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Abstract—While the most accurate solution to off-line struc-
ture from motion (SFM) problems is undoubtedly to extract
as much correspondence information as possible and perform
global optimisation, sequential methods suitable for live video
streams must approximate this to fit within fixed computational
bounds. Two quite different approaches to real-time SFM
— also called monocular SLAM (Simultaneous Localisation
and Mapping) — have proven successful, but they sparsify
the problem in different ways. Filtering methods marginalise
out past poses and summarise the information gained over
time with a probability distribution. Keyframe methods retain
the optimisation approach of global bundle adjustment, but
computationally must select only a small number of past frames
to process.

In this paper we perform the first rigorous analysis of
the relative advantages of filtering and sparse optimisation
for sequential monocular SLAM. A series of experiments in
simulation as well using a real image SLAM system were
performed by means of covariance propagation and Monte
Carlo methods, and comparisons made using a combined
cost/accuracy measure. With some well-discussed reservations,
we conclude that while filtering may have a niche in systems
with low processing resources, in most modern applications
keyframe optimisation gives the most accuracy per unit of
computing time.

I. INTRODUCTION

Live motion and structure estimation from a single moving

video camera has potential applications in domains such

as robotics, wearable computing, augmented reality and the

automotive sector. This research area has a long history

dating back to work such as [10], but the past five years

— through advances in computer processing power as well

as algorithms — have seen great progress and several

standout demonstration systems have been presented. Two

methodologies have been prevalent: filtering approaches (e.g.

[6], [8]) which fuse measurements from all images se-

quentially by updating probability distributions over features

and camera pose parameters; and bundle adjustment style

optimisation over selected images from the live stream, such

as a sliding window [18], [20], or in particular spatially

distributed keyframes [13], [14] which permit drift-free long-

term operation.

Understanding of the generic character of localisation and

reconstruction problems has recently matured significantly.

In particular, recently a gap has been bridged between the

Structure from Motion (SFM) research area in computer
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Fig. 1. (a) Bayesian network for SLAM/SFM. (b) SLAM/SFM as markov
random field without representing the measurements explicitly. (c) and (d)
visualise how inference progressed in a filter and with keyframe-based
optimisation.

vision, whose principles were derived from photogrammetry,

and the Simultaneous Localisation and Mapping (SLAM)

sub-field of mobile robotics research — hence the somewhat

unfortunate dual terminology. The essential character of these

two problems, estimating sensor motion by modelling the

previously unknown but static environment, is the same, but

the motivation of researchers has historically been different.

SFM tackled problems of 3D scene reconstruction from small

sets of images, and projective geometry and optimisation

have been the prevalent methods of solution. In SLAM,

on the other hand, the classic problem is to estimate the

motion of a moving robot in real-time as it continuously

observes and maps its unknown environment with sensors

which may or may not include cameras. Here sequential

filtering techniques have been to the fore.

It has taken the full adoption of Bayesian methods for both

to be able to be understood with a unified single language and

a full cross-over of methodologies to occur. Recent papers

such as [12], [15], [17] now pull together the best of both

approaches. There remains, however, the fact that in the

specific problem of real-time monocular camera tracking, the

best systems have been strongly tied to one approach or the

other. The question of why, and whether one approach is

clearly superior to the other, needs resolving to guide future

research in this important application area.

In this paper we compare the filtering and optimisation

approaches to monocular SLAM, analysing both for the first

time in terms of how they trade off accuracy for compu-

tation speed via comprehensive simulation experiments and



representative experiments with real images, and reach some

notable conclusions. The following section discusses the

problem in general terms, then we propose an experimental

basis for the analysis and proceed to results and discussion.

II. FILTERING VERSUS OPTIMISATION

The general problem of SLAM/SFM can be posed in terms

of inference on a graph. Initially, we represent the variables

involved by the Bayesian network shown in Figure 1(a).

