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Abstract

We investigate the problem of the verification of epis-
temic properties of multiagent systems via model checking.
Specifically, we extend and adapt methods based on ordered
binary decision diagrams, a mainstream verification tech-
nique in reactive systems. We provide an algorithm, and
present a software package that implements it. We discuss
the software and benchmark it by means of a standard ex-
ample in the literature, the dining cryptographers.

1. Introduction

The field of multiagent systems (MAS) has seen consid-
erable changes since its inception. In particular, a compari-
son of the workshops on agents of the beginning of the 90’s
such asMAAMAW and ATAL , through theAA and ICMAS

conferences, to the currentAAMAS series shows a clear shift
of topics of research. Gone, for example, are the discus-
sions on what is thecorrect definition of agency, and ba-
sic agent-based applications, and new themes such as au-
tomatic negotiation, agent communication languages, game
theoretical aspects of MAS have appeared. This seems to
suggest that agent-based computing is an active area of re-
search that is getting closer in spirit to mainstream Com-
puter Science, while still retaining its original AI inspira-
tion.

The area ofmultiagent systems theorieshas always been
central in this research, and it has witnessed a similar
change of focus. While in the 90’s the attention was firmly
on the study of new logical theories that would account
for crucial characteristics of agency such as knowledge,
intentions, beliefs, goals, rules, etc., the focus these days
seems to be more on the dynamic and temporal aspects of
these logics, and on the integration of existing logical theo-
ries with software engineering aspects. The recent attention
given by the community to the problem ofmultiagent sys-
tems verificationcan in our view be seen in this light.

The research area of verification and validation is, of
course, a mainstream topic of research in traditional Soft-
ware Engineering, where attention is given both to the broad
topics of testing and formal verification. Formal verifica-
tion encompasses two main approaches: theorem proving,
and model checking. Theorem-proving-based approaches
involve specifying a program by means of a formal logic
system; the problem of checking whether the program in
question displays a certain behaviour is translated into the
problem of checking whether a particular formula, repre-
senting the property to be checked, is a theorem of the logic.
One of the problems of the theorem-proving approach is
that often the logics involved are computationally very de-
manding, hindering the feasibility of the approach.

More recently, model checking has been presented as
an alternative to theorem proving in hardware and soft-
ware verification. In this paradigm a system� is repre-
sented as a temporal model�� by means of a program
(representing� ) written in a model-checking friendly lan-
guage such asSMV. The property� to be checked is writ-
ten as a formula�� in temporal logic. Checking whether
system� satisfies property� amounts then to checking
formally whether the model�� satisfies the formula�� :
� �	 �� . The main problem with this approach is to man-
age the so called ”state explosion problem”, i.e., the fact
that typically a system generates so many states (figures
in the region of 10
� are possible even for relatively sim-
ple systems) that it is difficult to represent them. In attempt
to solve this,symbolic approacheshave been developed. In
these, the temporal model is represented in a symbolic way
by means of logical structures. The leading technique in
this effort uses ordered binary decision diagramsOBDD[5].
Mainstream model checking packages such as VIS[1] and
SMV[13] use this technique. Other techniques, notablySAT-
based such as bounded model checking [3] and unbounded
model checking [14], have proven to be very promising but
have not been incorporated in most model checkers yet.

It is curious to note that while several proposal for model



checking MAS have been put forward, none of them uses
OBDD technology directly. In [23], M. Wooldridge et al.
present the MABLE language for the specification of MAS.
In this work, modalities are translated into nested data struc-
tures (in the spirit of [2]). Bordini et al. [4] use a modi-
fied version of the AgentSpeak(L) language [19] to spec-
ify agents and to exploit existing model checkers. Both the
works of M. Wooldridge et al. and of Bordini et al. trans-
late the specification into a SPIN specification to perform
the verification. Effectively, the attitudes for the agentsare
reduced to predicates, and the verification involves only the
temporal verification of those. In [18] a tool is provided to
translate an interpreted system into SMV code, but the veri-
fication is limited to static epistemic properties, i.e. thetem-
poral dimension is not present, and the approach is not fully
symbolic. The works of van der Meyden and Shilov [21],
and van der Meyden and Su [15], are concerned with verifi-
cation of interpreted systems. They consider the verification
of a particular class of interpreted systems, namely the class
of synchronous distributed systems with perfect recall. An
algorithm for model checking is introduced in the first pa-
per using automata, and [15] suggests the use ofOBDD’s for
this approach, but no algorithm or implementation is pro-
vided.

