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Abstract. We present a methodology for verifying epistemic and reakttem-
poral properties of multi-agent systems. We introduce &erjmeted systems se-
mantics based on diagonal timed automata and use a reatetinperal epistemic
language to describe properties of multi-agent systemsd&Velop a bounded
model checking algorithm for this setting and present expental results for a
real-time version of the alternating bit-transmissionkpeon obtained by means
of a preliminary implementation of the technique.

1 Introduction

Reasoning about knowledge has always been a core concefreindAn multi-agent
systems. This is no surprise given that knowledge is a keyeqarto model intelligent,
rational activities, human or artificial. A plethora of foatisms have been proposed and
refined over the years, many of them based on logic. One of t® widely studied is
based on variants of modal logics and is commonly referrestepistemic logic [10].
Rather than providing a computational engine for artifieigénts’ reasoning, epistemic
logic, at least in this line, is seen as a specification laggtdiar modelling and reasoning
about systems, much in common with formal methods in conmsgience.

Specification languages are most useful when they can bigedegiutomatically. In
this dfort both theorem proving and model checking techniques aal$ thave been
made available for epistemic logic. In particular, modetcking techniques based on
BDD [18, 20], bounded model checking [16], unbounded modtieic&ing [11] have
been developed and their implementation either publiclgaged [18,12] or made
available via a web-interface [15].

Given the above, one may be forgiven for thinking that veatiien via model check-
ing of temporal epistemic logic has now become of age; howavenany respects the
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area is still lacking support for many essential functidied. One of these ieal-time
While the formalisms above deal with discrete sequence efitsy it is often of both
theoretical and practical interest to refer to a temporatieiéhat assumes a dense se-
guence of events and use operators able to represent dersarétintervals. The only
work in this line we are aware of is [21], where a bounded matietking algorithm for
TECTLK was suggested. In this paper we aim to extend two keigdtions of that work
in that: 1) we assume a computationally more expressiverlyidg semantical model
(diagonal timed automata), 2) we report on an in-house implgation of this tech-
nique and discuss experimental results. Further, to exéntpé use of the techniques
described in the paper we present a real-time version ofltemating bit transmission
problem — a key requirement of this example is the expregsiveer of a semantics
based on diagonal timed automata as the one presented here.

The rest of the paper is organised as follows. In Section2neggnt real-time inter-
preted systems, a semantics for knowledge and real-tinsedoan diagonal timed au-
tomata. In Section 3 we present syntax and semantics for TECfhe logic for which
the verification method is defined. In Section 4 we define a ledmodel checking al-
gorithm for the logic; given the state-spaces in questierirdinite the method involves
a tailored discretisation process. Finally we test thesbrigues on a novel real-time
variant of the alternating bit protocol.

2 Diagonal real-time interpreted systems

In [21] a semantics for real-time and knowledge based ondiagenal timed automata
was proposed. Automata are given as the finer grained sersatti which real-time
interpreted systems are defined. In that framework the doljkaconditions that can be
used are of the forrt ~ ¢, wherex s a clock,c a constant and an equalityinequality
relation. While this is appropriate for some scenariose(like “railroad crossing sys-
tem”), it is known that in others more expressive tests ageired. Crucially, we may
need taccompare two clocks of the system as an enabling conditica fi@nsition Aim

of this paper is to analyse this setting for the case of riea-tind epistemic properties
by means of diagonal automata.

Of course from a theoretical point of view, every diagonadgd automaton can be
transformed into non-diagonal timed automaton [3], butthesformation sfiers from
an exponential blow up in the size of the automaton’s statesever the approach pre-
sented here is known to generate considerable complicdtidhe verification method-
ology [5] and results in a loss of completeness in the resyliounded model checking
technique [14].

To define diagonal real-time interpreted systems we firsaltebe definitions of
diagonal timed automata and their composition. We referl] for discussion and
more detalils.

We assume a finite seX of real variables, callectlocks and for x, y € X,
~€ (<, < = > >},ce N,where N= {0,1,...} is a set of natural numbers, we
define a set o€lock constraintover X, denoted byC(X), by means of the following
grammar:

= true| X~cC|X—y~C|ccAcc



A clock valuationv is a total function fromX into the set of non-negative real
numbers R; B denotes the set of all the clock valuations. Eoe C(X), [¢c]] denotes
the set of all the clock valuations that satisfy The clock valuation that assigns the
value 0 to all clocks is denoted bY. Forv € R* ands € R, v + 6 is the clock valuation
that assigns the valu€x) + 6 to each clock x. For e R* andY C X, ¢[Y] denotes the
clock valuation ofX that assigns the value 0 to each clockiand leaves the values of
the other clocks unchanged.

Definition 1 (Diagonal timed automaton).Let £V be a set of propositional vari-
ables. Adiagonal timed automatas a tupleA = (Z,L,19 X, 7,R V), whereX is a
nonempty finite set of actions, L is a nonempty finite set atimas, P € L is an initial
location,V : L~ 27V is a function assigning to each location a set of atomic propo
sitions true in that location, X is a finite set of clocls; L — C(X) is a state invariant
function, and RC L x X' x C(X) x 2X x L is a transition relation.

An element|, o, ¢, Y, ") € Rrepresents a transition from locatibto locationl’
labelled with an actiomr. The invariant condition states that the automaton is abbw
to remain in location only as long as the constraifi{l) is satisfied. The guard has
to be satisfied to enable the transition. The transitiontsealéclocks in the seY to the
value O.

As usual, the semantics of diagonal timed automata is defipegsociatinglense
modelgo them.

