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Abstract—

In this paper we consider a single hand-held camera perform-
ing SLAM at video rate with generic 6DOF motion. The aim
is to optimise both the localisation of the sensor and building
of the feature map by computing the most appropriate control
actions or movements. The actions belong to a discrete set (e.g.
go forward, go left, go up, turn right, etc), and are chosen so as to
maximise the mutual information gain between posterior states
and measurements. Maximising the mutual information helps
the camera avoid making ill-conditioned measurements appro-
priate to bearing-only SLAM. Moreover, orientation changes are
determined by maximising the trace of the Fisher Information
Matrix. In this way, we allow the camera to continue looking
at those landmarks with large uncertainty, but from better-
posed directions. Various position and gaze control strategies are
first tested in a simulated environment, and then validated in a
video-rate implementation. Given that our system is capable of
producing motion commands for a real-time 6DOF visual SLAM,
it could be used with any type of mobile platform, without the
need of other sensors.

I. INTRODUCTION

Impressive advances in 2D and, more recently, 3D simul-

taneous localisation and mapping (SLAM) for mobile robots

have been made over the last 15 years, largely using sonar

and laser range sensing [1]–[5]. Most recently, there has been

considerable interest in solving the SLAM problem using

visual sensing, both in order to obtain more accurate 3D

representations of the environment and to exploit its richer

potential for scene representation [6], [7]. In this communica-

tion, we consider the problem of SLAM with a single camera

carried by a human, and how to implement control strategies

in this context. In that sense, this work is different from

other control work because we can only give a human quite

approximate, low frequency, easy to understand commands

like ‘left’, ‘right’, ‘stay’.

One of the first active vision-based SLAM approaches used

feature correspondences from stereo image pairs [6]. The
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computational burden for the accurate detection and matching

of image pairs motivated the use of active visual sensing

for landmark selection in sparse feature maps. Their work

is different to ours because they only control orientations

of the stereo head, and we are now talking about actually

controlling translation as well. Other reported techniques to

visual SLAM — although with no control — include the

use of SIFT features, and matching over a trinocular rig [7].

More elegantly and economically, feature locations can also

be computed by tracking landmarks over multiple views from

only one camera, a process referred to a ‘bearing-only SLAM’.

One key issue in bearing-only SLAM is the initialisation

of feature locations. In [8] for example, the initial estimation

of a landmark’s location is achieved by sampling hypotheses

of a 1D particle distribution along the line of sight. Another

technique consists of using sums of Gaussian distributions

to parameterise 3D feature locations over a delayed state

representation [9].

When the sensor capabilities in SLAM are limited, camera

motion plays an important role in the quality of reconstruction

obtained. Driving the sensor to the locations that maximise the

expected information gain from acquiring an observation at

that location has been a common strategy [10]–[12]. However,

Sim has showed that maximising the expected information

gain leads to ill-conditioned filter updates in the bearing-only

SLAM [13]. In [14], Bryson et al. present simulated results

of the effect different vehicle actions have with respect to the

entropic mutual information gain. The analysis is performed

for a 6DOF aerial vehicle equipped with two cameras and an

inertial sensor, for which landmark range, azimuth, and eleva-

tion readings are simulated, and data association is known.

In this paper we are interested in the video-rate estimation

and control of a single camera’s motion, moving rapidly

with 6DOF in 3D in normal human environments, mapping

visual features with minimal prior information about motion

dynamics. Our aim is to localise the sensor and build a feature

map by computing the appropriate control actions in order to

improve overall system estimation.

However, insisting on video-rate performance using mod-

est hardware imposes severe restrictions on the volume of



computation that can take place in each 33ms time step.

Re-estimation must take place of course, but making strictly

optimal camera movements would require in addition the

computation of the derivatives of a well-chosen performance

metric with respect to the inputs [15]. Such a computation

remains unfeasible for a 6DOF highly nonlinear system model.

Besides, human actions can only be approximate, and at

low frequency. So, instead of computing the optimal motion

command, we decide only upon a small set of choices.

