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Abstract— Recent work has shown that the probabilistic SLAM
approach of explicit uncertainty propagation can succeed in
permitting repeatable 3D real-time localization and mapping
even in the ‘pure vision’ domain of a single agile camera
with no extra sensing. An issue which has caused difficulty in
monocular SLAM however is the initialization of features, since
information from multiple images acquired during motion must
be combined to achieve accurate depth estimates. This has led
algorithms to deviate from the desirable Gaussian uncertainty
representation of the EKF and related probabilistic filters during
special initialization steps.

In this paper we present a new unified parametrization for
point features within monocular SLAM which permits efficient
and accurate representation of uncertainty during undelayed
initialisation and beyond, all within the standard EKF (Extended
Kalman Filter). The key concept is direct parametrization of in-
verse depth, where there is a high degree of linearity. Importantly,
our parametrization can cope with features which are so far
from the camera that they present little parallax during motion,
maintaining sufficient representative uncertainty that these points
retain the opportunity to ‘come in’ from infinity if the camera
makes larger movements. We demonstrate the parametrization
using real image sequences of large-scale indoor and outdoor
scenes.

I. INTRODUCTION

A monocular camera is a projective sensor which measures

the bearing of image features. To infer the depth of a feature

the camera must observe it repeatedly as it translates through

the scene, each time capturing a ray of light from the feature

to its optic center. The angle between the captured rays is

the feature’s parallax — this is what allows its depth to be

estimated.

In computer vision, the well-known concept of a point

at infinity is a feature which exhibits no parallax during

camera motion due to its extreme depth. A star for instance

would be observed at the same image location by a camera

which translated through many kilometers pointed up at the

sky without rotating. Such a feature cannot be used for

estimating camera translation but is a perfect bearing reference

for estimating rotation. The homogeneous coordinate systems

of visual projective geometry allow explicit representation of

points at infinity, and they have proven to play an important

role during off-line optimization-based structure and motion

estimation from image sequences.

Recent research has shown that the way to improve on off-

line sequence estimation and achieve sequential, repeatable

motion and structure estimation with a moving camera is

to adopt the probabilistic SLAM (Simultaneous Localization

and Mapping) approach of explicit uncertainty propagation

familiar from mobile robotics. Davison [2] proved that the

standard EKF formulation of SLAM can be very successful

even when the only source of information is the video from

an agile single camera, demonstrating real-time 30Hz motion

and structure estimation in 3D.

A significant limitation of Davison’s approach, however,

was that it could only make use of features within close

range of the camera which exhibited significant parallax,

and was therefore practically limited to room-scale scenes.

The problem was in initialising uncertain depth estimates

for distant features. Acknowledging that feature depth uncer-

tainty during initialisation is not well-modelled by a standard

Gaussian distribution in Euclidean space, Davison used a

particle approach to represent a feature’s depth coordinate until

conversion to Gaussian representation when the distribution

had collapsed sufficiently. Aside from being able to deal

only with feature depths within the small pre-defined range

along which particles were spread (around 1 to 5 meters),

this ‘delayed’ style of initialisation meant that observations

of features were not used to update the camera pose estimate

until their conversion into fully initialised features.

It would be relatively simple to deal with points at infinity

in SLAM if it were known in advance which features were

at infinity and which were not. Those at infinity would be

modelled with a special ‘direction’ parametrization, ignoring

their depth, while finite features maintained the standard form.

Montiel [8] showed that in the special case where all features

are known to be infinite — in very large scale outdoor scenes

or when the camera rotates on a tripod — SLAM in pure

angular coordinates turns the camera into a real-time visual

compass.

In the more general case, the difficulty is that we do not

know in advance which features are infinite and which are

not. We should clarify the discussion by defining the meaning

of ‘infinity’ in the current context. Of course no observable

feature is truly infinitely far from the camera (even a star of

course has a finite depth). A point at infinity is simply far

enough away relative to the camera motion since it has been

observed that no parallax has been observed.