Definition 2 (Dense model)Let A = (Z,L,1° X, 7,R V) be a diagonal timed au-
tomaton, andC(A) € C(X) a set of all the clock constrains occurring in any enabling
condition used in the transition relation R or in a state inaat of A. A dense model
for Ais atupleG(A) = CUR, Q, %, —, V), whereX’UR is a set of labels, G Lx R*

is a set of states,%= (1°,:°) is an initial state,V : Q— 2"V is a valuation function
such thatV((l,v)) = V(I), and— € Qx (2 UIR) x Q is a timgaction transition relation
defined by:

— Time transition:(l, v) LA (Lv+0)if(vO<§ <8 v+ €lZ(ND]
— Action transition:(l,u) > (I’,v") iff (Aecc € C(A)@AY < X) such that’ = v[Y],
(I,o,cee, Y, 1)) e R, v e [ec],andv” € [Z(1")].

In this paper we take diagonal timed automata to provide dlesit level, fine-
grained description for the agents; the composition ofdéhifines a multi-agent sys-
tems. So the computations of a multi-agent system are sithplyraces generated by
the executions of a network of diagonal timed automata tbatrounicate through
shared actions. We model this communication via the stahdation of the parallel
composition [19], as defined below.

Consider a network ofn diagonal timed automat#; = (2, Lj, Iio, Xi, Ii, Ri, Vi),
fori =1,...,m suchthat; nL; =0foralli,j e {1,...,m}andi # j, and denote
by X(0) = {1 < i < m| o € %} the set of indexes of the automata performing
action 0. The parallel compositionof m diagonal timed automatd; is a diagonal
timed automatomAd = (2, L,1° X, 7,R V), whereX = U7, %, L = [I0, L, 1° =
(1919, X = U X, Z((1s - 1m) = AR Zi(h), V(1. - -5 1m) = UM, Vi),



andatransition ((,...,lm),o, ¢, Y, (17, ..., 11)) € Riff (Vi € 2(0)) (li, 0, ¢, Vi, If) € R,
¢ = Nies(o) ¢6i, Y = Uies(y Yo and ¢ € {1,....mp\ 2(0) I = 1.

Observe that, given the above, transitions in which actéveaot shared are inter-
leaved, whereas the transitions caused by shared acticytachronised.

To give a definition of real-time interpreted systems thaipgrts clock constraints
of the formx — y ~ ¢, we first define the notion afleak region equivalend@2].

Definition 3 (Weak Region Equivalence) Assume a set of clocks X, and for any t
IR let (t) denote the fractional (respectively integral) part of tgpectively|t]). The
weak region equivalends a relation=C R* x R* defined as follows. For two clock
valuations u and in R*, u = v iff all the following conditions hold:

(E1) Lu(x)] = Lv(x)], for all x € X.
(E2.) (u(x)y = 0iff (wv(X)) = O, forall x € X.
(E3.) (u(X)) < u(m)) iff (w(x)) < <v(y)), forall x, y € X.

We will useZ, Z’, and so on to denote the equivalence classes induced bylatieme
=, As customary, we call these classes zones, and the settbéabnes we denote by
Z(|X).

Definition 4 (Diagonal real-time interpreted system).Consider m diagonal timed
automata and their parallel composition.dlagonal real-time interpreted systegor a
mode) is atuple M= (X UR, Q,¢% —,~1,...,~m, V) such that UR, Q, ¢, -, and
V are defined as in Definition 2, and for each agentjiic Q x Q is a relation defined
by: (I,v) ~i (I",v) iff li((1,v)) = i((I',v")) andv = v/, where | : Q+ L; is a function
returning the location of agent i from a global state.

As in [10] we consider two (global) states to be epistemyjcaltlistinguishable for
agenti if its local state (i.e., its location) is the same in the twobgl states. Addi-
tionally we assume the agents’ clocks to be globally visiblehough only privately
resettable. For two states to be indistinguishable we éurtissume the clocks of the
states belong to the same zone. This is not dissimilar frdh [2

3 TECTLK

In this section we introduce the logic TECTLK(Timed ExidiahCTL with Knowl-
edge). While the logic is the same as the one described in §atisfaction is here
defined on diagonal real-time interpreted systems.

Syntax.Let PV be a set of propositional variables containing the synthofg a set
of magents, andlan interval in R with integer bounds of the form '], [n, n’), (n, n'],
(n,n"), (n, ), and , c0), forn,n” € N. For p € PV, i € AG, andl" C AG, theset of
TECTLK formulaeis defined by the following grammar:

e=pl-plereleVelE@Ue) | E@Re)|Kio|Drel CrelEre

The other temporal modalities are defined as usualt’ =T, EGg e E(LR¢),
ERe e E(TU¢). Moreovera = e —a V.



SemanticsLetM = (CUR, Q,o°, =, ~1,..., ~m, ‘T/) be amodel We define ajp-run

p as a sequence of statep: -3 do + 6o -3 01 2 g1+ 61 3 G 3 ..., whereq € Q,

oj € 2 ands; € R, for eachi € N, and byfz(qo) we denote the set of all such-runs.
We say that a statg € Q is reachable if there is g°—run p such that there exists a
state ino equal tog. Finally, in order to give a semantics to TECTLK, we introdube
notation of adense pathr, corresponding to a rup. A dense patlr, corresponding to

p is a mapping from R to a set of stat@ssuch thatr,(r) = ¢ + 6 forr = 2}:0(5,- +0
withi € IN and 0 < § < ¢;. Moreover, we define the following epistemic relations:
~E= Uier ~i, and~%= (~E)* (the transitive closure ofE), and~P= M., ~i, where

I cAG.

