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Aiming at building versatile humanoid systems, we present in this paper the real-time
implementation of behaviors which integrate walking and vision to achieve general func-
tionalities. This paper describes how real-time -or high bandwidth- cognitive processes

can be obtained by combining vision with walking. The central point of our methodology
is to use appropriate models to reduce the complexity of the search space. We will de-
scribe the models introduced in the different blocks of the system and their relationships:

walking pattern, Self Localization and Map Building, real-time reactive vision behaviors,
and planning.

Keywords: appropriate models, integration, ZMP preview control, SLAM, planning, vi-
sual servoing.

1. Introduction

A major challenge with versatile multi-purpose platforms such as humanoids is

to be able to cope efficiently and autonomously with a large range of applications.

This requires for a set of core functionalities to work in near real-time performances,

making few assumptions on the surrounding environment. This paper demonstrates

our current status in developing such a system for humanoid robots. Increasing

autonomy for humanoids implies cognitive capabilities. However, a common problem

with such complex robotic platforms is the inherent complexity of the detailed

models which represent the robot itself. We will show that appropriate simplified

models, as depicted in figure 1, make it possible to grasp the essence of problems,

while being suited for achieving efficient performances in real situations. The second

key point of this paper is to describe a general integration of motion and vision with

core functionalities: low-level vision functionalities, SLAM, vision-based planning

and a general motion generation framework allowing reactive behaviors.
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Fig. 1. HRP-2 using appropriate simplified models to speed-up its cognitive processes.

1.1. State of the art

There already exists a number of architectures which integrate vision and walking

for humanoid robots with impressive capabilities. Namely, Inoue, Inaba, Kagami,

Kuffner and Nishiwaki21 developed such a system on top of the humanoid robot

H7. This system is one of the most complete and advanced up to date. The walking

trajectories are built using a simplification of the ZMP: the bodies of the upper

torso are assumed to be moving together along the same planar motion. To the

authors’ knowledge this work has fostered one of the first real-time pattern gener-

ator ever proposed for a full body humanoid robot. Our system is also based on

a simplification, but it has less restrictions. It was proposed by Kajita 11. Inoue’s

team also proposed a full body motion planning method based on vision. In this

method the visual information is provided by a stereoscopic system 9, in a similar

way as we do. Kuffner 13 proposed to plan a motion using RRT and a dynamic

filter. The approach used is to first find a statically stable trajectory and then to

turn it into a dynamically stable one. Again in this paper a similar approach is

used, but which does not go through a statically stable trajectory phase. We use

3 different approaches according to the situation: a dynamical planner for stepping

over, a roadmap based approach for complex motion with a real-time dynamic fil-

ter, and a A* planner for visual search. Another difference with Nishiwaki et al. is

the fact that we also do planning in the 3D map, while they perform planning in a

2.5 D projection of their 3D map. The work of Okada deserves very much interest
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especially for a complete integration23 which would aim at a real application, i.e.

having HRP-2 acting as a kitchen maid22. His work is also one of the first to con-

sider the problem of planning manipulation tasks 6 in the context of such complex

real applications. For their primitive task executions they do use a task formulation

approach, but not explicitly formulated as a stack of tasks, as it is proposed in the

present paper which does offer a broader genericity. We however do not propose a

system managing high-level tasks as it is done in Okada’s system. One of the first

experiments where the robot changes its foot steps to step-over dynamically an

obstacle has been proposed by Lorch 16, based on a similar approach proposed by

Kuffner 13. They however limited the problem to a small obstacle of 5 cm. Recent

work by Bolder et al. 2 demonstrates ASIMO walking and generating reactivly full

body motion towards objects tracked visually. Their work is in the same spirit to

what is proposed in section 7, but our theoritical framework allow multiple priority

levels and insure smooth velocity transition between tasks.

This state of the art has been voluntarily limited to the work carried on real

humanoid platform with similar architecture. There are other works about the re-

lation between vision and humanoid motion generation 1 31 5. They often include

broader problems such as learning but none include walking considerations.