Actions belong to a discrete set (eg. go forward, go left,

go up, turn right, etc.), and the particular movement chosen is

the one that maximises the mutual information gain between

posterior states and measurements. Using entropy for explo-

ration only makes sense if we can be certain that uncertainty is

reduced as landmarks are being discovered. To that, one must

have an idea first of the shape of the space to be mapped, and

filling it with randomly placed features with large uncertainty

[14]. Maximising the mutual information aims at reducing

the overall state uncertainty, and helps the camera move

away from making repeated ill-conditioned measurements.

Orientation changes are determined by maximising the trace

of the Fisher Information Matrix. In this way, we allow the

camera still to look at those landmarks with large uncertainty,

but from better-posed directions.

The remainder of the paper is ordered as follows. First we

briefly describe the system and the estimation scheme. Then

the metrics used as cost functions to choose the appropriate

actions are explained; and our control strategy is illustrated

through simulations. Lastly, we present the results of real-

time experiments with a hand-held wide-angle camera, where

a GUI feeds-back motion commands to the user.

II. 6 DOF BEARING-ONLY SLAM

A. Unconstrained Camera Motion

It is assumed that the camera could be attached to any

mobile platform — in our case the hand — and is free to

move in any direction in IR3 × SO(3). We adopt a smooth

unconstrained constant-velocity motion model, its translational

and rotational altered only by zero-mean, normally distributed

accelerations and staying the same on average. The Gaussian

acceleration assumption means that large impulsive changes of

direction are unlikely. The camera motion prediction model is

xv(k+1|k) =









p(k+1|k)
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,

with p = [x, y, z]⊤ and q = [q0, q1, q2, q3]
⊤ denoting the cam-

era pose (three states for position and four for orientation using

a unit norm quaternion representation), and v = [vx, vy, vz]
⊤

and ω = [ωx, ωy, ωz]
⊤ denoting the linear and angular

velocities, respectively. The subscripts (k|k) and (k + 1|k)
denote the posterior at time k and the prior (before integrating

measurements) at k + 1. The input to the system is the

acceleration vector u = [a⊤,α⊤]⊤ = [ax, ay, az, αx, αy, αz]
⊤.

An Extended Kalman Filter propagates the camera pose

and velocity estimates, as well as feature estimates. A state

that includes the features y is made of x = [x⊤v ,y⊤]⊤.

The model Q for the prediction of change in orientation

is inspired by [16] and is detailed in the Appendix. The

redundancy in the quaternion representation is removed by a

||q|| = 1 normalisation at each update, accompanied by the

corresponding Jacobian modification.

B. Feature Extraction

In this work we are interested in mapping the 3-D coordi-

nates of salient point features from images, and need to do

so at video-rate. As in previous work, we use the Shi-Tomasi

saliency operator, and match correspondences in subsequent

frames using normalised sum-of-squared differences [6], [8].

Although more robust detectors such as SIFT have become

widely popular for their ability to find and match features

with higher degree of uniqueness, they come at the expense

of heavier computational load.

Image projection is modelled using a full perspective wide

angle camera. The position of a 3D scene point yi is trans-

formed into the camera frame as yc
i = [xc, yc, zc]⊤ =

R
⊤(yi − p) , with R the rotation matrix equivalent of q.

The point’s projection onto the image plane is

hi =

[

u
v

]

=

[

u0 − uc/
√

d

v0 − vc/
√

d

]

, (1)

where uc = fkuxc/zc, vc = fkvyc/zc, the radial distortion

term is d = 1 + Kd(u
2
c + v2

c ), and the intrinsic calibration of

the camera — focal distance f , principal point (u0, v0), pixel

densities ku and kv , and radial distortion parameter Kd — are

determined beforehand.

When an image feature is detected, its measurement must

either be associated with an existing feature or be added

as a new feature in the map. The location of the camera,

along with the locations of the already mapped features,

are used to predict feature position hi using Eq. (1), and

these estimates checked against the measurements using a

nearest neighbour test. Feature search is constrained to 3σ
elliptical regions around the image estimates as defined by

the innovation covariance matrix Si = HiPk+1|kH
⊤
i + R ,

with Hi the Jacobian of the sensor model with respect to the

state, Pk+1|k the prior state covariance, and measurements

zi assumed corrupted by zero mean Gaussian noise with

covariance R.