Definition 5. Let M be a model such that the set Q contains reachable statlys o
M, g E a denotes thatr is true at state g in M. The satisfaction relatignis defined
inductively as follows:

M.gEp iff peV(@), MdkaVvB iff dEaorqkp,

M,gE-p if p¢V(Q), Mgk aAB iff qF aandqkE B,

M, g E(@UiB) iff (Fp € fa(@))Ar € NIM, 7,(r) E gand(Yr" < r)M, m,(r') k= al,

M. q E E(@RiB) iff (Fp € fa(@)(¥r € DIM, m,(r) E B or (Ar" <M, m, (') [ al,

M.gEKie (A9 €Q)(a~i o and M [ a),

M,gEDre  iff(30 € Q(@~p q and M F a),

M.akEEre  if(3q € Q(@~; g and Mq E @),

M,qECre  iff(3q € Q)(q~F o and Mq E ).

We say a TECTLK formula is valid in M (denoted byM E ¢) iff M, q° k ¢, i.e.,
@ is true at the initial state of the mod®l. In the rest of the paper we are concerned
with devising and implementing an automatic model checlalggrithm for checking
whether a formula is valid in a given modeM.

4 Bounded Model Checking for TECTLK

Bounded model checking (BMC) is a popular model checkingrigqpue for the verifi-
cation of reactive systems [4, 7]. On discrete-time, it isparted by nuSMV [6] and in
its epistemic extension by Verics [15]. Verifying whethesystenS satisfies a property
P amounts to checkinils = ¢p, WhereMs is a model capturin® and¢p is a prop-
erty representin@. In BMC this check is turned into the propositional satisfibtest
(ultimately performed by ad-hoc highlyfficient SAT solvers) of Ms] A [¢p], where
[Ms], [¢p] are appropriate Boolean formulae representing a trudcptetion of the
modelMg and the modal formulap. We refer to [16] for a description of the technique
for the case of discrete-time epistemic properties.

To define a BMC method for diagonal real-time interpretedesys, we adapt the
BMC technique for TECTLK and non-diagonal automata pre=gim [21]. We first
translate the BMC problem from TECTLK into the BMC problent £CTLK,, and
then we define BMC for ECTLK We do not report full details and proofs in this
abstract. These can be found in [14].



4.1 Translation from TECTLK to ECTLK ,

When dealing with real-time one can use DBMs [8], CDDs [2Jadliscretisation tech-
nique [1,17,22] to represent zones. In the BMC settings fanbhing real-time logics
it is customary to discretise zones. In particular, hereake the discretisation scheme
introduced in [22], which uses the following set of discset clock’s values and labels
as primitives. Lef) be a set of rational numbers, abgy = {d € Q | (Ake N)d-2M =

k} andEy, = {e€ Q | (Fk € N) e- 2™ = kande > 0O} for everyme IN. Then,

D = Um0 Dm defines the set of discretised clock’s values, &nd | J;,_, En defines
the set of labels. We use this technique to define a discdets®lel, which is crucial
for the translation of the model checking problem for TECTid<the model checking
problem for ECTLK, as described below.

Definition 6 (Discretised model).Let A = (X, L,1° X, 7, R V) be a diagonal timed
automaton resulting from the parallel composition of m diagl timed automata (agents).
Adiscretised moddbr A is atuple My = (ZUE, S, &, =g, ~g, el ~21, V4), where S=

Lx DX is a set of states?s= (1%,:°) is the initial state~% € Sx S is an relation defined
by (1, v) ~id ", v") iff Li((1,v)) = Li((I",v")) andv = v/, for each agent iVy: S 2PV

is a valuation function defined @d((l,u)) = V(),and—»¢C SX(ZUE)xS isa
timeaction transition relation defined by:

— Time transition: for any € E, (I,v) id (Lv+96)if(,v) LA (I, v+ 6) in G(A) and
(V&' <6)v+d =vorv+d =v+56,

— Action transition: for anyr € X, (I,0) 5 (", 0") iff (36)(Av”) such that(l, v) id
(I,v") and(l,v”) 5 (I",v') in G(A).

The general idea of the translation is the same as the oneljn gt obviously
given the diferent capabilities there areffirences. In particular, the discretised model
used here is infinite; so while the procedure in [21] is soumtl@mplete, the one here
is only sound.

Specifically, given a multi-agent system modelled by a netvad diagonal timed
automataA;, = (i, L, I?, Xi, Ii, R, V) and a TECTLK formulap, we extend each
automatonA; by a new clocky, an actiorv,, and transitions to obtain a new automaton
A = (5 U{oy ) Li 1% X, I, R, Vi) with X = X U{y} andR = RU{(l, oy, true, {y}, 1) |
| € L}. The clocky corresponds to all the timing intervals appearingjrand special
transitions are used to reset the new clock. We then cortshediscretised model for
the parallel composition aft’, denoted byA,, and augment its valuation function with
the set of propositional variables containing a new prapmsp,., for every intervall
appearing inp, and a new propositiop, representing that a stagds boundary, i.e., at
least one clock from the original automata has to have tratidnaal part of its valuation
equalto zeroirs. Finally, we translate the TECTLK formuiainto an ECTLK, formula
¥ = cr(yp) such that model checking gfover the model for the parallel composition of
Aj can be reduced to the model checkingafver the discretised model . Before

! Note though that because of the complexity in the SAT trdioslaand satisfiability checks,
BMC is never complete in practice when the system i&aently complex, so this is not a
real concern.