The research presented in this paper is an attempt to fill
this gap by showing how it is possible to extend the main-
stream verification technique in reactive systems — model
checking viaOBDD’s — to verify key properties of MAS.

State-of-the-art MAS theories account for a variety of at-
titudes of the agents, such as their knowledge, beliefs, de-
sires, as well as their temporal evolution. All these attitudes
are expressed in MAS logics by means of modal opera-
tors [22]. OBDD-based techniques for reactive systems al-
low for the verification of properties expressed in plain tem-
poral logic, either in its LTL or in CTL variants. This means
that they cannot readily be employed for the verification of
MAS, where richer formalisms are needed. In this paper we
look at the case of knowledge, extendOBDD-based technol-
ogy to verify temporal-epistemic properties of a MAS, treat-
ing both sets of operators on the same level. We carry out
this investigation for the case of knowledge because of its
traditional key importance in MAS, but clearly we would
like to extend our approach to include other modalities of
interest.

The paper is organised as follows. In Section 2, we intro-
duce basic syntax and semantics of epistemic logic on in-
terpreted systems as well as the basic definitions for model
checking via ordered binary decision diagrams. In Section
3 we present a model checking algorithm for temporal epis-
temic logic based onOBDD. In Section 4 we present an im-
plementation of this algorithm. In Section 5, we test the cor-
rectness and evaluate the performance of the implementa-
tion with a traditional example from the security literature

— the dining cryptographers – that generates a state space
in the region of 10�
 states.

2. Preliminaries

In this section we introduce the main concepts and the
notation that we are going to use in the rest of the paper.
In Section 2.1 we review symbolic model checking using
OBDD’s. In Section 2.2 we present the formalism of inter-
preted systems for modelling temporal-epistemic properties
of multi-agent systems.

2.1. Symbolic model checking andOBDD’s

The problem of model checking can be defined as es-
tablishing whether or not a model� satisfies a formula�
(� �	 �). Though� could be a model for any logic, tra-
ditionally the problem of building tools to perform model
checking automatically has been investigated almost only
for temporallogics. This is because temporal logic has been
identified for more than two decades as an adequate formal-
ism to reason about properties of reactive systems Thus, to
verify that a system complies with a certain property, one
can represent the system by means of a (temporal) model
� and the property by means of a (temporal) logic formula
�, and then check whether or not� �	 �.

There are various temporal logics that can be used to ab-
stract reactive systems. Here we introduce CTL [12], a logic
used to reason about the evolution of a system represented
as abranchingpaths. Given a countable set of propositional
variables

� 	 �� � � � � � ��, CTL formulae are defined as fol-
lows:

� ��	 � � 	� � � 
 � � �� � � �
� � � ��� � �

where the temporal operator� means in the next state,

means globally and� means until. Each temporal opera-
tor is pre-fixed by the existential quantifier� . Thus, for ex-
ample,�
 �� � means that “there exists a path in which�
is globally true”. Traditionally, other operators are added
to the syntax of CTL, namely�� � � � � �� � �
 � �� (no-
tice the “universal” quantifier� over paths, dual of� ).
These operators can be derived from the operators intro-
duced here [12]. The semantics of CTL is given via a model
� 	 �� � � � � � � � where� 	 ��� � �� � � � �� is a set of states,� � � � � is a binary relation,� � � � �� is an evalua-
tion function, and� � � is a set of initial states. Apath�
is a sequence of states� 	 ��� � �� � � � �� such that�� � �
and�� � ��� � �� �� � � . A state�� in a path� is denoted
with ��. Satisfaction in a state is defined inductively as fol-
lows:



� �� � iff � � � �� �,� �� �	 
 iff there exists a path� such that� � � �
and� �
 � �� 
,� �� � �
 iff there exists a path� such that� � � �
and� �
� �� 
 for all � � �.� �� � �
� � � iff there exists a path� such that� � � �
and a� � � such that� �
� �� �
and� �
� �� 
 for all � � � � �.

