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Abstract

In the routine inspection of industrial or other ar-
eas, teams of robots with various sensors could oper-
ate together to great effect, but require reliable, accu-
rate and flexible localisation capabilities to be able to
move around safely. We demonstrate accurate local-
isation for an inspection team consisting of a robot
with stereo active vision and its blind companion with
an active lighting system, and show that in this case a
single sensor can be used for measuring the position of
known or unknown scene features, measuring the rel-
ative location of the two robots, and actually carrying
out an inspection task.

1 Introduction

A task potentially well suited to autonomous mo-
bile robots is the routine inspection of industrial or
other areas: when tackled by humans, this can be
repetitive and tedious, requiring a great deal of con-
centration, or even sometimes dangerous. For instance,
in a nuclear power plant there are a mass of pipes,
valves and other equipment which must be checked
regularly for cracks or other flaws. Problems may have
other non-visual symptoms, such as chemical leaks or
tell-tale noises.

What type of robots are required for these inspec-
tion tasks? Potentially those with multiple sensing
modalities to enable them to carry out a wide range
of inspection tasks: cameras of different types, micro-
phones, chemical sensors, etc. These different func-
tionalities must be coordinated and sequenced in a
unified framework.

While robots in many applications can operate with-
out needing to know where they are (wandering lawn-
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mowing robots for instance), an inspection robot needs
to follow a planned route and localisation is essential.
The most easy way to achieve localisation is to place
easy-to-find beacons in known locations in its envi-
ronment: outdoors, these can be GPS satellites, while
in indoor environments common systems include bar-
code beacons detectable by a laser sensor.

In this paper, we will assume that supplying this
type of artificial beacon is impractical or undesirable,
and that the robot must a map of natural features
in the environment which it can recognise with its
sensors, or detect itself, building a map as it moves.
In robotic inspection, both of these modalities will
be useful. While during normal operation the wis-
est course of action would be to supply the robot with
a prior map of the environment to make reference to,
there is the possibility that something unexpected may
cause known features to become invisible or force the
robot to move out of its normal area of operation: the
ability to add its own features to the map would be
invaluable here.

Most of the sensors that the robot carries can be
used to aid with localisation: in general any sensor
that is able to repeatably measure the relative loca-
tion of the robot and something which is fixed in the
scene will contribute information (the problem of com-
bining many different sources of information has been
referred to as data fusion [7]). Further, if the robot has
a certain itinery of features it must inspect, these fea-
tures themselves can be used for localisation. In our
current implementation, we use point visual features,
but this idea becomes more powerful once extended for
instance to linear features such as pipes which must
be inspected along their length [4]: this process takes
some time, but if the measurements of the pipe are
providing localisation information as well the robot
could safely keep moving during the inspection.



There is a strong case for multiple robots to op-
erate cooperatively in order to accomplish inspection
tasks. One possibility is that similar robots could di-
vide a large region between them in order to increase
the speed of the work. Perhaps more powerfully, “spe-
cialist” robots, each equipped with different sensing
equipment, could work together in an area, each using
its particular talents as required. This is a common
approach in human work teams of course, where each
member will have his own function. As robots be-
come more advanced and their capabilities extend to
diagnosing or repairing problems in addition to simply
flagging them, this team approach becomes increas-
ingly valid.

In this paper we tackle the question of localisation
for multiple robots with the specific example of a pair
of cooperating inspection robots: one equipped with
stereo active vision, and one a blind assistant carrying
an active lighting system (see Figure 1(a)). The key
points of our approach are:

e Visual robot localisation by identification and
measurement of the positions of widely-spaced
landmarks in 3D using active vision. The fea-
tures being inspected by the robots can them-
selves be used as navigation landmarks.

e The blind assistant robot operates with only odo-
metry sensors during normal operation, but its
localisation is aided by a fully automatic im-
plementation of inter-robot measurement, where
measurements by the vision robot of a visual
beacon mounted on the blind assistant provide
information on their relative position and aid the
localisation of both.

e Localisation implemented using a general frame-
work for map-building and localisation, which
supports the simultaneous use of multiple robot,
sensor and feature types and flexibility with re-
spect to map-updating strategy [1]).

We will show that a sparse map of high-quality vi-
sual features can be used in combination with unreli-
able odometry to provide highly accurate localisation
suitable for directing robots safely through a complex
inspection environment. Accurate localisation is not
a complete scheme for navigation and inspection —
robots operating in the real world must be able to
avoid unexpected obstacles and react to humans for
instance — but is the most important and fundamen-
tal building block, providing a framework into which
further capabilities can be built with confidence.