we define the final part of the above construction, we will finstoduce the syntax and
semantics for ECTLK

Letp € PV = PV U {pp} U{pse | | is an interval ing}. The set of ECTLK
formulae is defined by the following grammar:

cx:zp|ﬂplaAalaValEy(aUa)IEy(aRa)IKiQIBrcxIEﬂXIE—a

The satisfaction relation for ECTLKis defined with respect to a discretised model
Mg. Namely, assume thatis a stateg, 8 formulae of ECTLK,, — 5 denotes the part
of —q4, where transitions are labelled with elements>b E, and —, denotes the
transitions that reset the clogkNext, define gathx in My to be a sequencey, sy, .. .)
of states such tha — 4 5.1 for eachi € N, and denote the set of all the paths starting
atsin My by 71(s). Then, the satisfaction relati¢nfor ECTLK, is defined as follows:

My, sk P iff peVu(s),

Mg, sE —p iff p ¢ Va(9),

Mg, SE a VvV Biff Mg, SE a or My, SE B,

Mg, SE a ABiff Mg, SE o and Mg, SE B,

Ma, sk E,(aUp) iff (IS € S)(s —, S and @r € [1(s))(Im > 0)

[Mg, 7(m) g and ¢ j < m) Mg, 7(j) E ),

Mg, sk E,(aRg) iff (3’ € S)(s—, S and @r € I1(S))(Ym > 0)

[Mg, (M) E B or (3] < m) My, 7(j) [ al),

Mg, sk Kia iff (3r € 71(”))(3j = 0)(Mg, 7(j) E @ ands ~; x(j)),

Mg, s Draiff (3 € I1(s%)(3] = 0)(My, 7(j) E @ ands ~P =(j)),

Mg, Sk Era iff (Ar € 11(s?)(3j = 0)(Mg, 7(j) k= @ ands ~E 7(j)),

Mg, sE Cra iff (3r € II(s”)(3] = 0)(Mg, 7(j) E @ ands ~< z(j)).

Definition 7 (Validity). An ECTLK, formula¢ is valid in My (denoted M E ¢) iff
Mg, £ k= ¢, i.e.,¢ is true at the initial state of M

We can now translate inductively a TECTLK formuénto the ECTLK, formula
cr(p); note that for the propositional and epistemic part of EGJlthe translation is
defined as the corresponding translation in [16].

e cr(p) = pfor pe PV,
cr(-p) = —cr(p) for p € PV’,
cr(a v B) = cr(a) Vv cr(B),
cr(a A B) = cr(a) A cr(B),
cr(E@Uip)) = E,(cr@)U(cr(B) A pyer A (Po V Cr(@)))),
cr(E@R,B)) = E,(cr(@)R(=pyei; v (Cr(8) A (o V Cr(@)))))-
e cr(Kia) = Kicr(a),
e cr(Dra) = Drer(a),
e cr(Era) = Ercr(a),
e cr(Cra) = Crcr(a),

The following lemma shows that validity of the TECTLK forna over the model
for A is equivalent to the validity of cg) over the discretised model fofl, with the
extended valuation function.



Lemmal ([14]).Lety be aTECTLK formula, M a model, and Yithe discretised

version of M. Further, le(l,v) | X e (I,v | X). For any state(l,v) € Q there exists

(I,v") € S such thafl, v")|X = (I,v) and M (I, v) E ¢ iff Mg, (I,v) E cr(e).

4.2 ECTLK, Bounded Model Checking

All the known BMC techniques are based on so cattebdounded semantics. In particu-
lar, BMC for ECTLK, is based on thk-bounded semantics for ECTLKthe definition
of which we present below. _

We start with some auxiliary notions. Ldy = (X UE, S, s, 54, ~,...,~3, Va)
be a discretised model, akde N, a bound. As before, we denote by the part of
—d, Where transitions are labelled with elementsod E, and by—, the transitions
that reset the cloclk. A k—pathz in My is a finite sequence of stateg,(. .., s) such
thats — 4 s.1 for each O< i < k, and/Zi(s) denotes the set of all tHepaths starting
atsin Mg. A k-modeffor Mg is a structuréM = (YU E, S, S, Py, Py, ~9, ..., ~3, Vy),
wherePy = Jgs 7Ik(s) andP, = {(s,S) | s—, s ands, s € S}.

The satisfaction of the temporal operatgiREon ak-path in the bounded case de-
pends on whether or natrepresents a loop. To indicate k-paths that can simulafesloo
we define a functiofoop : Py — 2N by loop(r) = {i | 0 < i < k andza(kK) — 4 n(i)}.

We can now define a bounded semantics for ECJtdfmulae. Lek € N, My be a
discretised modeMy its k-model,«, 8 ECTLK, formulae, and leMy, s = o denote that
«a is true at the stateof M. Then, the (bounded) satisfaction relatfefior ECTLK,, is
defined as follows:

M, SE p iff pe V4(S), My, SE aV Biff My, SE @ or My, SE 8,

My, SE —piff p 2 Va(s), Mk, SE @ ABIff My, SE @ andMy, sk 8,

My, sk Kia iff (An € I (s?))(30 < j < K)(Mk, 7(j) E @ ands ~; n(j)),

M, sEDra  iff (3r € IT(s”))(F0 < j < K(My, 7(j) E @ ands ~2 x(j)),

My, Sk Era iff (3 € I1(s))(30 < j < K)(Mk, 7(j) E @ ands ~E =(j)),

My, sk Cra iff (3 € I1(s))(30 < j < K)(Mk, 7(j) E @ ands ~& =(j)),

Mk, Sk E,(eUp) iff (3 € S)((s, §) € P, and @r € I1(s))(F0 < j < K)

(M, 7(j) E pand (0 <i < j) My, x(i) k= @)),
Mk, Sk E,(@Rg) iff (3s' € S)((s, S) € P, and @r € II(s))[(F0 < j < K)
(M, 7(j) E eand (/0 <i < j)My, 7(i) = B) or
(VO < j < K(Mg, 7(j) E B andloop(r) # 0)]).
Note that for the propositional and epistemic part of ECT|te (bounded) satisfac-
tion relation}= is defined as the corresponding relation in [21].