The variables of interest are xi, each a vector of parame-

ters representing a historic position of the camera, and yi,

each a vector of parameters representing the position of a

feature, assumed to be static. These are linked by image

feature measurements zi, each depending on one feature

and one pose, and sometimes links between consecutive xi

representing non-visual knowledge about local motion, for

instance from odometry or smoothness assumptions. In real-

time SLAM, this network will continuously grow as new

pose and measurement variables are added at every time step,

and new feature variables will be added whenever new parts

of a scene are explored for the first time.

In Fig. 1(b), the poses xi and features yi are presented

in a markov random field without making the known con-

ditionals zi explicit. Although various parametric and non-

parametric inference techniques have been applied to SFM

and SLAM problems (such as particle filters, or global

optimisation based on the L∞ norm), the most generally

successful methods in both filtering and optimisation have

assumed Gaussian distributions for measurements and ul-

timately state-space estimation; equivalently we could say

that they are least-squares methods in the reprojection error

minimised. Standard bundle adjustment (BA) in SFM, or the

Extended Kalman Filter (EKF) and variants in SLAM all

manipulate the same types of matrices representing Gaussian

means and covariances. The clear reason is the special status

of the Gaussian as the central distribution of probability

theory which makes it the most efficient way to represent

uncertainty in a wide range of practical inference. We

therefore restrict our analysis to this domain.

A direct application of optimal BA to sequential SLAM

would involve finding the full maximum likelihood solution

to the graph of Fig. 1(b) from scratch as it grew at every

new time-step. The computational cost would clearly get

larger at every frame, and quickly out of hand. In inference

suitable for real-time implementation, we therefore face two

key possibilities in order to avoid computational explosion.

In the filtering approach illustrated by Fig. 1(c), all poses

other than the current one are marginalised out after every

frame. Features, which may be measured again in the future,

are retained. The result is a graph which stays relatively

compact; it will not grow arbitrarily with time, and will

not grow at all during repeated movement in a restricted

area, adding persistent feature variables only when new

areas are explored. The downside is that the graph quickly

becomes fully inter-connected, since every elimination of

a past pose variable causes fill-in with new links between

every pair of feature variables to which it was joined. Joint

potentials over all of these mutually-interconnected variables

must therefore be stored and updated. The computational

cost of propagating joint distributions scales poorly with the

number of variables involved, and this is the main drawback

of filtering: in SLAM, the number of features in the map

will be severely limited. The standard algorithm for filtering

using Gaussian probability distributions is the EKF, where

the dense inter-connections between features are manifest in

a single joint density over features stored by a mean vector

and large covariance matrix.

The other option is to retain BA’s optimisation approach,

solving the graph from scratch time after time as is grows, but

to sparsify it by removing all but a small subset of past poses.

In some applications it is sensible for the retained poses to be

in a sliding window of the most recent camera positions, but

more generally they are a set of intelligently or heuristically

chosen keyframes (see Fig. 1(d)). The other poses, and all

the measurements connected to them, are not marginalised

out as in the filter, but simply discarded — they do not

contribute to estimates. Compared to filtering, this approach

will produce a graph which has more elements (since many

past poses are retained), but importantly for inference the

lack of marginalisation means that it will remain sparsely

inter-connected. The result is that graph optimisation remains

relatively efficient, even if the number of features in the

graph and measured from the keyframes is very high. The

ability to incorporate more feature measurements counters

the information lost from the discarded frames.

So the key question is whether it makes sense to sum-

marise the information gained from historic poses and mea-

surements by joint probability distributions in state space and

propagate these through time (filtering), or to discard some of

those measurements in such a way that repeated optimisation

from scratch becomes feasible (keyframes), and propagating

a probability distribution through time is unnecessary. We

have not seen a convincing investigation of which approach

works best in the specific problem of monocular SLAM, and

in this paper propose a set of experiments to investigate this

issue in detail in terms of the trade-off between accuracy and

computational cost.