It has been shown [8] that the problem of CTL model
checking can be solved in time� � �� � � �� �� where�� � 	
�� �� �� �. However, this bound assumes that the model� is
given explicitly, which is not the case for real-life systems.
Instead, the model� is usually built via a more succinct
representation, for example using a dedicated programming
language such asPROMELA[11] or SMV[13]. If this indirect
description is considered, the size of the model grows expo-
nentially with the number of variables in the program, ren-
dering infeasible the explicit representation of the model, a
difficulty often referred to as thestate explosion problem. To
try and overcome this issue, various techniques have been
developed to performsymbolicmodel checking. In sym-
bolic model checking, the algorithms operate on a symbolic
representation of the model using automata [11], ordered bi-
nary decision diagrams (OBDD’s, [5]), and other algebraic
structures. By means of this techniques state-spaces of the
region of���� have been verified.

For the purposes of this paper we consider CTL
model checking usingOBDD’s, as presented in [9]. It
has been shown thatOBDD’s are a compact representa-
tion for boolean functions, and that there are efficient al-
gorithms to perform operations onOBDD’s [5]. The key
idea of CTL model checking usingOBDD’s is to rep-
resent states of the model, the temporal relation be-
tween states, and the evaluation function� by means of
boolean formulae. This is done by encoding a state� � �
as a boolean vector. Following this, set of states and re-
lations between two states can be expressed by means of
boolean formulae. All these boolean parameters are trans-
lated into OBDD’s; verification is then conducted by
performing operations on them (we refer to [9] for de-
tails).

This idea has been implemented successfully in a num-
ber of software tools such as SMV [13] and NuSMV [7].
Thanks to these tools, large systems have been checked, in-
cluding hardware and software components.

2.2. Interpreted systems

An interpreted system [10] is a semantic structure to
reason about temporal-epistemic properties of a system of
agents. In this formalism, each agent� (� 	 �� � � � � �� �)
is characterised by a set oflocal states � and by a set
of actions� !" � that may be performed. Actions are per-
formed in compliance with a protocol� � �  � � �#$%&

(no-

tice that this definition allows for non-determinism). A tu-
ple' 	 �(� � � � � � () � �  � � � � � � ) , where(� �  � for each
�, is called aglobal stateand gives a snapshot of the system.
Given a set� of initial global states, the evolution of the sys-
tem is described by� evolution functions" � (this definition
is equivalent to the definition of a single evolution function
" as in [10]):" � �  � � � � � � ) �� !"� � � � � � � !") �  �.
In this formalism, the environment in which agents “live”
is usually modelled by means of a special agent� ; we re-
fer to [10] for more details. The set� , the evolution func-
tions " �, and the protocols� � generate a set ofcomputa-
tions (also calledruns). A computation� is a sequence of
global states� 	 �'� � ' � � � � �� such that'� � � and, for
each pair�'* � '* �� � � , there exists a set of actions+ en-
abled by the protocols such that" �'* � + � 	 '* �. The set

 � � � � � � � �  ) � denotes the set ofreachableglobal
states.

Interpreted systems semantics can be used to interpret
formulae of a temporal language enriched with epistemic
operators [10]. Here we assume a temporal tree structure
to interpret CTLK formulae [16], an extension of CTL that
includes epistemic modalities. The syntax of CTLK is de-
fined in terms of a countable set of propositional variables� 	 �� � � � � � �� and using the following modalities:

� ��	 � � 	� � � 
 � � �� � � �
� � � ��� � � � , ��
The modalities�� � � � � �� � �
 � �� are derived in the

standard way. Further, given a set of agents-, two group
modalities can be introduced:�.� and/.� denote, respec-
tively, that every agent in the group knows�, and that� is
common knowledgein the group (see [10] for details).