Definition 8 (Validity). An ECTLK, formula ¢ is valid in a k-modelMy (denoted
Mg Ex @) iff Mk, L = ¢, i.e.,¢ is true at the initial state of the k-modelM

We can now describe how the model checking problbh | ¢) can be reduced to
the bounded model checking probleM{ Ex ¢).

Theorem 1. Letke N,, Mg be a discretised model, Nits k-model, angp anECTLK,
formula. For any sin M, My, s ¢ implies My, Sk ¢.



Proof. By straightforward induction on the length of

Note that both the discretised model and its k-model areitefiso, to perform
bounded model checking we have to consider a finite submotlalk-model such that
an ECTLK, formulay holds inMy if and only if  holds in a finite submodel d¥l.

Definition 9. An ssubmodebf k-model M = (X UE, S, %, P, Py, ~4, ..., ~8, Vy) is
atuple M(s) = (X UE, S, s PP, ~,....,~, Vg suchthatRC P, S' = {re S|
(Fr e PY@EI < k(i) = rtuish, P, € P, N (S xT), ~=~8 N(S" x ) for each

ie{l....m,andV,=Vq|S.

The bounded semantics for ECT| lKiver a submodeM’(s) is defined as foMy.
Moreover, the following theorem holds.

We now introduce a definition of a functiofy that gives a bound on the number
of k-paths in the submod&ll’(s), and a functionf , that gives a bound on the number
of elements of the se®) in the submodeM’(s). It can be shown that these bound
guarantee that the validity @f in M’(s) is equivalent to the validity ofs in My (see
Theorem 2). The functiof : ECTLK, — N is defined by:

e fi(p) = fk(=p) = 0, wherep € PV’,

o fi(a v B) = maxf(), i(B)},

o fila AB) = fu(a) + f(B),

o fi(Ey)(eUp)) = k- (@) + f(B) + 1,

o fk(Ey(aRp)) = (k+1)- f(B) + f(e) + 1,

fu(Ya) = fi(e) + 1, for Y € {K;, D, Er},
f(Cra) = fu(a) + k.

The functionfy, : ECTLK, — N is defined by:
o fi,(p) = fiy,(—p) = 0, wherep € PV,

fiy(a v B) = maxfy,(a), fi,(B)}

fk,y(a /\:8) = fk,y(a) + fk,y(ﬂ);

ficy (Ey(@UP)) = k- fiy(@) + iy (B) + 1,

fiy (By(aRB)) = (k+ 1) - i, (B) + ficy(e) + 1,

f,(Ya) = fi,(a), for Y € {Ki,Dr, Er, Cr}.

Theorem 2 ([14]).Let My be a discretised model, agdan ECTLK, formula. If there
exist ke N, and €-submodel M(s%) of k-model M with P, < fi() and|Py | < fi,(¥)

such that M(s”) kEx v, then My k= .

Given the above, note that both functiofisand f,, give the upper bound on the
number of paths if?, and number of transitions iﬁ;(’y, respectively.

Having defined the bounded semantics, we can easily trartbiaimodel checking
problem for ECTLK, to the problem of satisfiability of a Boolean formula that edes
all the discretised model for an ECTl,Kormula under consideration and an appropri-
ate fragments of the considered discretised models. Thelaton can be done in a
similar way as the one in [21] and it is presented in the nectice.



4.3 Translation to Boolean formulae

The main idea of BMC for ECTLKconsists in translating the model checking problem
for ECTLK, into the satisfiability problem of a propositional formulamely, given
an ECTLK, formulay, a discretised modé¥lq, and a boundk € N, this proposition

formula, denoted byNlq, ¥/], is of the form: ﬂ\/lg‘so]k A [¥]wm,. The first conjunct rep-
resents possible submodelsMf such that they consist df(¥) k—paths ofMy and at
least one of these submodels issdrsubmodel. The second conjunct encodes a number
of constraints that must hold on these submodelgftr be satisfied. Once this trans-
lation is defined, checking satisfiability of an ECT}.Formula can be done by means
of a SAT-checker. In order to defin®ly, ¥k, we proceed as follows.

Let us assume that each statef submodels of k-modeMy for the discretised
model My is encoded by a bit-vector whose length, $aylepends on the number of
locations, the number of clocks, and the bolel N... So, each such a stasean be
represented by a vector= (w[1], ..., w[b]) (calledglobal state variabl where each
wli], fori = 1,...,b, is a propositional variable (called state variable). Setihat we
distinguish between statesencoded as sequences of Os and 1s and their representa-
tions in terms of propositional variablegi]. A finite sequenceuy, . .., wy) of global
state variables is calledsymbolic k-pathin general, we need to consider not just one
but a number of symboli&-paths. This number depends on the formulander in-
vestigation, and it is returned as the valig@)) of the functionfy. The j-th symbolic
k-path is denoted byy j, . . ., wk j, wherew; j are global state variables ford j < fi(y),