1.2. Interplay between vision and walking

We first applied our approach to dynamically step over large obstacles. Indeed in

order to find a suitable trajectory, we use a simplified dynamic model of the robot.

The stepping over is said to be dynamic in the sense because it is performed when

the robot is dynamically stable. The key point to perform such motion is to lower

the height of the waist, which violates one of the assumptions the pattern generator

has been built upon. This can be done thanks to the particular robustness of the

compensation scheme proposed by Kajita. This can be exploited further to plan

complex motion with a semi-simplified model of a real HRP-2 humanoid robot. By

using a 3D reconstruction of the humanoid coupled with a planner, it is possible

to make the humanoid robot handle a 2 m meter bar and go through a door too

small for his size. In the following section, we illustrate how monocular SLAM can

be enhanced by introducing the information provided by the pattern generator.

This allow to get rid of a limitation of the initial algorithm, namely initial known

landmarks. The fourth part shows that by using a prioritized stack of tasks, it is

possible to realize a visually-based grasping while walking. The pattern generator is

here coherently integrated as a task. The fifth section describes our current status

regarding visual search of a known object in an unknown environment. Finally the

conclusion follows the description of our overall software architecture.

2. Software integration

The overall software structure of the system is depicted in figure 2. It consists of

five CORBA servers following a functional decomposition. The different perception-
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Fig. 2. Overall software structure and the multiple perception-action loops.

action loops described below are schematically represented by dashed lines.

Low Level Vision Server: This server is in charge of acquiring the image

and of synchronizing multiple cameras. Besides, it provides other servers with the

camera models, and also a graph of low level image processes. This graph includes:

image rectification, filtering, disparity computation, edge detection, color detection

and so on. For those purposes we integrated several vision libraries 29 7 4. This is

also where we integrated the SLAM system presented in section 6, thus avoiding

any overhead through the middleware.

World Model Server: This server handles and computes the internal world

representation. In this particular context, it receives an estimation of the vision

system position and an associated range map. The position is given either by the

SLAM process or by odometry, but other means can also be used. The environment

representation is then updated by comparing the voxels in the field of view with

those of a range map 27.
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Visual Attention Server: This server provides what we call in a broad sense

visual attention. More precisely, this server currently implements the visual search

strategy described in section 8. It is quite different from usual psychological models
32, but it is supposed to fulfill the same functionality: to make a decision about the

next gaze. This server is currently at the highest abstract level. It allows a complete

autonomy of the robot while performing a search. It also belongs to the slowest rate

loop described here.

Path Planner Server: This server is currently providing the planning capa-

bilities to the robot. We are using two approaches for this: roadmaps provided by

Kineoworks14 and a general A*. Depending on the environment and the global task

the robot is asked to perform one may be more appropriate than the others. For

simple environment representations and basic displacement A* provides a quick and

sufficient solution. Kineoworks is able to handle more complex situations. At this

stage unfortunately both do not take the dynamic aspects into consideration. That

is why the simplified model presented in section 5 is important in this architecture.

Motion Generator Server: This server has to generate and perform the mo-

tion defined at a higher level. It is composed of the pattern generator described in

section 3, and of the stack of tasks described in section 7. Incorporated in OpenHRP,

it runs within 5 ms with non real-time parts. The implementation has been done

carefully in order to fulfill the stability constraint in the time imposed by the control

loop. The usage of simplified models at this level is thus crucial.

Using a very efficient implementation of CORBA called ORBIX makes the ar-

chitecture very versatile. Depending on the performance or the tasks, we can easily

replace some servers by specialized and optimized implementations. This is what

has been done for the visually guided grasping while walking experiment in sec-

tion 7. Moreover it allows to take advantage of distributed architectures very easily.

We have thus been able to make use of up to four computers (some of which are

multi-cored/CPU PCs) for some of our latest visual search experiments.

