
Bounded Model Checking for Knowledge and Real Time

Bożena Woźna and Alessio Lomuscio
∗

Department of Computer Science, UCL
Gower Street, London WC1E 6BT,UK

email: {B.Wozna,A.Lomuscio}@cs.ucl.ac.uk

Wojciech Penczek
†

Institute of Computer Science, PAS
Ordona 21, 01-237 Warsaw, Poland

email: penczek@ipipan.waw.pl

ABSTRACT
We present TECTLK, a logic to specify knowledge and real
time in multi-agent systems. We show that the model check-
ing problem is decidable, and we present an algorithm for
TECTLK bounded model checking based on a discretisation
method. We exemplify the use of the technique by means of
the ”Railroad Crossing System”, a popular example in the
multi-agent systems literature.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques; D.2.4 [Software/Pro-
gram Verification]: Model checking; I.2.11 [Distributed
Artificial Intelligence]: Multiagent systems

General Terms
Verification

Keywords
Model checking, interpreted systems, epistemic logic, real
time.

1. INTRODUCTION
Model checking [8] is an area of formal methods concerned

with automatic verification of hardware and software sys-
tems. It consists of a number of techniques to determine
whether a given logical formula representing a specification
is satisfied in a particular formal model representing the ex-
ecutions of a system. Originally developed for verification

∗The authors acknowledge support from the EPSRC
(grant GR/S49353) and the Nuffield Foundation (grant
NAL/690/G).
†Also affiliated with Podlasie Academy of Siedlce. The
author acknowledges support from the Polish grant,
No. 3T11C01128.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

of (untimed) reactive systems, model checking has recently
become an active subject of research in the area of multi-
agent systems [6, 9, 12, 22]. In particular, recent contribu-
tions have focused on extending model checking techniques
and tools [12, 16, 19, 20, 23, 26], to adapt them to the needs
of multi-agent systems (MAS) formalisms.

As it was shown in [9], knowledge is a useful concept for
analyzing the information state and the behaviour of agents
in multi-agent systems. In particular, it is useful to rea-
son about and to verify the evolution over time of epistemic
states [11]. The usual assumption in the area is to con-
sider time to be discrete. It is often argued that a model
of time closer to reality should assume a continuous flow
of instants. In this paper we make an attempt to evaluate
the consequences of this suggestion in the context of epis-
temic states of multi-agent systems. Specifically, we make
two contributions: first we present a logic, TECTLK, to
reason about real time and knowledge in MAS; second, we
present a technique for automatically verifying properties of
MAS expressed in this logic.

The rest of the paper is organized as follows. The next
section defines Real Time Interpreted Systems, the seman-
tics on which we will work with throughout the paper. In
Section 3 the logic TECTLK is introduced. In Section 4
a Bounded Model Checking method for TECTLK is pre-
sented. Section 5 shows how this method can be applied
to the “railroad crossing system”, a typical multi-agent sys-
tems example of time dependent systems. We conclude in
Section 6 discussing related work.

2. INTERPRETED SYSTEMS ON
REAL TIME

In this section we briefly recall the concept of timed au-
tomata, which were introduced in [2], and define a Real Time
Interpreted System.

2.1 Timed Automata
Let IR = [0,∞) be a set of non-negative real numbers,

IR+ = (0,∞) be a set of positive real numbers, IN = {0, 1, . . .}
a set of natural numbers, X a finite set of real variables,
called clocks, x ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}. The
clock constraints over X are defined by the following gram-
mar:

cc := true | x ∼ c | cc ∧ cc

Notice that in order to keep the presentation as simple as
possible and to use the discretisation method of [27] we do
not allow for differences of clocks in C(X).

The set of all the clock constraints over X is denoted by
C(X). A clock valuation on X is a tuple v ∈ IR|X|. The
value of the clock x in v is denoted by v(x). For a valuation
v and δ ∈ IR, v + δ denotes the valuation v′ such that for
all x ∈ X , v′(x) = v(x) + δ. Moreover, for a subset of clocks
X ⊆ X , v[X := 0] denotes the valuation v′ such that for all
x ∈ X, v′(x) = 0 and for all x ∈ X \X, v′(x) = v(x). The
satisfaction relation |= for a clock constraint cc ∈ C(X) and

v ∈ IR|X| is defined inductively as follows:

v |= true,
v |= (x ∼ c) iff v(x) ∼ c,
v |= (cc ∧ cc′) iff v |= cc and sv |= cc′

For a constraint cc ∈ C(X), by [[cc]] we denote the set of

all the clock valuations satisfying cc, i.e., [[cc]] = {v ∈ IR|X| |
v |= cc}.

Definition 1 (Timed automaton). A timed automa-
ton is a tuple TA = (Z, L, l0, E,X , I), where

• Z is a finite set of actions,
• L is a finite set of locations,
• l0 ∈ L is an initial location,
• X is a finite set of clocks,
• E ⊆ L × Z × C(X) × 2X × L is a transition relation.
• I : L→ C(X) is a function, called a location invariant,

which assigns to each location l ∈ L a clock constraint
defining the conditions under which TA can stay in l.

Each element e of E is denoted by l
a,cc,X
−→ l′, where l is a

source location, l′ is a target location, a is an action, cc is
the enabling condition for e, and X ⊆ X is the set of clocks
to be reset.

A state of TA is a pair (l, v), where l ∈ L and v ∈ IR|X|

is a clock valuation. The dense state space of TA is a tuple
(Q, q0,→), where Q = L × IR|X| is the set of all the states,
q0 = (l0, v0) is the initial state such that v0(x) = 0 for all
x ∈ X and v0 ∈ [[I(l0)]], and → ⊆ Q × (Z ∪ IR) × Q is the
transition relation, defined by action- and time-successors
as follows:
• for a ∈ Z, (l, v)

a
→ (l′, v′) iff (∃cc ∈ C(X))(∃X ⊆ X)

such that l
a,cc,X
−→ l′ ∈ E, v ∈ [[cc]], v′ = v[X := 0] and

v′ ∈ [[I(l′)]] (action successor),

• for δ ∈ IR, (l, v)
δ
→ (l, v + δ) iff v + δ ∈ [[I(l)]] (time

successor).
For (l, v) ∈ Q, let (l, v) + δ denote (l, v+ δ). A q0-run ρ of

TA is a sequence of states: q0
δ0→ q0 + δ0

a0→ q1
δ1→ q1 + δ1

a1→

q2
δ2→ . . ., where qi ∈ Q, ai ∈ Z and δi ∈ IR+ for each i ∈ IN.