III. DEFINING AN EXPERIMENTAL SETUP

We keep two key state of the art systems in mind in

our definition of simulation experiments: Klein and Murray’s

breakthrough keyframe based SLAM system [13], [14], and

Eade and Drummond’s system which builds a graph of

locally filtered sub-maps [8]. These systems are similar in

many regards, incorporating parallel processes to solve local

metric mapping, appearance-based loop closure detection and

background global map optimisation over a graph. They are

very different at the very local level, however, in exactly

the way that we wish to investigate, in what constitutes the

fundamental building block of their mapping processes. In

Klein and Murray’s system, it is the keyframe, a histori-

cal pose of the camera where a large number of features

are matched and measured. Only information from these

keyframes goes into the final map — all other frames are



used locally for tracking but that information is ultimately

discarded. Klein and Murray’s key observation which permits

real-time operation is that BA over keyframes does not have

to happen at frame-rate. In their implementation, BA runs

in one thread on a multi-core machine, completing as often

as possible, while a second tracking thread does operate at

frame-rate with the task of pose estimation of the current

camera position with respect to the fixed map defined by the

nearest keyframe.

In Eade and Drummond’s system, the building block is

a ‘node’, which is a filtered probabilistic sub-map of the

locations of features. Measurements from all frames are di-

gested in this sub-map, but the number of features it contains

is consequently much smaller. In Eade and Drummond’s

system, updates to the local nodes (sub-maps) are carried out

using non-linear optimisation rather than an EKF step and

they use an inverse covariance (information) representation.

However, the important point for our purposes is that both the

mean vector of estimated feature locations and a covariance

matrix representing uncertainty are updated at every new

image and a probability distribution therefore summarises

past measurements as in [6]. There would be little difference

if the EKF was used locally.

The spacing of Klein and Murray’s keyframes and Eade

and Drummond’s nodes is decided automatically in both

cases, but turns out to be similar. Essentially, during a camera

motion between two neighbouring keyframes or nodes, a

high fraction of features in the image will remain observable.

So in our simulations, we aim to isolate this very local

part of the general mapping process: the construction of a

building block which is one node or the motion between two

keyframes (see the camera motions in Fig. 2).

We wish to analyse both accuracy and computational

cost. As a measure of accuracy, we consider only the error

between the start and end point of a camera motion. This

is appropriate as it measures how much camera uncertainty

grows with the addition of each building block to a large

map. An important aspect of the analysis is that we obtain

accuracy measures from a single process as a function of

number of features and number of intermediate frames —

bundle adjustment — rather than specifically simulating

the filtering process. It is well known that inaccuracy can

accumulate in filters due to limitations in the representation

of probability distributions, and specifically the baked-in

linearisation assumptions of Gaussian-based filters like the

EKF. Improving the filtering parameterisation (as in [4])

and increasing feature counts can drastically reduce these

problems. But the BA accuracy measure we use is therefore

an upper bound on what would be achievable using filtering.

IV. PRELIMINARIES

A. Camera Projection Model

The projection model which maps points y in the world

to image coordinates ẑ can be specified as

ẑ =





f 0 p1

0 f p2

0 0 1



 [R|t]y, (1)
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Fig. 2. We analysed three different scene settings: Sideways motion (a),
almost pure rotation (b) and forward motion in a corridor environment (c).
The camera trajectory is displayed as a (red) curve. The orientation of the
camera is highlighted using a (green) vector at intermediate positions. The
planar object is represented by a number of (blue) points.

where f is the focal length in terms of pixel dimensions,

(p1, p2)
⊤ the principal point, R is a 3×3 matrix representing

the camera rotation, and t is a 3-vector [11, pp. 154]. Note

that the position of the camera centre C in the world frame

is not represented explicitly but can be obtained as follows:

C = −R⊤t . (2)

V. ANALYSIS OF ACCURACY AND COST

A. Motion and Structure in the Simulated Scene

In simulation, we consider a pinhole camera with focal

length f = 1000, a resolution of 1280× 960 and a principal

point at (p1, p2)
⊤ = (640, 480)⊤.

In our standard experiment, we consider the follow-

ing scene. The camera performs a sideways motion (see

Fig. 2 (a)). The camera trajectory is 1m. A bounded fronto-

parallel planar object at 3m depth is visible in the scene.

The object is fully observable from all intermediate frames.

In addition, we also analyse other scenarios such as rotation

with very little translation and forward motion in a corridor

environment (see Fig. 2 (b) and 2 (c) respectively); generally

we have found the results obtained to be very similar.

