Automatic verification of deontic interpreted systems by
model checking viaOBDD’s

Franco Raimondi! and Alessio Lomuscid

Abstract. We present an algorithm for the verification of multiagent Wooldridge et al. present the MABLE language for the spessific
systems specified by means of a modal logic that includesjpaealy tion of MAS. In this work, non-temporal modalities are trited
an epistemic, and a deontic operator. Verification is peréat by into nested data structures (in the spirit of [1]). Bordinak [2] use
model checking oroBDD's. We present an implementation of the a modified version of the AgentSpeak(L) language [17] to pec
algorithm and report on experimental results for the bitdéraission agents and to exploit existing model checkers. Both the svofiv.

problem with faults. Wooldridge et al. and of Bordini et al. translate the speaffan into
. a SPIN specification on which the verification step is perfedrby
1 Introduction means of existing tools. Effectively, the attitudes for #gents are

reduced to predicates, and the verification involves orgyt¢imporal
verification of those. In [8] a methodology is provided toniskate
a deontic interpreted system into SMV code, but the verificais
limited to static deontic and epistemic properties, i.e. thmporal
dimension is not present, and the approach is not fully syimbithe
works of van der Meyden and Shilov [12], and van der Meyden and
Su [13], are concerned with verification of interpreted egs. They
consider the verification of a particular class of interpdesystems,
namely the class of synchronous distributed systems witileqtere-
call. An algorithm for model checking is introduced in thesfipaper
using automata, and [13] suggests the us@BbD’s for this ap-
m proach, but no algorithm or implementation is provided.

In this paper, instead of relying on existing model checkers

In the last two decades, the paradigm of multiagent syst&AsS]

has been employed successfully in several fields, inclydorgex-

ample, philosophy, economics, and software engineering.@the
reasons for the use of MAS formalism in such different fieklthie
usefulness of ascribing autonomous and social behavidbetcom-
ponents of a system of agents. This allows uslistractfrom the
details of the components, and to focus onittteractionamong the
various agents.

Besidesabstractingand specifyingthe behaviour of a complex
system by means of MAS formalisms based on logic, recently re
searchers have been concerned with the problewefying MAS.
Namely, if we abstract a real system by means of the formatis
MAS, how can weverify formally that the system complies with

certain desired properties? Formal verification has beasstigated builg gpon the algoritgnr rqureslt(e.nted. in [1,6] to verify ?roi;ertﬁf
successfully in the field of software engineering. Typigaith soft- MAS by means of model checking v@spD's. In particular, in this

ware engineering we want to verify whether or not a systenaizes work we investigate the verification of epistemic properté MAS,
as it is supposed to. One of the most successful formal a a and of the “correct” behaviour of agents. Verification ofstpmic
to verification ismodel checkingln this approach, the systetto properties was preseljted ”,1 [16] arld motl\{ated by the I¢ageing
be verified is represented by means of a logical madel repre- neec_i to represent epistemic and_lnformatlonal states oaglgets.
senting the computational traces of the system, and thespisop But in comglexbsystems, rer? soning ; bzut th.(; gorre“(f:t mbmiumv
to be checked is expressed via a logical formpfa Verification via (as op§9§e lto € a\,/'?urSt at may Ie escr!de asll a Mm
model checking is defined as the problem of establishing hrenedr wante_) IS also crucial. As an example, consider a ¢ |e1ntfe§r n-
not Ms = ¢p. Various tools have been built to perform this task teraction in V\.’h'Ch a server fa|I§ t(.) respond as quickly gs BUp-
automatically, and many real-life scenarios have beeedest posed t,o to.cllents requests. This is aq unwanted bgha may,
Unfortunately, extending model checking techniques fenérifi- " certain circumstances, crash the client. In MAS it is asfble to
cation of MAS does not seem trivial. This is because modetking Impose hard-wired cpnstralnts in the ager?t?’ behavioues/ead all
tools are tailored to standard reactive systems, and dolloat for possible unwant_e_d situations: MOre promising seems o h&dw
the representation of the social interaction and the aumoos be- for some non-critical faulty behaviour to happen and tofyasinat

