
Bounded model checking real-time multi-agent systems
with clock differences: theory and implementation
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Abstract. We present a methodology for verifying epistemic and real-time tem-
poral properties of multi-agent systems. We introduce an interpreted systems se-
mantics based on diagonal timed automata and use a real-timetemporal epistemic
language to describe properties of multi-agent systems. Wedevelop a bounded
model checking algorithm for this setting and present experimental results for a
real-time version of the alternating bit-transmission problem obtained by means
of a preliminary implementation of the technique.

1 Introduction

Reasoning about knowledge has always been a core concern in AI and in multi-agent
systems. This is no surprise given that knowledge is a key concept to model intelligent,
rational activities, human or artificial. A plethora of formalisms have been proposed and
refined over the years, many of them based on logic. One of the most widely studied is
based on variants of modal logics and is commonly referred toas epistemic logic [10].
Rather than providing a computational engine for artificialagents’ reasoning, epistemic
logic, at least in this line, is seen as a specification language for modelling and reasoning
about systems, much in common with formal methods in computer science.

Specification languages are most useful when they can be verified automatically. In
this effort both theorem proving and model checking techniques and tools have been
made available for epistemic logic. In particular, model checking techniques based on
BDD [18, 20], bounded model checking [16], unbounded model checking [11] have
been developed and their implementation either publicly released [18, 12] or made
available via a web-interface [15].

Given the above, one may be forgiven for thinking that verification via model check-
ing of temporal epistemic logic has now become of age; however, in many respects the
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area is still lacking support for many essential functionalities. One of these isreal-time.
While the formalisms above deal with discrete sequence of events, it is often of both
theoretical and practical interest to refer to a temporal model that assumes a dense se-
quence of events and use operators able to represent dense temporal intervals. The only
work in this line we are aware of is [21], where a bounded modelchecking algorithm for
TECTLK was suggested. In this paper we aim to extend two key limitations of that work
in that: 1) we assume a computationally more expressive underlying semantical model
(diagonal timed automata), 2) we report on an in-house implementation of this tech-
nique and discuss experimental results. Further, to exemplify the use of the techniques
described in the paper we present a real-time version of the alternating bit transmission
problem — a key requirement of this example is the expressivepower of a semantics
based on diagonal timed automata as the one presented here.

The rest of the paper is organised as follows. In Section2 we present real-time inter-
preted systems, a semantics for knowledge and real-time, based on diagonal timed au-
tomata. In Section 3 we present syntax and semantics for TECTLK, the logic for which
the verification method is defined. In Section 4 we define a bounded model checking al-
gorithm for the logic; given the state-spaces in question are infinite the method involves
a tailored discretisation process. Finally we test these techniques on a novel real-time
variant of the alternating bit protocol.

2 Diagonal real-time interpreted systems

In [21] a semantics for real-time and knowledge based on non-diagonal timed automata
was proposed. Automata are given as the finer grained semantics on which real-time
interpreted systems are defined. In that framework the only clock conditions that can be
used are of the formx ∼ c, wherex is a clock,c a constant and∼ an equality/inequality
relation. While this is appropriate for some scenarios (like the “railroad crossing sys-
tem”), it is known that in others more expressive tests are required. Crucially, we may
need tocompare two clocks of the system as an enabling condition fora transition. Aim
of this paper is to analyse this setting for the case of real-time and epistemic properties
by means of diagonal automata.

Of course from a theoretical point of view, every diagonal timed automaton can be
transformed into non-diagonal timed automaton [3], but thetransformation suffers from
an exponential blow up in the size of the automaton’s states.However the approach pre-
sented here is known to generate considerable complications in the verification method-
ology [5] and results in a loss of completeness in the resulting bounded model checking
technique [14].

To define diagonal real-time interpreted systems we first recall the definitions of
diagonal timed automata and their composition. We refer to [19] for discussion and
more details.

We assume a finite setX of real variables, calledclocks, and for x, y ∈ X,
∼ ∈ {<, ≤, =, >, ≥ }, c ∈ IN, where IN = {0, 1, . . .} is a set of natural numbers, we
define a set ofclock constraintsover X, denoted byC(X), by means of the following
grammar:

cc ::= true | x ∼ c | x− y ∼ c | cc ∧ cc
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A clock valuationv is a total function fromX into the set of non-negative real
numbers IR; IRX denotes the set of all the clock valuations. Forcc ∈ C(X), ~cc� denotes
the set of all the clock valuations that satisfycc. The clock valuation that assigns the
value 0 to all clocks is denoted byv0. Forv ∈ IRX andδ ∈ IR, v+ δ is the clock valuation
that assigns the valuev(x)+ δ to each clock x. Forv ∈ IRX andY ⊆ X, v[Y] denotes the
clock valuation ofX that assigns the value 0 to each clock inY and leaves the values of
the other clocks unchanged.

Definition 1 (Diagonal timed automaton).Let PV be a set of propositional vari-
ables. Adiagonal timed automatonis a tupleA = (Σ, L, l0,X,I,R,V), whereΣ is a
nonempty finite set of actions, L is a nonempty finite set of locations, l0 ∈ L is an initial
location,V : L 7→ 2PV is a function assigning to each location a set of atomic propo-
sitions true in that location, X is a finite set of clocks,I : L 7→C(X) is a state invariant
function, and R⊆ L × Σ ×C(X) × 2X × L is a transition relation.

An element (l, σ, cc, Y, l′) ∈ R represents a transition from locationl to locationl′

labelled with an actionσ. The invariant condition states that the automaton is allowed
to remain in locationl only as long as the constraintI(l) is satisfied. The guardcc has
to be satisfied to enable the transition. The transition resets all clocks in the setY to the
value 0.

As usual, the semantics of diagonal timed automata is definedby associatingdense
modelsto them.

Definition 2 (Dense model).LetA = (Σ, L, l0,X,I,R,V) be a diagonal timed au-
tomaton, andC(A) ⊆ C(X) a set of all the clock constrains occurring in any enabling
condition used in the transition relation R or in a state invariant ofA. A dense model
forA is a tupleG(A) = (Σ∪IR,Q, q0,→, Ṽ), whereΣ∪IR is a set of labels, Q= L×IRX

is a set of states, q0 = (l0, v0) is an initial state,Ṽ : Q 7→ 2PV is a valuation function
such thatṼ((l, v)) = V(l), and→ ⊆ Q× (Σ ∪ IR)×Q is a time/action transition relation
defined by:

– Time transition:(l, v)
δ
→ (l, v + δ) iff (∀0 ≤ δ′ ≤ δ) v + δ′ ∈ ~I(l)�

– Action transition:(l, v)
σ
→ (l′, v′) iff (∃cc ∈ C(A))(∃Y ⊆ X) such thatv′ = v[Y],

(l, σ, cc,Y, l′) ∈ R, v ∈ ~cc�, andv′ ∈ ~I(l′)�.