Let us imagine a camera moving through a 3D scene with



observable features at a range of depths. From the estimation

point of view, we can think of all features starting at infinity

and ‘coming in’ as the camera moves far enough to measure

sufficient parallax. For nearby indoor features, only a few

centimetres of movement will be sufficient. Distant features

may require many meters or even kilometers of motion before

parallax is observed. It is important that these features are

not permanently labelled as infinite — a feature that seems

to be at infinity should always have the chance to prove its

finite depth given enough motion, or there will be the serious

risk of systematic errors in the scene map. Our probabilistic

SLAM algorithm must be able to represent that uncertainty

in depth of seemingly infinite features. Observing no parallax

for a feature after 10 meters of camera translation does tell us

something about its depth — it gives a reliable lower bound.

We feel that this consideration of uncertainly in locations of

points has not been previously required in off-line computer

vision algorithms, but that now we have a method for dealing

with it in the more difficult on-line case.

Our contribution in this paper is to show that in fact there is

a unified and straightforward parametrization for feature loca-

tions which can handle both initialisation and standard tracking

of both close and very distant features within the standard

EKF framework. An explicit parametrization of the inverse

depth allows a Gaussian distribution to cover uncertainty in

depth which spans a depth range from nearby to infinity, and

permits seamless crossing over to finite depth estimates of

features which have been apparently infinite for long periods

of time.

The fact is that the projective nature of a camera means

that the image measurement process is nearly linear in this

inverse depth coordinate. This is a principle which should

perhaps have been noted sooner in SLAM, because inverse

depth is a concept used widely in computer vision: it appears

in the relation between the image disparity and a point depth in

stereo vision; it is interpreted as the parallax with respect to the

plane at infinity in [4]; inverse depth is also used to relate the

motion field induced by scene points with the camera velocity

in optical flow analysis [5], and in Structure from Motion error

analysis [9], [1].

The unified representation means that our algorithm requires

no special initialisation process for features. They are simply

tracked right from the start, immediately contribute to im-

proved camera estimates and have their correlations with all

other features in the map correctly modelled. That this can

be achieved within the standard EKF means that all the great

benefits it offers are maintained in terms of highly efficient

representation of correlated uncertainty. We strongly believe

that EKF maps, or networks of EKF submaps, will continue

to have a central role in SLAM. When parametrizations

are chosen carefully, there is often no need to use filtering

techniques using particles (e.g. [7]) for instance which can

explicitly represent non-Gaussian distributions but have their

own disadvantages. Note that our parameterization would be

equally compatible with other variants of Gaussian filtering

such as sparse information filters.

Sola et al. [10] also recently proposed an interesting new

approach to monocular feature initialization. In their work,

an undelayed initialization of new points was based on main-

taining several depth hypotheses as Gaussian volumes for each

initialized feature spread in a geometric sum — a development

of the particle method of Davison but taking advantage to

some extent of the inverse depth concept. As the estimation

proceeds, the hypotheses are pruned and an approximation to

the Gaussian Sum Filter is proposed keep the computational

overhead low. Their results are validated with 2D simulations

combining odometry and vision and appear impressive. How-

ever, we believe that our approach has significant benefits in

terms of uniformity, clarity and simplicity. Further, they make

no claims about being able to cope with features at very large

‘infinite’ depths.

In very recent work, Eade and Drummond have presented

an inverse depth initialisation scheme within the context of

their FastSLAM-based system for monocular SLAM [3]. Their

method which shares many similarities with our approach, and

they offer some of the same arguments about advantages in

linearity. The position of each new partially initialised feature

added to the map is parametrized with three coordinates

representing its direction and inverse depth relative to the

camera pose at the first observation, and estimates of these

coordinates are refined within a set of Kalman Filters for each

particle of the map. Once the inverse depth estimation has

collapsed, the feature is converted to a fully initialised standard

Euclidean representation. While retaining the differentiation

between partially and fully-initialised features, they go further

and are able to use measurements of partially initialised

features with unknown depth to improve estimates of camera

orientation via a special epipolar update step.

Their approach certainly appears appropriate within a Fast-

SLAM implementation. However, it lacks the satisfying uni-

fied quality of the parametrization we present in this paper,

where the transition from partially to fully initialised need

not be explicitly tackled and full use is automatically made

of all of the information available in measurements. It is this

which makes it suitable for direct use in an EKF framework

for sparse mapping, with all the advantages that offers in

terms of complete and correct representation of uncertainty

and correlations. Besides, our system is able to code in the

map distant points, in which the inverse depth coding never

collapses and cannot be coded with the standard Euclidean

representation.

