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Abstract—This paper presents a method for Simultaneous accurate local motion estimates, but do not necessarily aim to
Localization and Mapping (SLAM), relying on a monocular pyild globally consistent maps.
camera as the only sensor, which is able to build outdoor, In this paper, we consider the extreme case where the only

closed-loop maps much larger than previously achieved with such . . . . ..
input. Our system, based on the Hierarchical Map approach [1], sensory input to SLAM is a single low-cost ‘webcam’, with

builds independent local maps in real-time using the EKF-SLAM N0 odometry, inertial sensing or stereo capability for direct
technique and the inverse depth representation proposed in [2]. depth perception — a camera carried by a walking person, for
The main novelty in the local mapping process is the use of a example. Under these conditions, successful real-time SLAM
data association technique that greatly improves its robustness in approaches have been limited to indoor systems [12]-[14]

dynamic and complex environments. A new visual map matching hich build th le of Such K
algorithm stitches these maps together and is able to detect WNICN Can build maps on the scaleé of a room. such wor

large loops automatically, taking into account the unobservability ON estimating motion and maps from a single moving camera
of scale intrinsic to pure monocular SLAM. The loop closing must also be compared with the wealth of work in visual
constraint is applied at the upper level of the Hierarchical Map  structure from motion. (e.g. [15]) where high quality recon-
in near real-time. . structions from image sequences are now routinely obtained,

We present experimental results demonstrating monocular but requiring significant off-line optimisation processing
SLAM as a human carries a camera over long walked trajectories ) . N
in outdoor areas with people and other clutter, even in the more ~ NOW we show that an approach which builds and joins local
difficult case of forward-looking camera, and show the closing of SLAM maps, previously proven in laser-based SLAM, can
loops of several hundred meters. be used to obtain much larger outdoor maps than previously
built with single camera only visual input and works in near
real-time. The keys are the efficient and accurate building of

Simultaneous Localization And Mapping (SLAM) is ondocal submaps, and robust matching of these maps despite
of the most active research fields in robotics, with excellehigh localisation uncertainty. Other approaches to vision-based
results obtained during recent years, but until recently maintyosing of large loops in SLAM have used appearance-based
restricted to the use of laser range-finder sensors and predomethods separated from the main mapping representation [8],
inantly building 2D maps (see [3] [4] for a recent review)[16]. While these methods are certainly valuable, here we show
Under these conditions, robust large-scale indoor and outddleat under the conditions of the experiments in our paper we
mapping has now been demonstrated by several groups aroare able to directly match up local maps by photometric and
the world. geometric correspondences of their member features.

It is more challenging to attempt SLAM with standard cam- One of the main difficulties of monocular visual SLAM
eras as the main sensory input, since the essential geometriandmark initialization, because feature depths cannot be
of the world does not ‘pop-out’ of images in the same waipitialized from a single observation. In this work we have
as it does from laser data. Nevertheless, the combinationaafopted the inverse-depth representation proposed by Montiel
detailed 3D geometric and photometric information availabkt al. [2], which performs undelayed initialization of point
from cameras means that they have great promise for SLA®Rtures in EKF-SLAM from the first instant they are detected.
applications of all types, and recent progress has been very enthat work, data association was performed by predicting
couraging. In particular, recent robotic SLAM systems whicthe feature locations in the next image and matching them by
use odometry and single cameras [5], [6], stereo rigs [orrelation. In this paper we demonstrate that adding a Joint
omnidirectional cameras [8] or inertial sensors [9] have alompatibility test [17] makes the method robust enough to
demonstrated reliable and accurate vision-based localisatpmrform for the first time real-time monocular SLAM walking
and mapping, often in real-time and on increasingly largeith a hand-held camera in urban areas. In our experiments,
scales. Also impressive have been stereo vision-based ‘visthed inverse depth representation allows SLAM to benefit from
odometry’ approaches [10], [11] which match large humbefsatures which are far away from the camera, which are
of visual features in real-time over sequences and obtain highévealed to be essential to maintaining good angular accuracy

I. INTRODUCTION



the EKF-SLAM approach [19]. We have observed that, in the
case of monocular SLAM, the use of the Iterated Extended
Kalman Filter (IEKF) [20] improves the accuracy of the map
and the camera trajectory, at the price of a small increase in
the computational cost. In any case, by limiting the maximum
size of the local maps, the computation time required per step
during the local map building is bounded by a constant.