A run ρ is said to be progressive iff Σi∈INδi is unbounded. TA
is progressive iff all its runs are progressive. For easiness of
presentation, we consider only progressive timed automata.
Note that progressiveness can be checked as in [21].

2.2 Parallel Composition
In general, we will model a multi-agent system by taking

several timed automata running in parallel and communicat-
ing with each other. These concurrent timed automata can
be composed into a global timed automaton as follows: the
transitions of the timed automata that do not correspond
to a shared action are interleaved, whereas the transitions
labelled with a shared action are synchronized.

There are many different definitions of a parallel compo-
sition. We use a multi-way synchronization, i.e., we require

that each component that contains a communication transi-
tion (labelled by a shared action) has to perform this action.

Let TAi = (Zi, Li, l
0
i , Ei,Xi, Ii) be a timed automaton,

for i = 1, . . . , m. To define a parallel composition of m
timed automata, we assume that Li ∩ Lj = ∅, for all i, j ∈
{1, . . . , m} and i 6= j. Moreover, by Z(a) = {1 ≤ i ≤ m |
a ∈ Zi} we denote the set of indexes representing the timed
automata containing an action a.

Definition 2 (Parallel composition). A parallel
composition of m timed automata TAi is a timed automaton
TA = (Z, L, l0, E,X, I), where Z =

Sm

i=1 Zi, L =
Qm

i=1 Li,
l0 = (l01, . . . , l

0
m), X =

Sm
i=1 Xi, I(l1, . . . , lm) =

Vm
i=1 Ii(li),

and a transition
((l1, . . . , lm), a, cc, X, (l′1, . . . , l

′
m)) ∈ E iff

(∀i ∈ Z(a))(li, a, cci, Xi, l
′
i) ∈ Ei, cc =

V

i∈Z(a) cci,

X =
S

i∈Z(a)Xi, and (∀j ∈ {1, . . . ,m} \ Z(a)) l′j = lj.

2.3 Real Time Interpreted System
In line with much literature in multi-agent systems, we

use interpreted systems as a semantics for a temporal epis-
temic language. For this, we need to adapt them to work
on real time: this is why we take timed automata as the
underlying modelling concept (as opposed to the standard
protocols of interpreted systems). To define real time inter-
preted systems, we first partition the set of clock valuations
as in [1].

Let TA be a timed automaton, C(TA) ⊆ C(X) be a non-
empty set containing all the clock constrains occurring in
any enabling condition used in the transition relation E or
in a state invariant of TA. Moreover, let cmax be the largest
constant appearing in C(TA), and fr(σ) (bσc), for σ ∈ IR,
denote the fractional (integral part of σ, resp.). We define an
equivalence relation ' in the set of all the clock valuations
as follows (see Figure 1 for an intuition).

Definition 3 ([1]). For two clock valuations v, v′ ∈

IR|X|, we say that v ' v′ iff for all x, y ∈ X the follow-
ing conditions are met:

1. v(x) > cmax iff v′(x) > cmax

2. if v(x) ≤ cmax and v(y) ≤ cmax then

a.) bv(x)c = bv′(x)c,

b.) fr(v(x)) = 0 iff fr(v′(x)) = 0, and

c.) fr(v(x)) ≤ fr(v(y)) iff fr(v′(x)) ≤ fr(v′(y)).

This partitions C(TA) into (detailed) zones, denoted by Z,
Z′, and so on.

1

1

0

Figure 1: Equivalence of clock valuations for two
clocks with cmax = 1.

Let AG be a set of m agents such that each agent is mod-
elled by a timed automaton TAi = (Zi, Li, l

0
i , Ei,Xi, Ii), for

i = 1, . . . ,m, TA = (Z, L, l0, E,X, I) be the parallel compo-
sition of all the agents, and li : Q→ Li be a function which
returns the location of agent i from a global state. Moreover,
let PVi be a set of propositional variables containing the
symbol >, for i ∈ {1, . . . ,m}, and PV =

Sm
i=1 PVi. In or-

der to reason about multi-agent systems, where each agent is
represented by a timed automaton, an existence of a (local)
valuation function VTAi

: Li → 2PVi for the i-the agent is
assumed. We require that > ∈ VTAi

(l) for each l ∈ Li. The
(global) valuation function VTA : L → 2PV for the parallel
composition is defined by VTA((l1, . . . , lm)) =

Sm
i=1 VTAi

(li).
Given this, a real time interpreted system is defined as fol-
lows.

Definition 4. A real time interpreted system is a tuple
M = (Q, q0,→,∼1, . . . ,∼m,V), where

• Q, q0, and → are defined as in the definition of the
dense state space for TA.

• ∼i ⊆ Q × Q is an (accessibility) relation defined by
(l, v) ∼i (l′, v′) iff li((l, v)) = li((l

′, v′)) and v ' v′, for
each agent i. Obviously ∼i is an equivalence relation.

• V : Q→ 2PV is a valuation function that extends VTA

as follows V((l, v)) = VTA(l).

In the above definition the notion of ∼i requires an expla-
nation. Two states (l, v), (l′, v′) ∈ Q are in the accessibility
relation for an agent i if their i-local states are the same and
in addition their clock valuations v and v′ are elements of
the same zone. The latter condition seems to be the weakest
one, which can be imposed in our framework.

3. THE LOGIC TECTLK
We now introduce TECTLK, a logic for knowledge and

real time. This extends TECTL [1] by means of epistemic
operators.