0 < i < k. For two global state variableg w’, we define the following propositional
formulae:

e |s(w) is a formula ovew, which is true for a valuatios,, of wiff s, = s.

p(w) is a formula ovew, which is true for a valuatios, of wiff p € Vy(s,), where
pePV,

Hi(w, w’) is a formula over two global state variables= (I, v), w’ = (I, v"), which
is true for valuationss of [, s, of U, s, of v, ands, of v iff li(s) = li(sy) and
s, = Sy (encodes equality of local states of aggnt

R(w,w’) is a formula ovew, w’, which is true for two valuations, of w ands,, of
w' iff s, -4 Sy (encodes the non-resetting transition relatioiviy,

R,(w,w’) is a formula ovew, w’, which is true for two valuations, of w ands,,

ofw' iff s, —, sy (encodes the transitions resetting the clggk

The propositional formulaNly, ¥« is defined over state variables, wnm, for
0 <mc< kandl < n < fi(y). We start & with a definition of its first conjunct, i.e.,

[Mﬁ’s‘)]k, which constrains thé () symbolick-paths to be vali&-path ofMy. Namely,

P fi(@) k-1
M5 Tki= to(woo) A /\ /\ Rwmas wian)
n=1 m=0
The second conjunct, i.e., the formuld fs, = [¢]%, is inductively defined as follows:
[Pl = p(wmn), [o Aﬁ]lrm”] = [ ™" A [ﬂ][g““],
[-PI™ = =p(wma), [a v A o= [l v B,
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[E,(@UB)I™ := \/ “UR, (wmn, woj) A v, o[BI A A2 ]y,
[E,(eRB)II™ = fk“”(Ry(wmn, wo,) A (V. o([a]“ TA AL o[ﬂ]“ D)
v /\] 0[,3] A \/l o R(wii, wni))),

Kol " = VE (o) A V([ A Hiwm wi)),
Brali = V0 woi) A VEoTl™ A Arer Hi(wmp i),

Erale = V0o A Vol A Vi Hiwma wii))),

[Crali™ = [V, Er) o™,

Lemma 2. Let My be discretised model, Mts k-model, andy an ECTLK, formula.
For each state s of ly] the following hoIds[M”’ *lk A [¢]wm, is satisfiable ff there is a
submodel M(s) of M with |P;| < fi(y) and|P;| < fi, () such that M(s), s ¢.

Proof. (=>) Let [MZ‘S]k A [y]wm, be satisfiable. By the definition of the translation, the
propositional formulay] v, encodes all the sets &fpaths of sizefy(y) which satisfy
the formulay and all the sets of transitions resetting the clgaK size fi , () . By the
definition of the unfolding of the transition relation, theopositional formula M¥-5]
encodesfy(y) symbolick-paths to be valik—paths of M. Hence, there is a set of
k—paths inM, which satisfies the formula of size smaller or equal t&(y), and there
is a set of transitions resetting the claghf size fi , (). Thus, we conclude that there
is @ submodeM’(s) of M with [P| < fk(y) and|P)| < fq, () such thatM’(s), s y.

(<=) The proof is by |nduct|on on the Iength of The lemma follows directly for
the propositional variables and their negations. Congluefollowing cases:

e Fory = a VB, a ApB, orthe temporal operators the proofis like in [16].

e Lety = Kia. If M'(9),s E Kja with [P < fiu(Kja) and|P)| < f,(Ki@), then
by the definition of bounded semantics we have that therekigpathz such that
7(0) = Land @j < k) s ~ 7(j)) andM’(s),7(j)  a. Hence, by induction we
obtain that for somg < k the propositional formulad]>% A [M**!)] is satisfi-
able. Letii = fx(a) + 1 be the index of a new symbolie-path which satisfies the
formulalo(wgjii). Therefore, by the construction above, it follows that pheposi-
tional formulal o(woji) A \/lj(:o([&]{(""] A Hi(wo,o0, wj,n)) A [MKi®:S], is satisfiable.
Therefore, the following propositional formula is satisfie:

k p—
\/ ('gO(wo,i) AN/ ([P A Hi(woo, wj,i))/\[MK'”’S]k).
<0

1<i<fi(Kia)

Hence, by the definition of the translation of an ECTi§rmula, the above for-

mula is equal to the propositional formulé ] A [MKi1#9];.
e The other proofs are similar.

Theorem 3. Let My be a discretised model, agdan ECTLK, formula. If there exists
k € N, such thafy]m, A [Mg’so]k is satisfiable, then W= v .

Proof. Follows from Theorem 2 and Lemma 2.
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5 Areal-time alternating bit transmission problem

To exemplify the theoretical concepts of the previous sestiwve analyse a real-time
version of one of the variants of the alternating bit prototw the original formula-
tion [10] two agents attempt to transmit information overameliable communication
channel, which they have access to. SenSlastarts sending the bit to receiv& R

is initially silent but as soon as it receives the bit frénit starts sending acknowl-
edgements back t8. As soon asS receives one of these acknowledgements, it stops
sending the bit, the system is reset and a new bit is sent.ldhédge conditions it can
be checked automatically [18] that whenereceives an acknowledgement it then
knows (in the formal epistemic sense) tlkaknows the value of the bit (expressed by
the formulaAG(recack = KgsKgrecbit)). Consider now one of the variants analysed in
[13] whereR may (erroneously) send acknowledgements without haviogived the
bit first. Intuitively in this case, the property above wilh fonger hold; indeed this can
also be checked automatically [18].