Figure 1: (a) Robot inspection team: the robot on
the right carries an active vision system, and that on
the left active lighting. (b) ESCHeR, the ETL Stereo
Compact Head for Robot Vision, features 4 degrees of
rotational freedom and foveated lenses which provide
high resolution in the image centre and low resolution
in the periphery [5].

2 Localisation Using Active Vision

In this section we will describe the localisation pro-
cess of a single robot equipped with a vision system,
closely following the approach of [2], before moving on
to the multiple robot case in Section 3.

2.1 Active Vision

In active approaches to sensing, sensor or informa-
tion processing resources are directed purposively to
regions of current interest in a scene, rather than be-
ing used to acquire and process data uniformly. In
vision, active operation is achieved either by selective
processing of the images acquired by fixed cameras,
or in our case by physically directing the cameras as
required using a motorised camera platform or “active
head”: see Figure 1(b).

Active vision is easily applied to short range “tacti-
cal” navigation tasks such as steering around a known
obstacle: the obstacle is tracked and a simple law can
be used to control the robot’s steering with respect to
the viewing angle [8]. However, there have only been
a few attempts to apply it to more long-term naviga-
tion tasks such as map-building and using [2]. This is
surprising since it is the main tool used in human nav-
igation: as we move around our environment, our eyes
constantly change their fixation point to look for of
landmarks, check for obstacles or pick out headings.
Attention must be divided between these important
tasks as required, and this is what makes active sens-
ing an interesting research area.



Figure 2: Fixated views of typical feature matches by
correlation of 15 x 15 pixel image patches.

2.2 Visual Landmarks

The basis for localisation using vision is a map of
features which are repeatably measurable using the
robot’s cameras. Within our general mapping frame-
work, there is the potential for these features to have
many different forms: points, lines [4] or planes for
instance. In our current implementation, point fea-
tures in 3D space are recognised using image correla-
tion matching, which proves to be surprisingly robust
to changes in viewpoint. The active head moves to
fixate features for measurement with both of its cam-
eras, acting as an accurate “pointing stick” which can
measure the direction and depth of features over a
very wide field of view. Figure 2 shows some typical
features used (note that although ESCHeR’s fovea-
ted lenses distort the peripheral regions of the images
shown, the central regions at which fixated feature
measurements are made experience normal perspec-
tive projection; the work in this paper does not make
any special use of the lenses’ special imaging proper-
ties). These features are either detected automatically
by the robot as it navigates using an image interest
operator, or can be supplied externally.

2.3 Storing and Updating Map Data

The current state of the robot and the scene fea-
tures which are known about are stored in the system
state vector X and covariance matrix P [1]. These are
partitioned as follows:
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vector represents the robot’s map of its environment
and its place within it, and the covariance matrix how
uncertain this information is.

Feature positions may be supplied as prior infor-
mation when the robot starts navigating, or dynami-
cally added to or removed from the map during navi-
gation as required. A full SLAM approach [10] can be
used, propagating the covariances between the robot
state and all feature estimates, and between the fea-
ture states themselves. This is essential in our system,
since the small number of features generally used must
have estimates which are of very high quality to pro-
vide accurate localisation information. The ability of
active cameras to view features over a huge field of
view is key to the quality of this map: the robot can
really see the same features continuously as it goes
through very large motions and rotations; thus fewer
features need to be added to the map, and the uncer-
tainties related to those present can be reduced succe-
sively as the robot is able to measure them repeatably
over long periods.

The data is updated sequentially as the robot moves
around its environment and makes measurements of
the features in its map following the rules of the Ex-
tended Kalman Filter: a prediction step when the
robot moves, when a new position estimate is calcu-
lated based on odometry, and an update step when a
measurement is made of a feature.

In the prediction step, the state and covariance are
updated appropriately for a robot movement during a
possibly variable period Aty.

Xy (kt1/k) £o (Ro(kik) > Uk, Atg)
Vik+1lk) = Yi(klk) » Vi

of of "
Petie)y = &P(k\k)& +Qk -

Here, f, is a function of the current robot state es-
timate, the period, and control inputs u, which for
our robot are velocity, change in steering angle and
change in turret angle; the robot’s motion in each time
step is modelled as a pure rotation followed by transla-
tion along straight line segment in which the steering
change is small. The control inputs are approximately
calibrated via simple ground-truth measurements, and
an uncertainty remaining is taken up by the process
noise. The full state transition Jacobian is denoted %
and Qy is the process noise,
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where U is the diagonal covariance matrix of u. Pro-
cess noise accounts essentially for unmodelled effects



in the vehicle motion such as wheel slippage.