Section II is devoted to the camera motion model, and the

parametrization of inverse depth is detailed. The measurement

equation is described in section III, and a discussion about

measurement equation linearization errors is included. Next,

feature initialization from a single feature observation is de-

tailed in Section IV. The paper ends with experimental valida-

tion (Section V) over real image sequences captured at 30Hz

in large scale environments both indoors and outdoors; links

to movies describing the system performance are provided.



II. STATE VECTOR DEFINITION

A constant angular and linear velocity model is used to code

the hand-held camera motion, so the camera state xv is com-

posed of location: rWC camera optical center, qWC quaternion

defining orientation; velocity vW and angular velocity ωW :

xv =









rWC

qWC

vW

ωW









. (1)

At every step it is assumed an unknown linear and angular

acceleration zero mean Gaussian processes, aW and αW ,

producing an impulse of linear and angular velocity:

n =

(

VW

ΩW

)

=

(

aW∆t
αW∆t

)

. (2)

The state update equation for the camera is:

fv =









rWC
k+1

qWC
k+1

vWk+1

ωWk+1









=











rWC
k +

(

vWk + VW
k

)

∆t

qWC
k × q

((

ωWk + ΩW
)

∆t
)

vWk + VW

ωWk + ΩW











(3)

being q
((

ωWk + ΩW
)

∆t
)

the quaternion defined by the ro-

tation vector
(

ωWk + ΩW
)

∆t.

A scene 3D point i is defined by the dimension 6 state

vector (see Fig 1):

yi =
(

xi yi zi θi φi ρi
)>

(4)

which models a 3D point located at (see Fig 1):





xi
yi
zi



 +
1

ρi
m (θi, φi) . (5)

The state codes the ray for the first point observation as:

xi, yi, zi, the camera optical center where the 3D point was

first observed; and θi, φi azimuth and elevation (coded in the

absolute reference) for the ray directional vector m (θi, φi).

The point depth along the ray di is coded by its inverse ρi =
1/di.

The features yi are considered as constant along the esti-

mate. It is assumed no unknown input acting on the feature

location.

The whole state vector x is the composed of the camera

and all the map features:

x =
(

x>v ,y
>
1 ,y>2 , . . .y>n

)>
. (6)

III. MEASUREMENT EQUATION

Each observed feature imposes a constraint between the

camera location and the corresponding map feature (see Fig 1).

The rotation is coded in the rotation matrix RCW
(

qWC
)

, de-

pending on the camera orientation quaternion. The observation

Fig. 1. Feature parametrization and measurement equation.

of a point yi from a camera location defines a ray expressed

in the camera frame as hC =
(

hx hy hz
)>

:

hC = RCW









xi
yi
zi



 +
1

ρi
m (θi, φi)− rWC



 (7)

which is almost equivalent to the next expression if coded with

di:

hC = RCW









xi
yi
zi



 + dim (θi, φi)− rW



 (8)

The difference is that (7) can code a point at infinity using

ρi = 0, even in that case, (7) can be rewritten as:

hC = RCW



ρi









xi
yi
zi



− rWC



 + m (θi, φi)



 , (9)

analogously, (8) can code a point at zero depth while not (7)

nor (9) can.

The camera does not observe directly hC , but its projection

in the the image according to the pinhole model. First, the

projection is modeled on the normalized retina:

υ =
hx
hz

(10)

ν =
hy
hz

(11)

and then it is applied the camera calibration to produce the

pixel coordinates for the observed point:

h =

(

u
v

)

=

(

u0 −
f
dx

υ

v0 −
f
dy

ν

)

(12)



Fig. 2. Observation of a point by two cameras. The geometry has been
defined with respect to the epipolar plane. Bottom subfigure shows the same
geometry as observed by the cameras

where, u0,v0 are the camera center in pixels, f is the focal

length and, dx and dy the pixel size.

Finally, a radial distortion model has to be applied in order

to deal with real camera lenses. In this work we have used the

standard photogrammetry two parameters distortion model [6].

