)

H.3. if (a A B) € 1(s), then a € L(s) and B € L(s)

H.j. if ~(a AB) € L(s), then ~a € L(s) or =3 € I(s)

H.5. if E(aUpB) € L(s), then 8 € L(s) or a AEXE(aUpB) € L(s)

H.6. if "E(aUpB) € L(s), then =8 A —a € L(s) or - A -EXE(aUp) € L(s)

H.7. if A(a@UpB) € L(s), then B8 € L(s) or a A -EX(=A(aUpB)) € L(s)

H.8. if -A(aUpB) € L(s), then = A -~ € L(s) or = A EX(-A(aUpB)) € L(s)

H.9. if EXa € L(s), then (3t € S)((s,t) € T and o € L(t))
H.10. if -EXa € L(s), then (Vt € S)((s,t) € T implies —a € L(t))
H.11. if E(aUB) € L(s), then (3r € II(s))(3In > 0)(8 € L(n(n))

and (Vj < n)a € L(n(j)))
H.12. if A(aUpB) € L(s), then (Vm € II(s))(In > 0)(B € L(n(n))
and (Vj < n)a € L(x(5)))

H.18. if Kia € L(s) and sREt, then a € L(t)
H.14. if “K;a € L(s), then there exists t € S such that (sREt and —a € L(t))
H.15. if K;a € L(s), then a € L(s)
H.16. if K;a € L(s) and sREt, then K;a € L(t)
H.17. if sREKt and sRXu and K;a € L(t), then both o € L(u) and K;a € L(u)
H.18. if O;a € L(s) and sR{t, then a € L(t)
H.19. if =O;a € L(s), then there exists t € S such that (sR{t and —a € L(t))
H.20. if O;a € L(s) and (sR9t), then O;a € L(2)
H.21. if sSRPt and sRSu and O;a € L(u), then both o € L(t) and O;a € L(u)
H.22. if K{a € LL(s) and sRIt, then a € L(t)
H.23. if IA(Z-'a € L(s) and sRlt, then IA{ga € L(t)



H.24. if sRIt and sR}u and Kgoz € L(t), then both a € L(u) and K?a € L{u)
H.25. if K;a € L(s), then Kla € 1(s)
H.26. if Oja € L(s), then K]la € L(s)

Note that the set of formulas I(s) is a propositional tableau [4] for each state
s. Note also that, intuitively, the rules H14, H15, H16 and H17 correspond to
the seriality, reflexivity, transitivity and Euclidean property for the epistemic
case, respectively; the rules H19, H20 and H21 correspond to the seriality, tran-
sitivity and i-jEuclidean property for the deontic case, respectively; and the
rules H23 and H24 correspond to the transitivity and Euclidean property for the
intersection of epistemic and deontic concepts, respectively. Note further that
the Hintikka structure differs from a the deontic interpreted system in that the
assignment, I is not restricted to propositional variables, nor it is required to
contain p or —p for any p € PV.

We have the following result:

Lemma 1 (Hintikka’s Lemma for £). A formula ¢ € L is satisfiable (i.e.,
@ has a model) if and only if there is a Hintikka structure for .

Proof. It is easy to check that any model M = (S,T,(RE)icag, RS )icas,
(R)); jeag, V) for ¢ is a Hintikka structure for ¢, when we extend V to cover all
formulae which are true in a state, i.e., in M we replace V by L that is defined
as: a € I(s) if (M,s) E a, for all s € S. 4

For the converse, suppose that H = (S, T, (RX)icag, R?)icag, (R))i jeag,L)
is an Hintikka structure for ¢. Let M = (5,7, RE)icag, (RI?)icas,
(RY)ijeas,V), where T' is serial closure of T; R is reflexive and Euclidean
closure of RX; RIC is serial, transitive and i-jEuclidean closure of R{; and
RY is transitive and Euclidean closure of R}; V : § — 2PV is defined by
V(s) = {p | p € L(s)}. We now show by the induction on the structure of
formulas that if ¢ € Sub(yp), then ¢ € L(s) implies M,s |= ¢ and ) € L(s)
implies M, s = ).

1. %) is a primitive proposition p. The result follows directly from the definition
of V and the fact that L(s) is a propositional tableau, so we cannot have
both p and —p in L(s).

2. 1) is of the form —a or aAS. Then, the result follows easily using the induction
hypothesis and the fact that L(s) is a propositional tableau.

3. ¢ is of the form EXS. If EXf € L(s) then by the rule H9 of the definition
of the Hintikka structure H, there is some state ¢ such that (s,¢) € T and
B € L(t). So, by the induction hypothesis we have that M, ¢ |= 3, and thereby
we have that M,s | EXB. If -EXj € L(s), then by the rule H10 of the
definition of the Hintikka structure H, for all state ¢ such that (s,t) € T we
have that =8 € L(¢). So, by the induction hypothesis we have that M,t = -4
for all state ¢ such that (s,t) € T', and thereby we have that M, s E -EXg.

4. 1 is of the form E(aUp). If E(aUB) € L(s), then by the rule H11 of the
definition of the Hintikka structure H, there exist a path 7 that starts at
state s and a state 7(n) with n > 0 such that 8 € L(w(n)) and a € L(x(j))



for all j < m. Since by the induction hypothesis we have that M, 7 (n) = 8
and M,7(j) E « for all j < n, we must have that M,s E E(aUp). If
-E(aUp) € L(s), then by the rule H6 we have that —a A =3 € L(s) or
-8 A —EXE(aUpB) € L(s). Let suppose that —a A =3 € L(s). Then by rules
H1—H4 and by the induction hypothesis we have that M, s = ~aA—j, which
implies that M,s |= “E(aUp). Let suppose now that =8 A =EXE(aUp) €
L(s). By the rule H3 and by the induction hypothesis we have that M, s =
-f and M, s E -EXE(aUp), which implies that M,s = —-E(aUp).