The state vector of each local mapl; comprises the
final camera locatiox! and the 3D location of all features
(y4...y%), using as base referends the camera location at
the beginning of the local map. We also store the complete
camera trajectory inside each local map, that is used only for
displaying results. For the state representation inside each local
Fig. 1. Experimental setup: a hand-held camera, a firewire cable and a laptorap, we use the inverse-depth model proposed by Moetiel

al. [2]:
in open areas. The joint compatibility technique is able to xI = xL,yT .y, ... yh) 1)
successfully reject incorrect data associations which jeopardize
the operation of SLAM in repetitive or dynamic environments. where:
To attack the problem of mapping large areas, the technique BC
is applied to build several independent local maps that are ch
q

integrated into the Hierarchical Map approach proposed by X, = B 2)
Estrada et al. [1]. Two of the main factors that fundamentally
limit EKF-based SLAM algorithms are (i) the processing time
associated with the EKF update which(gn?) in the number T
of map features; and (ii) cumulative linearisation errors in the Yi = (@i yi zi0i i pi) 3)
EKF that ultimately contribute to biased and overconfident This feature representation codes the feature state as the
state estimates which eventually break the filter, usually viggmera optical center locatid; y; z;) when the feature point
poor data association. Hierachical SLAM addresses both\pfs first observed, and the azimuth and elevationy;) of
these issues. First, by segmenting the problem into smallgg ray from the camera to the feature point. Finally, the depth
chunks of bounded size, the computational time of the filtergﬁ along this ray is represented by its inveyse= 1/d;. The
bounded (i.eO(1)). Second, since each local map effectivelyyain advantage of the inverse-depth parametrization is that
resets the base frame, linearisation errors only accumulgt)iows consistent undelayed initialization of the 3D point
within a local map and not between maps. The main difficulgatyres, regardless of their distance to the camera. In fact,
appearing here is that the scale in pure monocular visionggiant points, or even points atfinity are modelled and
not observable, so the scale of the different local maps is Kbcessed in the same way. This is in contrast with most
consistent. We propose a novel scale invariant map matchfigrent techniques that delay the use of a feature until the
technique in the spirit of [18], able to detect loop closureggseline is big enough to compute its depth [8], [12].
that are imposed in the upper level of the Hierarchical Map, The camera state, is composed of the camera position
obtaining a sub-optimal SLAM solution in near real time. .BC gnd orientation quaternioag®C and its linear and angular
The rest of the paper is structured as follows. Section \Jbocitiesv® andwC. The process model used for the camera
describes in detail the local map building technique proposggbtion is a constant velocity model with white Gaussian noise
and presents some experiments showing its robustness in [gahe linear and angular accelerations. Using pure monocular
environments. Section Ill presents the map matching algorithnéion’ without any kind of odometry, the scale of the map is
and the loop optimization method used at the global level gb; gpservable. However, by choosing appropriate values for
the Hierarchical Map. Section IV demonstrates the techniaygs injtial velocities and the covariance of the process noise,
by mapping a courtyard by walking with the camera in hanfle EKF-SLAM is able to "guess” an approximate scale for

(see fig. 1) along a loop of several hundred meters. Thgch |ocal map, as will be shown in the experimental results.
conclusions and future lines of research are drawn in section

V. B. Feature extraction and matching

Now we focus on the features selection which make up
o ] the local maps. Our goal is to be able to recognize the same
A. EKF SLAM with inverse depth representation features repeatedly during local map building and also for