haviour of the agents. Specifically, traditional model dtieg tools proper.tles hold if this does or not dgeg happen. The purpbBeso
assume that/ is “simply” atemporalmodel, while MAS need more paper is to present a technique and its implementation Hoatsafor

complex formalisms. Typically, in MAS we want to reason abou the automatic verification of properties expressing theemness of

epistemic, intentional, and doxastic properties of agestsl their be_lt]ﬁwour? o;‘tarl]gents as .We” as t.helcri ep'?t?lm'c stlatess. tion 2
temporal evolution. Hence, the logical models required razieer € rest of the paper IS organised as Tollows. In Section zeve 1

than the temporal model used in traditional model checking. view _the fram’ework of (jeonnc |n_terpreted systems_and moletk-
various ideas have been put forward to verify MAS. In [18], M ing via 0BDD's. In Section 3 we introduce an algorithm for the ver-

' " ification of deontic interpreted systems. An implementatid the

1 Department of Computer Science, King's College London lamdJK algorithm is then discussed in Section 4. In Section 5 weot@sim-

email{franco,alessip@dcs.kcl.ac.uk. This research was partly supported plementation by means of an example: the bit transmissiobl@m
by EPSRC (grant GR/S49353/01) and the Nuffield Foundatioanty \yith faults. We conclude in Section 6
NAL/00690/G). ' '

2 Preliminaries DIS,gEp it g€V(p),
_ _ _ _ _ _ DIS,g = —¢ iff g e
In this section we briefly summarise the formalism of intetpd sys- DIS,gE=¢e1Ver iff gkE@iorg = e,
tems as presented in [5] to model a MAS, and its extensioratsomne DIS g=EXyp iff there exists a computation € II such
about correct behaviour as presented in [9]. After this, wefly ~ thatmo = gandm |~ ¢,
summarise the approach to model checkingogaD'’s. DIS,g = EGy iff there exists a computation < TI such
An interpreted system[5] is a semantic structure representing a _ thatmo = gandmi = ¢ Vi > 0,
system of agents. Each agért € {1,...,n}) is characterised by DIS,g | E(pUy) iff there exists a computatiom & II such
. . thatmo = g and ak > 0 such
a set of finitelocal statesL; and by a set of actiondct; that may thatm, = ¢ andr; = ¢
be performed. Actions are performed in compliance with aqual forall0 <i < k,
P L —>2ACt’?.A_\tupIeg: (li,...,ln) € L.l x...,Ln,yvh_ere DIS, g = Kip iff VQIEG,_gRiKg/ impliesg’ |= ¢
l; € L.i for egchi, is calleq aglobal stateand gives a descrllpygn at DIS,g = O iff Vg’ € G, gRP impliesg’ = ¢
a particular instance of time of the system. Given alsef initial DIS,q IA(ZJ " iff Vg eq, gRES anng]-Og’