Our map-building software (available open-source)
supports plug-in models which describe the specifics
of robot motion and feature measurement [1].

2.4 Active Measurement

In an active scenario, it is necessary to decide at
each instant which feature in the map to attempt to
measure. This decision is made based on two crite-
ria: expected visibility and the expected utility of the
measurement. The expected visibility (more precisely
measurability) is something that depends on the sen-
sor and feature type: for instance, with our point fea-
tures matched by correlation, we do not expect to be
successful with matching if the viewpoint is too dif-
ferent from that from which they were initially seen.
Since we have an estimate of the current robot posi-
tion, the predicted viewing direction can be evaluated
in this respect.

Once a measurable subset of features in the map
has been identified, the value of measuring each one
is evaluated in terms of the uncertainty of their posi-
tion relative to the robot (we choose a measurement
which has a high innovation covariance), the general
principle being that there is little use in making a mea-
surement of which we are sure of the result. The role
of this criterion in practice is to keep local consistency
in the map high; it is undesirable for any particular
uncertainty in the combined robot and feature estima-
tion process to become too large. The criterion gen-
erally also acts to keep global localisation uncertainty
small [2].

The key to our active approach is the ability we gain
from our probabilistic state representation to predict
the value h; of any measurement, and also calculate
the uncertainty expected in this measurement in the
form of the innovation covariance S;:
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the dependence of the predicted measurement on the
vehicle position x, and feature position y;; R is the
measurement noise.)

Calculating S; before making measurements allows
us to form a search region in measurement space for
each feature at a chosen number of standard deviations

(providing automatic gating and minimising search
computation). We will see later that S; also provides
the basis for automatic measurement selection.

The selected feature is then measured by driving
the active head to the angles predicted for fixation on
that feature, and searching the images obtained for
a match. Precise search regions are calculated from
the uncertainty in the map, which maximise computa-
tional efficiency and reduce the chance of mismatches.

Once a measurement z; of a feature has been re-
turned, the Kalman gain W can then be calculated and
the filter update performed in the usual way:
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3 Multiple Robot Localisation

When the robot with active vision is accompanied
by an assistant robot whose job is to provide light-
ing, this robot’s position is another unknown quan-
tity which must be sequentially estimated as it moves:
its position state estimate and covariance are inserted
next to those of the first robot in Equation 1.

Of course, the pair must coordinate their positions
accurately to cooperate in inspection tasks. Lacking in
this implementation sensors of its own, the assistant
robot must rely purely on odometry during solitary
movements. However, it is well known that the un-
certainty of position estimates based solely on odom-
etry grows without bound over time. To counter this,
a visual beacon is attached to the second robot, of
which the vision robot is able to make observations:
physically, the beacon is a white polystyrene ball of
around 4cm diameter, similar to the visual markers
used in vision-based human motion capture, attached
to the top of the robot via a vertical rod (see Figure 3
(b)). This beacon is placed off-centre with respect to
the second robot’s rotation axis such that measuring
it provides information on the robot’s orientation as
well as location. The meaurement takes place in ex-
actly the same way as a normal feature measurement,
with search regions generated and correlation match-
ing, and is processed using the EKF in the same man-
ner as a normal feature measurement.



Decisions about when to make measurements of this
beacon are made automatically based on the same cri-
terion as that normally used to decide which of the
features in the map to measure at any given time. As
detailed in Section 2.4, in single-robot operation the
innovation covariances for candidate feature measure-
ments are compared, and that which has the largest is
chosen. In the two-robot case, the innovation covari-
ance for a potential measurement of the second robot’s
beacon is also evaluated and compared. If this is larger
than that of all of the candidate feature measurements,
we choose to make an immediate measurement of the
beacon.

In this way we can directly compare the value of
making a measurement of the beacon on the second
robot with that of devoting effort to making further
measurements of mapped world features. This crite-
rion generally acts to recommend frequent measure-
ments of the robot beacon because the motions of the
second robot, guided only by odometry, lead to a rel-
atively rapid increase in its positional uncertainty.