3.1 Syntax
Let PV be a set of propositional variables containing the

symbol >, AG a set of m agents, and I an interval in IR
with integer bounds of the form [n, n′], [n, n′), (n, n′], (n, n′),
(n,∞), and [n,∞), for n, n′ ∈ IN. Let p ∈ PV,i ∈ AG, and
Γ ⊆ AG, the set of TECTLK formulas is defined by the
following grammar:

ϕ := p | ϕ ∧ ϕ | ϕ ∨ ϕ | E(ϕUIϕ) | E(ϕRIϕ) |
Kiϕ | DΓϕ | CΓϕ | EΓϕ

The other basic temporal modalities are defined as usual:

⊥
def
= ¬>, EGIϕ

def
= E(⊥RIϕ), EFIϕ

def
= E(>UIϕ). More-

over, α → β
def
= ¬α ∨ β.

Note that TECTLK is a subset of the fusion [5] of the
two underlying logics TCTL and S5 for the knowledge op-
erators. Obviously, defining the full fusion would not be
problematic [25] but we use a fragment because it is more
suited for the model checking method that we use later.

3.2 Semantics
Let AG be a set of m agents, where each agent is mod-

elled by a timed automaton TAi = (Zi, Li, l
0
i , Ei,Xi, Ii),

for i = 1, . . . ,m, TA = (Z, L, l0, E,X, I) be their paral-
lel composition, and M = (Q, q0,→,∼1, . . . ,∼m,V) be a

real time interpreted system. Moreover, let ρ = q0
δ0→ q0 +

δ0
a0→ q1

δ1→ q1 + δ1
a1→ q2

δ2→ . . . be a run of TA such
that δi ∈ IR+ for i ∈ IN, and let fTA(q0) denote the set
of all such q0-runs of TA. In order to give a semantics
to TECTLK, we introduce the notation of a dense path
πρ corresponding to run ρ. A dense path πρ correspond-
ing to ρ is a mapping from IR to a set of states Q1, such
that πρ(r) = si + δ for r = Σij=0δj + δ with i ∈ IN and
0 ≤ δ < δi. Moreover, we define the following epistemic
relations: ∼EΓ =

S

i∈Γ ∼i, and ∼CΓ = (∼EΓ)+ (the transitive

closure of ∼EΓ), and ∼DΓ =
T

i∈Γ ∼i, where Γ ⊆ AG.

Definition 5 (Satisfaction). Let M = (Q, q0,→,
∼1, . . . ,∼m,V) be a real time interpreted system such that
the set Q contains reachable states2 only. M, q |= α denotes
that α is true at state s in the model M . M is omitted, if
it is implicitly understood. The satisfaction relation |= is
defined inductively as follows:
q0 |= p iff p ∈ V(q0),
q0 |= ¬p iff p /∈ V(q0),
q0 |= ϕ ∨ ψ iff q0 |= ϕ or q0 |= ψ,
q0 |= ϕ ∧ ψ iff q0 |= ϕ and q0 |= ψ,
q0 |= E(ϕUIψ) iff (∃ ρ ∈ fTA(q0))(∃r ∈ I)[πρ(r) |= ψ and

(∀r′ < r) πρ(r
′) |= ϕ],

q0 |= E(ϕRIψ) iff (∃ ρ ∈ fTA(q0))(∀r ∈ I)[πρ(r) |= ψ or
(∃r′ < r) πρ(r

′) |= ϕ],
q0 |= Kiα iff (∃q′ ∈ Q)(q0 ∼i q

′ and q′ |= α),
q0 |= DΓα iff (∃q′ ∈ Q)(q0 ∼DΓ q′ and q′ |= α),
q0 |= EΓα iff (∃q′ ∈ Q)(q0 ∼EΓ q′ and q′ |= α),
q0 |= CΓα iff (∃q′ ∈ Q)(q0 ∼CΓ q′ and q′ |= α).

A TECTLK formula ϕ is satisfiable iff there exists a real
time interpreted system M = (Q, q0,→, ∼1, . . . ,∼m,V) and
a state q of M , such that M, q |= ϕ. A TECTLK formula ϕ
is valid in M (denoted M |= ϕ) iff M, q0 |= ϕ, i.e., ϕ is true
at the initial state of the model M ; checking validity given
M and ϕ is called the model checking problem.

Note that the “full” logic of real time TCTL is undecid-
able [1]. Since real time interpreted systems can be shown
to be as expressive as the TCTL-structure of a time graph in
[1], and the fusion [5] between TCTL and S5 for knowledge
is a proper extension of TCTL, it follows that problem of
satisfiability for the full fusion is also undecidable. Still, the
decidability of TECTL is not known; if TECTL were decid-
able, it would be straightforward to show that TECTLK is
also decidable on real time interpreted systems. In fact, we
do not have decidability results for the satisfiability prob-
lem for TECTLK but for our application purposes we are
interested in the model checking problem for TECTLK, and
this can be shown to be decidable (Lemma 1).

Lemma 1. Given a real time interpreted system Md and
a TECTLK formula ϕ, there is a decision procedure for
checking whether or not Md satisfies ϕ.

Proof Sketch. Construct the region graph as in [1], and
extend it by taking the epistemic relation ∼i as defined in
Definition 4. The proof in [1] can now be extended to the
full TECTLK syntax.

1This can be done because of the assumption that δi ∈ IR+.
2A state s ∈ Q is reachable if there is a q0−run ρ such that
there exists a state in ρ equal to s.

4. TECTLK BOUNDED MODEL
CHECKING

Bounded model checking (BMC) is one of the SAT-based
(satisfiability checking) methods, and it was introduced as a
technique complementary to the BDD-based symbolic model
checking for LTL [4]. The main idea of BMC is to search for
an execution (or a set of executions) of the system of some
length k, which constitutes a counterexample for a tested
property. If no counterexample of length k can be found,
then k is incrementally increased by one until it reaches the
size of the model. The efficiency of this method is based
upon the observation that if a system is faulty, then often
only a (small) fragment of its state space is sufficient for
finding an error. Obviously, when testing large models and
complex formulas the efficiency of the BMC method is de-
pendent on the speed of the chosen SAT solver, on which
the test is carried out. As SAT checkers have been progres-
sively becoming more effective, the efficiency of BMC has
improved, an observation experimentally demonstrated in,
among others, [4, 14, 18, 19].

To perform Bounded Model Checking on TECTLK we
proceed by extending the technique employed for TCTL [17]
and ECTLK [16]: first we discretise real time interpreted
system; second we translate the model checking problem
from TECTLK to another logic, called ECTLKy; third we
define BMC for ECTLKy.