We extend the scenario above by adding the clock expressh@ssime that each
agent has two possibly faulty communication channels toosadrom to send bits
or acknowledgements. In order to optimise the performaricdhetransmission both
agents concurrently run a channel monitoring service inbiiekground. To this aim
they regularly send each other control bits and keep trackefime elapsed since the
receipt of a control bit from the other party. The agents stednformation bit on the
channel that has demonstrated to be in the better workinditon, i.e., the one that
has recently been able to transmit the control bit from tiepparty.

To formalise the above we use a network of diagonal timedrata consisting
of an automaton fosS (see Figure 1) and an automaton #®r(see Figure 2)S can
be in 11 diferent local statesDecide (“S selects which bit will be sent”), @tr-bit
and 1letr-bit (*S sends a control bit and listens ®s control bit”), O-selectand 1-
select(“S selects the channel to use to send bit 0 (1), or he sends atbitt), O-
channell and Oehannel2 (“S sends bit 0 through channel 1 (2)"),channell and
1-channel2, (*S sends bit 1 through channel 1 (2)")@&kand lack(“S has received
an acknowledgement’$ can perform independently the following actionshid-1-bit
("bit 0 (1) is sent”),schsi-fail, schs2-fail (“a control bit is sent to a faulty channel 1
(2)"), s-sendfail (“bit 0 or 1 is sent to a faulty channelothirny, andnextbit whose
interpretation is obvious. The remaining actions are symgised withR.

R can be in 10 dterent local statesvait (*R is listening to the channels™itr-
bit (“R sends a control bit, or he sends a faulty acknowledgemerti"gndrl (*R
has received bit 0 (1)”), Gelectand 1select(“R selects the channel for the ack”), O-
channell, Ochannel2, 1channell and lehannel2, (“R sends an ack on channel 1
(2)."). R can perform independently the following actiossbr-1-fail, scbr-2-fail (“a
control bit is sent to a faulty channel 1 (2)ssendfail (“an ack is sent to a faulty
channel”). We refer to Figures 1, 2 for a pictorial represéon.

Further,S uses 3 clocksx, X1, X2,), andR three more g, y1, y2). Control bits are
sent at regular intervalg; for channel 1 and, for channel 2; the clockg andy are
used for this purpose. Clocks andy; measure the time since a control bit has been
received;x; gets reset whes receives a control bit on channelikewise fory; for R.
When sending bits (either information bits of acknowledgets) each agent evaluates

12



1-bit

Fig. 1. An automaton for Sender - the part for bit 0. The part for bis symmetric

the following two clock expressiong — z < (t1 + tp) andz — z < (1 + tp) for

z € {X,y}. When the former expression is true, channel 1 is chosenn\lne latter
is true, channel 2 is chosen. Intuitively the above guaemteat the channel that has
been demonstrated to be alive more recently gets selectidg the threshold; + t,
enables an agent not to switch channel unnecessarily dteimgtance simply because
they are desynchronised). Note that ease with which thefuselock diterence allows
us to implement real-time channel selection without hadrgrge state space for the
automata in question.

The automata run in parallel and synchronise through theratschsl, schs2,
schr1, andscbr-2 (“send a control bit via channel 1 (2)”), end and 1send(“send
bit 0 (1)"), 0-sendack and 1sendack(* send an acknowledgementto bit 0 (1)").

Given the above, one can construct the automedignp that describes the whole
alternating bit protocol running in real time as well as teéaf traces generated by it.
In our approach this is done automatically by the boundedehcltkecking implemen-
tation.

Now, assume the following set of propositional variab#d’ = {recack bit0}, and
the following usual interpretation for the proposition wednles inPV: Vs(0-channel
1) = Vs(0-channel2) = V¢(0-acK = bit0, andVs(0-ack) = Vs(1-ack = recack

The typical specification properties that one may be intetes checking for the
example above are the following: 1) “forever in the futurenfrt; if an acknowledge-
ment has been received Byand the value of the bit is 0, th&tknows the bit is equal
to 0” and 2) “forever in the future frorty if an acknowledgement has been received by
S and the value of the bit is 0, thehiknows thatrR knows the bit is equal to 0.”

By means of an implementation of the technique above we weesta check that
the properties above are not satisfied (as intuitively iscdse giverR’s possible be-
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schr-1-fail,y = t, y :=0

schs-1y; :=

schr-2,y = tp, schr-1y=t;,y:=0

scbr-1-fail
y=t,y:=0

schr-2-fail
0-send-ack O-send

schr-2y =ty :
0-send-ack

r-send-fail

schr-1y =t;,y:=0
schr-2y =t5,y:=0
schr-1y=t;,y:=0

scbr-1-fail scbr-2-fail scbr-1-fail scbr-2-fail
y=ty:=0 o0 y=ty=0 ¢ 0

Fig. 2. An automaton for Receiver - the part for bit 0. The part forbis symmetric.

haviour). More precisely, we can check that the negatiort®fproperties above are
true, i.e., the following formulae are satisfied on the mddelAgrp:

@1 = ERy, ) (recack A bit0 A Kg(-bit0)), and
@2 = ERy, oop(recack A bit0 A KsKg(—bit0)).