. a is of the form A(aUaz). If A(aUas) € L(s), then by the rule H12 of the
definition of the Hintikka structure H, for all paths 7 that start at state s
there exists a state w(n) with n > 0 such that g € L(w(n)) and a € L(n(j))
for all j < n. Since by the induction hypothesis we have that M,7(n) = S
and M,7(j) E a for all j < n and path 7 that start at s, we must have
that M,s = A(aUpB). If =A(aUB) € L(s), then by the rule H8 we have
that —a A =8 € L(s) or =8 A EX(—-A(aUpB)) € L(s). Let suppose that
—a A = € L(s). Then by rules H1 — H4 and by the induction hypothesis
we have that M, s E —a A =8, which implies that M,s = -A(aUpB). Let
suppose now that =3 A EX(=A(aUpB)) € L(s). By the rule H3 and by the
induction hypothesis we have that M,s = =8 and M,s | EX(-A(aUp)),
which implies that M, s E -A(aUp).

. 9 is of the form K;3. Let supose that K;8 € L(s). We want to show that
M, s = K;3. Tt suffices to show that M, ¢ |= 3 for all state ¢ such that sR/X¢.
But since R} is a reflexive and Euclidean closure of RK, if sR/¥¢ then either
(a) sRX¢t, or (b) there exists a state v such that vREs and vRX¢. Let first
assume that (a) holds. Since K;8 € L(s), by rule H13 we have that § € L(¢).
Let assume now that (b) holds. Since K;8 € L(s), by rule H17, we have that
B € L(t). So, by the induction hypothesis we have that M, ¢ |= . Since this
holds for an arbitary ¢ such that sR/Xt we can conclude that M, s = K;3.
Now, let supose that —K;3 € L(s). By the rule H14 of the definition of the
Hintikka structure H, there exists state ¢ such that sRXt and -8 € L(¢).
Since RX C R/, and since by the induction hypothesis we have that M, ¢ =
-8, we must have M, s = -K;3.

. 1 is of the form Q;8. Let supose that O;8 € L(s). We want to show that
M, s = 0;8. It suffices to show that M,t |= j for all state ¢ such that sR°t.
But since R[? is a serial, transitive and i-jEuclidean closure of R?, if sR7t
then there exists £ > 0 and there exists a sequence of states xg, ..., 2 such
that s = @g, t = =z, and for all n € {0,...,k — 1} either z, R0z, 1, or
there exists a state v such that vR{z, and vR$z,41. An intuction on n,
using rules H18, H20 and H21 shows that we must have O;8 € L(z,,) for all
n € {0,...,k}, and 8 € L(z,) for all n € {1,...,k}. In particular, we have
that O;8 € L(t) and 8 € L(t). So, by the induction hypothesis we have that
M, t |= B. Since this holds for an arbitary ¢ such that sR.°t we can conclude
that M, s E O;8.

Now, let supose that =0;3 € L(s). By the rule H19, we have that there exists
state ¢ such that sRPt and -3 € L(t). Since R{ C R/C, and since by the

i

induction hypothesis we have that M,t |= =, we must have M, s = =0;0.



8. 9 is of the form ﬁfﬂ Let supose that Kf,@’ € L(s). We want to show that
M,s E I?f B. Tt suffices to show that M,t = S for all state ¢ such that
sR7t. But since RY is a transitive and Euclidean closure of R, if sR/°t then
there exists k > 0 and there exists a sequence of states xo, ..., z; such that
s =g, t=xy, and for all n € {0,...,k—1} either 2,R} 2,1, or there exists
a state v such that UR{ Zn and ij:an. An intuction on n, using rules H23
and H24 shows that we must have IA(Zﬂ € L(zy,) for all n € {0,...,k}, and
B € L(z,) for all n € {1,...,k}. In particular, we have that IA{fﬁ € L(t) and
B € L(t). So, by the induction hypothesis we have that M, ¢ |= . Since this
holds for an arbitary ¢ such that sR;.j t we can conclude that M, s = Kf B.
Now, let supose that ﬁﬁgﬂ € L(s). By the rule H1, we have that Kf,@’ ¢ L(s).
Since any model for a given formula is a Hintikka structure for the formula,
by the Contrapostion Law, we have that M, s E —K] 8.

O

We now proceed to define a quotient structure for a given model. The quotient

construction depends on an equivalence relation of states on a given model. To

define this we use the Fischer-Ladner closure of a formula ¢ € £ (denoted by

FL(p)) as FL(p) = CL(p) U {—a | a € CL(p)}, where CL(p) is the smallest
set of formulas that contains ¢ and satisfy the following conditions:

(a). if ~a € CL(y), then a € CL(yp),

(b). if a A B € CL(y), then a, 8 € CL(yp),

(c). if E(aUB) € CL(y), then a, 8, EXE(aUB) € CL(y),
(d). if A(aUB) € CL(p), then a, 8, AXA(aUB) € CL(yp),
(e). if EXa € CL(p), then a € CL{yp),

(g). if O;a € CL(yp), then a € CL(y),

(f). if K;a € CL(yp), then a € CL(yp),

(h). if Kia € CL(yp), then a € CL(yp).