global statesthe evolution of the system is describedrbgvolution impliesg’ =

functionst; (this definition is equivalent to the definition of a single | the definition aboverr; denotes the global state at plagen
evolution functionz as in [5]):¢; : L1 X ... x Ln x Act1 X ... X computationr. Other temporal modalities can be derived, namely
Actn — L. In this formalism, the environment in which agents 4x Er AF, AG, AU. We refer to [5, 9, 14] for more details.
“live” is usually modelled by means of a special agéhtwe refer to The problem ofmodel checkingcan be defined as establishing
[5] for more details. The sef, the functions; and the protocol$>; whether or not a model/ satisfies a formulg (M =). Though
generate a set afomputationgalso calleduns). Formally, a com- 7 could be a model for any logic, traditionally the problem afi-
putationr is a sequence of global states= (go, g1,...) such that g tools to perform model checking automatically has bewesti-
for each pair(g;, g;+1) € m, there exists a set of actionsenabled gated almost only foremporallogics [4, 7]. The model is usually
by the protocols such thafg;,a) = gj+1. G € (L1 X ... X Ln) yepresented by means of a dedicated programming language, s
denotes the set séachableglobal states in the MAS. asPROMELA[6] or smv [11]. The verification step avoids building
In [9] the notion ofcorrect behaviouof the agents is incorporated the model M explicitly from the program; instead, various tech-
in this formalism. This is done by dividing the set of localtsss into niques have been investigated to perfornsyanbolic representa-
two sets, a non-empty sét; of allowed (or “green”) states, and aset tjon of the model and the parameters needed by verificatigo- al
R; of disallowed (or faulty, or “red”) states, such that= Gi: URi, rithms. Such techniques are based on automata [6], ordémadyb
andG; N R; = 0. Given a setof agentd = {1,...,n} withcorre- gecision diagrams (0oBDD's [3]), or other algebraic structures.
sponding local states, protocols, and transition funetiarcountable These approaches are often referred tsyasbolic model checking
set of propositional variableB = {p, ¢, ...}, and a valuation func- techniques. The key idea of model checking temporal logaisqu
tion for the atoms) : P — 2¢, a deontic interpreted systems is a ogpp's is to represent the modef and all the parameters needed by
tuple DIS = (G, I,TI, Ry, ..., RY, Ri*, ..., Ry, V). Inthe above the algorithms by means of boolean functions. These bodlean
G is the finite set of reachable global states for the syster, G tjons can then be encoded @sbb’s, and the verification step can
is the set of initial states, arid is the set of possible computations perate directly on these. The verification is performeagidix-
in the systemR?, i € A, is a relation between global states defined point characterisation of the temporal logics operators.assume
by gRC g iff 1i(g") € Gi, i.e. if the local state of in g’ is a “green” some familiarity withospp-based symbolic model checking, and
state.R*,i € A, is defined by R;* g' iff 1:(g) = li(¢'), i.e.ifthe \ve refer to [3, 11] for more details. Using this techniquesteyns
local state of agentis the same iy and ing’. Some issues are re- \yith a state space in the region If*° have been verified.
lated to the generation of the reachable states in the sygitem a

set of protocols and transition relations; since they doimibtence . L.
this paper we do not report them here. 3 Model checking deontic interpreted systems

Deontic interpreted systems can be used to evaluate foenmHa
volving various modal operators. Besides the standardelaooton-
nectives, the language considered in [9] includes:

In this section we present an algorithm for the verificatifl@on-
tic, epistemic, and temporal modalities for MAS, extendimgwork
that appeared in [16]. Our approach is similar, in spiritte tra-
ditional model checking techniques for the logic CTL. Indewe
start by representing the various parameters of the sysyamelns
of boolean formulae. Then, we provide and algorithm basethisn
representation for the verification step. The whole tealmigses de-
ontic interpreted systems as its underlying semantics.

As boolean formulae are built using boolean variables, we be
gin by computing the required number of boolean variableseri-
code local states of an agent, the number of boolean vasiable
quired isnv(i) = [logz2|L:|]. To encode actions, the number of
variables required isa(i) = [log2|Act;|]. Hence, a global state

e A deontic operatoO;p [9], denoting the fact thatinder all the
correct alternatives for agent ¢ holds

e An epistemic operatoK; ¢ [5], whose meaning iagent: knows
©.

e A particular form of knowledge is also expressed via the afwer
IA{f [9]: this is the knowledge that an agertiason the assumption
that agent; is functioning correctly

We extend this language by introducing the following tenapap-
erators:EX (¢), EG(v), E(pU). Formally, the language we use

is defined as follows: g = (v1,...,vn) can be encoded by means df = zi:m;(z‘)
pu= pl-pleV SOA|JEX<P | EGo | E(eUe) | boolean variables, and a joint actian= (a.,...,ax) can be en-
Kip | Oip| K ¢ coded by means af/ =) na(i) boolean variables. Having en-

We now define the semantics for this language. Given a deontic 7 _
interpreted systendIS, a global statg, and a formulap, satisfac- coded local states, global states, and actions by meansotéao
tion is defined as follows: variables, all the remaining parameters can be expresdaoioésan

functions as follows. The protocols relate local statesetoas ac-
tions, and can be expressed as boolean formulae. The evofutic-
tions can be translated into boolean formulae, too. Indéxed]jefini-
tion of ¢; can be seen as specifying a listaainditionsc; 1, . . ., ¢k
under which agentchanges the value of its local state. Eaghre-
lates conditions on global state and actions with the vafiieext”
local state fori. The evaluation functio¥ associates a set of global
states to each propositional atom, and so it can be tradsiatie a
boolean function.