In this paper we take diagonal timed automata to provide the lower level, fine-
grained description for the agents; the composition of these defines a multi-agent sys-
tems. So the computations of a multi-agent system are simplythe traces generated by
the executions of a network of diagonal timed automata that communicate through
shared actions. We model this communication via the standard notion of the parallel
composition [19], as defined below.

Consider a network ofm diagonal timed automataAi = (Σi , Li , l0i ,Xi ,Ii ,Ri ,Vi),
for i = 1, . . . ,m, such thatLi ∩ L j = ∅ for all i, j ∈ {1, . . . ,m} and i , j, and denote
by Σ(σ) = {1 ≤ i ≤ m | σ ∈ Σi} the set of indexes of the automata performing
actionσ. The parallel compositionof m diagonal timed automataAi is a diagonal
timed automatonA = (Σ, L, l0,X,I,R,V), whereΣ =

⋃m
i=1Σi , L =

∏m
i=1 Li , l0 =

(l01, . . . , l
0
m), X =

⋃m
i=1 Xi , I((l1, . . . , lm)) =

∧m
i=1Ii(l i), V((l1, . . . , lm)) =

⋃m
i=1Vi(l i),
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and a transition ((l1, . . . , lm), σ, cc,Y, (l′1, . . . , l
′
m)) ∈ R iff (∀i ∈ Σ(σ)) (l i , σ, cci ,Yi , l′i ) ∈ Ri ,

cc =
∧

i∈Σ(σ) cci , Y =
⋃

i∈Σ(σ) Yi , and (∀ j ∈ {1, . . . ,m} \ Σ(σ)) l′j = l j .
Observe that, given the above, transitions in which actionsare not shared are inter-

leaved, whereas the transitions caused by shared action aresynchronised.
To give a definition of real-time interpreted systems that supports clock constraints

of the formx− y ∼ c, we first define the notion ofweak region equivalence[22].

Definition 3 (Weak Region Equivalence).Assume a set of clocks X, and for any t∈
IR let 〈t〉 denote the fractional (respectively integral) part of t (respectively⌊t⌋). The
weak region equivalenceis a relation�⊆ IRX × IRX defined as follows. For two clock
valuations u andv in IRX, u � v iff all the following conditions hold:

(E1.) ⌊u(x)⌋ = ⌊v(x)⌋, for all x ∈ X.
(E2.) 〈u(x)〉 = 0 iff 〈v(x)〉 = 0, for all x ∈ X.
(E3.) 〈u(x)〉 < 〈u(y)〉 iff 〈v(x)〉 < 〈v(y)〉, for all x, y ∈ X.

We will useZ, Z′, and so on to denote the equivalence classes induced by the relation
�. As customary, we call these classes zones, and the set of allthe zones we denote by
Z(|X|).

Definition 4 (Diagonal real-time interpreted system).Consider m diagonal timed
automata and their parallel composition. Adiagonal real-time interpreted system(or a
model) is a tuple M= (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ) such thatΣ ∪ IR, Q, q0,→, and
Ṽ are defined as in Definition 2, and for each agent i,∼i ⊆ Q× Q is a relation defined
by: (l, v) ∼i (l′, v′) iff l i((l, v)) = l i((l′, v′)) and v � v′, where li : Q 7→ Li is a function
returning the location of agent i from a global state.

As in [10] we consider two (global) states to be epistemically indistinguishable for
agenti if its local state (i.e., its location) is the same in the two global states. Addi-
tionally we assume the agents’ clocks to be globally visible, although only privately
resettable. For two states to be indistinguishable we further assume the clocks of the
states belong to the same zone. This is not dissimilar from [21].

3 TECTLK

In this section we introduce the logic TECTLK(Timed Existential CTL with Knowl-
edge). While the logic is the same as the one described in [21], satisfaction is here
defined on diagonal real-time interpreted systems.
Syntax.LetPV be a set of propositional variables containing the symbol⊤,AG a set
of magents, andI an interval in IR with integer bounds of the form [n, n′], [n, n′), (n, n′],
(n, n′), (n,∞), and [n,∞), for n, n′ ∈ IN. For p ∈ PV, i ∈ AG, andΓ ⊆ AG, theset of
TECTLK formulaeis defined by the following grammar:

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | E(ϕUIϕ) | E(ϕRIϕ) | K iϕ | DΓϕ | CΓϕ | EΓϕ

The other temporal modalities are defined as usual:⊥
de f
= ¬⊤, EGIϕ

de f
= E(⊥RIϕ),

EFIϕ
de f
= E(⊤UIϕ). Moreover,α⇒ β

def
= ¬α ∨ β.
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Semantics.Let M = (Σ ∪ IR,Q, q0,→,∼1, . . . ,∼m, Ṽ) be amodel. We define aq0-run

ρ as a sequence of states:q0
δ0
→ q0 + δ0

σ0
→ q1

δ1
→ q1 + δ1

σ1
→ q2

δ2
→ . . ., whereqi ∈ Q,

σi ∈ Σ andδi ∈ IR+ for eachi ∈ IN, and by fA(q0) we denote the set of all suchq0-runs.
We say that a stateq ∈ Q is reachable if there is aq0−run ρ such that there exists a
state inρ equal toq. Finally, in order to give a semantics to TECTLK, we introduce the
notation of adense pathπρ corresponding to a runρ. A dense pathπρ corresponding to
ρ is a mapping from IR to a set of statesQ such thatπρ(r) = qi + δ for r = Σ i

j=0δ j + δ

with i ∈ IN and 0 ≤ δ < δi . Moreover, we define the following epistemic relations:
∼E
Γ
=
⋃

i∈Γ ∼i , and∼C
Γ
= (∼E

Γ
)+ (the transitive closure of∼E

Γ
), and∼D

Γ
=
⋂

i∈Γ ∼i , where
Γ ⊆ AG.