C. Initialisation

Inserting a new feature to the map cannot be done im-

mediately because the measurement model is non-invertible.

Though bearing is recoverable from one measurement, 3D

depth is not.

Several schemes have been reported [8], [9], [17], and we

adopt the first of these. The initial measurement results in a

semi-infinite line with Gaussian uncertainty in its parameters,

starting at the estimated camera position and heading to

infinity along the feature viewing direction. A 1D particle



distribution represents the likelihood of the 3D feature’s posi-

tion along this line. The line is projected as an epipolar line

into subsequent images, but specifically it is the projection of

the point particles and their uncertainly ellipses that provide

the regions to be searched for a match, in turn producing

likelihoods for Bayesian re-weighting of the depth distribution.

A small number of steps is required to reduce to below a

threshold the ratio of the standard deviation in depth to the

depth estimate itself. At that time, the depth distribution is

re-approximated as Gaussian and the feature is initialised as

a 3D point yi into the map.

III. INFORMATION GAIN

This section first presents a metric for expected information

gain as a result of performing a given action, and then develops

an overall information conditioning strategy for the computa-

tion of orientations. The aim will be to move the camera in the

direction that most reduces the uncertainty in the entire SLAM

state, by using the information that should be gained from

future, predicted, landmark observations were such a move to

be made, but taking into account the information lost as a

result of moving with uncertainty.

A. Mutual Information Gain

We adopt entropy as a measure of uncertainty; that is, as

a measure of how much randomness there is in our state

estimate. Entropy is defined as H(X) = −∑
x

p(x) log p(x) ,
which, for our case where p(x) is a n-variate Gaussian

distribution, reduces to H(X) = 1
2 log((2π)n|P|) .

Now consider the following two random vectors: the state

prior xk+1|k, and the prediction of measurement i, zi,k+1|k.

We want to choose the action that maximises the mutual in-

formation between the two. The mutual information is defined

as the relative entropy between the joint distribution p(x, zi),
and the marginals p(x) and p(zi).

I(X;Z) =
∑

x∈X,zi∈Z

p(x, zi) log
p(x, zi)

p(x)p(zi)

= H(X) + H(Z) − H(X,Z)

= H(X) − H(X|Z) ,

which, for our Gaussian multivariate case, evaluates to

I(X;Z) =
1

2
log

( |Px|
|Px − PxzP

−1
z P⊤

xz
|

)

=
1

2
log

(

|Pk+1|k|
|Pk+1|k − Pk+1|kH

⊤
i S−1

i HiP
⊤
k+1|k|

)

=
1

2

(

log |Pk+1|k| − log |Pk+1|k+1|
)

.

Thus, in choosing a maximally mutually informative motion

command, we are maximising the difference between prior and

posterior entropies [18]. In other words, we are choosing the

motion command that most reduces the uncertainty of x due

to the knowledge of z as a result of a particular action. Figure

1 shows the directions maximising the mutual information for

a simple 2DOF camera and 3 landmarks.

3

MaximumMaximumMaximumMaximum

2

1 Camera

Fig. 1. Maximisation of mutual information for the evaluation of motion
commands. A simple 2DOF camera is located at the centre of the plot, and a
decision where to move must be taken as a function of the pose and landmark
states, and the expected measurements. Three landmarks are located to its
left, front, and right-front. Moving to the location in between landmarks 2
and 3 maximises the mutual information between the SLAM prior and the
measurements for this particular example.

Note that the use of mutual information only makes sense

prior to reaching full correlation. In SLAM, |Pk|k| tends

asymptotically to zero, point at which the map becomes fully

correlated and there is nothing else the camera can do to

improve the estimates of the features. From then on, entropy

can still be used to decide what actions to take to reduce

the camera’s own uncertainty, and this can be done just by

replacing x with xv from the above discussion.

B. Fisher Information for Gaze Direction

Measurements in the bearing-only SLAM case are ill-posed

for motions along the principal axis, when points are close

to the principal axis and there is little perspective distortion.