Observe that for a given formula ¢ € £, F'L(p) forms a finite set of formulae,
as the following lemma shows (the size of a finite set A — denoted by Card(A)
— is defined as the number of elements of A).

Lemma 2. Given a formula ¢ € £, Card(FL(¢)) < 2(J¢]|).
Proof. Straightforward by induction on the length of (. d
Definition 7 (Fischer-Ladner’s equivalence relation). Let ¢ € L and
M = (S,T, RE)icag, R?)icag, RY)ijecag, V) be a model for p. The relation
S rL(p) on a set of states S is defined as follows:

s <L) 8 if (Vo € FL(p))(M,s) E aiff (M,s") E a)
By [s] we denote the set {w € S | w ¢ pr(y) 5}

Observe that <> rr () is indeed an equivalence relation, so using it we can define
the quotient structure for a given model for L.



Definition 8 (Quotient structure). Let ¢ € £, M = (S,T,(RK)icag,
(R)icas, (R‘Z)i,]‘e/{g , V) be a model for p, and < pr(,) o Fischer-Ladner’s equiv-
alence relation. The quotient structure of M by < pr () is the tuple MHFLM =
(8,1, (RQK)ieAga (R;'O)ieASi: (R;'j)i,je/lg ,IL'), where

- 8 =/{[s]| s €S},

— T ={(s],[s']) € §' xS"| (Fw € [s])(Tw' € [¢']) such that (w,w') € T},

— RIE be a transitive closure of {([s],[s']) € ' x S' | Bw € [s])(3w’ € [s'])

such that (w,w') € RX},

- RI° ={([s],[s']) € $' x §" | Bw € [s])(Fw’' € [s']) such that (w,w') € RY},

— R7 = {([s],[s']) € 8" x 8" | (Vw € [s])(Yu' € [8']) such that (w,w') € R}},
— 1 : 8" — 2FL) s defined by: I ([s]) = {a € FL(p) | (M, s) = a}.

Note that the set S’ is finite as it is the result of collapsing states satisfy-
ing formulas that belong to the finite set FL(yp). In fact we have Card(S") <
2Cerd(FL(%)) Note also that the relation 7" is serial, Ri¥ is reflexive, symmetric
and transitive (i.e., it is an equivalence relation), Ri” is serial, transitive and i — j
Euclidean, and R;j is transitive and Euclidean. Further, since £ is an extension
of CTL, the resulting quotient structure may not be a model. In particular, the
following lemma holds.

Lemma 3. The quotient construction does not preserve satisfiability of formulas
of the form A(aUB), where o, € L. In particular, there is a model M for
A(TUp) with p € PV such that M, ., is not a model for A(TUp).

Proof. [Sketch] Consider the following model M = (S,T,RE,RP, R},V) for
A(TUp), where S = {s0,81,---, }, T = {(s0,80)} U{(si,8:-1) | i > 0}, RE =
RP = Rl = {(si,s:) | i > 0}, p € V(so0) and p & V(s;) for all i > 0. It is
easy to observe that in the quotient structure of M, ie., in Mo, ;4 1oy, WO
distinct states s; and s, for all ¢,7 > 0, will be identified. As a result of that,
a cycle along which p is always false will appear in M, ., , +v,, - This implies
that A(TUp) does not hold along the cycle. O

Although the quotient structure of a given model M by « () may not be
a model, it satisfies another important property, which allows us to view it as
a pseudo-model; it can be unwound into a proper model. This observation can
be used to show that the language £ has the FMP property. To make this idea
precise, we introduce the following auxiliary definitions.

An interior (respectively frontier) node of a directed acyclic graph (DAG)!
is one which has (respectively does not have) a T-successor. The root of a DAG
is the node (if it exists) from which all other nodes are reachable via the T
relation. A fragment M' = (S',T',(R¥)icas, (RI?)icas, (R} )ijeas, L) of a
Hintikka structure is a structure such that (S',T") generates a finite DAG whose
interior nodes satisfy H1-H10 and H13-H26, and the frontier nodes satisfy H1-
H8 and H13-H26. Given M = (S, T, (Rf),’e_,qg, (R?)z’eAS, (Rg)i,jeAg,L) and

M'= (8", T, (R¥)icag, R{?)icas, (R} )ijeas, L), we say that M is contained

! Recall that a directed acyclic graph is a directed graph such that for any node v,
there is no nonempty directed path starting and ending on v.



in M', and write M C M',if SC S, T =T'N(S x S), RE=REN(SxS),
RO =RPN(SxS),RI=R/N(SxS),L=L|S.

Definition 9 (Pseudo-model). Let ¢ € L. A pseudo-model M = (S,T,
(REY)ieag, RY)icag, R))ijeag,L) for ¢ is defined in the same manner as a
Hintikka structure for ¢ in Definition 6, except that condition H12 is replaced
by the following condition H'12: (Vs € S) if A(@UpB) € L(s), then there is a frag-
ment (S',T', (R{ )ieas, Ri?)icas, (R )ijeas,L') C M such that: (a) (S',T")
generates a finite DAG with root s; (b) for all frontier nodes t € S', 8 € L'(t);
(c) for all interior nodes u € S', a € L' (u).

We have the following.

Lemma 4. Let ¢ € L, FL(p) be the Fischer-Ladner closure of ¢, M = (S, T,
RF)ieas, (RY)icas, (R))ijeas,V) a model for ¢, and M, = (ST,
(R;K),-@qg,(R;O)ieAg,(R;j)i,jeAg,L) the quotient structure of M by <rpr(y)-
Then, My, s a pseudo-model for .