4.1 Discretisation
Let AG be a finite set of agents, where each agent is mod-

elled by a timed automaton, TA = (Z, L, l0, E,X , I) be their
parallel composition, VTA be a valuation function for TA, ϕ
be a TECTLK formula, and M = (Q, q0,→,∼1, . . . ,∼m,V)
be the real time interpreted system for TA. The discretisa-
tion scheme [27] consists in representing zones by one or
more (but finitely many) specially chosen representatives.
Formally, we proceed as follows.

First, a discretisation step is chosen. Here we take ∆ =
1/d, where d = 2dlog2(2|X|)e. Note that we could take a dif-
ferent discretisation step (see [10] for a “survey”), but we
have chosen this one because it preserves time successors
for clock valuations. This property is important, because
it allows us to represent the time successor in a straight-
forward way, and makes its the Boolean encoding feasible.
The chosen step does not preserve the action successors, but
this is not problematic. A discretised clock space is defined
as D

|X| = {k∆ | 0 ≤ k∆ ≤ 2cmax(ϕ) + 2, k ∈ IN}|X|, where
cmax(ϕ) is the largest constant appearing in C(TA) and in
any timed interval in ϕ. In other words, the clocks can-
not go beyond 2cmax(ϕ)+2; this is because while evaluating
TECTLK formula ϕ over timed automata we do not need
to distinguish between clock valuations above cmax(ϕ) + 1.
Therefore, the maximal values of time delays can be re-
stricted to cmax(ϕ)+1, and the set of values that can change
a valuation in a zone can be defined as E = {k∆ | 0 ≤

k∆ < cmax(ϕ) + 1}. To make sure that the above two defi-
nitions can be applied we will guarantee below that before
any time transition the value of every clock does not exceed
cmax(ϕ) + 1 (this is obtianed by ”adjust” transitions).

Next, a subset U ⊆ D
|X| is taken that preserves time de-

lays by insisting that either the values of all the clocks in
v ∈ U are only even or only odd multiplications of ∆. To
preserve action successors we will later use “adjust” tran-

3 4210

1/2

2

1

3

4

1/2

Figure 2: The discretised clock space for two clocks,
and a TECTLK fromula ϕ with cmax(ϕ) = 1. The
square points are the elements of the set U while the
circled and square points together are the elements
of the set D

2.

sitions (see Figure 2 for an example of a discretised clock
space).

Definition 6. A discretised interpreted system is a struc-
ture Md = (Sd, s

0,→d,∼
d
1, . . . ,∼

d
m,Vd), where Sd = L × U,

s0 = (l0, v0) is the initial state, and the relation →d ⊆
Sd × (Z ∪ {τ}) × Sd is defined by:

1.) Time successor: (l, v)
τ
→d (l, v′) iff (l, v)

δ
→;

ε
→ (l, v′)

for some δ ∈ E \ {0}, and (∀δ′ ≤ δ)(v′ + δ′ ' v or
v′ + δ′ ' v′)], and if v ' v′, then v ' v′ + δ′′ for each
δ′′ ∈ E \ {0}, where

(l, v)
ε
→ (l, v′) iff v′ ∈ U, (∀x ∈ X)(v′(x) ≤ cmax(ϕ) +

1), and v ' v′ (adjust transition)

2.) Action successor: (l, v)
a
→d (l′, v′) iff (l, v) is not bound-

ary3 and [(l, v)
a
→;

ε
→ (l′, v′) or (l, v)

τ
→d;

a
→;

ε
→ (l′, v′)],

for a ∈ Z.
The accessibility relation ∼d

i =∼i ∩(Sd×Sd), for i ∈ AG,
where ∼i is the accessibility relation in M . The valuation
function Vd : Sd → 2PV is given by Vd((l, v)) = VTA(l).

For an intuition in the above, consider a region as a pair
(l, Z) for a location l ∈ L and a zone Z. A time succes-
sor represents a move to the time successor region, which
clearly shares the same location. In order to make sure that
valuations of the clocks do not go beyond 2cmax(ϕ) + 2 and
before any transition the value of every clock does not ex-
ceed cmax(ϕ) + 1, we adjust each time successor transition
by an ε-move. An action successor represents a move by an
action transition (adjusted by an ε-move in order to stay in
U) taken from a non-boundary region and possibly preceded
by the time successor step. Note that an action successor
cannot be taken from a boundary region to make sure that
there are no two consecutive action successor steps in a run.

3A state (l, v) is boundary if for any δ ∈ {k∆ | 0 < k∆ < 1},
it is not the case that (v ' v + δ).

4.2 Translation from TECTLK to ECTLKy

In general, the model checking problem for TECTL can
be translated into the model checking problem for a fair
version of ECTL [1]. Since here we have assumed that we
deal with progressive timed automata only, to extend the
procedure of [1] to TECTLK, we introduce slightly different
logic ECTLKy, as presented below.

The idea is as follows. Let AG be a finite set of agents
modelled by timed automata, TA be their parallel composi-
tion, VTA a valuation function, and ϕ a TECTLK formula.
First, we extend TA with a new clock (denoted by y), an
action, and transitions to obtain an automaton TAϕ. The
clock y corresponds to all the timing intervals {I1, . . . , Ir}
appearing in ϕ, and special transitions are used to reset the
new clock. These transitions are used to start the runs over
which subformulas of ϕ are checked. We then construct the
discretised interpreted system for TAϕ and augment its val-
uation function with the set of propositional variables which
contains a new proposition py∈Ii for every interval Ii appear-
ing in ϕ, and a new proposition pb representing that a state
is boundary. Finally, we translate the TECTLK formula
ϕ into an ECTLKy formula ψ = cr(ϕ) such that model
checking of ϕ over the discretised interpreted system for TA
can be reduced to model checking of ψ over the discretised
interpreted system for TAϕ.

We follow [17] for the first two steps of the translation
and we refer to it for more details; here we focus on the final
step.