3. Pattern Generator

In this section we briefly recall a popular real-time walking pattern generator pro-

posed by Kajita 11. This pattern generator has specific characteristics which are

used in the following sections of this paper to simplify the resolution of complex be-

haviors. In addition an extension based on the not-so-well known robustness of this

algorithm are proposed to cope with large obstacles. This robustness is used again

later to plan motion in a vision based reconstruction of the environment without

taking care of the robot’s dynamics.

3.1. Simplified model and multi-body models

Figure 3 gives an overall view of a very popular pattern generator algorithm pro-

posed by Kajita 11. The inputs are the walking parameters, i.e. step height, double

support and single support time, and the foot steps. The feet and the Zero Moment
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Fig. 3. ZMP Preview Control scheme

Point (ZMP) reference trajectories stem from this information. In common know-

ledge, the ZMP reference trajectory is used to generate the first set of Center of

Mass (CoM) trajectories. Kajita’s scheme consists in using an optimization problem

considering a preview window to solve an inverse problem. One key idea to do so is

to use a simplified model of the robot’s dynamic.

Once this trajectory is generated, there are two possibilities: either make the

robot behave like the simplified model, or find a way to modify the CoM trajectory

to take into account the robot’s specificities. Kajita proposed a solution for both

possibilities, but this paper focuses on the second one. Thus, the knowledge of CoM

trajectory, feet position and an upper body motion allow, via inverse kinematics,

to compute a robot attitude. This attitude is then used to compute the ZMP of the

robot’s multi-body model. The difference between the newly computed multi-body

ZMP and the ZMP reference is injected into a second preview control loop. This

second preview loop offers a correction of the CoM to make sure that the generated

ZMP is close to the reference.

3.2. CoM trajectory generation

Different approaches also exist to generate the CoM trajectory, but we describe the

one proposed by Kajita 11, The latter takes into account the future by means of

a preview window. Moreover, a second stage takes into account the full multibody

model of the robot and still hold its real-time capabilities. This concept is very

important as it allowed us to create two novel behaviors. Often it is not properly

taken into account, because classically the robot is forced to behave as an inverted
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pendulum. The approach is quickly recalled as it is used later in this paper to

decrease the complexity of planning in a environment reconstructed by 3D vision,

to help a Self Localization Map Building process, and is used as an important

constraint to reduce the search space in a visual search behavior.

Assuming the future steps are known, it is possible to deduce a set

{p0, ..., pNL−1} of future ZMP positions. The main issue is to solve the inverse prob-

lem which finds a CoM trajectory from the desired ZMP trajectory. For a given axis,

say x, this can be achieved by solving the following optimization problem:

min...
x (k),··· ,

...
x (k+NL)

k+NL−1
∑

i=k

1

2
Q(px(i + 1) − pref

x (i + 1))2 +
1

2
R

...
x 2(i) (1)

where the first term represents the difference between the actual ZMP and the

desired one, and the second term is the jerk of the CoM. Q and R are weights

which influence the importance of each term in the cost function. Using an iterative

scheme, and assuming that both CoM and ZMP trajectories are discretized by

piecewise cubic polynomials over time intervals of constant length T , the following

recursive relationship is obtained:

x(k + 1) = Ax(k) + B
...
x (k),

p(k) = Cx(k),
(2)

where

x(k) ≡ [x(k) ẋ(k) ẍ(k)]T ,

A ≡





1 T T 2/2

0 1 T

0 0 1



 ,B ≡





T 3/6

T 2/2

T



 ,C ≡

[

1 0 −
zc

g

]

(3)

Finally the optimal controller which minimizes the performance index, formulated

by equation (1), is given by:

...
x (k) = −G1

k
∑

i=0

e(i) − G2x(k) −

NL
∑

j=1

Gp(j)p
ref (k + j) (4)

where e(i) = px(i) − pref
x (i), and G1, G2 and Gp(j) are the gains calculated from

the weights Q and R and the parameters used in the system described by equation

(2). It is interesting to note the unicity of the weights Gp(j) for a given control

period T , preview window NL and constant CoM height zc. This latter extension is

important because it enables the robot to take the following step into account. The

importance of this future is given by the solution of the weights Gp(j). However if

there is a sudden change due to modifications of the environment, the trajectory

needs to be recomputed. This new trajectory should handle the current state of the

robot, and the next step. Nishiwaki 20 proposed an extension of Kajita’s 11 control

scheme to deal with such situation.
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Fig. 4. (left) Example of full body motion lowering the height of the waist. (right) Compensation

between the 3D LIPM model and the multi-body model.

3.3. Realizing the CoM trajectory

In section 3.2 we explained that the CoM trajectory provided by the algorithm is

based upon a simplified model of the robot. From this trajectory we can adopt

several strategies to compute the corresponding joint values. We can either make

the robot act as an inverse pendulum by controlling the CoM and momenta through

the Resolved Momentum Control as realized by Neo 19, or by the CoM jacobian 28.

Our current strategy is the one suggested by Kajita 11. It assumes that the waist is

rigidly fixed to the CoM. In the case of robots with 6 DOF legs, such as HRP-2, it

is possible to solve the problem using inverse kinematics. A second preview-loop is

computed to compensate for the discrepancy between the ZMP reference trajectory

and the ZMP trajectory computed from the previous solution considering the multi-

body model. This second preview-loop acts as a dynamic filter, and offers a way

to modify the CoM trajectory. In his book, Kajita10 also shows the robustness of

this particular stage by lowering the waist about 0.11 m and strongly bending the

chest. A slightly different example is given in figure 4 (right), where the robot is

simply lowering the waist. They are already disturbances up to 2 ∼ 3 cm without

correction. The graphs show the ZMP multi-body computed after the first preview

control stage, and after the second preview control. In this case the waist was

lowered down of 15 cm. However, to the extent of the authors’ knowledge, there

is no example of applications using this robustness. In this paper we present two

applications: stepping over and planning with a simplified model. The latter is fully

explained for the first time. Those two applications rely on the possibility to lower

the waist.

3.4. Lowering the CoM

As it has been shown previously, the main simplification of the robot’s dynamic is

realized by constraining the evolution of the height’s CoM on a horizontal plane.
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Lowering the CoM is a direct violation of the assumption. In the other hand, the

second Preview-Control compensates to some extend the perturbations of the sim-

plified model trajectory. There are other works allowing to lower the waist: Kagami

with the AutoBalancer allows to specify arbitrary modification of heights for each

body. The constraint is however to have a common motion for all bodies in the

horizontal plane. This constraint is much harder than the one proposed by Kajita

limited to the CoM. More recently Harada8 under the same assumption introduced

by Kajita, and assuming than the ZMP has a polynomial form shows that it is

possible to compensate for the vertical motion of the 3D Linear Inverted Pendulum

Model (3DLIPM). There is no compensation scheme for the discrepencies between

the multibody model and the inverted pendulum. This is mainly due to the fact

that Harada uses a Resolved Momentum Control scheme to force the robot to act

as an inverted pendulum. In section 5, we use the CoM as a degree of freedom which

can be modify to realize arbitrary motion of the upper torso.

A different approach has been proposed recently by Terada 30. Instead of con-

straining the evolution of the CoM’s height to a plan, it is constraining the shape of

the CoM’s height acceleration. It then obtains a Bessel differential equation which

is solved using Bessel functions. The associated coefficient can be computed in real

time 30. Using Kajita’s dynamic filter we do not need to comply with such con-

straint.

4. CoM’s Height modification for stepping over large obstacles

Verrelst et al.33 used the simplified dynamic model of the robot and the first stage of

the pattern generator explained previously as a dynamic planner. Once the obstacle

position and size are given, the dynamic planner is used with a simplified collision

checker customized for HRP-2 to find the appropriate height to go over the obstacle

without collision. This technique allowed us to successfully clear dynamically large

obstacles: 10 cm by 5 cm, 15 cm by 5 cm, 10 cm by 10 cm (obstacle’s width and

height respectively) each surrounded by a 3 cm safety boundary.