Given a valuation function� � � � �0
, sat-

isfaction in a global state' is defined as follows:1 �� � iff 1 � � �� �,1 �� 2
 iff 1 3�� 
,1 �� 
 � 4 
5 iff 1 �� 
 � or 1 �� 
5 ,1 �� �	 
 iff there exists a computation� such that
�6 � 1 and� � �� 
,1 �� � �
 iff there exists a computation� such that
�6 � 1 and� � �� 
 for all 7 � �,1 �� � �
� � � iff there exists a computation� such that
�6 � 1 and a� � � such that�� �� �
and� � �� 
 for all � � 7 � � ,1 �� 8 �
 iff 91 : � � , 1 ; � 1 : implies1 : �� 
,1 �� �<
 iff 91 : � � , 1 ;=< 1 : implies1 : �� 
,1 �� ><
 iff 91 : � � , 1 ;?< 1 : implies1 : �� 
,

where�* denotes the global state at place@ in � . The re-
lation A � is an epistemic accessibility relation for agent
� defined by:' A � ' B iff (� �' � 	 (� �' B�, i.e. if the lo-
cal state of agent� is the same in' and in ' B (notice that
this is an equivalence relation). The relation' AC. ' B be-
tween two global states holds iff' A � ' B for some
� � -. The relationAD. is the reflexive transitive clo-
sure ofAC. .



3. Symbolic model checking of interpreted
systems

In this section we present an algorithm based onOBDD’s
to verify temporal and epistemic properties of multi-agent
systems, in the spirit of traditional model checking for tem-
poral logics. Following the standard approach for model
checking CTL formulae, we encode all the parame-
ters needed by the algorithm by means of boolean functions
(this is explained in Section 3.1). Verification of CTLK for-
mulae is performed, using these parameters, by means of
the algorithm presented in Section 3.2.

3.1. Translation into boolean formulae

We translate an interpreted system into a set of boolean
formulae, starting with the local states of an agent; these
can be encoded by means of boolean variables. Given� 	�
� �� ���, a global state can be identified by means of

� boolean variables:' 	 �� � � � � � � �� �. Similarly, given
� 	 �

� �+ ���, joint actions can be encoded by means of

� boolean variables:+ 	 �+ � � � � � � +� � . The evaluation
function� associates a set of global states to each proposi-
tional atom, and so it can be translated into a boolean func-
tion. Also, the protocols, can be expressed as boolean func-
tions relating local states and actions. The definition of" �
in Section 2.2 can be seen as specifying a list ofcondi-
tions ! � �� � � � � � ! � �� under which agent� changes the value
of its local state. Each! � �* has the form “if [conditions on
global state and actions] then [value of “next” local state
for �]”. Hence," � is expressed as a boolean formula as fol-
lows: " � 	 �! � �� � 	! � �� � � � � � 	! � �� � 
 �	! � �� � ! � �� � � � � �	! � �� � 
 � � � 
 �	! � �� � 	! � �� � � � � � ! � �� �, i.e. we impose
that one and only one condition must hold. We assume that
the last condition! � �� prescribes that, if none of the condi-
tions on global states and actions in! � �* �@ 	 
 � is true, then
the local state for� does not change. This assumption is key
to keep compact the description of an interpreted system, as
in this way only the conditions that are actually causing a
change need to be listed.