In order to translate a TECTLK formula ϕ into the corre-
sponding ECTLK formula ψ we need to modify the ECTLK
language into ECTLKy by reinterpreting the next-time op-
erator, denoted now by Xy. This language is interpreted over
discretised interpreted system for TAϕ. The modality Xy is
interpreted only over the new transitions that reset the new
clock y4, whereas the other operators are interpreted over
all other old transitions. Formally, for p ∈ PV, i ∈ AG and
Γ ⊆ AG, the set F of ECTLKy formulas is defined by the
grammar:

α := p | ¬p | α ∧ α | α ∨ α | Xyα | E(αUα) |
E(αRα) | KΓα | DΓα | CΓα | EΓα

The satisfaction relation |= for ECTLKy formulas is de-
fined as the corresponding satisfaction relation for ECTLK
formulas [16]. It only differs in the operator Xy, which is
defined as follows:

Md, (l, v) |= Xyα iff Md, (l, v[{y} := 0]) |= α.

The TECTLK formula ϕ is translated inductively into
the ECTLKy formula cr(ϕ) as follows:

• cr(p) = p for p ∈ PV ′,

• cr(¬p) = ¬cr(p) for p ∈ PV ′,

• cr(α ∨ β) = cr(α) ∨ cr(β),

• cr(α ∧ β) = cr(α) ∧ cr(β),

• cr(Kiα) = Kicr(α),

• cr(Diα) = Dicr(α),

• cr(Eiα) = Eicr(α),

• cr(Ciα) = Cicr(α),

• cr(E(αUIiβ)) = Xy(E(cr(α)U(cr(β) ∧ py∈Ii ∧ γ))),

• cr(E(αRIiβ)) = Xy(E(cr(α)R(¬py∈Ii ∨ (cr(β)∧ γ))))),

4These transitions can be executed from the boundary re-
gions.

where γ = pb ∨ cr(α).
The following lemma shows that validity of the TECTLK

formula ϕ over the real time interpreted system for TA is
equivalent to the validity of the corresponding ECTLKy for-
mula cr(ϕ) over the discretised interpreted system for TAϕ

with the extended valuation function.

Lemma 2. M |= ϕ iff Md |= cr(ϕ), for each TECTLK
formula ϕ.

Proof. The proof follows directly from Lemma on Cor-
rectness of the labelling algorithm of [1], Theorem 4.1 of [27]
for TECTL part of TECTLK, and from the definition of
the relation ∼i for the epistemic part of TECTLK.

Next, we show a BMC method for ECTLKy over discre-
tised interpreted system. Since we have defined a translation
from TECTLK to ECTLKy, we obtain a BMC method for
TECTLK.

4.3 ECTLKy Bounded Model Checking
Consider a discretised interpreted system Md = (Sd, s

0,
→d,∼

d
1, . . . ,∼

d
m,Vd), an ECTLKy formula ψ = cr(ϕ), where

ϕ is a TECTLK formula, and a bound k ∈ IN+. The main
idea of BMC for ECTLKy consists in translating the model
checking problem of an ECTLKy formula into the prob-
lem of satisfiability of a propositional formula [Md, ψ]k =

[Mψ,s0

d]k ∧ [ψ]0,0k . The way we interpret this translation for
ECTLKy is a combination of the techniques presented in
[16, 17], i.e., BMC for ECTLK and BMC for ECTLy. The
translation is based on k−bounded semantics for ECTLKy,
which is defined as follows.

Let us denote by →TA the part of →d, where transitions
are labelled with elements of Z ∪ {τ}, and by →y the tran-
sitions that reset the clock y. Then, a path π in Md is a
sequence (s0, s1, . . .) of states such that si →TA si+1 for
each i ∈ IN. A path of length k is called k−path, and the set
of all the k-paths starting at s in Md is denoted by Πk(s).
Furthermore, let α, β be ECTLy subformulas of ψ, k ∈ IN+

be a bound, then (Md, k), s |= α denotes that α is true at the
state s of Md with the bound k. (Md, k) is omitted if it is
clear from the context. The relation |= is defined inductively
as follows:
s |= p iff p ∈ Vd(s)
s |= ¬p iff p 6∈ Vd(s),
s |= α ∨ β iff s |= α or s |= β,
s |= α ∧ β iff s |= α and s |= β,
s |= Xyα iff ∃s′ ∈ S (s→y s

′ and s′ |= α),
s |= Kiα iff ∃π∈Pk(s0)∃0≤j≤k(π(j) |= α and s ∼i π(j)),

s |= DΓα iff ∃π∈Pk(s0)∃0≤j≤k(π(j) |= α and s ∼DΓ π(j)),

s |= EΓα iff ∃π∈Pk(s0)∃0≤j≤k(π(j) |= α and s ∼EΓ π(j)),

s |= CΓα iff ∃π∈Pk(s0)∃0≤j≤k(π(j) |= α and s ∼CΓ π(j)),
s |= E(αUβ) iff ∃π∈Πk(s)∃0≤j≤k(π(j) |= β and

∀0≤i<j π(i) |= α),
s |= E(αRβ) iff ∃π∈Πk(s)(∃0≤j≤k(π(j) |= α and

∀0≤i≤j π(i) |= β)) or (∀0≤j≤k π(j) |= β
and ∃0≤i≤kπ(k) →TA π(i)).

The first conjunct of [Md, ψ]k represents all the possible
submodels of Md which consist of fk(ψ) k−paths of Md.
The function fk gives a bound for the number of k-paths in
the submodel Mk of Md such that the validity of ψ in Mk

(i.e., validity in Md with the bound k) is equivalent to the
validity of ψ in Md. The function fk : F → IN is defined by:

• fk(p) = fk(¬p) = 0, where p ∈ PV,

• fk(Xyα) = fk(α),

• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(α ∧ β) = fk(α) + fk(β),
• fk(E(αUβ)) = k · fk(α) + fk(β) + 1,
• fk(E(αRβ)) = k · fk(β) + fk(α) + 1,

• fk(Y α) = fk(α) + 1, for Y ∈ {Ki,DΓ,EΓ},
• fk(CΓα) = fk(α) + k.

The second conjunct of [Md, ψ]k encodes a number of con-
straints that must be satisfied on the submodel Mk of Md,
which consists of all the k-paths of Md, for ψ to be satisfied.
Once this translation is defined, checking satisfiability of an
ECTLKy formula can be done by means of a SAT-checker.