In addition to these parameters, the algorithm presentesvire-
quires the definition of a boolean functidix (g, g’) representing a
temporal relation betweepandg’. R:(g,g’) can be obtained from
the evolution functiong; by quantifying over actions. The quan-
tification over actions above can be translated into a pitipoal
formula using a disjunction (see [11, 4] for a similar apptodo
boolean quantification):

Ri(g,9") = \/ [(t(g.a,9) A P(g,a)]

ac€Act

where P(g,a) is a boolean formula imposing that the joint action
a must be consistent with the agents’ protocols in globalesgat
andt(g,a,g’) is a “global” transition condition obtained from as a
boolean function of the conditions. R: gives the desired boolean
relation between global states.

We now present the algorithAT to compute the set of global
states in which a formula holds. The following are input parameters
of the algorithm:

e the boolean variableg, ..., vn) and(ax, .. .
global states and joint actions;
the boolean function®; (v1, .
protocols of the agents;
the functionV(p) returning the set of global states in which the
atomic propositiorp holds. We assume that the global states are
returned encoded as a boolean functiorfaf . . ., vn);
o the set of initial state$, encoded as a boolean function;
o the set of reachable stat@s This can be computed as the fix-point
of the operatorr = (I(g) Vv 3¢'(R¢(g’, 9) A Q(g")) wherel(g)
is true if g is an initial state and) denotes a set of global states.
The fix-point ofr can be computed by iterating) by standard

,an) to encode

..,UN,a1,...,an) to encode the

4

temporal relation isR; and, instead of temporal states, global
states are considered. The procedWdS « (p,), SATo (¢, 4) and
SATku(p,1,j) are defined using the appropriate accessibility rela-
tion and are presented below.

SATxc(p,) {
X=SAT(—y);
Y ={g € G|Ki(g,¢') andg’ € X}
return—Y;

}

SATo(p,1) {
X=SAT(—y);
Y ={g € G|R{(g,¢') andg’ € X}
return—Y;

}

SATku(p,) {
X=SAT(—y);
Y ={g € G|Ri(g,¢') andRY (¢, ¢') andg’ € X}
return—Y;

}

Notice that all the parameters can be encodedeasd’s. Moreover,
all the operations inside the algorithms can be performedswD’s.
The algorithm presented here computes the set of statesiamwh
a formula holds, but we are usually interested in checkingtiér or
not a formula holds in the whole modél AT can be used to verify

whether or not a formula holds in a model by comparing two set

of states: the se§ AT'(¢) and the set of reachable statgsAs sets
of states are expressed@BDD’s, verification in a model is reduced

to the comparison of the twoBDD's for SAT'(¢) and forG.

Implementation

In this section we introduce an implementation of the athamipre-
sented in Section 3. This extends to deontic states the tesépted
in [16]. The implementation is available for download [15].

To define a deontic interpreted system we need to represent, f

each agent:
procedure (see [11]);
o the boolean functio; to encode the temporal transition; e alist of local states, and a list of “green” local states;
e n boolean functions to encode the accessibility relatidt{s e alist of actions;
(these functions are defined using equivalence on loca#sstE#t e a protocol for the agent;
G); e an evolution function for the agent.

n boolean functions to encode the accessibility relatiBfs

The algorithm is as follows:

SAT () {
© is an atomic formula: retur¥(y);
@ is—p1: returnG \ SAT (p1);
pis 1 A p2:returnSAT (p1) N SAT (¢2);
pis EX 1 returnSATE x (p1);
pis E(p1Up2): returnS ATeu (o1, ¢2);
pis EGor: returnSATgc(p1);
pis K1 returnSATk (o1, 1);
wis O;p1: returnSATo (¢1,1);
pis K] pr:returnSATk 1 (1,1, 7);

In the algorithm above,SATEx, SATea, SATgy are the

To complete the specification of a deontic interpreted systeis

also necessary to define the following parameters:

e an evaluation function;
e a set of initial states (expressed as a boolean condition);
e optionally, a set of groups for group modalities

In our implementation, the parameters listed above ardgedwia a

text file. Due to space limitations we refer to the files avdéaonline
for a full example of specification of an interpreted system.