Proof. This can be shown by induction on the structure of ¢. The proof for the
CTL part of £ follows immediately from Lemma 3.8 in [2]. Consider now ¢ to
be of the following forms:

H.13. ¢ = K;a. Let K;a € L([s]) and [s]RiE[t] for an arbitrary [t] € S’. Since
[s]R/K[t], by the definition of R there exists ¥ > 0 and there exists a
sequence [o] ... [zx] of states such that [s] = [zo], [xr] = [t] and [z;]R;i[xj+1]
with R; = {([s],[s']) € §' x §" | (Qw € [s])(Fw’ € [s]) such that (w,w') €
RE} for all j € {0,...,k — 1}. We will first show that if K;a € L([zo]) and
[zo]Ri[z1], then K;a € L([z1]) and « € L([z1]).

Since [zg]R;[z1], by the definition of R; we have that there exist z( € [zo]
and z} € [z;] such that z{RFz}. Without losing of generality we can take
xy = x9 and z} = z1, and thereby we have that

zoRKz, (1)

Since K;a € L([z0]), by the definition of <+ rr,(,) and I we have that M, zo |=
K;a (in fact we have M,z = K;a for all z € [z¢]). Thus, by the definition
of = we have that

M,t |= a for all state t such that zoR¢ (2)

So, in paricular, since (1) holds, we have that M,z; = a. Thus by the
definitions of ++py(,) and L, we have that a € I([z;]). Now, consider any
state y such that z;REy. Since (1) holds and the relation R is transitive,
we have that zoRXy. Thus, since (2) holds we have that M,y = a. Since
this holds for any y such that x1REy, we have that M,z; | K;a. Thus,
by the definitions of <>z, and L, we have that K;a € L([z1]). Now, by
induction on 0 < j < k, we conclude that if K;a € L([z;]) and [z;]Ri[z;41],
then K;a € L([z;+1]) and a € L([zj41]). This implies that K;a € L([t]) and
a € L([t])- So, conditions H13 and H16 are fulfilled.
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H.14

H.15.

H.17 .

H.18 .

H.19.

H.20 .

H.21

¢ = -K;a. Let -K;a € 1([s]). Then, by the definitions of «pr(,) and L,
we have that M, s £ —K;« (in fact we have M, s’ |= —K;a for all the state
s' € [s]). So, by the definition of =, we have that there exists ¢ € S such
that sRt and (M,t) |= —a. Consider an equivalence class of <3y, that
is generated by t, i.e., the state [t] of S'. Since sRK¢#, by the definition of
R/X we have that [s]R[¥[¢]. Since (M,t) = —a, by the definitions of < g1y
and L, we have that —a € L([t]). Therefore, we can conclude that there
exists state [t] € S’ such that [s]R:X[t] and —a € L([t]). So, condition H14
is fulfilled.

¢ = K;a. Let K;a € L([s]). Then, by the definitions of () and L, we
have that M, s = K;a (in fact we have M, s’ = K;a for all the state s’ € [s]).
Thus, by the definition of = we have that

M, t = a for all state ¢ such that sR¥¢ (3)

So, since R¥ is reflexive, we have that M, s = a. Then, by the definitions of
< rr(p) and L, we have that o € L([s]), which implies that condition H15
is fulfilled.

Let [s]RE[t], [s]RE [u] and K;a € L([u]). Since [s]RiE[u] and RX is sym-
metric, we have that [u]RX [s]. Further, since RK is transitive and [u]R% [s]
and [s]R:K[t], we have that [u] R/ [¢]. Thus, since K;a € L([u]), by case H.13
of the proof, we have that a € L([t]) and K;a € L([t]) . So, condition H17
is fulfilled.

¢ = 0;a. Let O;a € L([s]) and [s]R/C[t] for an arbitrary [t] € S'. Since
[s]RIC[t], by the definition of R/, there exist states s' € [s] and t' € [t]
such that s'R#'. Since O;a € I([s]), by the definitions of < FL(p) and
L we have that M,s"” | O;a for all s” € [s]. So, in particular we have
that (M,s") = O;a. By the definition of =, we have that (M,t") E «
for all " € S such that s'R{t". In particular, since s'R{t, we have that
(M,t') = a. Thus, since [t'] = [t], by the definitions of +3rr(,) and L we
have that a € L([t]). So, the condition H18 is fulfilled.

¢ = 20;a. Let ~O;a € L([s]). Then, by the definitions of <»rr(,) and L,
we have that M, s = —0;a (in fact we have M, s' = =0;q for all the state
s' € [s]). So, by the definition of |=, we have that there exists a state t € S
such that sR{t and (M,t) = —a. Consider an equivalence class of < pp(y)
that is generated by ¢, i.e., the state [t] of S’. Since sR{t, by the definition of
R/C we have that [s]R[?[t]. Since (M,t) = —a, by the definitions of <> p(y)
and L, we have that —a € L([t]). Therefore, we can conclude that there
exists state [t] € S’ such that [s]R.C[t] and =« € L([t]). So, condition H19
is fulfilled.

Let [s]R/°[t] and O;a € L([s]). By case H.18 of the proof, we have that
a € L([t]). Now, consider any [t] € S’ such that [t]R/C[¢']. Since R[C is
transitive, we have that [s]RI°[t']. So, again by case H.18 , we have that
a € L([t']) for each [t'] such that [t]R}°[t']. Thus, by the definition of ¢+ pr,(y),
L and |=, we can conclude that O;a € L([t]). So, condition H20 is fulfilled.