Let us assume that each state s of the discretised inter-
preted system Md is encoded by a bit-vector whose length,
say b, depends on the number of locations, the number of
clocks, the discretisation step, and cmax(ϕ). So, each state
s of Md can be represented by a vector w = (w[1], . . . , w[b])
(called global state variable), where each w[i], for i = 1, . . . , b,
is a propositional variable (called state variable). A finite se-
quence (w0, . . . , wk) of global state variables is called a sym-
bolic k-path5 . Moreover, we assume familiarity with basic
BMC contributions as the definitions of propositional for-
mulas Is(w), p(w), H(w,w′), R(w,w′), and Ry(w,w′) as
defined in [17], while for the propositional formula Hi repre-
senting logical equivalence between local state encodings of
agent i we take the following definition: Hi(w,w

′) is a for-
mula over two global state variables w = (l, v), w′ = (l′, v′),
which is true for valuations sl of l, sl′ of l′, sv of v, and sv′

of v′ iff li(sl) = li(sl′) and sv ' sv′ .
The propositional formula [Md, ψ]k is defined over state

variables w0,0, wn,m, for 0 ≤ m ≤ k and 1 ≤ n ≤ fk(ψ) + r
6;

note that the index n denotes the number of a symbolic
path, whereas the index m the position at that path. The
formal definition of its first conjunct is the following:

[Mψ,s0

d]k := Is0 (w0,0) ∧

fk(ψ)
^

n=1

k−1̂

m=0

R(wm,n, wm+1,n)

Let H = H(wm,n, w0,i), Hl = Hl(wm,n, wj,i). The second

conjunct of [Md, ψ]k, i.e., the formula [ψ]
[0,0]
k is defined as

follows.
[p]

[m,n]
k := p(wm,n),

[¬p]
[m,n]
k := ¬p(wm,n),

[α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k ,

[α ∨ β]
[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

[E(αUβ)]
[m,n]
k :=

Wfk(ψ)
i=1 (H ∧

Wk
j=0([β]

[j,i]
k ∧

Vj−1
l=0 [α]

[l,i]
k)),

[E(αRβ)]
[m,n]
k :=

Wfk(ψ)
i=1 (H ∧ (

Wk
j=0([α]

[j,i]
k ∧

Vj
l=0[β]

[l,i]
k)

∨
Vk
j=0[β]

[j,i]
k ∧

Wk
l=0 R(wk,i, wl,i))),

[Xyα]
[m,n]
k :=

Wr
j=1(Ry(wm,n, w0,fk(ψ)+j) ∧ [α]

[0,fk(ψ)+j]
k),

[Klα]
[m,n]

k :=
Wfk(ψ)
i=1 (Is0(w0,i) ∧

Wk
j=0([α]

[j,i]
k ∧Hl)),

[DΓα]
[m,n]

k :=
Wfk(ψ)
i=1 (Is0(w0,i) ∧

Wk
j=0([α]

[j,i]
k ∧

V

l∈ΓHl)),

[EΓα]
[m,n]

k :=
Wfk(ψ)
i=1 (Is0(w0,i) ∧

Wk

j=0([α]
[j,i]
k ∧

W

l∈ΓHl)),

[CΓα]
[m,n]

k := [
Wk
i=1(EΓ)iα]

[m,n]
k .

We now have the encoding.

5In general we shall need to consider not just one but a
number of symbolic k-paths. This number depends on the
formula ψ under investigation, and it is returned as the value
fk(ψ) of the function fk.
6Recall that r is the number of the non-trivial intervals in
ϕ, where ψ = cr(ϕ).

Theorem 1. Let Md be a discretised interpreted system,
and ψ an ECTLKy formula. Then, Md |= ψ iff there exists

k ∈ IN+ such that [ψ]0,0k ∧ [Mψ,s0]k is satisfiable.

5. RAILROAD CROSSING SYSTEM
Train

t3 t2

t1t0

p

x1 ≤ 500

x1 ≤ 500x1 ≤ 500

approach

x1 := 0

in

x1 ≥ 300

out

exit

x1 ≤ 500

Gate

g3 g2

g1g0

x2 ≤ 100

x2 ≤ 200

lower

x2 := 0

down

x2 ≤ 100

q

x2 := 0

raise

up
100 ≤ x2 ≤ 200

Controller

c3 c2

c1c0

x3 ≤ 100

approach

x3 := 0

lower

x3 = 100

x3 ≤ 100 x3 := 0

exit

raise

x3 ≤ 100

Figure 3: Timed Automata for Train, Gate, and
Controller

The railroad crossing system (RCS) [13] is a well-known
example in the literature of real-time verification. Here we
not only check temporal properties but epistemic ones as
well. The system consists of three agents, Train, Gate and
Controller, as shown in Figure 3, which run in parallel and
synchronize through the events: approach, exit, lower and
raise. When a train approaches the crossing, Train sends
an approach signal to Controller and enters the crossing be-
tween 300 and 500 seconds from this event. When Train
leaves the crossing, it sends an exit signal to Controller.
Controller sends a signal lower to Gate exactly 100 seconds
after the approach signal is received, and sends a raise signal
within 100 seconds after exit. Gate performs the transition
down within 100 seconds of receiving the request lower, and
responds to raise by moving up between 100 and 200 sec-
onds.

We assume the following set of propositions: PV = {p, q}
with PVTrain = {p}, and PVGate = {q}, and denote by
L1, L2, L3 sets of locations for Train, Gate, and Controller
respectively. The valuation functions for Train (VTrain),
Gate (VGate), and Controller (VCont) are shown on Fig-
ure 3. The valuation function VRCS : L1 × L2 × L3 → 2PV

for the parallel composition, i.e., RCS system, is defined
by VRCS(l) = VTrain(l1) ∪ VGate(l2) ∪ VCont(l3), for all
l = (l1, l2, l3) ∈ L1 × L2 × L3.

As an example, let us verify whether there exists a be-
haviour of RCS such that agent Train considers possible a
situation in which both it sends an approach signal and agent
Gate does not send the signal down within 50 seconds. This
property can be formalised by the following TECTLK for-
mula: ϕ := EF[0,∞]KTrain(p ∧ EF[0,50](¬q)).