It is worth noting, that the measurement equation has a

sensitive dependency on the parallax angle α (see Fig. 1). In

our calibrated camera context, the parallax is the angle defined

by the two rays defined by the same scene point when observed

from two different view points. At low parallax, both rays are

almost parallel and:

ρi









xi
yi
zi



− rWC



 + m (θi, φi) ≈m (θi, φi)

what implies that equation (9) can be approximated by:

hC ≈ RCW (m (θi, φi))

and the measurement equation only provides information

about the camera orientation and about the directional vector

m (θi, φi) . This particular case has been exploited in [8] to

build a visual compass based on SLAM.

A. Measurement equation linearity

We are using the EKF to estimate the state. The more

linear the measurement equation is, the better performance

is expected from the Kalman filter. Next, we show how at

low parallax angles, equation (7), coded in ρ, improves the

linearization when compared with equation (8), coded in d.

Because of that we parameterize on the inverse depth.

We focus on the observation of a point from two camera lo-

cations (see Fig 2) C1 (absolute frame) and C2. The references

are aligned with respect to the epipolar plane (defined by the

scene point and the two cameras optical centers, see [4] for

a detailed explanation) to simplify the measurement equation.

The Z axis is aligned with the ray defined by the optical center

and the observed point. The Y axis is normal to the epipolar

plane. Given a point imaged in C1 as xC1
its image on C2,

xC2
is constrained to be (if in front of the cameras) on the

epipolar segment defined by the epipole (the image of C1 on

C2) and x∞ (the image on xC2
if the scene point where at

infinity). Hence the measurement equation is defined by:

y =

(

0, 0, 0, 0, 0,
1

dc1

)T

(13)

RC2C1
=





cosα 0 sinα
0 1 0

− sinα 0 cosα



 (14)

rCW = (rx, 0, rz) . (15)

Applying equation (10) to the two different parameter-

izations, (7) or (8) we obtain corresponding measurement

equations for the two parameterizations: υ (ρ) and υ (d).

We propose to compare the two parameterizations in terms

of their linearity, first we focus on υ (ρ) then the analysis is

extended to υ (d) and finally a comparison is made.

If υ (ρ) were perfectly linear in ρ, then ∂υ
∂ρ

should be

a constant, modeling ρ as Gaussian, its variation around

the linearization point ρ0 is expected to be in the interval

[ρ0−2σρ, ρ0+2σρ]. Next we analyze the first derivative change

in that interval.

A first order approximation for the first derivative in the

interval [ρ0− 2σρ, ρ0− 2σρ] is given by the first order Taylor

expansion around ρ0:

∂υ

∂ρ
(ρ0 + ∆ρ) ≈

∂υ

∂ρ

∣

∣

∣

∣

ρ0

+
∂2υ

∂ρ2

∣

∣

∣

∣

ρ0

∆ρ. (16)

We propose to use the dimensionless ratio between the

derivative increment at the interval extreme ∂2υ
∂ρ2

∣

∣

∣

ρ0

2σρ and

the derivative in the linearization point ∂υ
∂ρ

∣

∣

∣

ρ0

as a linearity

measurement. So:
∂2υ
∂ρ2 2σρ
∂υ
∂ρ

≈ 0 (17)

in order to have an acceptable linearization.

We compute the dimensionless ratio for the ρ parametriza-

tion:
2σρ
ρ0

2

(

1−
dC1

dC2

cosα

)

≈ 0 (18)

Which says that, at low parallax, and when
dC1

dC2

≈ 1, the

term
(

1−
dC1

dC2

cosα
)

≈ 0 and low linearization error can be

achieved even if
2σρ
ρ0

À 0. So huge initial uncertainty regions

can be coded Gaussianly. For example, considering α = 5◦

σρ = 0.5, ρ0 = 0.5 the coded acceptance region extends from

[0.67,∞], and the ratio is only 0.8%.

When the parallax angle increases,
(

1−
dC1

dC2

cosα
)

also

increases, but the uncertainty in ρ reduces and hence
2σρ
ρ

is

reduced and condition (18) is fulfilled even with moderate or

high parallax angles.

When we compute (17) for the d parametrization:

2σd
dC2

(2 cosα) ≈ 0 (19)



Fig. 3. Simulation of a point reconstruction from two low parallax
observations. It is show how the reconstruction error coded in ρ, θ is Gaussian
while coded as cartesian XZ is not Gaussian. Red ellipses represent linear
uncertainty propagation from the rays Gaussian error

so, at low parallax, cosα ≈ 1, and hence a good linearization

can be achieved only if:

2σd
dC2

≈ 0⇒ σd ¿ dC2
(20)

which makes difficult coding huge initial uncertainty regions.