Definition 5. Let M be a model such that the set Q contains reachable states only.
M, q |= α denotes thatα is true at state q in M. The satisfaction relation|= is defined
inductively as follows:

M, q |= p iff p ∈ Ṽ(q), M, q |= α ∨ β iff q |= α or q |= β,
M, q |= ¬p iff p < Ṽ(q), M, q |= α ∧ β iff q |= α and q|= β,
M, q |= E(αUIβ) iff (∃ρ ∈ fA(q))(∃r ∈ I)[M, πρ(r) |= β and(∀r ′ < r)M, πρ(r ′) |= α],
M, q |= E(αRIβ) iff (∃ρ ∈ fA(q))(∀r ∈ I)[M, πρ(r) |= β or (∃r ′ < r)M, πρ(r ′) |= α],
M, q |= K iα iff (∃q′ ∈ Q)(q ∼i q′ and M, q′ |= α),
M, q |= DΓα iff (∃q′ ∈ Q)(q ∼D

Γ
q′ and M, q′ |= α),

M, q |= EΓα iff (∃q′ ∈ Q)(q ∼E
Γ

q′ and M, q′ |= α),
M, q |= CΓα iff (∃q′ ∈ Q)(q ∼C

Γ
q′ and M, q′ |= α).

We say a TECTLK formulaϕ is valid in M (denoted byM |= ϕ) iff M, q0 |= ϕ, i.e.,
ϕ is true at the initial state of the modelM. In the rest of the paper we are concerned
with devising and implementing an automatic model checkingalgorithm for checking
whether a formulaϕ is valid in a given modelM.

4 Bounded Model Checking for TECTLK

Bounded model checking (BMC) is a popular model checking technique for the verifi-
cation of reactive systems [4, 7]. On discrete-time, it is supported by nuSMV [6] and in
its epistemic extension by Verics [15]. Verifying whether asystemS satisfies a property
P amounts to checkingMS |= φP, whereMS is a model capturingS andφP is a prop-
erty representingP. In BMC this check is turned into the propositional satisfiability test
(ultimately performed by ad-hoc highly-efficient SAT solvers) of [MS] ∧ [φP], where
[MS], [φP] are appropriate Boolean formulae representing a truncated portion of the
modelMS and the modal formulaφP. We refer to [16] for a description of the technique
for the case of discrete-time epistemic properties.

To define a BMC method for diagonal real-time interpreted systems, we adapt the
BMC technique for TECTLK and non-diagonal automata presented in [21]. We first
translate the BMC problem from TECTLK into the BMC problem for ECTLKy, and
then we define BMC for ECTLKy. We do not report full details and proofs in this
abstract. These can be found in [14].
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4.1 Translation from TECTLK to ECTLK y

When dealing with real-time one can use DBMs [8], CDDs [2], ora discretisation tech-
nique [1, 17, 22] to represent zones. In the BMC settings for branching real-time logics
it is customary to discretise zones. In particular, here we take the discretisation scheme
introduced in [22], which uses the following set of discretised clock’s values and labels
as primitives. Let� be a set of rational numbers, andDm = {d ∈ � | (∃k ∈ �) d · 2m =

k} and Em = {e ∈ � | (∃k ∈ �) e · 2m = k ande > 0} for every m ∈ IN. Then,
D =

⋃∞
m=0 Dm defines the set of discretised clock’s values, andE =

⋃∞
m=1 Em defines

the set of labels. We use this technique to define a discretised model, which is crucial
for the translation of the model checking problem for TECTLKto the model checking
problem for ECTLKy as described below.

Definition 6 (Discretised model).LetA = (Σ, L, l0,X,I,R,V) be a diagonal timed
automaton resulting from the parallel composition of m diagonal timed automata (agents).
A discretised modelforA is a tuple Md = (Σ∪E,S, s0,→d,∼

d
1, . . . ,∼

d
m, Ṽd), where S=

L×DX is a set of states, s0 = (l0, v0) is the initial state,∼d
i ⊆ S×S is an relation defined

by (l, v) ∼d
i (l′, v′) iff l i((l, v)) = l i((l′, v′)) and v � v′, for each agent i,̃Vd : S 7→ 2PV

is a valuation function defined bỹVd((l, v)) = V(l), and→d⊆ S × (Σ ∪ E) × S is a
time/action transition relation defined by:

– Time transition: for anyδ ∈ E, (l, v)
δ
→d (l, v + δ) iff (l, v)

δ
→ (l, v + δ) in G(A) and

(∀δ′ ≤ δ) v + δ′ � v or v + δ′ � v + δ,

– Action transition: for anyσ ∈ Σ, (l, v)
σ
→d (l′, v′) iff (∃δ)(∃v′′) such that(l, v)

δ
→d

(l, v′′) and(l, v′′)
σ
→ (l′, v′) in G(A).

The general idea of the translation is the same as the one in [21], but obviously
given the different capabilities there are differences. In particular, the discretised model
used here is infinite; so while the procedure in [21] is sound and complete, the one here
is only sound1.

Specifically, given a multi-agent system modelled by a network of diagonal timed
automataAi = (Σi , Li , l0i ,Xi ,Ii ,Ri,Vi) and a TECTLK formulaϕ, we extend each
automatonAi by a new clocky, an actionσy, and transitions to obtain a new automaton
A

ϕ

i = (Σi∪{σy}, Li , l0i ,X
′
i ,Ii ,R′i ,Vi) with X′i = Xi∪{y} andR′i = Ri∪{(l, σy, true, {y}, l) |

l ∈ L}. The clocky corresponds to all the timing intervals appearing inϕ, and special
transitions are used to reset the new clock. We then construct the discretised model for
the parallel composition ofAϕ

i , denoted byAϕ, and augment its valuation function with
the set of propositional variables containing a new proposition py∈I for every intervalI
appearing inϕ, and a new propositionpb representing that a states is boundary, i.e., at
least one clock from the original automata has to have the fractional part of its valuation
equal to zero ins. Finally, we translate the TECTLK formulaϕ into an ECTLKy formula
ψ = cr(ϕ) such that model checking ofϕ over the model for the parallel composition of
Ai can be reduced to the model checking ofψ over the discretised model forAϕ. Before

1 Note though that because of the complexity in the SAT translation and satisfiability checks,
BMC is never complete in practice when the system is sufficiently complex, so this is not a
real concern.
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we define the final part of the above construction, we will firstintroduce the syntax and
semantics for ECTLKy.