The algorithm presented in Section 3.2 requires the def-
inition of a boolean function� % �' � ' B � representing a tem-
poral relation between' and' B. � % �' � ' B� can be obtained
from the evolution function" � as follows. First, we intro-
duce aglobalevolution function":

" 	 �
��
� �����)�

" �

Notice that " is a boolean function involving two global
states, by means of their local states components, and joint
actions+ 	 �+ � � � � � � +� �. To abstract from joint actions
+ � � !" 	 � !"� � � � � � � !") , and obtain a boolean func-
tion relating two global states only, we can define� % as fol-

lows: � % �' � ' B� iff �+ � � !" � " �' � + � ' B � is true and each
local action+ � � + is enabled by the protocol of agent�
in the local state(� �' �. The quantification over actions can
be translated into a propositional formula using a disjunc-
tion (see [13, 9] for a similar approach to boolean quantifi-
cation):

� % �' � ' B� 	 ���#$% ��" �' � + � ' B � � � �' � + ��
where� �' � + � is a boolean formula imposing that the joint
action + must be consistent with the agents’ protocols in
global state' . The formula� % above gives the desired
boolean relation between global states.

3.2. The algorithm

In this section we present the algorithm���D � �� to
compute the set of global states in which a CTLK formula
� holds. The following are the parameters needed by the al-
gorithm:

� the boolean variables�� � � � � � � �� � and �+ � � � � � � +� �
to encode global states and joint actions;

� the boolean functions� � �� � � � � � � �� � + � � � � � � +� � to
encode the protocols of the agents;

� the boolean function� % to encode the temporal transi-
tion;

� the function� �� � returning the set of global states in
which the atomic proposition� holds. We assume that
the global states are returned encoded as a boolean
function of �� � � � � � � �� �;

� the set of initial states� , encoded as a boolean func-
tion;

� the set of reachable states
 . This can be
computed as the fix-point of the operator� 	 �� �' � 
 �' B �� % �' B � ' � � � �' B �� where � �' �
is true if ' is an initial state and� denotes a set of
global states. The fix-point of� can be computed by it-
erating� ��� by standard procedure (see [13]);

� the boolean functions� � to encode the accessibility
relationsA � (these functions are easily defined using
equivalence on local states of
);

� the boolean function�C. to encodeAC. , defined by�C. 	 ���. ��.
The algorithm is as follows:



����� �� �
� �

 is an atomic formula: return� �
�;
 is 2
 �: return� � ����� �� �
 ��;
 is 
 � 	 
5 : return

����� �� �
 ��
����� �� �
5 �;
 is �	 
 �: return�	 �� �� �
 ��;
 is � �
 �� 
5 �: return� ��� �� �
 � � 
5 �;
 is ��
 �: return� ��� �� �
 ��;
 is 8�
 �: return8 �� �� �
 � � 7�;
 is �<
 �: return��� �� �
 � � � �;
 is ><
 �: return>�� �� �
 � � � �;


In the algorithm above,�� D � �� , �
D � �� , � �D � ��
are the standard procedures for CTL model checking [12],
in which the temporal relation is� % and, instead of tem-
poral states, global states are considered. The procedures
,D � �� �� � ��, �D � �� �� � - � and /D � �� �� � - � are pre-
sented below.

�� � �� �� � �� 

X = �#�� � �� ����;
Y =


� � 0 �� & �� � � � � and
� � � � �

return�Y;�
C� � �� �� �. � 

X = �#��� �� ����;
Y =


� � 0 ���� �� � � � � and
� � � � �

return�Y;�
D�� �� �� �. � 

X = �#�� � �� ���;
Y = 0 ;
while ( X != Y )



X = Y;
Y =


� � 0 ���� �� � � � � and
� � � �

and
� � � �#�� � �� ����

return Y;�
The procedure/D � �� �� � - � is based on the equiva-

lence [10]/.� 	 �. �� � /.� � which implies that the set
of states satisfying/.�, denoted with��/.� ��, is the great-
est fix-point of the (monotonic) operator� �� � 	 ���. �� ��� ����. Hence,��/.� �� can be obtained by iterating� �
 �.
Notice that all the parameters can be encoded asOBDD’s.
Moreover, all the operations inside the algorithms can be
performed onOBDD’s.