Motion commands based on the maximisation of the mutual

information metric drive the camera away from those config-

urations, that is, perpendicular to the principal axis. However,

we still want the camera to look at those landmarks with

large uncertainty so as to reduce their covariance when seen

from different locations. To do that, we incorporate another

information metric to control the direction of gaze. From a

set of possible orientation changes, we propose choosing that

which maximises the trace of the Fisher Information Matrix.

In this way we will be choosing the best direction to look at,

in the sense that it is the one that is most informative, but from

a different position than the ill-posed one. Under the Gaussian

assumption for sensor and platform noises, the minimisation

of the least squares criteria (the KF) is equivalent to the

maximisation of a likelihood function Λ(x) given the set of ob-

servations Zk, that is, the maximisation of the joint pdf of the

entire history of observations, Λ(x) =
∏k

i=1 p(zi|x, Zi−1) .
The Total Fisher Information Matrix, a quantification

of the maximum existing information in the observations



about the state, is defined in [19] as the expectation J =

E
[

(∇ log Λ (x)) (∇ log Λ (x))
⊤
]

, which here evaluates to

J =
∑

H⊤S−1H .
The information for the reconstruction of the state con-

tributed by the set of measurements at each iteration is

contained in H⊤S−1H. The eigenvalues λj of this contribution

to J show which linear combinations of the states can be

estimated with good accuracy and which will have large

uncertainties from the coming measurements. It also shows

which linear combinations of states are unobservable. When

one dimension of J has a very small eigenvalue (information

along the line of sight), the product is not a reliable measure of

the elongation of the information hyperellipsoid, as it collapses

the volume to zero. Our strategy is to look in the direction at

which
∑

λj is maximum [20]. This is the viewing direction

that will introduce the largest amount of information in one

single measurement step.

Under a Fisher information motion strategy, maximally

informative actions move the robot as close as possible to the

landmarks under observation. We do not want to move towards

them, but only to orient towards them. Our idea of using the

Fisher Information is only to fixate our camera to those most

uncertain landmarks, and use the change in entropy to select

movement actions. This way, by using the mutual informa-

tion metric, maximally informative actions would prevent the

camera from producing ill-posed measurements. Note that an

omnidirectional sensor would not require a strategy to direct

fixation. In our case, as opposed to a mobile robot, translation

and orientation changes are kinematically decoupled, for this

reason, it makes sense to use different information measures

in evaluating them.

IV. CONTROL STRATEGY

In this Section we demonstrate in simulation how combining

the strategies of effectively controlling translation by maximis-

ing mutual information thereafter controlling orientation by

maximising the information available from the new position

yields reliable active control of pose and velocity for a free

moving camera, whilst building a map optimally.

A. Deciding Where to Go and Where to Look At

As noted earlier, the real-time requirements of the task

preclude using an optimal control decision that takes into

account all possible motion commands which is impracticable

to compute, leading to an exponential growth because of the

curse of dimensionality of long term action evaluation. Instead

we evaluate our information metrics for a small set of actions

carried out over a fixed amount of time, and choose the best

action from those.

The set of possible actions is divided in two groups.

Mutual information is evaluated for the translational actions

go_forward, go_backwards, go_right, go_left,

go_up, go_down, and stay; and Fisher information is max-

imised from the set of orientation commands turn_right,

turn_left, and stay.

In our simulated setting, desired camera locations are pre-

dicted for the best action chosen, and a PD low-level control

law is applied to ensure these locations are reached at the

end of one second; at which point the motion metric is again

evaluated to determine the next desired action. Orientations

however, are evaluated at frame rate, leaving the system to

freely rotate, governed only by the information maximisation

strategy.

The simulation considers a fixed number of expected land-

marks to be found, and both the Mutual Information and

Fisher Information metrics are computed taking into account

the corresponding full covariance matrices, including these

unvisited landmarks, which have been initialised with large

uncertainties. This is the only thing that prevents our control

strategies from defaulting to homeostasis.

B. Simulation Results

Figure 2 contains simulation results from our mutual in-

formation strategy for the computation of motion commands,

and compares various orientation computation schemes. The

simulated environment represents a room 6×6×2 m3 in size

containing 33 randomly distributed point landmarks, out of

which 6 are fiduciary points, to be used as global references

[21].