For example, α = 5◦, dC1
= 20, σd = 10 code an acceptance

interval [0, 40] and the ratio is 200%.

As an example of the improvement in the measurement

equation linearization, figure 3 shows a simulation of a low

parallax (0.5◦) point reconstruction when observed by two

cameras at known locations. The cameras observe the rays

with a Gaussian error, σ = 0.1◦. It is shown the 3D point

reconstruction modeled with XZ cartesian coordinates or with

ρ, θ coordinates. The 95% uncertainty region propagated from

the image error is plotted as well. It is shown the Gaussianity

in ρ, θ but not in XZ.

IV. FEATURE INITIALIZATION

It is a remarkable quality of our proposal that new features

are initialized using only one image, the image where the

feature is first observed; the initialization includes both the

feature state initial values and the covariance assignment.

Despite the initial uncertainty region covers a huge range depth

([1,∞] in our experiments) because of the low linearization

errors (18) the uncertainty is successfully coded as Gaussian;

once initialized, the feature is processed with the standard EKF

prediction-update loop.

It is worth noting, that thanks to the proposed parametriza-

tion, while the feature is observed at low parallax, the feature

will be used mainly to determine the camera orientation but

the feature depth will be kept quite uncertain, including in its

uncertainty region the even infinity; if the camera translation

is able to produce a parallax big enough then the feature depth

estimation will be improved.

The initial location for the observed feature is defined as:

ŷ
(

r̂
WC , q̂WC ,h, ρ0

)

=
(

x̂i ŷi ẑi θ̂i φ̂i ρ̂i
)>

(21)

from the camera location estimate at step k (the k indexes

have been dropped for simplicity), and the observation of a

new feature: h =
(

u v
)>

and, the initial ρ0.

The projection ray initial point (see Fig 1) is directly taken

from the current camera location estimate:




x̂i
ŷi
ẑi



 = r̂
WC
k|k (22)

The projection ray directional vector is computed from the

observed point, expressed in the absolute frame:

hW = RWC

(

qWC
k|k

)

hC





υ
ν
1



 (23)

being υ and ν the image in the normalized retina. Despite

being hW a non-unitary directional vector, the angles can be

derived as:

(

θi
φi

)

=







arctan

(

−hWy ,

√

hWx
2

+ hWz
2

)

arctan
(

hWx ,hWz

)






(24)

The covariance for x̂i, ŷi, ẑi, θ̂i, and φ̂i is derived from

the image measurement error covariance Rj and the state

covariance estimate P̂k|k.

The initial value for ρ0 is derived heuristically to cover in

its 95% acceptance region a working space from infinity to

a predefined close distance, dmin expressed as inverse depth:
[

1

dmin

, 0
]

, so:

ρ̂0 =
ρmin

2
σρ =

ρmin

4
ρmin =

1

dmin

. (25)

In our experiments dmin = 1, ρ̂0 = 0.5, σρ = 0.25.

The state covariance after feature initialization is:

P̂
new
k|k = J





P̂k|k 0 0
0 Rj 0
0 0 σ2

ρ



J>

J =

(

I 0
∂y

∂rWC ,
∂y

∂qWC , 0, . . . , 0,
∂y
∂h

,
∂y
∂ρ

)

V. EXPERIMENTAL RESULTS

The performance has been tested on real image sequences

acquired with hand-held low cost Unibrain IEEE1394 camera,

with a 90◦ field of view and 320×240 resolution monochrome

at 30 fps.