. Let [s]R/C[t] and [s]R;-O[u], and O;a € L([u]). Since R/© is i — jEuclidean,

we have that [u]R.°[t]. Thus, since O;a € L([u]) holds, by case H.18 we
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H.22

H.23 .

H.24.

H.25.

H.26 .

have a € L([t]), and by case H.20 we have O« € L([t]). So, condition H21
is fulfilled.

Lo = Kfa. Let Kfa € L([s]) and [s]RY[t] for an arbitrary [t] € S’. Since

[s]RY[t], by the definition of R we have that s'RIt' for all states s' € [s]
and t' € [t]. Since Kf a € I([s]), by the definition of > rr(,) and L. we have
that M, s’ = Kla for all s' € [s]. Thus, by the definition of = we have that
M,z |= o for all states = such that s'R}z. So, since s'RJ¢' for all ' € [t], we
can conclude that M,t' = a. Thus, since t' € [t], by the definition of <+ pr ()
and L we have that a € L([t]). Therefore, we can conclude that condition
H?22 is fulfilled.

Let [s]R{[t] and Kga € L([s]). By case H.22 of the proof, we have that
a € L([t]). Now, consider any [t'] € S' such that [t]R}[t']. Since R} is
transitive, we have that [s]RY[t']. So again by case H.22 , we have that
a € I([t']) for each [t'] such that [t]R [t']. Thus, by the definition of < L(g)>
L and =, we can conclude that Kf a € L([t]). So, condition H23 is fulfilled.
Let [s]RY[t] and [s]R/ [u], and Kf a € L([u]). Since RY is euclidean, we have
that [u]R7[t]. Since Kf a € I([u]) holds, by case H.22 of the proof, we have
a € L([t]), and by case H.23 we have IA(ga € L([t]). So, condition H24 is
fulfilled.

¢ = K;a. Let (M, s) E K;a, and K;a € L([s]). By the definition of |=, we
have that (M,t)  « for all ¢ € S such that sREX¢. Consider the following
two sets K (s,i) = {t | (sREt) and (M,t) = a} and O(s,i,j) = {t € K(s,i) |
(sR$t)}, where 4,j € {1...,n}. By the definition of K(s,i) and O(s, j), we
have that O(s,i,7) = {t | (sRJt) and M,t |= a}. Therefore, by the definition
of = we have that (M, s) = IA(fa. Thus, by the definitions of <+ g,y and L,
we have that Kf a € L([s]). So, condition H25 is fulfilled.

¢ = Oja. Let (M,s) = Oja, and Oja € L([s]). By the definition of |=, we
have that (M, t) |= a for all € S such that sR't. Consider the following two
sets O(s,j) = {t | (stOt) and (M,t) E o} and K(s,i,5) = {t € O(s,]) |
(sRKt)}, wherei,j € {1...,n}. By the definition of K(s,4,5) and O(s, i), we
have that K (s,i,5) = {t | (ngt) and M,t |= a}. Therefore, by the definition
of = we have that (M, s) = Kfa. Thus, by the definitions of <+ g,y and L,
we have that I?i a € I([s]). So, condition H26 is fulfilled.

O

We can now prove the main claim of the section, i.e., the fact that £ has the

finite model property.

Theorem 1 (FMP for £). Let ¢ € L. Then the following are equivalent: (1)
@ is satisfiable; (2) There is a finite pseudo-model for p; (3) There is a Hintikka
structure for .

Proof. [sketch] (3) = (1) follows from Lemma 1. (1) = (2) follows from Lemma
4. To prove (2) = (3) it is enough to construct a Hintikka structure for ¢ by
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“unwinding” the pseudo-model for . This can be done in the same way as is
described in [2] for the proof of Theorem 4.1. O

4 Decidability for £

Let ¢ be a £ formula, and FL(yp) the Fischer-Ladner closure of ¢. We define
A C FL(p) to be mazimal if for every formula a € FL(p), either & € A or
—a € A.

Theorem 2. There is an algorithm for deciding whether any L formula is sat-
isfiable.

Proof. Given a formula ¢ € £, we will construct a finite pseudo-model for ¢ of
size less or equal 2219, We proceed as follows.
1. Build a structure M’ = (S, T", (RE)icag, (R}
following way:
-8 ={A]| AC FL(p) and A is maximal and satisfies rules H1-HS,
H13, H24, H25};
— T' C 8" xS is a relation such that (A, Ag) € T' iff -EXa € A; implies
that -« € Az;
— for each agent i € AG, RIX C S’ x §' is a relation such that (A;, Ay) €
R;K iff {OL | Kia € Al} (_: Ag;
— for each agent i € AG, R;O C 8" x 8’ is a relation such that (A;, As) €
R;-O iff {Oé | OZ'Oé S Al} g AQ;
— for each agent i,j € AG, R;-j C §' x §' is a relation such that (A1, A) €
RY iff {a | Kla € Ay} C Ay;
— L' : S = 2FL(¥) is a function defined by I/ (A) = A.
It is easy to observe that M’, as constructed above, satisfies properties
H1-HS8, H15, H25, H26; properties H10, H13, H18, and H22 (because
of the definition of 7', R/K, R/, and R} respectively). Note also that since
Card(FL(p)) <2-|¢| (see Lemma 2), S’ has at most 224! elements.
2. Test the above structure M' for fulfilment of the properties H9, H11, H'12,
H14, H16, H17, H19-H21, H23 and H24 by repeatedly applying the fol-
lowing deletion rules until no more states in M’ can be deleted.

ieag, RY)ijeag,L') in the

H9 Delete any state which has no T-successors.