The initial standard deviation in camera pose is 6-cm in

the x and y directions, 4.6 cm in height z, and 45◦ in

orientation, right after matching the fiduciary points, but before

any motion takes place. Sensor standard deviation is set at 2

pixels, and data association is not known a priori. Instead,

nearest neighbour χ-squared tests are computed to guarantee

correct matching. New features are initialised once their ratio

of depth estimate to depth standard deviation falls below a

threshold of 0.3.

The plots show the results of actively moving a 6-DOF

camera whilst building a map of 3D features. In all cases, each

of the seven motion actions will produce a displacement of

30 cm in the corresponding direction. Our mutual information

metric is evaluated at each of these positions. The action that

maximises the metric is chosen, and the camera is controlled

to reach that position in one second with a PD control law.

Orientation changes are computed every 50 ms.

Three approaches were tested for the computation of gaze

commands: (i) constant rotational velocity of 0.2 rad/sec,

frames (a,d); (ii) maximisation of mutual information both

for the position and orientation of the moving camera, frames

(b,e); and (iii) maximisation of mutual information for position

and maximisation of Fisher information for gaze, frames (c,f).

The experiment shown in the plots lasted 35 seconds.

The constant rotational velocity and the mutual information

strategies tend to insert landmarks into the map at a faster

pace than the Fisher Information strategy. As can be seen in

the error plots in Figure 3, this might not be always the best

choice. It seems reasonable to let the system accurately locate

the already seen landmarks before actively searching for new

ones.
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position and constant angular velocity.
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(b) Final Map by using Mutual Information for
position and orientation.
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(c) Final Map by using Mutual Information for
position and Fisher Information for orientation.
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angular velocity.

0 5 10 15 20 25 30 35
−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

Time (s)

log
2
| P |

newland

Pcam

Plan

P

(e) Entropy for MI in position and orientation.
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Fig. 2. Trajectories with Final Maps and Entropy. (rReal and rEst are the real and estimated camera trajectories, the label newland and the green dots and
dotted vertical lines represent the value of entropy at the instant when new landmarks are initialised. Pcam, Plan, and P indicate the camera, map, and overall
entropies.

The third alternative, controlling camera orientation by

maximising the Fisher Information entering into the filter,

has the effect that it focuses on reducing the uncertainty of

the already seen landmarks, instead of eagerly exploring the

entire room for new landmarks. The reason is that landmarks

that have been observed for a small period of time still have

large depth uncertainty, and the Fisher Information metric

is maximised when observations are directed towards them.

The technique tends to close loops at a faster pace than the

other two approaches, thus propagating correlations amongst

landmarks and poses in a more efficient way. Additionally, by

revisiting fiduciary points more often, orientations are much

better estimated in this case.

Strategy (iii) needs more time to reduce entropy and takes

more time to insert the same number of landmarks in the map.

But, at the point at which the same number of landmarks is

available it has lower entropy than the other two strategies

(see for example in Figure 2, frames (d-f), that when the 14th

landmark is added, the times are 19, 18, and 30 secs, and the

entropies are -530, -550, and -610).

V. EXPERIMENTS

This section presents an initial experimental result validating

the maximisation of mutual information strategy for the con-

trol of a hand-held camera in a challenging 15fps visual SLAM

application. Within a room, the camera starts approximately

at rest with some known object in view to act as a starting

point and provide a metric scale to the proceedings. The

camera moves, translating and rotating freely in 3D, according

to the instruction provided in a graphical user interface, and

executed by the user, within a room or a restricted volume,

such that various parts of the unknown environment come into

view. The aim is to estimate and control the full camera pose

continuously during arbitrarily long periods of movement. This

involves accurately mapping (estimating the locations of) a

sparse set of features in the environment.