5 An example: the bit transmission problem with
faults

The bit-transmission problem involves two agentseaderS, and

standard procedures for CTL model checking [7], in which theareceiver R, communicating over a faulty communication channel.

The channel may drop messages but will not flip the value ot a bi [Finalstate | Transition condition
being sentS wants to communicate some information (the value of | (0, ack) Ls =0andActg = sendack andActg = S—Ror
a bit) to R. One protocol for achieving this is as follows.imme- Ls = 0andActp = sendack andActp = — R
diately starts sending the bit #, and continues to do so until it re- (1, ack) ii - } gggﬁzg z jzzzzz”z gggﬁzg z i_RR or
ceives an acknowledgement frafh R does nothing until it receives
the bit; from then on it sends acknowledgements of receigt. t8
stops sending the bit t& when it receives an acknowledgement. Table 1. Transition conditions fof.

This scenario is extended in [10] to deal with failures. Irtigalar,
here we assume th&t may fail or not behave as intended. There are
different kind of faults that we can consider f&: Following [10], from S; “0” and “1” denote the value of the received bit. The states

we discuss two examples; in the firdt,may fail to send acknowl- « (i, f)" (« = {0, 1}) arefaulty or red states denoting that, at some
edgements when it receives a message. In the se¢ontgy send point in the pastR received a bit but failed to send an acknowledge-
acknowledgements even if it has not received any message. ment. The set of allowed actions fét is: Actr = {sendack, \}.
The protocol forR is the following:
5.1 Deontic interpreted systems for the bit Pl(e) = A, PL(0) = Ph(1) = {sendack, \},
transmission problem PL((0, f)) = PR((1,) = {sendack, \}.

It is possible to represent the scenario described abovedansnof

the formalism of deontic interpreted systems, as preséntd®d, 8]. The transition conditions fok are listed in Table 2.

To this end, a third agent agent calléfl (environment) is intro- Final state | Transition condition
duced, to model the unreliable communication channel. Bleall 0 Actg = sendbit(0) andLr = eandActg = S—R or
states of the environment record the possible combinatbmses- Acts = sendbit(0) andLp = eandActp = S—
sages that have been sent in a round, eitheiSbyr R. Hence, 1 Actg = sendbit(1) andLp = eandActp = S—R or

. . Actg = sendbit(1) andLr = eandActg = S—
four possible local statebr are taken for the environmenkg = = =

. X (0, f) Lr =0andActr =€

{(.,.), (sendbit,.), (., sendack), (sendbit, sendack)}, where *’ @, f) Lp=landActp — ¢

represents configurations in which no message has beenystd b
corresponding agent. The actiodstr for the environment corre-
spond to the transmission of messages betufeand R on the unre- Table 2. Transition conditions forz.

liable communication channel. It is assumed that the coniration

channel can transmit messages in both directions simulteshg and

that a message travelling in one direction can get througifeveh . .

message travelling in the opposite direction is lost. THeofec- Faulty receiver — 2In this second case we assume tHanay send
tions At for the environment isctp = {S—R, S—, <R, —}. acknovyledgements wnhout having received a bit first. Weehtids
“S_R" represents the action in which the channel transmits anyScenario with the following set of local statég; for R:

message successfully in both directions-4” that it transmits suc- Li ={0,1,¢(0, f), (1, f), (¢,)}

cessfully fromS to R but loses any message fraito S, “«—R” that P A

it transmits successfully fronk to S but loses any message frofh The local state§€”, “0”, “1”, “(0, f)”" and” (1, f)" are as above;
to R, and "-" that it loses any messages sent in either direction. We’(¢,)" is a furtherfaulty state corresponding to the fact that, at
assume the following constant function for the protocolh&f énvi- some point in the pas® sent an acknowledgement without having
ronment,Pg: received a bit. The actions allowed are the same as in théopev

example. The protocol is defined as follows:
PE(ZE) = Actg = {S—R7 S—>, —R, —}, foralllg € Lg.