depth locations clocks’ valuation

0 | decide wait 0z | Ozt% | 071 | Ot | Oz1 | Ot | Oaien
1 |decide| wait 05295 | 03295 | Og205 | Og20s | Og20s | Ogzos | Ogoos
2 |0-ctr-bit wait 07008 [ 05255 1 05505 | 05500 | 05208 | 02208 | 02058
3 |o-ctr-bit|  wait 1o | Loe | 1ot | Lam | Lo | Lams | Lagm
4 |O-ctr-bit|  wait 150 | 152 | 15e | 150 | 150 | 140 | 1455
5 [O-ctr-bit|  wait | 255|255 | 2555 | 255, | 2555 | 2505 | 2aus
6 |O-ctr-bit| ctr-bit |25 | 2516 | 2510 | 25100 | 256 | 2560 | 25165
7 |o-ctr-bit| ctr-bit |22 2225125512551 255 | 225 | 2025
8 |o-ctr-bit| ctr-bit | 355 | 35165 | 35155 | 35105 | 35155 | 35165 | S5
9 |O-select] ctr-bit |3z% | 356 | 3516 | 35105 | 3515 | 3515 | 3515
10 |O-select| ctr-bit |35 | 355 | 35 | 35w | 35 | 355 | 3515
11 | O-ack [0-channell| 3z | 355 | 35 | 35 | 35 | 35w | 3gim

8192 8192
Table 1: A witness for the property.

Tables 1 and 2 illustrate error traces for the above progeriie., it shows the wit-
ness for the formulag, andy,, respectivgly, which have been generated by our imple-
mentation.

depth locations clocks’ valuation

0 | decide wait 0z15 | Oz1% | 015 | 01 | O3 | Oz | Oz
1 | decide wait 02205 | 05205 | 05205 | 0220 | 0525 | 04205 | 02°0>
2 |0-ctr-bit wait 0%’2 0—% O—% O%’g O%’g 0%’2 0—%
3 |0-ctr-bit wait 1%92 1%92 1%92 1%92 los 1%92 1%92
4 |o-ctr-bit|  wait 125|185 158 1051188155815
5 |0-ctr-bit wait 2%92 2%92 2%92 2%92 2%92 2%92 2515
6 |O-ctr-bit| ctr-bit |22 | 2006 | 25160 | 25100 | 25160 | 2516 | 21
7 |octr-bit| ctr-bit | 225|225 285 | 255 | 252 [ 205 | 250
8 [0ctr-bit|_otr-bit | 355 | 350 | 35 | i | 350 | Sawm | Snim




tion of the formulap; and the appropriate fragments of the model#tyrp as described
in [14]. The formula in question consists of 125260 varialdaed 258821 clauses; our
implementation needed 19.6 second and 18.7 MB memory taipsoitl Its satisfaction
was checked by MiniSat [9], a mainstream SAT solver; 4.0 sds@and 19.9 MB of
memory were needed to check this.

BMC MiniSat
k | variables| clauses| seq¢ MB sec| MB | satisfiablg
2 12243 28811 27| 45|<0.1| 5.1 NO
3 20771 48413 8.8| 57| <0.1] 6.2 NO
4 35589| 85115/ 24.0/ 8.0/ 0.2| 8.1 NO
5 49967| 117551 55.2| 9.8| 0.6/10.1 NO
6 66952 154829 115.7|11.9| 1.1|11.9 NO
7 86688| 197030 206.1|14.9| 2.4|14.2 NO
8| 120067278552 356.9/19.2| 12.9|20.2 NO
9| 147687 337205 587.3/23.9| 9.9(24.1 NO
10| 178628/ 401492 922.3|27.5| 20.5|28.6 NO
11| 213034 471494 1364.4| 31.4|320.0/81.8| YES

Table 3: The computation of the witness - 3 paths

For what concerns the satisfactiongf the corresponding experimental results are
presented in Table 3 and in Table 4. Table 3 refers to the Bemsuming 3 paths are
needed (this is the upper bound is given by the funcfignTable 4 summarises the
result for a search of only 1 path. The tables show the folgudata: the first column
represents the bound on the modelfdgtp; the next two show the number of variables
and clauses generated by BMC during the translatiap @fito a Boolean formula; the
next two show the time and memory needed by BMC to generatsehef clauses;
the next two columns give the time and the memory required lyi$at to check
satisfaction, and the last column shows the answer givenibjSet.

BMC MiniSat
k | variables| clauses| se¢ MB sec| MB | satisfiable
2 3570 7706 0.2| 3.2|/<0.1] 3.7 NO
3 6021| 12877/ 0.5| 3.5/ <0.1| 4.2 NO
4 10164 22320 1.3| 4.2/ <0.1| 4.7 NO
5 14213| 30551| 2.5| 4.6|<0.1| 5.2 NO
6 18997| 39934 4.8| 5.3/ <0.1| 5.8 NO
7 24564 50496/ 8.4| 6.0/ 0.1| 6.2 NO
8 33578| 70301|14.4| 7.0 0.2| 75 NO
9 41277 84625|23.6| 8.3| 0.4| 8.5 NO
10 49925/ 100281 33.7| 9.2| 0.4] 9.4 NO
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[11] 59570[ 117296 54.0[10.2] 0.9]10.3] YES |

Table 4: The computation of the witness - 1 path

For reference, all the above experiments were performedoAMD Athlon XP
1800 (1544 MHz), 768 MB main memory, running Linux with Ker2e6.15. Unfor-
tunately we are not able to compare these results to othkr &sonve are not aware of
any other implementation available that is capable of aties epistemic check for
(diagonal and non-diagonal) automata.

6 Conclusions

Model checking real-time in Al and MAS is still in its infanchn [21] a first proposal
was made for a bounded model checking algorithm for read-tpistemic properties
based on non-diagonal automata semantics. In this papeaveettied to extend that
work by allowing the expressivity of clock filerences. We have proposed a syntax, se-
mantics for the logic, as well as a bounded model checkingpotkiand showed experi-
mental results of a preliminary implementation for a reale version of the alternating
bit protocol.
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