According to the BMC algorithm for TECTLK, presented
in the previous section, to perform BMC for the RCS sys-

tem and property ϕ, first, all the states of the discretised
interpreted system Md for RCS with the additional clock y
have to be represented by bit vectors. To do this we have to
encode all the possible configurations in terms of both the
locations, and the clock valuations of the RCS system.

Assume that we have the following bit representation of
local locations; for Train we take t0 = (0, 0), t1 = (0, 1),
t2 = (1, 0), and t3 = (1, 1), for Gate g0 = (0, 0), g1 = (0, 1),
g2 = (1, 0), and g3 = (1, 1), and for Controller c0 = (0, 0),
c1 = (0, 1), c2 = (1, 0), and c3 = (1, 1). So, the (global)
locations of the RCS system have the following encoding:
t1 × g0 × c1 = (0, 1; 0, 0; 0, 1), t1 × g0 × c1 = (0, 1; 0, 0; 0, 1),
t1 × g1 × c2 = (0, 1; 0, 1; 1, 0), etc. In other words we need 6
state variables (l[0], . . . , l[6]) to encode all the possible con-
figuration of locations of the RCS system.

In order to encode all the ”important” clock valuations of
RCS, we have to encode the valuations in D = {k · ∆ | 0 ≤
k · ∆ ≤ 1002} for the clocks: x1, x2, x3, y by means of the
discretisation step ∆ = 1

8
, and cmax(ϕ) = 500. Note that

to do this, it is sufficient to encode the integral parts of the
valuations, and the numerators of the fractional parts. It is
easy to see that we need 13 state variables to encode all the
clock valuations for one clock, and respectively 4 · 13 state
variables (v[0], . . . , v[51]) to encode all the clock valuations
for 4 clocks. So, the global state variable for the RCS sys-
tem is the following: w = ((l[0], . . . , l[5]), (v[0], . . . , v[51])) =
(w[0], . . . , w[57]).

In so doing, the transition relation of Md has to be en-
coded by a Boolean formula, and cr(ϕ) = Xy(EF (KTrain(p∧
Xy(EF(¬q∧py∈[0,50]∧ (pb∨>)))∧ (pb∨>))) has to be trans-
lated over all the possible fk(cr(ϕ)) = 3 submodels of Md.

To proceed with the translation of the transition relation
of Md, the first thing we need to translate is the initial
state s0 = ((t0, g0, c0), v0) of RCS, where s0 is represented
by the binary of 58 0’s. With the representation above this
will be encoded by the propositional formula Is0(w0,0) =
V57
i=0 ¬w0,0[i]. The next step is to translate the transitions

R(wi,j , wi+1,j), for i = 0, 1, 2 and j = 1, 2, 3. For simplicity
we report only on the formula R(w0,1, w1,1) representing
the first transition of the first path7. Let us consider the
transition [(t0, g0, c0), (0, 0, 0, 0)]

τ
→ [(t0, g0, c0), (1

4
, 1

4
, 1

4
, 1

4
)]

of our counterexample. The corresponding formula is:

R(w0,1, w1,1) :=
V5
i=0(¬w0,1[i]∧ ¬w1,1[i])∧

V57
i=6 ¬w0,1

∧
V15
i=6 ¬w1,1 ∧

V18
i=16 w1,1 ∧

V28
i=19 ¬w1,1

∧
V31
i=29 w1,1 ∧

V41
i=32 ¬w1,1 ∧

V44
i=42 ¬w1,1∧

V54
i=45 ¬w1,1

∧
V57
i=55 ¬w1,1.

In order to encode the whole example we should model all
the transitions for all the k’s starting from k := 1. We do
not do it here.

To encode the translation of cr(ϕ), first we need to encode
the propositions used in cr(ϕ). This is p(w) := (¬w[0] ∧
w[1]), which means that p holds at all the global states with
the first local locations equal to (0, 1), and q(w) := (w[4] ∧
¬w[5]), which means that q holds at all the global states
with the third local locations equal to (1, 0). To encode

7Note that the counterexample for the tested property can
be found on the depth k = 2, i.e., it is of the following form:

[(t0, g0, c0), (0, 0, 0, 0)]
τ
→ [(t0, g0, c0), (1

4
, 1

4
, 1

4
, 1

4
)]

approach
→

[(t1, g0, c1), (1
4
, 1

4
, 1

4
, 1

4
)]. So, one symbolic k−path is suffi-

cient to check validity of ϕ over the discretised model for
RCS, although the value of fk(ϕ) is 3.

pb(w), we have to encode all the clock valuations v of RCS
such that ∀δ ∈ {k∆ | 0 < k∆ < 1} it is not the case that
(v ' v + δ). Note that this condition holds if at least one
of the clocks is in integer, i.e., its fractional part is equal to
zero. So,

pb(w) := (¬w[10] ∧ ¬w[11] ∧ ¬[12]) ∨ (¬w[23] ∧ ¬w[24] ∧
¬[25])∨(¬w[35]∧¬w[36]∧¬[37])∨(¬w[49]∧¬w[50]∧¬[51]).

To give the translation of the proposition py∈[0,50](w), as-
sume that the following definition of propositional formulas
are given. For the vectors of state variables a = (a[1], . . . , a[t])
and b = (b[1], . . . , b[t]) we define:

• eq(a, b)
def
=

Vt
i=1 a[i] ⇔ b[i],

• ge(a, b)
def
=

Wt
i=1

`

a[i] ∧ ¬b[i] ∧
Vt
j=i+1 a[j] ⇔ b[j]

´

,

• geq(a, b)
def
= eq(a, b) ∨ ge(a, b),

• le(a, b)
def
= ¬geq(a, b).

Then, for 0 := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), and 50 := (0, 0, 0, 0,
1, 1, 0, 0, 1, 0), we define py∈[0,50](w) as follows:

py∈[0,50](w)
def
= geq((w[44], . . . , w[54]), 0) ∧

[le((w[44], . . . , w[54]), 50) ∨ (eq((w[44], . . . , w[54]), 50) ∧
V57
i=55 ¬w[i])]

In so doing, it is sufficient to unfold the formula [cr(ϕ)]0,0k ,
for k = 1, 2, . . ., according to the definition on page .