In the experiments, we vary two essential parameters, the

total number of frames and the number of point feature

observations. Note that we denote the number of cameras

involved in the SLAM estimate by m if the camera trajectory

consists of m+1 frames. This is because the pose of the first

camera defines the coordinate frame and is not estimated.

The number of observations per frame is equal to the number

of 3D points in the scene since the whole scene is observable

from all camera frames. We vary the number of frames in

the range m ∈ {1, 2, . . . 16}, and the number of features in

the range n ∈ {12, . . . 425}. The scene points are arranged
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Fig. 3. Regular pattern consisting of 12 to 425 points.

in a regular pattern (see Fig. 3). The number of points is

increased such that a pattern with a higher density always

includes all points from a pattern with lower density.

B. Accuracy Analysis

In BA, we seek to estimate the state vector p over the

joint state of all camera poses xi and scene points yj :

p = (x⊤
1 , . . . ,x⊤

m,y⊤
1 , . . . ,y⊤

n )⊤ . (3)

A camera pose is represented by a rotation matrix R and

translation vector t. It is desirable to have a minimal rep-

resentation of camera rotation. Let qi be a unit quaternion

which corresponds to the rotation matrix Ri. We define the

rotation of the ith camera frame as a 3-vector ri representing

the imaginary parts of qi. Thus, the ith camera pose is fully

specified by:

xi = (r⊤i , t⊤i )⊤ . (4)

For BA, we employ the well known high-performance SBA

library [16]. The sparse Jacobian J used for the Levenberg-

Marquardt algorithm is:

J =
∂ẑ(p)

∂p
. (5)

The accuracy of a specific SLAM setting is evaluated

using backward propagation of covariance [11, pp. 141]. The

measurement noise is set to a standard deviation of σ = 0.5
pixels:

Σz = diag(σ2, . . . , σ2) . (6)

However, the state vector p is over-parameterised since

in monocular SLAM we can only estimate the joint state

of structure and motion modulo an unknown scale factor.

Hence, the matrix J
⊤
Σ
−1
z

J is rank deficient, not invertible,

and thus we cannot perform covariance back-propagation

straightaway. Therefore, we define a transformation which

maps the over-parameterised state p to the minimal repre-

sentation p̃. First, all translation parameters ti and structure

parameters yj are scaled by a factor ρ such that |ρtm| = 1.
Then, we represent the position of the final translation tm

using two parameters only — the spherical angles θm and

φm. Thus, the final camera pose is represented minimally

by:

x̃m = (r⊤m, θm, φm)⊤ . (7)

Now, we can calculate the covariance of the minimal param-

eterisation Σp̃:

Σp̃ = (H⊤J⊤Σ−1
z

JH)−1 (8)

where H is the Jacobian corresponding to the mapping from

the minimal state p̃ to the over-parameterised one p. In the

end, we are only interested in the 5×5 sub-matrix Σx̃m
which

specifies the uncertainty of the final camera pose x̃m.

We analyse the influence of different parameters 〈m,n〉 in
terms of entropy reduction. Therefore, for each setting 〈m,n〉
we compute the covariance matrix of the final camera pose

Σ
〈m,n〉
x̃m

as described above. Then, we can compute the

entropy reduction in bits,

log2





det
(

Σ
〈m,n〉
x̃m

)

det
(

Σ
〈1,12〉
x̃m

)



 , (9)

in relation to the least accurate case 〈1, 12〉 where only one

frame and 12 scene points are used for the optimisation.

The influence of the parameters 〈m,n〉 for the sideways

motion case is illustrated in Fig. 4. As can be seen in all

plots, increasing the number of features significantly reduces

the entropy. On the other hand, increasing the number of

intermediate frames has only a minor influence. This is the

single most important result of this paper. For all three

different settings — sideways motion, rotation, and forward

motion (see Fig. 4(a-c)) — the plot looks very similar.

However, in the latter case it seems to be a bit more

promising to increase the number of frames.