The algorithm presented here computes the set of states
in which a formula holds, but we are usually interested
in checking whether or not a formula holds in the whole
model.���D � �� can be used to verify whether or not a
formula� holds in a model by comparing two set of states:
the set���D � �� �� � and the set of reachable states
 .
As sets of states are expressed asOBDD’s, verification in
a model is reduced to the comparison of the twoOBDD’s for
���D � �� �� � and for
 .

4. Implementation

In this section we present an implementation of the al-
gorithm introduced in Section 3. In Section 4.1 we define a
language to encode interpreted systems symbolically, while
in Section 4.2 we describe how the language is translated
into OBDD’s as well as the structure of the algorithm.

The implementation is available for download[17].

4.1. How to define an interpreted system

To define an interpreted system it is necessary to specify
all the parameters presented in Section 2.2. In other words,
for each agent, we need to represent:� a list of local states;� a list of actions;� a protocol for the agent;� an evolution function for the agent.

In our implementation, the parameters listed above are pro-
vided via a text file. The formal syntax of a text file speci-
fying a list of agents is as follows:
agentlist ::= agentdef |

agentlist agentdef
agentdef ::= "Agent" ID

LstateDef;
ActionDef;
ProtocolDef;
EvolutionDef;

"end Agent"
LstateDef ::= "Lstate = {" IDLIST "}"
ActionDef ::= "Action = {" IDLIST "}"
ProtocolDef ::= "Protocol"

ID ": {" IDLIST "}";
...

"end Protocol"
EvolutionDef ::= "Ev:"

ID "if" BOOLEANCOND;
...

"end Ev"
IDLIST ::= ID |

IDLIST "," ID
ID ::= [a-zA-Z][a-zA-Z0-9_]*

In the definition above,BOOLEANCOND is a string express-
ing a boolean condition; we omit its description here and
we refer to the source code for more details. To complete
the specification of an interpreted system, it is also neces-
sary to define the following parameters:� an evaluation function;� a set of initial states (expressed as a boolean condi-

tion);� optionally, a set of groups for group modalities

The syntax for this set of parameters is as follows:
EvaluationDef ::= "Evaluation"

ID "if" BOOLEANCOND;
...

"end Evaluation"
InitstatesDef ::= "InitStates"

BOOLEANCOND;
"end InitStates"

GroupDef ::= "Groups"



Specify an interpreted system

Parse the input

Build OBDDs for the parameters

Parse the formulae to check

Compute the set of states in which
a formula holds

Compare with the set of reachable states

1.

2.

3.

4.

5.

6.

7.

Lex and Yacc parser

Any text editor

C++ code and CUDD  

C++ code and CUDD  

C++ code and CUDD  

C++ code and CUDD  

TRUE in the model FALSE in the model

Figure 1. Software structure

ID " = {" IDLIST " }";
...

"end Groups"

Due to space limitations we refer to the files available on-
line for a full example of specification of an interpreted sys-
tem.

Formulae to be checked are specified using the following
syntax
formula ::= ID |

formula "AND" formula |
"NOT" formula |
"EX(" formula ")" |
"EG(" formula ")" |
"E(" formula "U" formula ")" |
"K(" ID "," formula ")" |
"GK(" ID "," formula ")" |
"GCK(" ID "," formula ")"

In the syntax above we denote the operator for “everybody
in a group knows” withGK (group knowledge) and the op-
erator for common knowledge withGCK (group common
knowledge).K denotes knowledge of the agent identified
by the stringID. The remaining temporal operators are de-
fined in a similar way. Notice that this corresponds to the
full CTLK language.