Our current experiments are run in Matlab; however we

believe that 30Hz performance could be achieved in real

time. Current C++ implementations for monocular SLAM with

dimension 3 for every point feature can run at 30 Hz. for maps

up to 100 features. Our feature is dimension six. However our

system offers computational load advantages: i) the simple

feature intialization is cheaper than the current approaches.

ii) Several features can initialized from a frame and rotation

information is obtained from the second time a feature is



Fig. 4. First (a) and last((b) images of the sequence. To display a map that contains features at very different depths, two top views at different scales
are plotted. The top view plotted at bottom left subfigure displays the close features; the top view plotted at the bottom right subfigure displays the distant
features. Both top views compare our inverse depth Gaussian parametrization with the standard XYX Gaussian parametrization by the comparison of their
uncertainty regions. The Gaussian inverse depth acceptance regions are plotted in XYZ as a cloud of black dots numerically propagated from the Gaussian
6 dimensional superellipsoidal acceptance region coded in inverse depth. The standard Gaussian XYZ acceptance ellipsoids are linearly propagated from the
6 dimensional Gaussian coded in inverse depth by means of the Jacobian. The camera trajectory and its uncertainty is shown in blue. At the initial step (a),
most the features are at low parallax. At the final step(b), parallax enough has been gathered for the majority of the features and the feature uncertainty is
low.

observed, because of that the search regions for matches are

reduced and hence the processing time is reduced. iii) when

the features are observed with a moderate parallax, the features

can be coded with a dimension 3 XYZ state. So we expect to

achieve real time performance at 30 Hz. for reasonable map

sizes.

The first experiment, is a 500 frames movie of a lecture

theater. The second experiment is 870 frames movie of an

outdoors scene where close objects temporarily occlude distant

features.

A. Indoor sequence

The movie showing the input sequence

and the estimation history can be reached at

http://webdiis.unizar.es/%7Ejosemari/in.avi

The purpose of the experiment was to analyze the perfor-

mance in an environment with features at different depths. We

particularly analyze initialization for three features initialized

in the same frame but located at different depths.

Figure 4 shows the image where the analyzed features are

initialized (frame 18 in the sequence) and the last image in the

sequence; the top view of the map with the feature covariance

is plotted as well. To display a map that contains features

at very different depths, two top views at different scales

are plotted. The top view plotted at bottom left subfigure

displays the close features; the top view plotted at the bottom

right subfigure displays the distant features. Both top views

compare our inverse depth Gaussian parametrization with the

standard XYX Gaussian parametrization by the comparison

of their uncertainty regions. The Gaussian inverse depth ac-

ceptance regions are plotted in XYZ as a cloud of black

dots numerically propagated from the Gaussian 6 dimensional

superellipsoidal acceptance region coded in inverse depth.

The standard Gaussian XYZ acceptance ellipsoids are linearly

propagated from the 6 dimensional Gaussian coded in inverse

depth by means of the Jacobian.

At the beginning of the sequence, the depth uncertainty is

huge, even including the infinity, due to the small translation,

no parallax is observed in the features. It is worth noting that

Gaussianity in inverse depth is not mapped to a Gaussian in

XYZ, so the red ellipsoids are far from representing the XYZ

distribution error, especially in depth. As stated by equation

(18), is at low parallax when the inverse depth parametrization

plays a key role.

As the camera moves, the translation produces parallax,

the features depth estimate improves, so in the last image,

most of the map features have reduced their uncertainty. As

a result the both the uncertainty in XYZ and in inverse depth

are Gaussian and the black and the red uncertainty regions

become coincident.

Figure 5 focus on the evolution of the estimate correspond-

ing to features 11, 12 and 13 at frames 1, 10, 25, 50, 100

and 200 counted since feature initialization. In top view it

is plotted both the XYZ Gaussian uncertainty (red ellipsoid)

and the region in inverse depth (black dots); the parallax for

each feature at every step is also displayed. When initialized,

the ρ Gaussian 95% acceptance region includes ρ = 0 so the

infinite is considered. The corresponding acceptance region

in depth is quite asymmetric, excluding low depths but that

extends at high depth down to infinity, and even negative

depths corresponding to negative ρ (negative depths are not

represented). As rays producing bigger parallax are gathered,

the uncertainty in ρ becomes narrower but still maps to a non

Gaussian distribution in XYZ. Eventually, both ρ and XYZ



Fig. 5. Feature initialization. Every row shows the evolution of a feature estimation in top view. Per each feature, the estimation after 1, 10, 25, 50, 100 and
200 frames since initialization are plotted; the parallax between the initial observation and the current frame is detailed on top of every subplot. Black dots
are a numerical representation for the 95% uncertainty region gaussian in the inverse depth. The red ellipsoid is the uncertainty region coded as Gaussian in
XYZ.

regions became both narrow and Gaussian because enough

parallax is available.