Given that the control loop is being closed by the human

operator, only displacement commands are computed. Gaze

control is left to the user. Furthermore, the mutual information

measure requires evaluating the determinant of the full covari-

ance matrix at each iteration. Because of the complexity of this

operation, single motion predictions are evaluated one frame

at a time. It is only until the 15th frame in the sequence that

all mutual information measures are compared, and a desired

action is displayed on screen. That is, the user is presented

with motion directions to obey every second. Note also, that

in computing the mutual information measure, only the camera

position and map parts of the covariance matrix are used,

leaving out the gaze and velocity parts of the matrix. Finally,

to keep it running in real-time, the resulting application must

be designed for sparse mapping. That is, with the computing

capabilities of an off-the-shelf system, our current application
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(a) Position error when using MI for position
and constant angular velocity.
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(b) Position error when using MI for position
and orientation.
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(c) Position error when using MI for position
and FI for orientation.

0 10 20 30
−0.02

−0.01

0

0.01

0.02

Time (s)

E
rr

o
r 

q
0
(r

a
d

)

0 10 20 30
−0.02

−0.01

0

0.01

0.02

Time (s)

E
rr

o
r 

q
1
(r

a
d

)

0 10 20 30
−0.02

−0.01

0

0.01

0.02

Time (s)

E
rr

o
r 

q
2
(r

a
d

)

0 10 20 30
−0.02

−0.01

0

0.01

0.02

Time (s)

E
rr

o
r 

q
3
(r

a
d

)

(d) Orientation error when using MI for posi-
tion and constant angular velocity.
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(e) Orientation error when using MI for position
and orientation.
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(f) Orientation error when using MI for position
and FI for orientation.

Fig. 3. Estimation errors for camera position and orientation and their corresponding 2σ variance bounds. Position errors are plotted as x, y, and z distances
to the real camera location in meters, and orientation errors are plotted as quaternions.

is limited to less than 50 landmarks.

Figure 4 shows the graphical user interface. The top part of

the figure contains a 3D plot of the camera and the landmarks

mapped, while the bottom part shows the information being

displayed to the user superimposed on the camera view. Figure

5 contains a plot of the decrease in the various entropies for

the map being built, and the list of actions chosen as shown

to the user during the first minute.

Worth noticing is that in the real-time implementation, the

system prompts the user for repeated up-down movements,

as well as left-right commands. This can be explained as if

after initialising new features, the system repeatedly asks for

motions perpendicular to the line of sight to best reduce their

uncertainty. Also, closing loops has an interesting effect in the

reduction of entropy, as can be seen around the 1500th frame

on Fig. 5-a.

VI. CONCLUSION

In conclusion, we have shown plausible motion strategies

in a video-rate visual SLAM application. On the one hand, by

choosing a maximal mutually informative motion command,

we are maximising the difference between prior and posterior

SLAM entropies, resulting in the motion command that mostly

reduces the uncertainty of x due to the knowledge of z.

Alternatively, by controlling gaze maximising the information

about the measurements, we get a system that prioritises in

accurately locating the already seen landmarks before actively

searching for new ones.

Our method is validated in a video-rate hand-held visual

SLAM implementation. Given that our system is capable of

producing motion commands for a real-time 6DOF visual

SLAM, it is sufficiently general to be incorporated into any

type of mobile platform, without the need of other sensors.

A possible weakness of this information-based approach is

that it estimates the utility of measurements assuming that

our models are correct. Model discrepancies, and effects of

linearisation in the computation of our estimation and control

commands might lead to undesirable results.

APPENDIX

The orientation of the camera frame, and its rate of change,

are related to the angular velocity by the quaternion multi-

plication Ω = 2q̇q∗ , with Ω = [0, ωx, ωy, ωz]
⊤, the angular

velocity vector expressed in quaternion form, and q∗ is the

orientation quaternion conjugate. Or equivalently, by q̇ =
1
2Mq ≈ q(k+1)−q(k)

∆t
, with

M =









0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0









.

Solving for q(k+1) in the above approximation when ω is con-

stant, our smooth motion model for the prediction of change



Fig. 4. Feature map and camera view as shown in the Graphical User
Interface (844th frame).

in orientation becomes qk+1 = Qqk with the quaternion

transition matrix

Q = cos

(

∆t‖Ω‖
2

)

I +
2

‖Ω‖ sin

(

∆t‖Ω‖
2

)

M .

Note that when computing the quaternion propagation, the

angular velocities are to be evaluated at (k + 1|k), i.e.,

including the angular acceleration term.
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