Let p ∈ PV′ = PV ∪ {pb} ∪ {py∈I | I is an interval inϕ}. The set of ECTLKy
formulae is defined by the following grammar:

α := p | ¬p | α ∧ α | α ∨ α | Ey(αUα) | Ey(αRα) | K iα | DΓα | CΓα | EΓα

The satisfaction relation for ECTLKy is defined with respect to a discretised model
Md. Namely, assume thats is a state,α, β formulae of ECTLKy,→A denotes the part
of →d, where transitions are labelled with elements ofΣ ∪ E, and→y denotes the
transitions that reset the clocky. Next, define apathπ in Md to be a sequence (s0, s1, . . .)
of states such thatsi →A si+1 for eachi ∈ IN, and denote the set of all the paths starting
at s in Md byΠ(s). Then, the satisfaction relation|= for ECTLKy is defined as follows:

Md, s |= p iff p ∈ Ṽd(s),
Md, s |= ¬p iff p < Ṽd(s),
Md, s |= α ∨ β iffMd, s |= α or Md, s |= β,
Md, s |= α ∧ β iffMd, s |= α and Md, s |= β,
Md, s |= Ey(αUβ) iff (∃s′ ∈ S)(s→y s′ and (∃π ∈ Π(s′))(∃m≥ 0)

[Md, π(m) |= β and (∀ j < m) Md, π( j) |= α]),
Md, s |= Ey(αRβ) iff (∃s′ ∈ S)(s→y s′ and (∃π ∈ Π(s′))(∀m≥ 0)

[Md, π(m) |= β or (∃ j ≤ m) Md, π( j) |= α]),

Md, s |= K iα iff (∃π ∈ Π(s0))(∃ j ≥ 0)(Md, π( j) |= α ands∼i π( j)),
Md, s |= DΓα iff (∃π ∈ Π(s0))(∃ j ≥ 0)(Md, π( j) |= α ands∼D

Γ
π( j)),

Md, s |= EΓα iff (∃π ∈ Π(s0))(∃ j ≥ 0)(Md, π( j) |= α ands∼E
Γ
π( j)),

Md, s |= CΓα iff (∃π ∈ Π(s0))(∃ j ≥ 0)(Md, π( j) |= α ands∼C
Γ
π( j)).

Definition 7 (Validity). An ECTLKy formulaϕ is valid in Md (denoted Md |= ϕ) iff
Md, s0 |= ϕ, i.e.,ϕ is true at the initial state of Md.

We can now translate inductively a TECTLK formulaϕ into the ECTLKy formula
cr(ϕ); note that for the propositional and epistemic part of ECTLKy the translation is
defined as the corresponding translation in [16].
• cr(p) = p for p ∈ PV′,
• cr(¬p) = ¬cr(p) for p ∈ PV′,
• cr(α ∨ β) = cr(α) ∨ cr(β),
• cr(α ∧ β) = cr(α) ∧ cr(β),
• cr(E(αUIβ)) = Ey(cr(α)U(cr(β) ∧ py∈I ∧ (pb ∨ cr(α)))),
• cr(E(αRI iβ)) = Ey(cr(α)R(¬py∈I i ∨ (cr(β) ∧ (pb ∨ cr(α))))).
• cr(K iα) = K icr(α),
• cr(DΓα) = DΓcr(α),
• cr(EΓα) = EΓcr(α),
• cr(CΓα) = CΓcr(α),

The following lemma shows that validity of the TECTLK formulaϕ over the model
for A is equivalent to the validity of cr(ϕ) over the discretised model forAϕ with the
extended valuation function.
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Lemma 1 ([14]). Let ϕ be aTECTLK formula, M a model, and Md the discretised

version of M. Further, let(l, v)⇂X
de f
= (l, v⇂X). For any state(l, v) ∈ Q there exists

(l, v′) ∈ S such that(l, v′)⇂X � (l, v) and M, (l, v) |= ϕ iff Md, (l, v′) |= cr(ϕ).

4.2 ECTLK y Bounded Model Checking

All the known BMC techniques are based on so calledk−bounded semantics. In particu-
lar, BMC for ECTLKy is based on thek−bounded semantics for ECTLKy, the definition
of which we present below.

We start with some auxiliary notions. LetMd = (Σ ∪ E,S, s0,→d,∼
d
1, . . . ,∼

d
m, Ṽd)

be a discretised model, andk ∈ IN+ a bound. As before, we denote by→A the part of
→d, where transitions are labelled with elements ofΣ ∪ E, and by→y the transitions
that reset the clocky. A k−pathπ in Md is a finite sequence of states (s0, . . . , sk) such
that si →A si+1 for each 0≤ i < k, andΠk(s) denotes the set of all thek-paths starting
at s in Md. A k-modelfor Md is a structureMk = (Σ ∪ E,S, s0,Pk,Py,∼

d
1, . . . ,∼

d
m, Ṽd),

wherePk =
⋃

s∈S Πk(s) andPy = {(s, s′) | s→y s′ ands, s′ ∈ S}.
The satisfaction of the temporal operator EyR on ak-path in the bounded case de-

pends on whether or notπ represents a loop. To indicate k-paths that can simulate loops,
we define a functionloop : Pk 7→ 2IN by loop(π) = {i | 0 ≤ i ≤ k andπ(k)→A π(i)}.

We can now define a bounded semantics for ECTLKy formulae. Letk ∈ IN+, Md be a
discretised model,Mk its k-model,α, β ECTLKy formulae, and letMk, s |= α denote that
α is true at the statesof Mk. Then, the (bounded) satisfaction relation|= for ECTLKy is
defined as follows:

Mk, s |= p iff p ∈ Ṽd(s), Mk, s |= α ∨ β iff Mk, s |= α or Mk, s |= β,
Mk, s |= ¬p iff p < Ṽd(s), Mk, s |= α ∧ β iff Mk, s |= α andMk, s |= β,

Mk, s |= K iα iff (∃π ∈ Πk(s0))(∃0 ≤ j ≤ k)(Mk, π( j) |= α ands∼i π( j)),
Mk, s |= DΓα iff (∃π ∈ Πk(s0))(∃0 ≤ j ≤ k)(Mk, π( j) |= α ands∼D