Pp(e) = A\,
The evolution function forZ records the actions of Sender and Re- 1,%,())

) 1 (0) = Pp(1) = sendack,
ceiver. PE(0,) = Pa((1,) = Pr((e, f)) = {sendack, \}.

We model sendefS by considering four possible local states.

They represent the value of the it is attempting to transmit, The evolution function is a simple extension of Table 2.
and whether or notS has received an acknowledgement frdin For both examples, we introduce the following evaluationcfu
Ls = {0,1,(0, ack), (1,ack)}. The set of actionsicts for S is: tion:

Acts = {sendbit(0), sendbit(1), A}. The protocol forS is defined

as follows: V(bit =0) = {g€Glls(g) =00ris(g) = (0,ack)}
_ V(bit =1) = {ge€Glls(g)=1o0rls(g) = (1,ack)}
Ps(0) = sendbit(0), Ps(1) = sendbit(1), V(recbit) = {g€ Gllr(g)=10rlr(g)=0
Ps((0,ack)) = Ps((1,ack)) = \. V(recack) = {g¢€ Glls(g) = (1,ack)oris(g) = (0,ack)}

The evaluation functio’ and the parameters above generate two
deontic interpreted systems, one for each faulty behawabut; we
refer to these deontic interpreted system®aS; andDIS. Inthese
systems we can evaluate various properties, for example:

The transition conditions fof are listed in Table 1.

We now consider two possible faulty behaviours fr that we
model below.

Faulty receiver — 1In this case we assume th@atmay fail to send
acknowledgements when it is supposed to. To this end, wedute AG(recack — (K (KR (bit = 0) V K (bit = 1)))) 1)
the following local states foR: L, = {0, 1,¢, (0, f), (1, f)}. The N
state %" is used to denote the fact th&tdid not receive any message ~ AG(recack — (K& (Kr (bit = 0) v Kg (bit =1)))) (2)

Formula 1 above captures the fact that globally, upon réadip 6 Conclusion

an acknowledgement§ knows thatR knows the value of the bit.
Formula 2 expresses the same idea but using knowledge umeler t
assumption of correct behaviour. In the next section we weitify

in an automatic way that Formula 1 holdsiiS; but not in DIS>.
This means that the faulty behaviour®in DIS; does not affect the
key property of the system. On the contrary, Formula 2 haidsth
DIS, and DIS3; hence, a particular form of knowledge is retaine
irrespective of the fault.

5.2 Experimental results

We have encoded the deontic interpreted system and the leemu 1]
introduced in the previous section by means of a text file.mbdel

checker here presented correctly reporf2flS; as satisfying both 2]
formulae andD1S> not satisfying Formula (1) while satisfying For-
mula (2).

To evaluate the performance of the tool, we first analysefihees 3]
requirements. Following the standard conventions, we ddffia size
of a deontic interpreted system|d3/S| = |S|+|R|, where|S| is the [4]

size of the state space afg| is the size of the relations. In our case,
we define|S| as the number all the possible combinations of local (3]
states and actions. In the example above, there are 4 latat stnd

3 actions forS, 5 (or 6) local states and 2 actions f&r and 4 local e
states and 4 actions f@. In total,|S| ~ 2 - 10°. To define| R| we [7]
must take into account that, in addition to the temporati@tathere

are also the epistemic and deontic relations. Hence, weeddtjras (8]

the sum of the sizes of temporal, epistemic, and deontitioakl We
approximate R| as|S|?, hence M| = |S| + |R| =~ |S|*> ~ 4 - 10°.
To quantify the memory requirements we consider the maximum [9]
number of nodes allocated faBDD's. Notice that this figure over-
estimates the number of nodes required to encode the state apd [10]
the relations. Further, we report the total memory used bydbl (in
MBytes). The formulae of both examples required a similaoanh

of memory and nodes. The average experimental resultsgoeted [11]
in Table 3. [12]
[M] oBDD's nodes | Memory (MBytes) |
~4-10° ~ 103 ~ 45 |
[13]
Table 3. Memory requirements. [14]
[15]
In addition to space requirements, we carried out sometetihe 14
requirements. The running time is the sum of the time requfioe
building all theoBDD’s for the parameters and the actual running
time for the verification. We ran the tool on a 1.2 GHz AMD Athlo 17
with 256 MBytes of RAM, running Debian Linux with kernel 224. [17]
The average results are listed in Table 4.
18
Model construction | Verification Total (18]
0.045sec <0.01sec | 0.05sec

Table 4. Running time (for one formula).