The main limitation of the approach 33 is due to the stabilizer commercially

available on the robot. Indeed for high obstacles, the swing leg is close to a stretch

position. The current stabilizer is sending high accelerations near this position of

the swing leg, and those accelerations are not allowed by the low-level security

mechanisms embedded inside the robot.

5. CoM’s Height modification with 3D reconstruction and

planning

This section is presenting our preliminary experiment using the new degree of free-

dom corresponding to possible variation of the CoM’s height. The robot is facing

an opening 2 meters far away with an other wall (beyond the door) at 4 meters

(cf figure 5(up-left)). The goal is to cross the door while manipulating a 2 m long
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Fig. 5. (top) HRP-2 going down to clear a door while manipulating a 2m bar to avoid the wall
in front of the door. (bottom) Environment reconstruction inside KineoWorks with a simplified
model

bar hold in the right hand. The environment was reconstructed by using the em-

bedded stereoscopic vision system using previous work 27. In short, several dense

maps were accumulated to give the map depicted in figure 5 (bottom). The result

has been then processed to simplify the geometry of the raw vision output. It is

then used as an entry to KineoWorks a general 3D motion planner 14. Kineoworks

searched and optimized the configuration space of a HRP-2 reduced model depicted

in the left of figure 5 (bottom). In the reduced model the legs are regarded as a

bounding box with four degrees of freedom: three in the horizontal plane, and one

small translation at the top of the box for the height modification. The upper torso

is kept complete i.e. all its dofs are considered in the planning problem. Standard

Rapidly-Exploring Random Trees 15 or Probabilistic Roadmaps 12 algoritms can

be used at this point to plan the motions of this simplified model.

The output is a set of points (x, y, ztr, θ,qtorso) also called key-points. Between

each key-points it is possible to linearly interpolate the position, the orientation

and the angular values of the upper torso to realize a motion without collision from
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Fig. 6. Visualization of the “constant velocity” model for smooth motion

a pure geometric viewpoint. The articular values qtorso are used as direct input

of the pattern generator, whereas x, y, θ are used to generate steps. Indeed the

upper body motion influences the ZMP, consequently the CoM trajectory has to

be adapted accordingly. The bounding box corresponding to the legs, insure that

those steps can be realized. More precisely, from the steps the pattern generator

provides a CoM trajectory. As the waist is supposed to be here rigidly fixed, a

waist trajectory is associated but it is different from the solution by Kineoworks.

However it is guaranteed to be included into the bounding box moving along the

found trajectory. In order to synchronize at best the key-points on the real trajectory

of the robot, the key-points are remapped on the closest points along the waist (root

of the robot model) trajectory. In the present experiment, the optimization was not

done taken into consideration the dynamics of the robot-bar system. It was assumed

that the pattern generator is able to compensate for the variation introduced by

the upper body. Of course, this hypothesis is not valid for any motion and any

robot-object dynamic system. The successful experiment here was achieved with a

100 g bar, whereas a 1 kg bar append to induce too much momentum and make

the robot fall. However the range of acceptance of the system is wide, and when

this hypothesis is valid it provides a faster solution. It should be noted that as this

work is in its early stage, the planning phase has been done off-line. The result is a

set of configurations for the upper body according to the position of the waist. The

corresponding file is then loaded inside the pattern generator, and the trajectory of

the foot and the waist are generated on-line as in the previous experience.

6. SLAM together with Pattern Generator Information

In this section, we present a visual real-time Self Localization and Map building algo-

rithm taking into account the motion computed by the pattern generator presented

previously. Taking into account this information has two important consequences:

it allows to run in real-time the algorithm inside the robot which is not possible

using vision only, and allows to get rid of the initial landmarks.