To achieve scalability to large environments we haveop closing detection and optimization. So what we need
adopted the Hierarchical Map method proposed in [1]. Thége persistent and realiable features that ensure us with high
technique builds a sequence of local maps of limited size usipgpbability a quality tracking process. For this very purpose we

Il. BUILDING MONOCULAR LOCAL MAPS



have followed the approach of Davisent al. [12], [21], who Algorithm 1 Simplified Joint Compatibility:
showed that selecting salient image patches (11 x 11 pixel$)= simplified JCBB ()
is useful for performing long-term tracking. H < [trug™
To detect salient image regions we use the Shi and Tomasjs 4t joint_compatibility() then
operator [22] with some modifications which result in more  gact . 0
salient and better trackable features. The first modification is JCBB(]], 1)
the application of a gaussian weighted window to the Hessian H < Best
matrix (4) which makes the response of the detector isotropic

and results in patches better centered around the corner o?nd i
salient point. : i i __
Algorithm 2 Recursive Joint Compatibility:
| Gox(I,1,) Gox*(1.1,) JCBB (H, ¢) : find pairings for observatiort;
H_<G*(II) G*(II)) @ —
grNEY gy if i = m then {Leaf nodé
Apart from using the Shi and Tomasi response: if num.pairings¢t) > numpairings(Bestthen
Best< H
Mmin > Mehreshold (5) else if numpairings¢{) = numpairings(Bestthen
if D2?(H) < D?*(Best)then
where \,,.. and \,,;, are the maximum and minimum Best< H

eigenvalues of the Hessian image matrix (4) respectively we end if
only accept as good feature points those whose two eigenval- end if

ues have similar magnitude: else {Not leaf nodé
if joint_.compatibility([H true]) then
Amaz [ Amin < Tat10threshold (6) JCBB([H true], i + 1) {pairing (E;, F;) accepted
end if

This avoids selecting regions with unidirectional patterns numpairings() + m - i > num pairings(Bestthen
that cannot be tracked reliably. Instead of using all the features {Can do bette} -
that passed both tests, we have implemented a simple selection JCBB([H false], i + 1) {Star node:E; not paired
algorithm that forces a good distribution of features on the o4 i
image. The features that pass the tests are stored in a 2Dg
spatial structure. When the number of tracked features fatts
bellow a threshold, the spatial structure is used to find the
best feature (with higher Shi-Tomasi response) from the image, , . .
region with less visible features. ith “young” features whose 3D locations (especially depth)

For tracking the features on the sequence of images we & still uncertain, Ieadln_g to large search regions.
the active search approach of Davison and Murray [21]. TheOn€ approach to tackling the problems of repeated patterns
stochastic map is used to predict the location of each featifel® Iy to avoid it altogether by selecting features that are
in the next image and compute its uncertainty ellipse. TIEGhly salient [16]. In this work we take the complementary
features are searched by correlation inside the uncertainty @Proach of explicitly detecting and rejecting these matches
lipse using normalised sum-of-squared-differences. This givé&ng the notion of Joint Compatibility, as proposed in [17].

enough robustness with respect to light condition changes aHif 'déa is that the whole set of matchings accepted in one
also to small viewpoint changes. image must bgointly consistent.

As the active search gives only one candidate for each
C. Joint compatibility matched feature, and the matchings are usually good, we have

It is well known that data association is one of the modfiPlemented a simplified version of the Joint Compatibility
critical parts in EKF-SLAM, since a few association error&!g0rithm that reduces the computational cost of including a
may ruin the quality of an otherwise good map. The actiR2ckiracking algorithm at each update of the EKF (see Alg.
search strategy presented gives good feature matchings 1). Th_e algorithm tries f|_rst the optlmls_tlc_hypothe%thgt
of the time. However, since we are building maps of largg?ch image featur&; pairs correctly with its corresponding
outdoor dynamic environments we have to deal with twiapP featurer; verifying the joint compatibility using the
well differentiated problems. The first problem is that movinfyl@halanobis distance and the Chi-squared distribution:
objects produce valid matches — in that they correspond to
the same point on the object — which nevertheless violate D}, = v} Cyluy < Xja (7)
the basic assumption of static features made by most SLAM
techniques. The second problem arises in the presencewbered = 2- numpairings#), « is the desired confidence
ambiguous matches caused, for example, by repeated textawel (0.95 by default) and,; andCy, are the joint innovation
in the environment. Such ambiguous matches are more likelgd its covariance:

nd if




Fig. 2. Incorrect matches successfully rejected by the joint compatibility algorithm (marked in magenta).

(a) Without Joint Compatibility (b) With Joint Compatibility

Fig. 3. Local map obtained in a dynamic outdoor environment along a U-shaped trajectory. The colored ellipses represent the uncertainty of feature localization
and the yellow line on the map corresponds to the computed camera trajectory. Red: features predicted and matched, Blue: features predicted but not found
Yellow: features not predicted.

of jointly compatible matchings, as shown in Alg. 2. As the
. active search has only found one possible pairfor each

v = zn —hu(X) (8)  measurement;, the solution space consists of a binary tree
Cy = HyPHJ + Ry (9) (accepting or rejecting each possible pair) whose depth is
the number of measurements. It should be noted that the
rFSsuIts of JCBB are order-independent. Even when a matching
‘1 s been accepted, the "star node” part of the algorithm also
%?alyzes all the hypothesis that do not contain that matching.

This compatibility test only adds the computation of equ
tion (7), because we already need the innovation and
covariance for the update phase of the Kalman filter. On
when the innovation test of the complete hypothesis is n
satisfied, our simplified algorithm performs the branch and An alternative technique that that could be used to detect
bound search of the JCBB algorithm to find the largest subdalse matchings is RANSAC (see for example [10]). Our



JCBB technique has two advantages: it allows matchings witie successive local maps and their covariances constitute the
features that have been occluded for a while and it is ablegtmbal level of the Hierarchical Map:
reject outliers using all points in the same way, even points

with high depth uncertainty or points at infinity. ,Tlvf %}

To verify the robustness of this technique we conducted a . 7, X

. . . hmap.x = ) = } (20)
mapping experiment in an outdoor populated area. Most of the : :
time, all matchings found by correlation were correct, and the Jn—1 7,
branch and bound algorithm was not executed. Figure 2 shows "
two typical cases where the Joint Compatibility successfully P 0 ... 0
rejected wrong matchings on dynamic and repetitive parts of
. ; X . 0 P

the environment. Even in this cases, the computational cost hmap.P = _ (11)
added is negligible. The key question is: if the number of bad : .0
matchings is so small, how bad can they be for the SLAM 0o ... 0 P,

process? The answer is given in figure 3. We followed B Scale-invariant map matching
long U-shaped trajectory walking with a hand-held camera ) i
looking forward. Figure 3(a) shows the dramatic effect of the BY cOmposing the camera state locatidfys = we are able
moving people and the repetitive environment patterns. TEH COMPpute the current camera location and hypothesize loop
estimated trajectory is completely wrong and the monocul§iosures. To verify the loop we have developed a map match-
SLAM algorithm is trying to find in the image features that aré9 algorithm (see Algorithms 3 and 4) able to deal with the
actually well behind the camera (drawn in yellow). Runningrésence of an unknown scale factor between the overlapping
on the same dataset, the inverse-depth SLAM algorithm with@PS- Flrst, the method uses normall'zed correlation to_fmd
the Joint Compatibility test gives the excellent map of figuriatures in both maps that are compatible (unary constraints).
3(b). To our knowledge this is the first demonstration of &h€n, @ specialized version of the Geometric Constraints
real-time SLAM algorithm walking with a camera in hand iffanch and Bound (GCBB) algorithm [23] is used to find

a large outdoor environment. the maximgl subset of _geometrically compatible matchings,
by comparing the relative distances between feature points