We see these as encouraging results. We have been able ko chec
formulae with nested temporal, epistemic and deontic nitbeksin
less than 0.1 seconds on a standard PC, for a non-trivial Imide,
the number obBDD’s nodes is orders of magnitude smaller than the
size of the model.

In this paper we have extended a major verification technfiguee-
active systems — symbolic model checking @iapD’'s — to verify
non-temporal properties of multiagent systems. We praliae al-
gorithm and its implementation, and we tested our impleatem
by means of an example: the bit transmission problem withau
d The results obtained are encouraging, and we estimate thabal
could be used in larger examples.

REFERENCES

M. Benerecetti, F. Giunchiglia, and L. Serafini, ‘Modélecking mul-
tiagent systems'Journal of Logic and Computatior8(3), 401-423,
(June 1998).

R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridgé&lodel
checking AgentSpeak’, ifProceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent IBgst@A-
MAS’03) (July 2003).

R. E. Bryant, ‘Graph-based algorithms for boolean fiorcimanipula-
tion’, IEEE Transaction on Computer§77—691, (August 1986).

E. M. Clarke, O. Grumberg, and D. A. Pelelllodel Checking The
MIT Press, Cambridge, Massachusetts, 1999.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Var@easoning about
Knowledge The MIT Press, Cambridge, Massachusetts, 1995.

G. J. Holzmann, ‘The model checker spitEEE transaction on soft-
ware engineering23(5), (May 1997).

M. R. A. Huth and M. D. Ryanlogic in Computer Science: Mod-
elling and Reasoning about Systen@@ambridge University Press,
Cambridge, England, 2000.

A. Lomuscio, F. Raimondi, and M. Sergot, ‘Towards modeécking
interpreted systems’, iRroceedings of MoChAriLyon, France, (Au-
gust 2002).

A. Lomuscio and M. Sergot, ‘On multi-agent systems sfiegfion via
deontic logic’, inProceedings of ATAL 200&d., J.-J Meyer. Springer
Verlag, (July 2001). To Appear.

A. Lomuscio and M. Sergot, ‘Violation, error recovend enforce-
ment in the bit transmission problem’, roceedings of DEON’'Q2
London, (May 2002).

K. L. McMillan, Symbolic model checking: An approach to the state
explosion problemKluwer Academic Publishers, 1993.

R. van der Meyden and N. V. Shilov, ‘Model checking kneddge and
time in systems with perfect recalESTTCS: Foundations of Software
Technology and Theoretical Computer Scigrid® (1999).

R. van der Meyden and K. Su. Symbolic model checking timkedge
of the dining cryptographers. Submitted, 2002.

W. Penczek and A. Lomuscio, ‘Verifying epistemic proges of multi-
agent systems via model checkinfundamenta Informaticaé5(2),
167-185, (2003).

F. Raimondi and A. Lomuscio. A tool for verification of alatic inter-
preted systems. http://www.dcs.kcl.ac.uk/pg/francdis©.1.tar.gz.

F. Raimondi and A. Lomuscio, ‘Verification of multiagesystems via
ordered binary decision diagrams: an algorithm and its émginta-
tion’, in Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS D4y 2004).
A. S. Rao, ‘AgentSpeak(L): BDI agents speak out in adaficom-
putable language’l.ecture Notes in Computer Sciend®38 42-52,
(1996).

M. Wooldridge, M. Fisher, M.P. Huget, and S. Parsonsotd| check-
ing multi-agent systems with MABLE’, ifProceedings of the First In-
ternational Joint Conference on Autonomous Agents andiagalint
Systems (AAMAS'02gds., M. Gini, T. Ishida, C. Castelfranchi, and
W. Lewis Johnson, pp. 952-959. ACM Press, (July 2002).