6.1. The simplified model

Self Localization And Map-building is a cornerstone to achieve autonomous be-

havior. The key point of our system is to make the robot able to self-localize in
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real-time in a new environment equivalent to a room without any a-priori know-

ledge. Another key point of the presented system is its capability to “close the loop”,

i.e. to increase the precision by seeing again the same landmarks when returning to

a previous location. This is a key difference with previous humanoid systems. The

core work related to SLAM used in this paper has been proposed by Davison 3. We

recall briefly the model used to evaluate the motion model and used for prediction.

First the estimated state and covariance of the system are given by:

x̂ =











x̂v

ŷ1

ŷ2

...











, P =











Pxx Pxy1
Pxy2

. . .

Py1x Py1y1
Py1y2

. . .

Py2x Py2y1
Py2y2

. . .
...

...
...











. (5)

Explicitly, the camera’s state vector xv comprises a metric 3D position vector rW ,

orientation quaternion qWR, velocity vector vW and angular velocity vector ωR

(a total of 13 parameters). Feature states yi are 3D position vectors. In the Ex-

tended Kalman Filter (EKF) prediction step a model for smooth motion anticipates

Gaussian-distributed perturbations VW and ΩR to the camera’s linear and angular

velocity at each time-step — modeling motion with a generally smooth character.

The explicit process model for motion in a time-step ∆t is:

fv =









rW
new

qWR
new

vW
new

ωR
new









=









rW + (vW + VW )∆t

qWR × q((ωR + ΩR)∆t)

vW + VW

ωR + ΩR









(6)

Figure 6 illustrates the models potential deviations from a constant velocity tra-

jectory. Implementation requires calculation of the Jacobians of this function with

respect to both xv and the perturbation vector.

6.2. Taking walking information into account

Supplying an EKF based SLAM system with robot’s motion model is not new, but

specificity of the humanoid robot makes it interesting. Indeed the oscillation of the

CoM in the horizontal plane creates a parallax effect which helps new landmarks

initialization. Moreover - and this is one of this paper’s innovative contributions -

initial landmarks no longer remain necessary. The latters were indeed required in

the system 3 for an initial state estimation, but they can be removed if the election

of the new landmarks is triggered only when the robot moves. The idea is to pin-

point 3D features only when the robot is in motion. In 25 we described precisely

the experimental context and the current limitation of the system (number of land-

marks, size of the environment). One could object that the on-board stereoscopic

system could perfectly be used to initialize landmarks, and hence solve the problem.

This is true, but from a global application viewpoint, SLAM rather a functionality

than a goal. The fact that the robot can perform SLAM without actively moving
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Fig. 7. Trajectory generated by coupling vision and the motion information. (left) Landmarks
(right) Trajectories and sparse map.

its head gives more freedom and allows simultaneous performances of several tasks.

Moreover, if a drift accumulates for too long, the search for landmarks can take

long enough for image frames to be skipped, and the uncertainty grows. This effect
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builds up and the EKF eventually should be reset. Feeding motion information to

the Kalman Filter partially compensates this effect. by locally helping to maintain

good estimates of the landmarks. Regarding the software structure depicted in fig-

ure 2 the motion feedback from the Walking Pattern Generator (MGS) allows to

run the SLAM process (LLVS) at 30 ms with some peaks up to 40 ms. The results

are depicted in figure 7.