Ill. HIERARCHICAL SLAM is space (binary constraints). Although the results of the

A. Building sequences of local maps algorithm is also order independent, its running time may

To achieve scalability to large environments, the techniql}énefit from a good ordering (most pro_m@ing matchings first).
described in the previous section is used to build a sequence BEN: the homogeneous transformatigfi* and the scale
independent local maps of limited size that are later combing@2nge between both maps is estimated from the subset of
using the Hierarchical Map technique [1]. In this way, th'aiched features. An example of loop detection using this
computational cost of the EKF-SLAM iteration is constraineff¢hnique is shown in figure 4. This technique is able to
to real-time operation. Once the current map reaches loops when the view points in both maps are similar.
maximum number of features, it is freezed and a new lockp detect loops with arbitrary viewpoints, invariant features
map is initialized, using as base reference the current caméfh as SIFT would be needed.
location. To ma'intain the s'tatistical independence bet\{ve@n Loop optimization
local maps, no information is transferred from the previous
map to the new one.

When a new map is started, the set of features curren

We have local independent maps scaled to the same refer-
goce and we also know the relation between two overlapping
- . . . rr?/aps that close a loop. Then, the Iterated Extended Kalman
visible in the old map are inserted into the new mames _. ; S .
. . S : Filter [20] is used for re-estimating the transformations be-
inverse-depth features, using their image locations asthe :

tween the maps that from the loop, as proposed in [1]. The

knowledge of their 3D locations. This is important since . .
9 P rheasurement corresponds to the transformation estimated by

though it may seem to be throwing away the prior knowledqﬁe map matching algorithm, and the measurement function is

of their locations from the previous map, it is only through. o

. o . w.given by the compositions of all local map states that form
doing so that the local maps remain independent, yleldlrﬁqe hierarchical map:
the desired O(1) update. It is, however important that there P:

is a group of features which are represented in adjacent maps,

i— i j—1
since only through these common features can loop-closing z=h(x) =17, ' T4 ®... 0 Tjj (12)
and trajectory refinement be effected. These common features
are used to estimate the change on the scale factor that may IV. EXPERIMENTAL RESULTS
exists between consecutive maps. To validate the proposed SLAM method we have conducted

At this point, we have a series of local mapgdy(,...,M,) an experiment in a large and dynamic outdoor environment.
containing the state vector defined in eq. (1) and its covarianitke experimental setup consists of a low cost Unibrain
matrix. The final camera locatiag}, in map: corresponds to IEEE1394 camera with a 90 degree field of view, acquiring
the base reference of mag- 1. The transformations betweenmonochrome image sequences of 320x240 resolution at 30
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Fig. 4. Loop closure detection. Matchings found between two maps (left) and aligned maps (right).

Algorithm 3 Map Matching GCBB with variable scale:
‘H = mapmatchingGCBB (observations, features)

unary <= computeunary.constraints(features, observationsplgorithm 4 Recursive Modified Geometric Constraints:
binary.O.distances= estimatedistances(observations) variablescaleGCBB (H, i) : find pairings for observatior®;
binary.F.distances= estimatedistances(features)
BestH< []

Best.scale= -1.0

if i > m then {Leaf nodg
if numpairings(H)> num.pairings( Best.HYXhen

. BestH< H
variablescaleGCBB([l, 0) Best.scale= binary.scale
H < Best end if ' |

else{Not leaf nod¢

o ) ) if numpairings¢<{) == 0 then {This is the first pai}
fps, a firewire cable and a laptop (see Fig. 1). We acquired & for \j | (unary(i,j) == true)do
real image sequence of 6300 frames walking in a courtyard variablescaleGCBB([H j], i+1)
along a loop trajectory of around 250 meters, with the camera  gnd for
in hand, looking to one side. The sequence was processed with g|se if num pairings¢<) == 1 then {This is the 2nd paif
the proposed algorithms on a desktop computer with an Intel k< {K|HK)#0}
Core 2 processor at 2,4GHz. Figure 5(a) shows the sequence gistanceobs < binary.O.distances(i,k)
of independent local maps obtained with the inverse-depth  for vj | (unary(i,j) == true)do