4.2. Implementation of the algorithm

The steps from 2 to 6, inside the dashed box, are per-
formed automatically upon invocation of the tool. These
steps are coded mainly in C++ and can be summarised as
follows:� In step 2, the input file is parsed using the standard

tools Lex and Yacc. In this step various parameters
are stored in temporary lists; such parameters include
agents’ names, local states, actions, protocols, etc.� In step 3, the lists obtained in step 2 are traversed
to build the OBDD’s for the verification algorithm.
OBDD’s are created and manipulated using theCUDD

library [20]. In this step the number of variables needed
to represent local states and actions are computed; fol-
lowing this, all theOBDD’s are built by translating the
boolean formulae for protocols, evolution functions,
evaluation, etc. Also, the set of reachable states is com-
puted using the operator presented in Section 3.2.� In steps 4, the formulae to check are read from a text
file, and parsed.� In step 5, verification is performed by implementing
the algorithm of Section 3.2. At the end step 5, an
OBDD representing the set of states in which a formula
holds is computed.� In step 6, the set of reachable states is compared with
the OBDD corresponding to each formula. If they are
equivalent, the formula holds in the model and the tool
produces a positive output. Otherwise, the tool pro-
duces a negative output.

5. Examples and experimental results

In this section we test our tool by model-checking
temporal-epistemic properties of a communication sce-
nario: the protocol of the dining cryptographers. In [6]
it is shown that there exists a protocol that allows for
the change in the knowledge of the participants about
some global property of the system, without them be-
ing able to detect the source of this information. In Sec-
tion 5.1 we describe how the example can be modelled
by means of an interpreted system. In Section 5.2 we pro-
vide an evaluation of the performance of our tool on this
example.

5.1. The interpreted system of the dining cryptog-
raphers

The protocol of the dining cryptographers is introduced
in [6] with the following example:

“Three cryptographers are sitting down to dinner at their
favourite three-star restaurant. Their waiter informs them
that arrangements have been made with the maitre d’hotel
for the bill to be paid anonymously. One of the cryptogra-
phers might be paying for the dinner, or it might have been
NSA (U.S. National Security Agency). The three cryptogra-
phers respect each other’s right to make an anonymous pay-
ment, but they wonder if NSA is paying. They resolve their
uncertainty fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his
menu, between him and the cryptographer on his right, so
that only the two of them can see the outcome. Each cryp-
tographer then states aloud whether the two coins he can
see – the one he flipped and the one his left-hand neigh-
bour flipped – fell on the same side or on different sides. If



one of the cryptographers is the payer, he states the oppo-
site of what he sees. An odd number of differences uttered at
the table indicates that a cryptographer is paying; an even
number indicates that NSA is paying (assuming that the din-
ner was paid for only once). Yet if a cryptographer is pay-
ing, neither of the other two learns anything from the utter-
ances about which cryptographer it is.”[6]

Notice that the same protocol works for any number of
cryptographers greater or equal to three (see [6]).

We introduce three agents/ � (� 	 �� � � � � �) to model
the three cryptographers, and one agent� for the environ-
ment. In our representation the environment is used to select
non-deterministically the identity of the payer and the re-
sults the of coin tosses. This makes a total of 32 possible lo-
cal states for the environment We assume that the environ-
ment can perform only one action, the null action. There-
fore, the protocol is simply mapping every local state to the
null action. Also, there is no evolution of the local states for
the environment. We model the local states of the cryptogra-
phers as a string containing three parameters: whether or not
the coins that a cryptographer can see are equal, whether or
not the cryptographer is the payer, and the number of “dif-
ferent” utterances. Considering that all these parametersare
not initialised at the beginning of the run, there are 27 possi-
ble combinations of these, hence 27 possible local states are
required. For each cryptographer, the actions allowed are
“say nothing”, “say equal”, “say different”, and these ac-
tions are performed in compliance with the protocol stated
above. We refer to the code for the details of the protocol
and of the evolution function.

We define the following set of atomic propositions (' is
a global state):

' �	 ���� � if (D � �' � 	 ��Paid�	
' �	 ����
 if (D � �' � 	 ��Paid�	
' �	 ����� if (D � �' � 	 ��Paid�	
' �	 
�
� if (D & �' � 	 ��Even�	 for every�
' �	 ��� if (D & �' � 	 ��Odd�	 for every�

��Paid�	 denotes a local state in which the string contains
the value Paid (i.e. the cryptographer paid for the dinner).
��Even�	 and ��Odd�	 are defined similarly. We can now
express formally various properties of this interpreted sys-
tem. For example:

�	 �
 ���� � �	���� � � �,D � �����
 
 ����� �
�	 ,D � �����
 � � 	 ,D � ������ ����

This formula expresses the claim made at the beginning of
this section: if the first cryptographer did not pay for the
dinner and there is an odd number of differences in the ut-
terances, then the first cryptographer knows that either the
second or the third cryptographer paid for the dinner; more-
over, in this case, the first cryptographer does not know
which one of the remaining cryptographers is the payer.