Since we can only perform experiments for a discrete

number of settings 〈m,n〉, the resulting entropy-reduction

surfaces (Fig. 4(a-c)) are represented sparsely. However, for

the following analysis it is essential to have a continuous rep-

resentation. We have found that the surfaces are represented

well by the following function:

v(n,m) = α1 log(n + α4) + α2 log(m + α5) + α3 . (10)

Using non-linear least squares regression, the parameter

vector α can be estimated robustly. The resulting surface

for the sideways motion case is shown in Fig. 4(d). The

function represents the sparse data well, which is reflected

by a Normalised Root Means Square Error (NRMSE) of only

0.00769.
For comparison reasons, we also conducted a Monte-Carlo

experiment instead of covariance propagation. For each pair

〈m,n〉, we perform BA 1000 times, sampling measurement

noise in each trial from a Gaussian with zero mean and

covariance Σz as defined in (6). Then, the covariance of

the final camera pose is computed from the 1000 BA runs.

The resulting accuracy surface — again, in terms of entropy

reduction — can be seen in Fig. 4 (e).

C. Accuracy Analysis using Real Image Sequences

In addition to the simulation experiments, we performed

a series of Monte Carlo experiments using real image se-

quences (see Fig. 5 (a)). For this we developed a keyframe-

based SLAM framework similar to Klein and Murray’s

system. At each frame, an initial pose is estimated from

previously estimated 3D structure using SURF [2] and

RANSAC-based Perspective-Four-Point (P4P) camera esti-

mation followed by an iterative refinement. By means of this

initial pose estimate, more 2D-3D correspondences are found

using warped patch matching. New 3D points are initialised
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(c) Corridor
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(d) Dense Surface
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Fig. 4. The influence of the number of features n and the number of frames m on camera motion estimation accuracy in terms of entropy reduction. In
(a), (b), and (c), sparse plots for sideways, rotation and forward motions are displayed respectively. (d) shows a denser surface for the sideways experiment
fitted by least squares regression. Monte-Carlo experiments lead to comparable results as can be seen in (e).
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Fig. 5. Real image experiments. In (a), two keyframes of a sample image
sequence are shown. SURF and FAST features which were matched to their
corresponding 3D structure are highlighted. In (b), one can see the bundle
adjusted motion and structure of the sample sequence. The distributions over
the projections of the final camera positions xm are shown in (c). Each
distribution consists of BA estimation which either used 10%, 20%, 40%,
or 80% of the available 3D points. One can see, that all four distribution
share approximately the same mean. In (d), the influence of the percentage
n% of the total number of features and the number of frames m on motion
estimation accuracy is shown in terms of average entropy reduction over
the five image sequences.

by the help of FAST [22] and SURF-guided patch matching.

If the distance of the current camera pose to the nearest

keyframe exceeds a threshold, a new keyframe is dropped

and the whole system is bundle adjusted (Fig. 5 (b)).

We performed a series of experiments similar to the side-

ward motion case. The camera was moved roughly sideways

on a 25 cm trajectory 35 cm above an office desk. Although

the scene was roughly planar, no such assumption was built

into the system. An initial guess of the camera pose in

the first frame was calculated from a known calibration

target. As a reminder, we are concentrating on the building

blocks of monocular SLAM in this evaluation, and not on

the problem of structure and motion initialisation. In this

spirit, the calibration grid mimics the previously estimated

3D structure of a longer SLAM sequence. Again, we evaluate

the performance of the SLAM system by means of the

error of the last camera pose in the trajectory. At this point,

the calibration target has left the field of view. Hence, the

pose accuracy purely reflects the performance of the SLAM

framework used.

We performed the evaluation on five different image

sequences. In each sequence, approximately 350 points were

present. The full trajectory consists of m = 10 keyframes.

However, each 3D point was only visible on average in

three to four keyframes due to various reasons such as

the restricted field of view, occlusion and the sensitivity

of SURF and FAST to perspective transformations. For our

analysis, we drew in each case 100 sample sets consisting

of 80%, 40%, 20%, and 10% of the total number of 3D

points and performed BA for each sample set. The resulting

scatter in the final camera location estimate over the sample

set is shown in Fig. 5 (c). One can see that the variance

increases when the percentage of features goes down and

that the distributions share approximately a common mean.