Checking that the RCS system satisfies the TECTLK for-
mula above can now be done by feeding a SAT solver with
the propositional formula generated by this method. This
would produce a solution, thereby proving that the propo-
sitional formula is satisfiable.

6. RELATED WORK AND CONCLUSIONS
BMC was initially developed for the verification of reac-

tive systems, and then extended for real time systems [3,
19, 27] and MAS [14, 16, 26]. In particular, BMC has been
extended to ACTL? [24], TACTL [19], and ACTLKD [26].
In this paper we have tried to combine these directions and
have applied BMC to a new logic that combines real time
and knowledge. In addition, there is no obstacle to extend
the method presented here to handle an extension of the
logic that includes operators representing correct function-
ing behaviour. We can do this in the same way as in [26].

The main point that we wished to bring across here is
that the line of work of the past few years that defines
model checking on combinations of discrete time tempo-
ral logics (like LTL or CTL) with epistemic operators can
be extended to real time. Combinations of real time and
knowledge have been defined previously [7, 15] but to our
knowledge no verification mechanism has ever been defined
onn them. To solve the difficulty of dense time, we have em-
ployed discretisation on equal intervals, already employed in
[19, 27]. It is worth noting that intervals with length could
be also used in principle. To do so one would have to encode
more information (the maximum value of each clock, differ-
ent lengths of bit-vectors that encode the integral parts of
values of the clock, etc.), and as a result any implementation
of the method would suffer in terms of speed.

Like every SAT-based approach the size of formulas pro-
duced in the translation can be large, as the example of the
paper demonstrates. To evaluate its effectiveness in practi-
cal application, we are currently investigating implementing
the method and performing experimental results. We are

encouraged that implementations of other BMC-based tools
[14, 19, 18] showed largely positive results. We are therefore
hopeful that the technique of this paper, once implemented,
will produce comparably fast results.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking

in dense real-time. Information and Computation,
104(1):2–34, 1993.

[2] R. Alur and D. Dill. Automata for modelling real-time
systems. In Proc. of ICALP’90, volume 443 of LNCS,
pp. 322–335. Springer-Verlag, 1990.

[3] G. Audemard, A. Cimatti, A. Kornilowicz, and
R. Sebastiani. Bounded model checking for timed
systems. In Proc. of FORTE’02, volume 2529 of
LNCS, pp. 243–259. Springer-Verlag, 2002.

[4] A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu.
Symbolic model checking using SAT procedures
instead of BDDs. In Proc. of DAC’99, pp. 317–320,
1999.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

[6] R. H. Bordini, M. Fisher, C. Pardavila, and
M. Wooldridge. Model checking agentspeak. In Proc.
of AAMAS’03, pp. 409–416. ACM Press, 2003.

[7] R. I. Brafman, J. C. Latombe, Y. Moses, and
Y. Shoham. Application of a logic of knowledge to
motion planning under uncertainty. Journal of ACM,
44(5), 1997.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, 1999.

[9] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. The MIT Press,
Cambridge, 1995.

[10] A. Göllü and A. Puri and P. Varaiya. Discretization of
Timed Automata. In Proc. of CDC’94, pp. 957–958,
1994.

[11] J. Y. Halpern and M. Y. Vardi. The complexity of
reasoning about knowledge and time 1: lower bounds.
Journal of Computer and System Sciences,
38(1):195–237, 1989.

[12] W. van der Hoek and M. Wooldridge. Model checking
knowledge and time. In Proc. of SPIN’02, 2002.

[13] I. Kang and I. Lee. An efficient state space generation
for analysis of real-time systems. In Proc. of ISSTA
’96, pp. 4–13. ACM Press, 1996.

[14] A. Lomuscio, T. Lasica, and W. Penczek. Bounded
model checking for interpreted systems: preliminary
experimental results. In Proc. of FAABS II, volume
2699 of LNCS. Springer Verlag, 2003.

[15] Y. Moses and B. Bloom. Knowledge, timed precedence
and clocks. In Proc. of PODC ’94, pp. 274–303. ACM
Press, 1994.

[16] W. Penczek and A. Lomuscio. Verifying epistemic
properties of multi-agent systems via bounded model
checking. Fundamenta Informaticae, 55(2):167–185,
2003.

[17] W. Penczek and A. Pólrola. Specification and model
checking of temporal properties in time Petri nets and
timed automata. In Proc. of ATPN’04, volume 3099 of
LNCS, pp. 37–76. Springer-Verlag, 2004.

[18] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded
model checking for the universal fragment of CTL.
Fundamenta Informaticae, 51(1-2):135–156, 2002.

[19] W. Penczek, B. Woźna, and A. Zbrzezny. Towards
bounded model checking for the universal fragment of
TCTL. In Proc. of FTRTFT’02, volume 2469 of
LNCS, pp. 265–288. Springer-Verlag, 2002.

[20] F. Raimondi and A. Lomuscio. Verification of
multiagent systems via ordered binary decision
diagrams: an algorithm and its implementation. In
Proc. of AAMAS’04, volume II. ACM, July 2004.

[21] S. Tripakis and S. Yovine. Analysis of timed systems
using time-abstracting bisimulations. Formal Methods
in System Design, 18(1):25–68, 2001.

[22] W. van der Hoek and M. Wooldridge. Cooperation,
knowledge, and time: Alternating-time temporal
epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

[23] R. van der Meyden and H. Shilov. Model checking
knowledge and time in systems with perfect recall. In
Proc. of FST&TCS’99, volume 1738 of LNCS, pp.
432–445. Springer-Verlag, 1999.

[24] B. Woźna. Bounded Model Checking for the universal
fragment of CTL*. Fundamenta Informaticae,
63(1):65–87, 2004.

[25] B. Woźna and A. Lomuscio. A logic for knowledge,
correctness, and real time. In Proc. of CLIMA’04,
LNAI. Springer-Verlag, 2005. To appear.

[26] B. Woźna, A. Lomuscio, and W. Penczek. Bounded
model checking for deontic interpreted systems. In
Proc. of LCMAS’04, volume 126 of ENTCS, pp.
93–114. Elsevier, 2004.

[27] A. Zbrzezny. Improvements in SAT-based reachability
analysis for timed automata. Fundamenta
Informaticae, 60(1-4):417–434, 2004.