H11-H12’ Delete any state A; € S’ such that E(aUB) € A; (respectively A(aUpB) €
Aj) and there does not exist a fragment M" C M’ such that: (i) (S”,T")
generates a finite DAG with root Ay; (ii) for all frontier nodes A, € 5",
B € Ay; (iii) for all interior nodes Az € §”, a € As.

H14 Delete any state A; € S’ such that =K;a € Ay, and A; does not have
any R/ successor Ay € S" with —a € As.

H16 Delete any state Ay € S’ such that A;RIX Ay and K;a € Ay and -K;a €
As.

H17 Delete any state A; € S’ such that A; R Ay and AjRE Az and a € Ay
and K;—a € A;
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H19 Delete any state A; € S’ such that =O;a € Ay, and A; does not have
any R!C successor Ay € S’ with —a € A,.

H20 Delete any state A; € S’ such that AlR;OAg and O;a € A; and —0;a €
Ay.

H21 Delete any state A; € S’ such that A; RY A, and AIR?A?, and O;—a €
Az and a € A,. ’ . .

H23 Delete any state A; € S’ such that AlR;J Ay and Kla € Ay and -Kla €
As.

H24 Delete any state A; € S’ such that AlR,IiJAQ and AlR;JA:; and a € A,
and Kl-a € A;.

We call the above two points a decidability algorithm for L.

Claim (1). The decidability algorithm for £ terminates.

Proof. The termination is obvious given that the initial set S’ is finite.

Claim (2). Let M = (S, T, (RzK)iEAS; (Rio)ieﬂg, (Rg),’,jeAg,]L) be the resulting
structure of the algorithm. The formula ¢ € £ is satisfiable iff ¢ € s, for some
s€eS.

Proof. In order to show the part right-to-left of the above property, note that
either the resulting structure is a pseudo-model for ¢, or S = ( (this can be
shown inductively on the structure of the algorithm). So, if ¢ € s for some
s € S, ¢ is satisfiable by Theorem 1.

Conversely, if ¢ is satisfiable, then there exists a model M* such that M* =
®- Let M(ipL(q,) =M = (SI7TI7(R;K)ie./l97(R{io)ie./l97(R;'])i,jE.Aga]LI) be the
quotient structure of M* by ¢ pp(,). By Theorem 1 we have that M’ is a
pseudo-model for ¢. Moreover, by the definition of I' in the quotient struc-
ture, I/ (s) is maximal with respect to FL(y) for all s € S’. Now, let M" =
(8", T", (RI')icag, RY)icag, (R;?)i jeas, L") be astructure defined by step 1

of the decidability algorithm, and f : S’ — S a function defined by f(s) = L'(s).
The following conditions hold:

1. If (s,t) € T', then (f(s), f(t)) € T";
Proof (via contradiction): Let (s,t) € T' and (f(s), f(t)) € T". By the
definition of 7" we have that -EXa € f(s) and a € f(t). Then, by the
definition of f, we have that “EXa € L'(s) and o € L'(¢). So, by the
definition of I in the quotient structure we have that M*,s = “EXa and
M*,t = a, which contradict the fact that (s,t) € T".

2. Tt (5,1) € RIK, then (f(5), f(t)) € RYK;
Proof (via contradiction): Let (s,t) € R and (f(s), f(t)) € RYK. By the
definition of R/® we have that K;a € f(s) and a ¢ f(t). Then, by the
definition of f, we have that K;a € L/ (s) and a ¢ L/ (t). So, by the definition
of L' in the quotient structure we have that M*,s E K;a and M*,t = —a,
which contradict the fact that (s,t) € RiK.

3. If (s,t) € R, then (f(s), f(t)) € R}
Proof (via contradiction): Let (s,t) € RIC and (f(s), f(t)) & RYC. By the
definition of RY? we have that O;a € f(s) and a ¢ f(t). Then, by the
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definition of f, we have that O;a € I (s) and a ¢ I (¢). So, by the definition
of I in the quotient structure we have that M*, s = O;a and M*,t |= —a,
which contradict the fact that (s,t) € RIC.
4. 1f (s,t) € RY, then (f(s), f(t)) € R};
Proof (via contradiction): Let (s,t) € R;j and (f(s), f(t)) ¢ R;’j. By the
definition of R;’j we have that I/ifa € f(s) and a & f(t). Then, by the
definition of f, we have that IA(f a €U (s) and a & L/ (t). So, by the definition
of L in the quotient structure we have that M* s = IA{f a and M* )t |= —a,
which contradict the fact that (s,t) € RY.

Thus, the image of M’ under f is contained in M", i.e., M' C M". It remains
to show that if s € S’, then f(s) € S” will not be eliminated in step 2 of the
decidability algorithm. This can be checked by induction on the order in which
states of S” are eliminated. For instance, assume that s € S', and A(aUpB) €
f(s). By the definition of f, we have that A(aUgB) € L/(s). Now, since M' is a
pseudo-model, by Definition 9 we have that there exists a fragment rooted at s
that is contained in M’ and it satisfies property H'12. Thus, since f preserves
the above condition (a), we have that there exists a fragment rooted at f(s) that
is contained in M" and it satisfies property H'12. This implies that f(s) € S"”
will not be eliminated in step 2b of the decidability algorithm. Other cases can
be proven similarly. Therefore, it follows that for some s € S we have ¢ € L(s).