In addition, we produced similar sample sets, where only

m = 5 keyframes where considered. Due to the lack of

ground truth, we consider the mean of the most accurate

setting 〈m = 10, n% = 80〉 as ground truth. Now the

error of each single sample can be computed as well as the

corresponding covariances over each sample set. As in the

simulation experiments, each setting 〈m,n%〉 is compared

to the least accurate case 〈5, 10%〉 in terms of entropy

reduction. The average entropy reduction in bits over the five

image sequences is shown in Fig. 5 (d). One can clearly see

that the shape of the surface is comparable to our simulation

results.

D. Computational Cost of Bundle Adjustment

In order to measure the computational cost of BA, we

performed a Monte Carlo experiment similar as the ones

above, but now measured the execution time of the high-

performance SBA library for multiple experiments at each

choice of parameters. We restricted each optimisation to 20

iterations in order to have comparable results. The resulting

plot is shown in Fig. 6(a). Although in theory the computa-

tional cost of BA is cubic in the number m of keyframes, it

is actually

O(m2 · n) (11)



5
10

15
200

400
0

0.5

1

1.5

mn

c
o
s
t 
in

 s
e
c
o
n
d
s

(a)

5
10

15
200

400
0

0.5

1

1.5

m
n

c
o
s
t 
in

 s
e
c
o
n
d
s

(b)

Fig. 6. Computational cost of BA. (a) shows the sparse data from Monte
Carlo experiments, and (b) shows the fitted polynomial function.

in our domain [9][13]. Efficient BA implementations typi-

cally consist of three mayor parts: calculation of the residuals

and Jacobians (linear in the number of observations m · n),
building the linear system (quadratic in m and linear in n),

and solving the linear system (cubic in m). Since in our

domain the number of keyframes is relatively small, the cost

of solving the linear system is negligible. Thus, calculating

residuals/Jacobians as well as building the linear system

dominates the computation and the cost is as stated in (11).

This leads to the polynomial function

costba(n,m) = β1(m + β2)
2 · n + β3 (12)

which represents the measured relation well. Parameter vec-

tor β was estimated using least-squares regression. With an

NRMSE of 0.00144, the polynomial fits the data of the

Monte Carlo experiment well (see Fig. 6(b)).

E. Computational Cost of Filtering

For EKF-SLAM it is well known that the computational

cost per frame is O(n2) where n is the total number of

landmarks in the map. This corresponds to the multiplication

of the full covariance matrix with the Kalman innovation.

However, in our domain where all landmarks in the state are

visible at each step, the inversion of the mutual information

matrix dominates. This leads to a computational demand of

O(n3) . (13)

This is equivalent to the cost of recovering the covariance

from the information matrix (as in Eade and Drummond’s

system). Hence, we model the computational cost of filtering

per frame using a polynomial of order three. In a Monte-

Carlo experiment, the computational cost of the EKF update

step was measured in Davison et al.’s publicly available real-

time monocular SLAM implementation [7]. Again, the un-

known parameters were fitted using non-linear least-squares

regression (see Fig. 7(a)). The NRMSE was 0.00127. It is
obvious that the computational cost for the whole trajectory

is linear in the number of frames m.

F. Cost of Feature Tracking

SLAM estimation, whether filter updates or BA optimisa-

tion, is obviously a major cost in a real-time SLAM system.

However, another significant factor is certainly the cost of

5
10

15
200

400
0

500

1000

m

bundle adjustment, c = 0

n

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 (

b
it
s
 p

e
r 

s
e
c
o
n
d
)

(a) BA

5
10

15
200

400
0

500

1000

m

filtering, c = 0

n

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 (

b
it
s
 p

e
r 

s
e
c
o
n
d
)

(b) EKF

5
10

15
200

400
0

50

100

m

bundle adjustment, c = 0.001

n

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 (

b
it
s
 p

e
r 

s
e
c
o
n
d
)

(c) BA

5
10

15
200

400
0

50

100

m

filtering, c = 0.001

n

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 (

b
it
s
 p

e
r 

s
e
c
o
n
d
)