Analogously, it is possible to check that, if a cryptogra-
pher paid for the dinner, then there will be an odd number
of “different” utterances, that is:

�	 ����� � 
 ����
 
 ����� � � �� ���� �
Consider now the group- of the three cryptographers.

An interesting property is the following:

�	 
�
� � /. �	���� � � 	����
 � 	����� �
This formula expresses the fact that, in presence of an even
number of “different” utterances, it is common knowledge
that none of the cryptographers paid for the dinner. Hence,
in this protocol common knowledge can be achieved. All
these formulae were correctly verified by the tool.

5.2. Experimental results

We have encoded the interpreted system introduced in
the previous section by means of the language defined in
Section 4.1 (a copy of the code is included in the downlod-
able files). In this section we evaluate some experimental
results.

First, we define the size of the interpreted system. In
Section 2.1 the size of a model� has been defined as
�� � 	 �� � � �� �, where� is the set of states and� is the
temporal relation. Here we define�� � as the number all the
possible combinations of local states and actions. For the
example in Section 5.1, there are 32 local states for the en-
vironment, 27 local states and 3 actions for each cryptogra-
pher; hence,�� � � � �� � ���. To define�� �we must take into
account that, besides the temporal relation, there are alsothe
epistemic relations. Hence, we define�� � as the sum of the
sizes of temporal and epistemic relations. We approximate
�� � as �� �� , hence�� � 	 �� � � �� � � �� �� � � �� � �� �
 .

To evaluate the performance of the tool, we consider
the running time and the memory requirements. The run-
ning time is the sum of the time required for building all
the OBDD’s for the parameters and the actual running time
for the verification. To quantify the memory requirements
we consider the maximum number of nodes allocated for
OBDD’s. Notice that this figure over-estimates the number
of nodes required to encode the state space and the rela-
tions. Also, we report the total memory used by the tool
(in MBytes). We ran the tool on a 1.2 GHz AMD Athlon
with 256 MBytes of RAM, running Debian Linux with ker-
nel 2.4.20. The average experimental results are reported
in Tables 1 and 2. We tested the formulae presented in
Section—5.1 (more tests can be found in [17]); they were
all correctly verified All the formulae require a similar
amounts of memory. The required time for the construc-
tion of OBDD’s is fixed (32 sec); the verification time ranges
from 1.5 sec for small formulae to 3.5 sec for formulae in-
volving nested modalities.



�� � OBDD’s nodes Memory (MBytes)
� � �� � �� �
 � �� � ��� 152

Table 1. Memory requirements.

Model construction Verification Total
32sec 2.5sec 34.5

Table 2. Running time (for one formula).

We see these as very encouraging results. We have been
able to check formulae with temporal and epistemic modal-
ities in a few seconds on a standard PC, for a fairly large
model. Moreover, our implementation does not include any
optimisation technique [9]. Therefore, we estimate that our
tool could perform well even in bigger scenarios. For the
same reason, we estimate that it is possible to include other
modal operators, besides the temporal and epistemic ones.

6. Conclusion

After years of research in the area ofspecificationof
MAS, interest is growing in the area offormal verification
of MAS. In this paper we have extended what can be re-
garded as being the mainstream technique for formal veri-
fication of reactive systems, i.e., symbolic model checking
via OBDD. In particular, the techniques and the implemen-
tation presented here allow for the verification of temporal-
epistemic properties of MAS. The experimental results that
we reported encourage us to optimise both the algorithm
and the implementation, and to explore the feasibility of ex-
tending the framework to other operators.
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