EKF-SLAM using joint compatibility. As it can be seen in distancefeat <= binary.F.distances(j,H(k))

the figure, the algorithm "guesses” an approximate scale that if distancefeat £ O then

is different for each local map. When a map is finished, it binary.scale= distanceobs + distancefeat

is matched with the previous map and the relative change on binary.satisfies= binary.constraints(binary.scale)
the scale is corrected, as shown in figure 5(b). When a loop variablescaleGCBB([H j], i+1)

is hypothesized, the map matching algorithm is executed to end if

find the loop closure, and the loop constraint is applied at the  anq for
upper level of the Hierarchical Map, giving the result of figure else {Normal recursion with binary constraints calculated

5(c). for Vj | ( (unary(i,j) == true) AND {vk | H(k) # 0 }
The local map building process has been tested to run in AND binary.satisfies(i, k, j, H(k)})) ) do

real-time (at 30Hz) with maps up to 60 point features. During variablescaleGCBB([H j], i+1)

the experiments, the joint compatibility algorithm consumed end for

200us at every step and, when occasionally the complete gnd if

search is executed, the computation cost increases only ugnd if

to 2ms, which is an acceptable cost for the great increase in{checking if can do bettgr

robustness and precision obtained. if numpairings(H) + m - i> num_pairings(Best.H}hen
The map matching, scale adjustment and loop optimization variablescaleGCBB([H 0], i+1) {Star node:E; no paired}

phases have been implemented in Matlab. The scale factoend if

estimation between two adjacent maps takes ali@Qins

and the loop optimization using the IEKF tak&®0ms

when performing 6 iterations. The most expensive part is the
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(a) Local maps obtained with pure monocular SLAM
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(c) Hierarchical map after loop closing

Fig. 5. Results obtained mapping a loop of several hundred meters with a camera in hand: side view (left) and top view (right).



scale-invariant map matching algorithm that takes around one
minute in our current Matlab implementation. We expect thah]
an optimized C++ implementation running on background will

provide close to real time loop detection.

V. CONCLUSION

(2]

In this paper we have demonstrated for the first timd3]
that monocular vision-only SLAM — with a single hand-
held camera providing thenly data input — can achieve [4]
large-scale outdoor closed-loop mapping in near real-time.
Achieving these results which such basic hardware opens l[la
new application areas for vision-based SLAM, both in flexible

(possibly low-cost) robotic systems and related areas such as

wearable computing. The success of our system lies in tr}g]

careful combination of the following elements:

« Aninverse depth representation of 3D points. It allows th%]
use of partial information, inherent to monocular vision,
in a simple and stable way. All features, even those
far from the camera, immediately contribute valuabld8]

information.

El

« A branch and bound joint compatibility algorithm that

allows the rejection of measurements coming from mo
ing objects that otherwise plague and corrupt the map.

10]

Although texture gives a powerful signature for matching]
points in images, the spatial consistency that this algo-

rithm enforces is essential here.

[12]

A Hierarchical SLAM paradigm in which sequences of

local maps of limited size are managed, allowing the

system to work with bounded complexity on local mapgls]
during normal operation. By running the map matching4]
algorithm in the background, the system can attain real
time execution. 15
A new map matching algorithm to detect large loopgs]
which takes into account the unobservability of the scale

intrinsic to pure monocular SLAM. This algorithm allows;;7;
us to detect loop closures even when the maps involved

have been computed with different scales.

. . . . [18
Future work includes improving the map matching algo-

rithm to reach real time performance, possibly using invariant

feature descriptors. A current limitation of Hierarchical SLA 19

is the fact that it does not make use of matchings between
neighboring maps. We plan to investigate new large mappif?§!
techniques that can overcome this limitation, obtaining maps,

closer to the optimal solution.
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