It is interesting to note that this approach would
be equally valid should the second robot also possess
sensors and the ability to measure its position with
respect to a map. In that case, making an inter-robot
measurement would be more of a mutually beneficial
process of position estimation improvement, rather
than the current situation where the vision robot trans-
fers its rather good position information to the uncer-
tain blind robot. Note that this occurs automatically
due to the imbalance in the uncertainty of the two
robots: we do not specify which robot is “helping”
which.

An interesting recent approach to cooperative robot
localisation by Fox et al. [3] used particle representa-
tions of the probability distributions involved rather
than the first-order approximations inherent in a Kal-
man Filter approach. This method is very power-
ful because it can deal transparently with the multi-
modal distributions which stump the Kalman Filter.
However, the computational expense involved means
that it is not yet applicable to cases where the posi-
tions of features can be uncertain as well as that of the
robots: in the work of [3] the robots navigated using
a completely known map.

In our system, the inter-robot measurement is an
implementation of the general self-measurement capa-
bility built into our localisation software framework.
As well as being able to make measurements of ar-
bitrary features in the world, a robot or robot group
has the potential to make measurements of its own
internal parameters; in the multiple robot case this

includes measurements between the robots.

4 Experiments
4.1 Experimental Environment

In our laboratory we have constructed a mockup
of a section of the interior of a nuclear power plant
to use as an experimental environment. The mockup
features authentic pipes, dials and valves, and has an
area of around 6 x 3 metres for the robots to navigate
around.

In our implementation, all visual and localisation
processing is carried out by a Linux PC built into the
vision robot. The lighting robot acts purely as a slave
device, receiving control commands from the vision
robot. Communications between the two robots are
achieved via radio ethernet.

In the experiments below, ground-truth robot po-
sitions were measured by hand with respect to an ac-
curate floor grid to compare with the output from the
navigation algorithm.

4.2 A Cooperative Inspection Task

In this scenario, the active vision robot and its as-
sistant carrying the active lighting system must collab-
orate to inspect a portion of pipe which lies towards
the back of the arrangement of equipment in our plant
mockup. In order to achieve a clear view, the vision
robot must navigate through a narrow gap (only a
few centimetres wider than itself) to get into position,
while the lighting robot moves to a nearby position to
supply illumination.

From starting points on the far side of the mockup,
the robots navigate according to a pre-programmed
route of known “waypoints”: these are simply linked
positions through which they must move. Of course
though, a robot must know its location in order to
know when it has reached a waypoint, so this is a
pure test of the robots’ localisation capabilities. The
robots were initially manoeuvred by hand to known
positions in the scene and these positions inserted as
the initial state x, — note though that the precision of
these initial placements was also estimated and used
as the initial covariance P, (for example the precision
to which the robot’s orientations could be aligned by
hand was assessed as a couple of degrees).

During navigation, the vision robot (following the
methodology of Section 2) made repeated measure-
ments of features in the scene, which in this experi-
ment had been supplied as a prior map so that their
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Figure 3: Collaborative inspection. (a) Start position.
In (b) and (c) the vision robot makes an observation of
the marker carried by the lighting robot to improve its
position estimation (note that the vision robot rotates
here to bring the lighting robot into view). At (d) the
vision robot must pass through a narrow gap to reach
the ideal inspection position (e), where the lighting
robot illuminates the scene to provide view (f) of the
pipe to be assessed.

positions were perfectly known: the features were nat-
ural features in the scene such as dials and the corners
of door-frames, initialised by hand-measurement of
their positions and chosen to lie in widely-distributed
locations in 3D. (Automated building of a map of fea-
tures of this type is also possible using active vision
within a SLAM framework as detailed in [2].) At vari-
ous points on its trajectory apart it turned to check on
the progress of the lighting robot by measuring its bea-
con marker (although the active head carried by the
vision robot provides an almost hemispherical field of
view, when the lighting robot is behind it is neces-
sary for the vision robot to rotate in order to bring it
into view). After visual search has located the marker,
the measurement of it’s location relative to the vision
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Figure 4: Collaborative navigation while performing
an inspection task. Ground truth robot position mea-
surements in black are superimposed on localisation
estimates in grey. The point features referred to are
also shown. From starting position (a), the robots
move forward together in the upward direction; the
vision robot is in front of the the lighting robot. Pair
(b) and (c) are snapshots before and after an inter-
robot measurement, and the improvement in the posi-
tion estimate of the lighting robot can clearly be seen.
The position estimate of the vision robot remains good
throughout, such that at (d) it can enter a narrow gap
to reach the inspection position (e). The vision robot
exits through the gap again in (f) and the robots are
ready to continue their inspection tour.

robot is fed through the localisation filter to produce
updated position estimates for both robots.