O

5 A Complete Axiomatic System for £

An aziomatic system consists of a collection of azxioms and inference rules. An
axiom is a formula, and an inference rule has the form “from formulas ¢1,. .., @mn,
infer formula ¢”. We say that ¢ is provable (written - ) if there is a sequence of
formulas ending with ¢, such that each formula is either an instance of an axiom,
or follows from other provable formulas by applying an inference rule. We say
that a formula ¢ is consistent if = is not provable. A finite set {¢1,...,om} of
formulas is consistent if and only if the conjunction ¢1 A...Ap,, of its members
is consistent, and an infinite set of formulas is consistent if all of its finite subsets
are consistent. A set F' of formulas is a mazimal consistent set if it is consistent
and for all ¢ ¢ F, the set F'U {¢} is inconsistent. An axiom system is sound
(resp. complete) with respect to the class of models, if F ¢ implies |= ¢ (resp. if

E ¢ implies F ).

Definition 10 (Axiomatisation of deontic interpreted systems). Let i €
{1,...,n}. Consider the following ariomatic system for L:

PC. All substitution instances of classical tautologies.

Xi. EXT

X2. EX(aV f) & EXa V EXj

U;. E(aUB) & BV (a A EXE(aUp))
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Usz. A(eUB) & BV (aANAXA(aUp))
Tk.. Kia = a
4k.. K;a = K;K;a
5k.. K;a = K;=K;a
- (Oia A Oi(a= B)) = 08
. O;a = =0;-«a
40.. 0;a = 0;0;a
5io_']. -0;a = O]'"Oz'a
g (KlanR(a=p) =Kl
4z;. IA(ga = IA{fIA{fa
5125. —Kﬁa = KZ—'Rfa
0-Ki. 0ja=Kla
K-K. Kia= Kga
MP. From « and o = (3 infer 3,
Neck,. From a infer K;a,
Necop,;. From a infer O;a,
Rlx. From a = 3 infer EXa = EXj
R2x. From v = (-8 A EXYy) infer v = -A(aUp)
R3x. From v = (=8 ANAX(y VvV =E(aUp))) infer v = —-E(aUpB)

We note that the system above includes the axiomatisation for CTL [2], S5
[3] for K; and KD45¢~7 [6] for O;. The fragment for the operators K/, previously
not explored, is K45. In line with the traditional interpretation of these axioms
in an epistemic setting these are to be interpreted from the point of view of
an external observer ascribing properties to the system. They both seem in line
with the interpretation of the modality of knowledge under the assumption of
correct behaviour. Further note that axioms 4K:, and 5KJ are to be expected
given that both the underlying relations are tra.ns1t1ve and Euclidean.

The interaction axioms O; — KJ and K; K’ regulate the relationship be-
tween O;,K; and Kf . They were both discussed in [6] and correspond to our
intuition regarding the meaning of the modalities. Note also that they closely
match the interaction axioms for distributed versus standard knowledge, which
again confirms our intuition given that distributed knowledge is defined on the
intersection of the relations for standard knowledge.

The inference rules for all the components are also entirely expected — note
that while Necessitation for KJ is not explicitly listed, it may easily be deduced
from Neck, or Neco,.

Theorem 3. The aziomatic system for L is sound and complete with respect to
the deontic interpreted systems, i.e. = ¢ iff - ¢, for any formula ¢ € L.

Proof. Soundness can be checked inductively as standard. For completeness, we
show that any consistent formula ¢ is satisfiable. To do this, we first consider the
structure M = (S, T, RE)icag, R)icag, (R])ijeag, L) for ¢ as defined in step
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1 of the decidability algorithm. We then execute step 2 of the algorithm, obtain-
ing a pseudo-model for ¢. Crucially we show below that if a state s € S is elim-
inated at step 2 of the algorithm, then the formula ¢, = A ., a is inconsistent.
Observe now that that for any o € FL(p) we have b a < \/ 1128220 1 s.
In particular, F ¢ <\ &17.5.520,, s. Thus, if ¢ is consistent, then 1), is con-
sistent as well for some s € S. It follows by Claim 2 of Theorem 2 that this
particular s is present in the pseudo-model resulting from the execution of the
algorithm. So, by Theorem 1, ¢ is satisfiable. Note that pseudo-models share
the structural properties of models, i.e., their underlying frames have the same
properties.

It remains to show that if a state s € S is eliminated at step 2 of the
algorithm then the formula 1), is inconsistent. Before we do it, we need some
auxiliary claims.

Claim (3). Let s € S and a € FL(yp). Then, a € s iff - 95 = a.
Proof. (’if’). Let a € s. By the definition of S, we have that any s in S is
maximal. Thus, ~a € s. So, F ¥ = a.

(only if’). Let I 15 = a. So, since s is maximal we have that a € s. d

Claim (4). Let s,t € S, both of them be maximal and propositionally consistent,
and sRKt (respectively sRt and sR7t ). If @ € ¢, then —=K;—a € s (respectively
~0;-a € s and ~Ki—a € s).
Proof.[By contraposition] Let @ € t and —K;—«a ¢ s. Then, since s is maximal
we have that K;—a € s. Thus, since SR{{ t, we have that —a € t. This contradicts
the fact that o € ¢, since ¢ is propositionally consistent.

The same proof applies to O; and K. O

Claim (5). Let s € S be a maximal and consistent set of formulas and o such
that F a. Then « € s.