(d) EKF

Fig. 9. Accuracy/cost measure in bits per second. In (a-b), no tracking
cost is considered. In (c-d), a moderate tracking cost of c = 1 ms is taken
into account

feature tracking — which can include feature extraction, con-

struction of descriptors, feature matching, active search, pose

refinement from known structure, and/or global consensus

matching methods such as RANSAC, active matching [3],

or the joint compatibility test [19] to prune outliers. It is

clear that the cost of matching over the whole trajectory

is at least linear in the number of features. On the other

hand, the matching cost is independent of the parameter m

— the number of frames used for the SLAM optimisation.

To clarify this, let us consider Klein and Murray’s SLAM

system. While only a small number of keyframes is used for

the optimisation, the feature tracking runs on a much higher

frame-rate. If one doubled the number of keyframes in the

system, the computation time of the tracking thread would

not change at all.

G. Trade-off between Accuracy and Cost

Finally, we need to weigh up accuracy against compu-

tational cost. By dividing (10) by (12) we get a combined

accuracy/cost measure in terms of bits per second for the BA

case. A similar measure is defined for the filter case. The

results are shown in Fig. 9 (a-b). Even though the surfaces

look different for the BA and filter, they share a common

pattern. For all n ∈ {12, . . . , 425}, the accuracy/cost value

is maximal at m = 1. This is a distinctive result: in order to

increase the accuracy — independent of the choice between

BA and filter — it is always more beneficial to increase

the number of features than the number of frames in terms

of computational cost. This pattern changes slightly if we

include a moderate tracking cost of c = 1ms (per feature

for the whole trajectory) into the analysis as can be seen in

Fig. 9 (c-d). In the BA case, the ridge is shifted to the right.

To analyse this phenomenon in more detail, we examine

contour lines of the accuracy surfaces. By solving (10) for
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m, we obtain the mapping cv(m) → n,

cv(m) = exp

(

v − α1 log(m + α4) − α3

α2

)

− α5 , (14)

which specifies the contour line for a specific accuracy level

v. In order to find out which of these pairs 〈m, cv(m)〉 (that
all share the same accuracy v) is superior computationally,

we apply the appropriate functions for computational cost

and search for the minimum:

〈m∗
v, n∗

v〉 = argmin
〈m,n〉∈{〈m,cv(m)〉:m=1,...,16}

cost(m,n) . (15)

For a range of accuracy values v and different computational

cost functions, the resulting optimal pairs 〈m∗
v, n∗

v〉 are

plotted in Fig. 8. Even though the curves look different for

different motion types, the overall pattern is the same. First

of all, if we do not take tracking cost into account, the curves

are vertical lines at m = 1. However, if a tracking cost is

included, at low accuracy it is computationally beneficial to

use more then one frame in the SLAM estimation. If we

increase the accuracy more and more, each curve converges

to a constant number of frames m whereas the number of

features n increases monotonically. For filters, this constant

m is one whereas for BA it is some value greater than or

equal to one depending on the tracking cost. This pattern

can be explained by the fact that for low accuracy values

the tracking cost is relatively high compared to the total

cost. Since the tracking cost is independent of the number

of frames involved in the optimisation (as discussed in

Sec. V-F), it is beneficial to use more then one frame

in the optimisation even though the gain in accuracy is

small. However, if the desired accuracy is high, the SLAM

optimisation costs dominate, so that increasing the number

of features is preferred over increasing the number of frames.

Finally, BA optimisation and filtering are compared di-

rectly in Fig. 10. Only at low accuracy (less then 3 bits

improvement on the worst case) is the EKF computationally

more efficient. This holds for the the case where we consider

no tracking cost as well as when a tracking cost of c = 1ms

is added. This seems to be the only region where filtering-

based monocular SLAM systems remain competitive. For

higher accuracy levels, BA is clearly more efficient. This is

mainly because the cost of BA is linear in the number of

features, whereas it is cubic for the EKF.
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Fig. 10. Accuracy and cost for BA and filtering. No tracking cost is
taking into account in (a), whereas a moderate tracking cost of c = 1 ms
is considered in (b). The figures reflect the forward motion. Sideways and
rotation leads to similar plots.