7. Visually-Guided Grasping while Walking on a Humanoid Robot

In this section an experiment of grasping while walking is presented. The object

to grasp is a pink ball, the position of which is estimated using the robot stereo-

scopic head. This experiment is a means to investigate two kinds of problems: the

generation of whole-body motion with visual feedback, and organization of tasks

to perform several behaviors at the same time. Mansard et al. 17 18 proposed to

integrate several tasks such as image centering, gripper orientation, gripper posi-

tion, together in a single prioritized stack of tasks. High-level mechanisms allow to

remove and insert tasks. It is ensured the transitions due to those operations at

the velocity level are performed smoothly. Finally, the pattern generator has been

consistently embeddeed into the stack of tasks. As it has the highest level of priority

other tasks have been extended to take it into account. More precisely, each task is

projected into the null-space of tasks which have a higher priority.
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The task which has the highest level of priority is walking. Because preview

control needs to know the future, the visual-servoing command cannot take part in

the pattern generator. However, as explained in section 3, the latter provides a refer-

ence trajectory for the CoM. Therefore just after the walking task, we implemented

Fig. 9. HRP-2 grasping a moving ball (up) view from the outside (bottom) view from the camera

a task named CoM, whose role is to make sure that the current CoM follows the

reference one. CoM can perform this check by computing the Jacobian of the CoM
28. This means that the robot is constrained to act as a Linear Inverted Pendulum.

All the other tasks are projected into the null-space of the walk and CoM tasks, and

thus cannot disturb the stability of the robot. Another approach has been proposed

by Neo et al. 19: it consists in generating in real-time stable whole-body motion for

a HRP-2 robot taking momenta into account as well. However this method did not

integrate a prioritization of tasks.

In this experiment two high-level controllers check the neck joints limits and the

distances to objects. The first controller starts tilting of the chest if the neck joint

limits are reached. The second controller starts the grasping of the ball, provided

the gripper is close enough. It also monitors the gripper torque to make sure that

the robot did not miss the ball, otherwise it switches back in trying to grasp the

ball. The overall stack of tasks is depicted in figure 8.

This experiment is the fastest loop in the architecture depicted in figure 2. We

use a color-detection with 3D reconstruction (LLVS) to evaluate the 3D position of

a pink ball. This takes 8 ms and is achieved at 30 Hz. The information is send to

the control part which runs at 200 Hz. To predict the next position of the ball, a

Kalman filter is used. The overall delay between perception and action is 140 ms.

The control part which is quite time consuming due to numerous pseudo-inverse

computations is performed in 2 ms. The experiment is depicted in figure 9.

We intend to use the framework developed in this work as a basis for further

complex behaviors. The reader is kindly invited to read the work of Mansard et al.
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17 for further details.

8. Visual Search

In this section we present a high-level behavior which relies on all the previously

presented functionnalities to reason and take autonomously a decision in order to

find an object. Our main contribution is to introduce the constraints related to the

walking algorithm and the recognition system into one entity called the visibility

map to reduce the space of the sensor configuration.

8.1. Introduction

Sensor planning to find a known object in an unknown environment using vision

with a mobile platform is an old problem which received a lot of attention during

the 80s. Most of this work relied on the use of a range finder coupled with a camera,

whereas the object model was either a polyhedron, a 3-edge based representation

or a voxel grid description. Even so the recognition process is still valid, and used

in recent humanoid applications by Neo 19 to achieve autonomous behavior, it is

interesting to revisit this problem in the context of humanoids. Indeed new available

hardware such as multi-core CPUs make efficient implementation of such algorithms

possible. However as this problem is NP-complete, simplified models are still nec-

essary to simplify the search. Finally, the motion capabilities of humanoid robots,

instead of the classical 2D representation of the search space, requires the adoption

of a 3D representation.

8.2. The simplified model

In this work we consider mainly the problem of finding the best next camera pose

to search an object in an unknown environment. Here the camera pose is given by

a 3D position plus an orientation provided by pan and tilt values, which give us a

five dimensional space. In order to simplify the problem we 24 take into account

two considerations: the robot’s motion capabilities, the recognition system’s char-

acteristics. Depending on the task different recognitions can be used, as we have at

our disposal either a 3D-edge model 29 or a Spin-Image 26.