Γ
π( j)),

Mk, s |= EΓα iff (∃π ∈ Πk(s0))(∃0 ≤ j ≤ k)(Mk, π( j) |= α ands∼E
Γ
π( j)),

Mk, s |= CΓα iff (∃π ∈ Πk(s0))(∃0 ≤ j ≤ k)(Mk, π( j) |= α ands∼C
Γ
π( j)),

Mk, s |= Ey(αUβ) iff (∃s′ ∈ S)((s, s′) ∈ Py and (∃π ∈ Πk(s′))(∃0 ≤ j ≤ k)
(Mk, π( j) |= β and (∀0 ≤ i < j) Mk, π(i) |= α)),

Mk, s |= Ey(αRβ) iff (∃s′ ∈ S)((s, s′) ∈ Py and (∃π ∈ Πk(s′))[(∃0 ≤ j ≤ k)
(Mk, π( j) |= α and (∀0 ≤ i ≤ j)Mk, π(i) |= β) or
(∀0 ≤ j ≤ k)(Mk, π( j) |= β andloop(π) , ∅)]).

Note that for the propositional and epistemic part of ECTLKy, the (bounded) satisfac-
tion relation|= is defined as the corresponding relation in [21].

Definition 8 (Validity). An ECTLKy formula ϕ is valid in a k-modelMk (denoted
Md |=k ϕ) iff Mk, s0 |= ϕ, i.e.,ϕ is true at the initial state of the k-model Mk.

We can now describe how the model checking problem (Md |= ϕ) can be reduced to
the bounded model checking problem (Md |=k ϕ).

Theorem 1. Let k∈ IN+, Md be a discretised model, Mk its k-model, andϕ anECTLKy

formula. For any s in Md, Mk, s |= ϕ implies Md, s |= ϕ.
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Proof. By straightforward induction on the length ofϕ.

Note that both the discretised model and its k-model are infinite. So, to perform
bounded model checking we have to consider a finite submodelsof a k-model such that
an ECTLKy formulaψ holds inMd if and only if ψ holds in a finite submodel ofMk.

Definition 9. An s-submodelof k-model Mk = (Σ ∪ E,S, s0,Pk,Py,∼
d
1, . . . ,∼

d
m, Ṽd) is

a tuple M′(s) = (Σ ∪ E,S′, s,P′k,P
′
y,∼

′
1, . . . ,∼

′
m, Ṽ

′
d) such that P′k ⊆ Pk, S′ = {r ∈ S |

(∃π ∈ P′k)(∃i ≤ k)π(i) = r} ∪ {s}, P′y ⊆ Py ∩ (S′ × S′), ∼′i=∼
d
i ∩(S′ × S′) for each

i ∈ {1, . . . ,m}, andṼ′d = Ṽd ⇂ S′.

The bounded semantics for ECTLKy over a submodelM′(s) is defined as forMk.
Moreover, the following theorem holds.

We now introduce a definition of a functionfk that gives a bound on the number
of k-paths in the submodelM′(s), and a functionfk,y that gives a bound on the number
of elements of the setP′y in the submodelM′(s). It can be shown that these bound
guarantee that the validity ofψ in M′(s) is equivalent to the validity ofψ in Mk (see
Theorem 2). The functionfk : ECTLKy → IN is defined by:
• fk(p) = fk(¬p) = 0, wherep ∈ PV′,
• fk(α ∨ β) = max{ fk(α), fk(β)},
• fk(α ∧ β) = fk(α) + fk(β),
• fk(Ey(αUβ)) = k · fk(α) + fk(β) + 1,
• fk(Ey(αRβ)) = (k+ 1) · fk(β) + fk(α) + 1,
• fk(Yα) = fk(α) + 1, for Y ∈ {K i ,DΓ ,EΓ},
• fk(CΓα) = fk(α) + k.

The functionfk,y : ECTLKy → IN is defined by:
• fk,y(p) = fk,y(¬p) = 0, wherep ∈ PV′,
• fk,y(α ∨ β) = max{ fk,y(α), fk,y(β)},
• fk,y(α ∧ β) = fk,y(α) + fk,y(β),
• fk,y(Ey(αUβ)) = k · fk,y(α) + fk,y(β) + 1,
• fk,y(Ey(αRβ)) = (k+ 1) · fk,y(β) + fk,y(α) + 1,
• fk,y(Yα) = fk,y(α), for Y ∈ {K i ,DΓ,EΓ,CΓ}.

Theorem 2 ([14]).Let Md be a discretised model, andψ anECTLKy formula. If there
exist k∈ IN+ and s0-submodel M′(s0) of k-model Mk with P′k ≤ fk(ψ) and|P′k,y| ≤ fk,y(ψ)

such that M′(s0) |=k ψ, then Md |= ψ.

Given the above, note that both functionsfk and fk,y give the upper bound on the
number of paths inP′k and number of transitions inP′k,y, respectively.

Having defined the bounded semantics, we can easily translate the model checking
problem for ECTLKy to the problem of satisfiability of a Boolean formula that encodes
all the discretised model for an ECTLKy formula under consideration and an appropri-
ate fragments of the considered discretised models. The translation can be done in a
similar way as the one in [21] and it is presented in the next section.
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4.3 Translation to Boolean formulae

The main idea of BMC for ECTLKy consists in translating the model checking problem
for ECTLKy into the satisfiability problem of a propositional formula.Namely, given
an ECTLKy formulaψ, a discretised modelMd, and a boundk ∈ IN+, this proposition

formula, denoted by [Md, ψ]k, is of the form: [Mψ,s0

d ]k ∧ [ψ]Mk . The first conjunct rep-
resents possible submodels ofMd such that they consist offk(ψ) k−paths ofMd and at
least one of these submodels is ans0-submodel. The second conjunct encodes a number
of constraints that must hold on these submodels forψ to be satisfied. Once this trans-
lation is defined, checking satisfiability of an ECTLKy formula can be done by means
of a SAT-checker. In order to define [Md, ψ]k, we proceed as follows.