Figures 3 and 4 explain the inspection task in more
detail.

4.3 Observer-Aided Localisation

A more thorough experiment was carried out to as-
sess the value of aiding the navigation of a blind robot
with measurements from a robot with better localisa-
tion. The simple situation set up involved the vision
robot remaining stationary while the lighting robot
moved around under its occasional observation. Since
the vision robot did not move, its position uncertainty
remained very small and it was best able to assist the
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Figure 5: Unreliable odometry-based localisation for
the blind lighting robot as it follows an approximate
“figure of 8” course.

blind robot.

An approximate “figure of 8 shaped path was planned

for the lighting robot and two trials were carried out:
first using odometry only (from which a sequence of
snapshots are shown in Figure 5), and then with reg-
ular measurements from the stationary vision robot
(Figure 6). The real-world scale of these diagrams is
about 3 metres. It can be seen that in the odometry-
only case, after only a short motion the true and es-
timated positions began to differ significantly (on the
order of 20cm), although perhaps a lucky coincidence
saw the robot return quite accurately to its starting
point in the last of the snapshots. When the robot was
sent on another circuit of the route, however, built-
up errors, particularly in the steering direction of the
robot which is not directly visible in these diagrams,
meant that the robot was soon dangerously off-course
and had to be stopped before a collision occurred with
the scenery.

In second case where regular observations took place,
good localisation was maintained throughout with con-
sistent accuracy of within 3—4cm. After returning to
its starting point in the last snapshot, the robot was
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Figure 6: Observer-aided localisation as the lighting
robot follows the same trajectory as in Figure 5: the

vision robot made regular measurements to correct the
localisation of the blind lighting robot as it moved.
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sent off on a further two circuits of the course, which it
completed with consistent accuracy in the same range.

4.4 Evaluation

We have shown in these experiments how a very
sparse map of visual features can be used for extremely
accurate and repeatable localisation. Rather than as
in many approaches to robot navigation where very
dense feature maps are made, our approach concen-
trates on just a few high quality, widely spaced features,
and uses intelligent active measurement selection to
switch attention between them as necessary. By mak-
ing occasional measurements of a carried beacon, it
can also greatly aid the localisation of an assistant
robot with poorer sensor capabilities.

In this style of multiple robot navigation, where
an inter-robot measurement is only made quite infre-
quently, it is essential that the reliability with which
the beacon placed on the second robot can be matched
is high: since the uncertainty in the robots’ relative
location will be large, making this measurement will
involve a large search region, and there is the potential



for making mismatches.

5 Conclusions

Cooperative localisation for multiple robots can sim-
ply and rigorously be incorporated into the localisa-
tion and map-building framework for a single robot.
We have shown how inter-robot measurement can sig-
nificantly improve localisation in task-oriented navi-
gation.

While the kind of inter-robot measurement demon-
strated in this paper provides useful new information,
our experiments have shown that these measurements
must be carried out relatively frequently to enable an
otherwise sensorless robot like the blind lighting as-
sistant to navigate with high precision; that is to say
that the blind robot requires regular supervision to
remain safe. This kind of attention from the sensor-
equipped robot is perhaps over-costly in the sense that
this robot would have to devote a sizeable chunk of its
limited resources to this supervision rather than other
tasks.

It has proven to be relatively simple to extend a
single-robot navigation system to the case of including
an additional sensorless robot, and it would be trivial
to extend this further to the case of a single map-
building robot and multiple blind robots requiring su-
pervision. However, it would be significantly more dif-
ficult and interesting to consider the case of multiple
sensing robots, each able to map the world and in-
teract on an even footing [9, 6]. This kind of fully
distributed system would provide much more flexibil-
ity.

An appealing direction for more direct future re-
search arises in conjunction with a full 3D graphical
model we have constructed of our experimental plant
environment and robots (see Figure 7). Interfacing
this model with our navigation system in real time
will permit more intelligent active choice of measure-
ments for instance, since it will be possible to predict
whether a feature will be occluded from a particular
viewpoint. Further, with sufficient graphical quality
it will be feasible to generate feature representations
from the model itself rather than extracting those di-
rectly from the real world.
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