The first consideration allows to limit the domain of the pan and tilt values

according to the joint limits. Moreover if we consider only the case where the robot

walks24, the vertical axis can be deduced from the constraint on the CoM. The

second consideration implies to use a model of the recognition system. But in addi-

tion to the classical statistical model, we consider that they are practical bounding

values (Rmin, Rmax) for which the recognition system is able to work. From this ad-

ditional information found experimentally and which vary according to the object

we proposed the concept of visibility map.
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Fig. 10. Visibility sphere for a given 3D point.

8.3. The visibility map

In order to explain what visibility map is, we shall introduce the concept of visibility

sphere. Let us assume that we have a partial representation of the world using a

voxel grid representation. A visibility sphere is the set of poses for which an unknown

or solid point of the voxel grid is seen within the perception interval (Rmin, Rmax).

A visibility map can then be defined by the intersection between the constraints

related to the robot’s motions and the visibility spheres centered on each voxel of

the world map, as depicted in figure 10. When the robot walks, the height of the

camera is fixed, so the visibility map is a plane going through the head of the robot.

This plane is depicted in figure 11 (top). On the left of the figure is depicted a scene

along with its 3D reconstruction over 5 views. On the right of the figure, sub-figure

(a) shows the visibility map, while sub-figure (b) gives the next potential views with

their associated directions. Finally sub-figure (c) is a superposition of the four best

candidates.

8.4. Planning

Once the visibility map has been made, the next step is to chose the best can-

didate location to search the object while taking account three quantities: a cost

for motion, the new information and the detection probability. The motion cost

(MC) is an approximation of the cost to reach a particular pose. It is based on the

Chamfer distance and a specific weighting of each DOF. The new information (NI)

is quantified by projecting the environment grid onto the camera pose candidate.

It also includes a likelihood of occlusion. This part, which is the most costly, can

be easily paralleled using multi-core architecture, or even with a GPU. Finally the

detection probability (DP) for any given voxel is built upon the probability that

this voxel belongs to the target, and the resolution at which it is perceived. Those
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Fig. 11. 3D reconstruction and several views of the visibility map.

three quantities are combined together in the rating function:

RF = αDP .DP + αNI .NI − αMC .MC (7)

The weights α balance the contributions between a wide exploration of the envi-

ronment and a deep search of each potential target. A detailed explanation of this

approach can be found in 24. The current result for this behavior has been obtained

through simulation.



January 15, 2008 18:14 WSPC/INSTRUCTION FILE ws-ijhr

Integrating Walking and Vision to increase Humanoid Autonomy 19

8.5. Integration

It is important to notice that the key to reduce the search space is the concept of the

visibility map which includes the constraints related to the walking algorithm. Here

more particulary this constraint is the height of the CoM. Moreover this module

is at the highest level of abstraction and relies totally on the other modules to

perform the full behavior. Once the next best view is decided, it uses the path

planner to feed the motion generator with appropriate foot steps and posture. The

reasonning is performed on the reconstruction of the world provided by the World

Model System module. The use of components based on CORBA makes totally

transparent the processes location, their langages and operating system and offer

a high level functional interface. This was particulary useful to test and develop

independently different algorithms providing the same functionality.

9. Conclusion

This paper shows our work into building fundamental blocks to increase the auton-

omy of humanoid robots. Using simplified models through all the versatile modules

of the system, we have been able to achieve efficient implementation of complex

behaviors such as visual search. Among those modules, we have experimentally in-

vestigated the limits of the popular pattern generator proposed by Kajita onto the

HRP-2 humanoid robot platform. We have shown that by an appropriate coupling

of vision and walking it was possible to simplify some problems. This has been

demonstrated for a planning problem using 3D vision information, and SLAM. We

have also shown how it is possible to realize complex real-time motion generation

based on vision integrating walking using a stack of tasks. Save the visual search

which was obtain through simulation, all the results have been validated on the hu-

man size HRP-2 humanoid robot. The reader is encouraged to see the video located

at http://staff.aist.go.jp/olivier.stasse/Autonomy.mpg which covers almost all the

presented topics. This video has been selected as a finalist for the best video award

at ICRA 2007.
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