Let us assume that each states of submodels of k-modelMk for the discretised
modelMd is encoded by a bit-vector whose length, sayb, depends on the number of
locations, the number of clocks, and the boundk ∈ IN+. So, each such a states can be
represented by a vectorw = (w[1], . . . , w[b]) (calledglobal state variable), where each
w[i], for i = 1, . . . , b, is a propositional variable (called state variable). Notice that we
distinguish between statess encoded as sequences of 0s and 1s and their representa-
tions in terms of propositional variablesw[i]. A finite sequence (w0, . . . , wk) of global
state variables is called asymbolic k-path. In general, we need to consider not just one
but a number of symbolick-paths. This number depends on the formulaψ under in-
vestigation, and it is returned as the valuefk(ψ) of the function fk. The j-th symbolic
k-path is denoted byw0, j , . . . , wk, j, wherewi, j are global state variables for 1≤ j ≤ fk(ψ),
0 ≤ i ≤ k. For two global state variablesw, w′, we define the following propositional
formulae:

• Is(w) is a formula overw, which is true for a valuationsw of w iff sw = s.
• p(w) is a formula overw, which is true for a valuationsw of w iff p ∈ Vd(sw), where

p ∈ PV′,
• Hi(w, w′) is a formula over two global state variablesw = (l, v), w′ = (l′, v′), which

is true for valuationssl of l, sl′ of l′, sv of v, and sv′ of v′ iff l i(sl) = l i(sl′ ) and
sv � sv′ (encodes equality of local states of agenti).

• R(w, w′) is a formula overw, w′, which is true for two valuationssw of w andsw′ of
w′ iff sw →A sw′ (encodes the non-resetting transition relation ofMd),
• Ry(w, w′) is a formula overw, w′, which is true for two valuationssw of w andsw′

of w′ iff sw →y sw′ (encodes the transitions resetting the clocky).

The propositional formula [Md, ψ]k is defined over state variablesw0,0, wn,m, for
0 ≤ m ≤ k and1 ≤ n ≤ fk(ψ). We start off with a definition of its first conjunct, i.e.,

[Mψ,s0

d ]k, which constrains thefk(ψ) symbolick-paths to be validk-path ofMk. Namely,

[Mψ,s0

d ]k := Is0(w0,0) ∧
fk(ψ)∧

n=1

k−1∧

m=0

R(wm,n, wm+1,n)

The second conjunct, i.e., the formula [ψ]Mk = [ψ] [0,0]
k , is inductively defined as follows:

[p][m,n]
k := p(wm,n), [α ∧ β] [m,n]

k := [α][m,n]
k ∧ [β][m,n]

k ,
[¬p][m,n]

k := ¬p(wm,n), [α ∨ β] [m,n]
k := [α][m,n]

k ∨ [β][m,n]
k ,

10



[Ey(αUβ)][m,n]
k :=

∨ fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧

∨k
j=0([β] [ j,i]

k ∧
∧ j−1

l=0 [α] [l,i]
k )),

[Ey(αRβ)] [m,n]
k :=

∨ fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧ (

∨k
j=0([α] [ j,i]

k ∧
∧ j

l=0[β] [l,i]
k )

∨
∧k

j=0[β] [ j,i]
k ∧

∨k
l=0R(wk,i , wl,i))),

[Klα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0(w0,i) ∧

∨k
j=0([α] [ j,i]

k ∧ Hl(wm,n, w j,i))),

[DΓα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0(w0,i) ∧

∨k
j=0([α] [ j,i]

k ∧
∧

l∈Γ Hl(wm,n, w j,i))),

[EΓα]
[m,n]
k :=

∨ fk(ψ)
i=1 (Is0(w0,i) ∧

∨k
j=0([α] [ j,i]

k ∧
∨

l∈Γ Hl(wm,n, w j,i))),

[CΓα]
[m,n]
k := [

∨k
i=1(EΓ)iα] [m,n]

k .

Lemma 2. Let Md be discretised model, Mk its k-model, andψ an ECTLKy formula.
For each state s of Md, the following holds:[Mψ,s

d ]k ∧ [ψ]Mk is satisfiable iff there is a
submodel M′(s) of Mk with |P′k| ≤ fk(ψ) and |P′y| ≤ fk,y(ψ) such that M′(s), s |= ψ.

Proof. (=>) Let [Mψ,s
d ]k ∧ [ψ]Mk be satisfiable. By the definition of the translation, the

propositional formula [ψ]Mk encodes all the sets ofk−paths of sizefk(ψ) which satisfy
the formulaψ and all the sets of transitions resetting the clocky of size fk,y(ψ) . By the
definition of the unfolding of the transition relation, the propositional formula [Mψ,s]k

encodesfk(ψ) symbolic k-paths to be validk−paths ofMk. Hence, there is a set of
k−paths inMk, which satisfies the formulaψ of size smaller or equal tofk(ψ), and there
is a set of transitions resetting the clocky of size fk,y(ψ). Thus, we conclude that there
is a submodelM′(s) of Mk with |P′k| ≤ fk(ψ) and|P′y| ≤ fk,y(ψ) such thatM′(s), s |= ψ.

(<=) The proof is by induction on the length ofψ. The lemma follows directly for
the propositional variables and their negations. Considerthe following cases:

• Forψ = α ∨ β, α ∧ β, or the temporal operators the proof is like in [16].
• Let ψ = K lα. If M′(s), s |= K lα with |P′k| ≤ fk(K lα) and |P′y| ≤ fk,y(Klα), then

by the definition of bounded semantics we have that there is ak−pathπ such that
π(0) = s0 and (∃ j ≤ k) s ∼l π( j)) andM′(s), π( j) |= α. Hence, by induction we
obtain that for somej ≤ k the propositional formula [α] [0,0]

k ∧ [Mα,π( j)]k is satisfi-
able. Letii = fk(α) + 1 be the index of a new symbolick−path which satisfies the
formula Is0(w0,ii ). Therefore, by the construction above, it follows that theproposi-
tional formulaIs0(w0,ii ) ∧

∨k
j=0

(
[α] [ j,ii ]

k ∧ Hl(w0,0, w j,ii )
)
∧ [MK lα,s]k is satisfiable.

Therefore, the following propositional formula is satisfiable:

∨

1≤i≤ fk(K lα)

(
Is0(w0,i) ∧

k∨

j=0

(
[α] [ j,i]

k ∧ Hl(w0,0, w j,i)
)
∧ [MK lα,s]k

)
.

Hence, by the definition of the translation of an ECTLKy formula, the above for-

mula is equal to the propositional formula [Klα] [0,0]
k ∧ [MK lα,s]k.

• The other proofs are similar.

Theorem 3. Let Md be a discretised model, andψ anECTLKy formula. If there exists

k ∈ IN+ such that[ψ]Mk ∧ [Mψ,s0

d ]k is satisfiable, then Md |= ψ .