Proof. Suppose a € s and F «. Since s is maximal then —a € 5. So ~a A 5 is
consistent where 1, where 1, € s. So by definition of consistency we have that
V =(—a As), so tf aV —p,. But we have - a V 15, so this is a contradiction.
O

We now show, by induction on the structure of the decidability algorithm
for £, that if a state s € S is eliminated at step 2 of the decidability algorithm,
then F ;.

Claim (6). If 15 is consistent, then s is not eliminated at step 2 of the decidability
algorithm for L.
Proof.

H9 Let EXa € s and 1, be consistent. By the same reasoning as in the proof of
Claim 4(a) in [2], we conclude that s satisfies H9. So s is not eliminated.
H11-H’12 Let E(aUp) € s (resp. A(aUp) € s) and suppose s is eliminated at step 2
because H11 (resp. H'12) is not satisfied. Then 1), is inconsistent. The proof
showing that fact is the same as the proof of Claim 4(c) (resp. Claim 4(d))
in [2].
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H14

H16

H17

H19

H20

Let -K;a € s and )5 be consistent. Consider the set S_, = {~a}U{S | K;3 €
s}. We will show that S, is consistent. Suppose that S, is inconsistent.
Then, - 81 A ... A Bm = «, where §; € {8 | K8 € s} for j € {1,...,m}.
By rule Neck, we have F K;((81 A ... A Bn) = a). By axioms Kk, and
PC we have F (K;81 A ... ANK;fn) = K,a. Thus, since each K;3; € s for
j € {1,...,m} and s is maximal and consistent, we have K;a € s. This
contradicts the fact that v, is consistent. So, S, is consistent. Now, since
each set of formulas can be extended to a maximal one, we have that S_,
is contained in some maximal set ¢. Thus —a € t, and moreover, by the
definition of RX in M and the definition of S-, we have that sRX¢. Thus,
s satisfies H14, and it is not eliminated by step (H14) of the decidability
algorithm.

Suppose that 15 is consistent and s is eliminated at step (H16) of the decid-
ability algorithm. Then, we have that stKt, K;a € s and =K;a € t. Thus,
since s and ¢t are maximal and propositionally consistent, by Claim 4 we have
that -K;K;« € s. By axiom 4k, and Claim 5 we have that K;a = K;K;a € s.
So, since K;a € s we have that K;K;a € s. So s is inconsistent. Therefore s
cannot be eliminated at step (H16) of the decidability algorithm.

Suppose that s is consistent and it is eliminated at step (f) of the decidability
algorithm. Thus, we have that sREXt, sRKu, a € t, and K;—a € u. So, since
sRKt, a € t, s and t are maximal and propositionally consistent, by Claim 4
we have that —K;—a € s. Since s is maximal and consistent, by axiom 5g;
and Claim 5, we have that —K;—~a = K;—K;—«a € s. Therefore, we have that
K;-K;—=a € s. Thus, since sRXu, we have that -K;—~a € u. But this is a
contradictions given that K;—a € u an u is propositionally consistent. So s is
inconsistent. Therefore s cannot be eliminated at step (f) of the decidability
algorithm.

Let =0;a € s and 9 be consistent. Consider the set S_, = {~a}U{f | 0,8 €
s}. We will show that S, is consistent. Suppose that S-, is inconsistent.
Then, F S1 A...A By = «, where 3; € {#] O;6 € s} for j € {1,...,m}. By
rule Neco, we have - O;((B1 A ... A Bp) = ). By axioms Ko, and PC we
have F (0;81 A ... AO;fn) = Oja. Since each O;8; € s for j € {1,...,m}
and s is maximal and consistent, we have Q;a € s. This contradicts the fact
that 1, is consistent. So, S—, is consistent. Now, since each set of formulas
can be extended to a maximal one, we have that S_, is contained in some
maximal set ¢. Thus —a € ¢, and moreover, by the definition of R? in M
and the definition of S-, we have that sR{t. Thus, s satisfies H19, and it
is not eliminated by step (H19) of the decidability algorithm.

Suppose that 1, is consistent and s is eliminated at step (g) of the decidabil-
ity algorithm. Then, we have that sR’t, O;a € s and =O;a € t. Thus, since
s and t are maximal and propositionally consistent, by Claim 4 we have that
-0;0;a € s. By axiom 40, and Claim 5 we have that O;a = 0;0;a € s.
So, since O;a € s we have that O;0;a € s. So s is inconsistent. Therefore s
cannot be eliminated at step (H20) of the decidability algorithm.
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H21 If 45 is consistent, s cannot be eliminated at step (H21) of the decidability
algorithm. The proof can be done similarly to the one in (H17) by using
axiom 55 7.

H23 If 1), is consistent, s cannot be eliminated at step (H24) of the decidability
algorithm. The proof can be done similarly to the one in (H20) by using
axiom 4123-.

H24 If 1) is consistent, s cannot be eliminated at step (H25) of the decidability
algorithm. The proof can be done similarly to the one in (H17) by using
axiom 51/33 .

|

We have now shown that only states s with s inconsistent are eliminated.
This ends the completeness proof. |

6 Conclusion

We have given a complete axiomatisation of deontic interpreted systems on a
language that includes full CTL as well as the the K;, O; and K] modalities.
Thereby, we have solved the problem left open in [6]. Further, we have shown
that the language considered here has the finite model property, so it is decidable.

The K modality can be straightforwardly extended to KX [6] representing
knowledge of ¢ under the assumption of correctness of all agents in X. We believe
that the technique of this paper can be extended to K;X without difficulty. For
clarity this is not presented in this paper.
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