VI. DISCUSSION

The simulations show that the only case when it might

be worth filtering is when the tracking cost is high and the

overall processing budget is small. One might reason that

this is the operating point at which Davison’s first real-time

monocular SLAM system [6] was demonstrated seven years

ago, although we have not made an analysis of absolute

processing levels. Now with much more processing power

available, it is not surprising, when looking at our accu-

racy/cost analysis, that the most accurate real-time monocular

SLAM system available [14] is based on bundle adjusting a

sparse number of keyframes.

To sum up, filters appear beneficial for small processing

budgets whereas BA is superior elsewhere. However, before

drawing too general conclusions from our analysis, we

need to remember carefully which assumptions were made.

First, we assumed that the accuracy of a filter-based SLAM

estimate equals the accuracy of bundle adjustment. But, this

only true in the best case. In particular, we did not include

the problems of linearisation errors in our simulation. Our

analysis also revealed that it is computationally most efficient

to filter only a single keyframe (except when tracking cost

is very high). Practically, this is not a good idea. It is well-

known that linearisation errors are especially dominant if

filters are employed at low a frame rate. These shortcomings

in the presented experimental setup can only show filter-

based monocular SLAM in an even worse light. Thus, an

experiment which models the accuracy of filter-based SLAM

more realisticly could only strengthen our conclusions.



On the other hand, we did not focus on all aspects of

SLAM in our analysis. We intentionally did not consider

large-scale SLAM and loop-closing since these issues have

been intensively studied in the past. A SLAM frameworks

which works reliably locally, whether it is BA or filter-

ing, can easily be applied to a large scale problems using

methods such as sub-mapping [21] or graph-based global

optimisation [15]. Furthermore, it was shown recently that

loop-closing can be solved efficiently using appearance-

based methods (e.g. [5], [1]) which can be formulated

independently from metric SLAM systems. Thus, we assume

in our analysis that the choice between BA and filtering is

not relevant at this global level.

In addition, we did not analyse the hard problem of

bootstrapping camera tracking. Once a monocular SLAM

system is initialised, the first guess p0 required by the

Levenberg Marquardt algorithm in BA can be obtained easily

using pose tracking with known structure [13]. However for

jointly initialisation of structure and motion, this first guess

p0 need to be inferred using a different method such as

the {5, 7, 8}-point algorithm [20], [11]. We are not aware

of any monocular SLAM framework which can solve the

initialisation problem robustly under general configurations.

The system of Klein and Murray [13] currently requires

a separate initialisation step for the first two keyframes

using a motion with parallax. With the right parameterisation

(e.g. [4]), filtering can immediately give estimates along

with uncertainty measures. Whether BA plus {5, 7, 8}-point
algorithm or filters are better for the initialisation stage of

monocular SLAM is an open question.

VII. CONCLUSION

To the best of our knowledge, we have presented in this

paper the first detailed analysis of the relative merits of fil-

tering and bundle adjustment for real-time monocular SLAM

in terms of accuracy and computational cost. We performed

a series of experiments using covariance propagation and

Monte Carlo simulations for motion in a local scene. The

experiments showed that in order to increase the accuracy

of monocular SLAM it is more profitable to increase the

number of features than the number of frames. We also

performed real image experiments using a keyframe based

SLAM framework and these are in accordance with the

simulation results. Furthermore, we have introduced a com-

bined accuracy/cost measure to permit absolute comparisons.

While it is computationally most efficient to use a minimal

number of frames and many features, this pattern changes

slightly if tracking cost is included in the analysis. With the

reservations discussed above, we can conclude that filter-

based SLAM frameworks might be beneficial if a small

processing budget is available, but that BA optimisation is

superior elsewhere. These results are shown to be remarkably

independent of the particular motion and scene setting.

Although this analysis delivers valuable insight into real-

time monocular SLAM, there is space for further work. In

particular, a comparison between filtering and BA during

SLAM initialisation would be profitable and our instinct says

that filtering may be more beneficial in this situation of high

uncertainty.
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