Proof. Follows from Theorem 2 and Lemma 2.
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5 A real-time alternating bit transmission problem

To exemplify the theoretical concepts of the previous sections we analyse a real-time
version of one of the variants of the alternating bit protocol. In the original formula-
tion [10] two agents attempt to transmit information over anunreliable communication
channel, which they have access to. SenderS starts sending the bit to receiverR. R
is initially silent but as soon as it receives the bit fromS, it starts sending acknowl-
edgements back toS. As soon asS receives one of these acknowledgements, it stops
sending the bit, the system is reset and a new bit is sent. Under these conditions it can
be checked automatically [18] that wheneverS receives an acknowledgement it then
knows (in the formal epistemic sense) thatR knows the value of the bit (expressed by
the formulaAG(recack⇒ KSKRrecbit)). Consider now one of the variants analysed in
[13] whereR may (erroneously) send acknowledgements without having received the
bit first. Intuitively in this case, the property above will no longer hold; indeed this can
also be checked automatically [18].

We extend the scenario above by adding the clock expressions. Assume that each
agent has two possibly faulty communication channels to choose from to send bits
or acknowledgements. In order to optimise the performance of the transmission both
agents concurrently run a channel monitoring service in thebackground. To this aim
they regularly send each other control bits and keep track ofthe time elapsed since the
receipt of a control bit from the other party. The agents sendthe information bit on the
channel that has demonstrated to be in the better working condition, i.e., the one that
has recently been able to transmit the control bit from the other party.

To formalise the above we use a network of diagonal timed automata consisting
of an automaton forS (see Figure 1) and an automaton forR (see Figure 2).S can
be in 11 different local states:Decide(“S selects which bit will be sent”), 0-ctr-bit
and 1-ctr-bit (“S sends a control bit and listens toR’s control bit”), 0-selectand 1-
select(“S selects the channel to use to send bit 0 (1), or he sends a control bit”), 0-
channel-1 and 0-channel-2 (“S sends bit 0 through channel 1 (2)”), 1-channel-1 and
1-channel-2, (“S sends bit 1 through channel 1 (2)”), 0-ackand 1-ack(“S has received
an acknowledgement”).S can perform independently the following actions: 0-bit, 1-bit
(“bit 0 (1) is sent”),scbs-1- f ail, scbs-2- f ail (“a control bit is sent to a faulty channel 1
(2)”), s-send- f ail (“bit 0 or 1 is sent to a faulty channel”),nothing, andnext-bit whose
interpretation is obvious. The remaining actions are synchronised withR.
R can be in 10 different local states:wait (“R is listening to the channels”),ctr-

bit (“R sends a control bit, or he sends a faulty acknowledgement”),r0 andr1 (“R
has received bit 0 (1)”), 0-selectand 1-select(“R selects the channel for the ack”), 0-
channel-1, 0-channel-2, 1-channel-1 and 1-channel-2, (“R sends an ack on channel 1
(2).”). R can perform independently the following actions:scbr-1- f ail, scbr-2- f ail (“a
control bit is sent to a faulty channel 1 (2)”),r-send- f ail (“an ack is sent to a faulty
channel”). We refer to Figures 1, 2 for a pictorial representation.

Further,S uses 3 clocks (x, x1, x2,), andR three more (y, y1, y2). Control bits are
sent at regular intervals:t1 for channel 1 andt2 for channel 2; the clocksx andy are
used for this purpose. Clocksxi andyi measure the time since a control bit has been
received;xi gets reset whenS receives a control bit on channeli, likewise foryi for R.
When sending bits (either information bits of acknowledgements) each agent evaluates
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Decide

0-ctr-bit

0-select

0-channel-1 0-channel-2

0-ack

...

next-bit

0-bit 1-bit

scbr-1
x1 := 0

scbr-2
x2 := 0

s-select-1

x1 < x2 + (t1 + t2)

s-select-2

x2 < x1 + (t1 + t2)

0-send-ack

0-send
s-send-fail

0-send

s-send-fail

scbs-1,x = t1,x := 0scbs-2,x = t2, x := 0

scbs-1-fail
x = t1,x := 0

scbs-2-fail
x = t2,x := 0

scbs-2

x = t1,x := 0

scbs-1

x = t2, x := 0

scbs-1-fail
x = t1,x := 0

scbs-2-fail
x = t2,x := 0

nothing

Fig. 1.An automaton for Sender - the part for bit 0. The part for bit 1 is symmetric

the following two clock expressionsz1 − z2 < (t1 + t2) and z2 − z1 < (t1 + t2) for
z ∈ {x, y}. When the former expression is true, channel 1 is chosen, when the latter
is true, channel 2 is chosen. Intuitively the above guarantees that the channel that has
been demonstrated to be alive more recently gets selected. Using the thresholdt1 + t2
enables an agent not to switch channel unnecessarily often (for instance simply because
they are desynchronised). Note that ease with which the use of a clock difference allows
us to implement real-time channel selection without havinga large state space for the
automata in question.

The automata run in parallel and synchronise through the actions: scbs-1, scbs-2,
scbr-1, andscbr-2 (“send a control bit via channel 1 (2)”), 0-send, and 1-send(“send
bit 0 (1)”), 0-send-ack, and 1-send-ack(“ send an acknowledgement to bit 0 (1)”).

Given the above, one can construct the automatonABTP that describes the whole
alternating bit protocol running in real time as well as the set of traces generated by it.
In our approach this is done automatically by the bounded model checking implemen-
tation.

Now, assume the following set of propositional variables:PV = {recack, bit0}, and
the following usual interpretation for the proposition variables inPV: VS(0-channel-
1) = VS(0-channel-2)= VS(0-ack) = bit0, andVS(0-ack) = VS(1-ack) = recack.

The typical specification properties that one may be interested in checking for the
example above are the following: 1) “forever in the future from t1 if an acknowledge-
ment has been received byS and the value of the bit is 0, thenR knows the bit is equal
to 0” and 2) “forever in the future fromt1 if an acknowledgement has been received by
S and the value of the bit is 0, thenS knows thatR knows the bit is equal to 0.”

By means of an implementation of the technique above we were able to check that
the properties above are not satisfied (as intuitively is thecase givenR’s possible be-
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wait ctr-bit

r0

0-select

0-channel-1 0-channel-2

...