Let us focus on the distant features. The camera trans-

lates after initialization but this translation does not produce

parallax because the feature is distant. This information is

coded in ρ shifting its value towards zero and narrowing its

uncertainty; in the XYZ space this implies having still an

asymmetrical acceptance region but that now excludes the low

depths. Intuitively, if the camera has translated and no parallax

has been detected, then the observed feature cannot be close,

so even if the depth cannot be estimated because the feature

is distant, some information about its depth has been coded in

the estimate.

As the estimation proceeds, when enough parallax is even-

tually available, the estimation evolves to a narrow Gaussian

in ρ that when transformed to XYZ cuts down the probability

corresponding to high depths collapsing finally to a Gaussian

estimate both in inverse depth and in XYZ.

B. Outdoor sequence

Given the system ability to deal with both close and distant

features, it has a nice performance outdoors. The whole exper-

iment sequence along with the estimated map can be reached

at http://webdiis.unizar.es/%7Ejosemari/out.avi.

Figure 6 shows three frames of the movie illustrating the

performance. It displays as well the map after processing the

whole movie. As in Section V-A, the map represented by two

top views at different scales.

Two of the problems that have to be tackled outdoors are

distant features and partial occlusion due to the fact that there

are objects at quite different depths displaying rather different

parallax as the camera moves.

For most of the features, the camera ends up gathering

enough parallax to estimate their depth. However, being out-

doors, there are rather distant features producing no parallax.

It shown how distant features, e.g 24 or 39, in the buildings

at the background are persistently tracked along the sequence;

however the depth cannot be estimated. The estimation error

coded as gaussian in inverse depth is successfully managed

by the EKF, and the features behaves as points at infinity. It

can be noticed as well the poor error representation if coded

as Gaussian in XYZ.

Regarding partial occlusion, The signaled feature in Fig 6,

labeled as 36, shows the system ability to reobserve features,

from a different point of view after long partial occlusion.

VI. CONCLUSION

We have presented a parametrization for monocular SLAM

which permits operation based uniquely on the standard EKF

prediction-update procedure at every step, unifying initializa-

tion with the tracking of known features. Our inverse depth

parametrization for 3D points allows unified modelling and

processing on for any point in the scene, close or distant,

or even at ‘infinity’. In fact, close, distant or just-initialized

features are processed with the routine EKF prediction-update

loop without making any binary decisions.

The key factor is that due to the inverse depth parametriza-

tion our measurement equation has low linearization error



Fig. 6. Subfigures (a) and (b) display frames 197 and 454, showing how scenes with objects at quite different distances are likey to produce partial occlusion.
The system can nicely reobserve them after the occlusion as shown in the signaled feature (labeled as 36) on the tree basis. Subfigure (c) Shows the system
ability to track successfully distant features along hundreds of frames, being Gaussian in lambda but not Gaussian in XYZ. The lines pairs the image of the
features with the top view reconstruction.

at low parallax, and hence the estimation uncertainty is ac-

curately modeled as Gaussian in inverse depth. In Section

III-A we presented a simplified model which approximately

quantifies the linearization error. It provides a theoretical

understanding of the impressive performance of the EKF with

the proposed parametrization.

The inverse depth parametrization implies a dimension 6

state vector per feature compared to dimension 3 for Euclidean

XYZ coding. This doubles the the size of the map state

vector, and hence produces a 4-fold increase in computational

cost if all features retain the new parametrization. However,

our experiments show that the uncertainties in close feature

locations collapse after several frames to accurate Gaussian

distributions in Euclidean 3D space, indicating the opportunity

to safely convert these features back to an XYZ parametriza-

tion and return to dimension 3, meaning that the long-term

computational cost would not significantly increase. Further,

however, the value of immediate initialization that the new

parametrization provides means that right through tracking the

amount of uncertainty in the system will be lower (removing

jitter from camera pose estimation) and this will lead to

computational benefits in terms of smaller search regions and

improved image processing speed.

The experiments presented have validated the method with

real imagery, using a hand-held camera as the unique sensor

both indoors and outdoors. Our current experiments have been

run off-line programmed in Matlab, but we are confident in

achieving real-time performance in C++ in the near future

for numbers of features up to perhaps 100 using current PC

hardware — enough to map large rooms or parts of outdoor

scenes in practical scenarios.
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