1-send

scbs-1,y1 := 0

scbs-2,y2 := 0

scbr-1,y = t1, y := 0scbr-2,y = t2, y := 0

scbr-1-fail,y = t1, y := 0

scbr-2-fail
y = t2, y := 0

0-send

scbs-1
y1 := 0

scbs-2
y2 := 0

scbr-1,y = t1, y := 0scbr-2,y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

r-select-1

y1 < y2 + (t1 + t2)

r-select-2

y2 < y1 + (t1 + t2)

0-send-ack

r-send-fail

0-send-ack

r-send-fail

0-send-ack

0-send-ack

scbr-1,y = t1, y := 0

scbr-2
y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

scbr-1,y = t1, y := 0
scbr-2,y = t2, y := 0

scbr-1-fail
y = t1, y := 0

scbr-2-fail
y = t2, y := 0

Fig. 2.An automaton for Receiver - the part for bit 0. The part for bit1 is symmetric.

haviour). More precisely, we can check that the negations ofthe properties above are
true, i.e., the following formulae are satisfied on the modelforABTP:

ϕ1 = EF[t1,∞](recack∧ bit0 ∧ KR(¬bit0)), and
ϕ2 = EF[t1,∞](recack∧ bit0 ∧ KSKR(¬bit0)).

depth locations clocks’ valuation
0 decide wait 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192
1 decide wait 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192
2 0-ctr-bit wait 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192
3 0-ctr-bit wait 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192
4 0-ctr-bit wait 17168

8192 17168
8192 17168

8192 17168
8192 17168

8192 17168
8192 17168

8192
5 0-ctr-bit wait 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
6 0-ctr-bit ctr-bit 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
7 0-ctr-bit ctr-bit 27524

8192 27524
8192 27524

8192 27524
8192 27524

8192 27524
8192 27524

8192
8 0-ctr-bit ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
9 0-select ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
10 0-select ctr-bit 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192
11 0-ack 0-channel-1 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192 3 1
8192 3 1

8192
Table 1: A witness for the propertyϕ1.

Tables 1 and 2 illustrate error traces for the above properties, i.e., it shows the wit-
ness for the formulaeϕ1 andϕ2, respectively, which have been generated by our imple-
mentation.

depth locations clocks’ valuation
0 decide wait 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192 0 0
8192 0 0

8192
1 decide wait 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192
2 0-ctr-bit wait 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192 04608
8192 04608

8192
3 0-ctr-bit wait 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192 1 0
8192 1 0

8192
4 0-ctr-bit wait 17168

8192 17168
8192 17168

8192 17168
8192 17168

8192 17168
8192 17168

8192
5 0-ctr-bit wait 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
6 0-ctr-bit ctr-bit 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192 2 0
8192 2 0

8192
7 0-ctr-bit ctr-bit 27524

8192 27524
8192 27524

8192 27524
8192 27524

8192 27524
8192 27524

8192
8 0-ctr-bit ctr-bit 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192 3 0
8192 3 0

8192
9 0-select ctr-bit 3 0 3 0 3 0 3 0 3 0 3 0 3 0
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tion of the formulaϕ1 and the appropriate fragments of the model forABTP as described
in [14]. The formula in question consists of 125260 variables and 258821 clauses; our
implementation needed 19.6 second and 18.7 MB memory to produce it. Its satisfaction
was checked by MiniSat [9], a mainstream SAT solver; 4.0 seconds and 19.9 MB of
memory were needed to check this.

BMC MiniSat
k variables clauses sec MB sec MB satisfiable
2 12243 28811 2.7 4.5 < 0.1 5.1 NO
3 20771 48413 8.8 5.7 < 0.1 6.2 NO
4 35589 85115 24.0 8.0 0.2 8.1 NO
5 49967 117551 55.2 9.8 0.6 10.1 NO
6 66952 154829 115.7 11.9 1.1 11.9 NO
7 86688 197030 206.1 14.9 2.4 14.2 NO
8 120067 278552 356.9 19.2 12.9 20.2 NO
9 147687 337205 587.3 23.9 9.9 24.1 NO

10 178628 401492 922.3 27.5 20.5 28.6 NO
11 213034 471494 1364.4 31.4 320.0 81.8 YES

Table 3: The computation of the witness - 3 paths

For what concerns the satisfaction ofϕ2, the corresponding experimental results are
presented in Table 3 and in Table 4. Table 3 refers to the search assuming 3 paths are
needed (this is the upper bound is given by the functionfk); Table 4 summarises the
result for a search of only 1 path. The tables show the following data: the first column
represents the bound on the model forABTP; the next two show the number of variables
and clauses generated by BMC during the translation ofϕ2 into a Boolean formula; the
next two show the time and memory needed by BMC to generate theset of clauses;
the next two columns give the time and the memory required by MiniSat to check
satisfaction, and the last column shows the answer given by MiniSat.

BMC MiniSat
k variables clauses sec MB sec MB satisfiable
2 3570 7706 0.2 3.2 < 0.1 3.7 NO
3 6021 12877 0.5 3.5 < 0.1 4.2 NO
4 10164 22320 1.3 4.2 < 0.1 4.7 NO
5 14213 30551 2.5 4.6 < 0.1 5.2 NO
6 18997 39934 4.8 5.3 < 0.1 5.8 NO
7 24564 50496 8.4 6.0 0.1 6.2 NO
8 33578 70301 14.4 7.0 0.2 7.5 NO
9 41277 84625 23.6 8.3 0.4 8.5 NO

10 49925 100281 33.7 9.2 0.4 9.4 NO
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11 59570 117296 54.0 10.2 0.9 10.3 YES

Table 4: The computation of the witness - 1 path

For reference, all the above experiments were performed on an AMD Athlon XP
1800 (1544 MHz), 768 MB main memory, running Linux with Kernel 2.6.15. Unfor-
tunately we are not able to compare these results to other tools as we are not aware of
any other implementation available that is capable of a real-time epistemic check for
(diagonal and non-diagonal) automata.

6 Conclusions

Model checking real-time in AI and MAS is still in its infancy. In [21] a first proposal
was made for a bounded model checking algorithm for real-time epistemic properties
based on non-diagonal automata semantics. In this paper we have tried to extend that
work by allowing the expressivity of clock differences. We have proposed a syntax, se-
mantics for the logic, as well as a bounded model checking method, and showed experi-
mental results of a preliminary implementation for a real-time version of the alternating
bit protocol.
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