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Abstract— Computer vision researchers have proved the
feasibility of camera self-calibration —the estimation of a
camera’s internal parameters from an image sequence without
any known scene structure. Various self-calibration algorithms
have been published. Nevertheless, all of the recent sequential
approaches to 3D structure and motion estimation from image
sequences which have arisen in robotics and aim at real-time
operation (often classed as visual SLAM or visual odometry)
have relied on pre-calibrated cameras and have not attempted
online calibration.

In this paper, we present a sequential filtering algorithm
for simultaneous estimation of 3D scene estimation, camera
trajectory and full camera calibration from a sequence of
fixed but unknown calibration. This calibration comprises the
standard projective parameters of focal length and principal
point along with two radial distortion coefficients. To deal with
the large non-linearities introduced by the unknown calibration
parameters, we use a Sum of Gaussians (SOG) filter rather than
the simpler Extended Kalman Filter (EKF).

To our knowledge, this is the first sequential Bayesian
autocalibration algorithm which achieves complete fixed camera
calibration using as input only a sequence of uncalibrated
monocular images. The approach is validated with experimental
results using natural images, including a demonstration of loop
closing for a sequence with unknown camera calibration.

I. I NTRODUCTION

Camera self-calibration (or auto-calibration) is the process
of estimating the internal parameters of a camera from a set
of arbitrary uncalibrated images of a general scene. Self-
calibration has several advantages over calibration with a
special calibration target. First, it avoids the onerous task
of taking pictures of the calibration object; a task that may
be difficult or even impossible if the camera is attached to a
robot. Second, internal parameters of a camera may change
either unintentionally (e.g. due to vibrations, thermicalor
mechanical shocks) or even intentionally in the case of a
zooming camera. 3D estimation in this latter case could
only be performed via self-calibration. Finally, inaccurate
calibration (coming either from a poor calibration process
or from changed calibration parameters) produces the unde-
sirable effect of introducing bias in the estimation.

In recent years, there has been active research in the
robotics community on adapting the batch algorithms for
3D motion and structure estimation from the computer
vision community to the sequential domain suitable for real-
time robot implementation. Firstly, methods known as visual
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odometry ([17] and more recent works) have stretched Struc-
ture from Motion (SFM) methods for small image sets [11] to
recursive real-time estimation of the trajectory of a camera by
considering a sliding temporal window and performing SFM
and local optimisation over it. Visual odometry approaches,
sometimes with the help of inertial sensors, have successfully
estimated trajectories of several kilometres with impressive
accuracy [13]. Other remarkable recent related work in with
a slightly different emphasis includes [12] where globally
consistent room size maps based on bundle adjustment are
applied to real time augmented reality.

The second main type of approach has been based on
sequential probabilistic filtering as in earlier literature on
non-visual SLAM to propagate a full joint distribution over
camera and sparse map parameters. The original method of
[6] has been improved with developments such as inverse
depth feature parametrization [5] and robust matching based
on JCBB [16]. Perhaps the state of the art in this area is
[9] where a graph of probabilistic submaps allows accurate
probabilistic filtering for large numbers of features.

Although computer vision researchers have demonstrated
the feasibility of self-calibration and despite all the advan-
tages mentioned before, all of the recent sequential ap-
proaches to visual localisation and mapping above rely on a
pre-calibrated camera. In this paper, we propose a sequential
SLAM-based algorithm that is able to sequentially estimate
the structure of a scene, the trajectory of a camera and also
its full calibration — including two coefficients of radial
distortion. The only assumption made about the fixed camera
calibration is that the skew is zero and the pixel aspect ratio
is 1, a reasonable assumption in today’s digital cameras.

The rest of the paper is organised as follows: Section
II surveys prior work related to the approach presented
here. Section III introduces the Sum of Gaussians (SOG)
filter. In Section IV we detail our self-calibration algorithm
using SOG. Section V presents real-image experiments that
validate our approach. The conclusions of the paper and
future lines of work can be found in Section VI.

II. RELATED WORK

Traditionally, photogrammetric bundle adjustment has in-
cluded camera calibration parameters — projective camera
parameters and also distortion parameters — in order to
refine a tight initial calibration guess and hence improve
reconstruction accuracy.

Self-calibration allows the computation from scratch of
projective calibration parameters: focal length, principal
point, and skew; the computed calibration is readily usable



or might be used as an initial guess for bundle adjustment
refinement, and the refinement might include estimation of
distortion parameters. The standard off-line self-calibration
process is summarized as follows: first, matches along an
uncalibrated sequence with possibly varying parameters are
determined. Note that here, no assumptions about camera
calibration — except that non-projective distortions are negli-
gible — are applied. Then a projective reconstruction is com-
puted; a potentially warped version of the ideal Euclidean
reconstruction. If no more information about the camera
taking the images is available then projective reconstruction
is the best result that can be computed. However if some
knowledge about calibration parameters is available — that
they are constant, that there is zero skew, a known principal
point or known aspect ratio — then this can be exploited
to compute the rest of the unknown calibration parameters.
Faugeras et al. demonstrated auto-calibration for the firsttime
in 1992 [10]. Since then different methods for upgrading
projective reconstruction to metric using partial knowledge
about the camera calibration have been developed. A sum-
mary of all theses results is found in [11].

In spite of the vast amount of work related to autocal-
ibration, approaches to these problem under a sequential
Bayesian estimation framework are surprisingly few, and
none of them performs a complete calibration. In [2] the
authors propose for the first time the use of an EKF for
sequential Bayesian estimation of unknown focal length. This
is relevant seminal work but the 3D point parametrization is
basic and this makes it difficult to deal with occlusion and
feature addition and deletion. The approach of [19] estimates
a varying focal length assuming that the rest of the calibration
parameters are known, and using a particle filter to deal with
non-linearities.

Regarding the estimation techniques used in this work,
the nonlinearity of the self-calibration problem has forced
us to abandon the Extended Kalman Filter and adopt an
approach more suitable for nonlinear systems: the Sum of
Gaussians (SOG) filter [1]. This type of filter has already
been used in SLAM [18], [8]. The paper [14] is of particular
interest, as the combination of the Sum of Gaussians filter
plus Sequential Probability Ratio Test they use to deal with
the point initialization problem in monocular SLAM is the
same it is used in this paper for self-calibration purposes.

Finally, we feel that this paper forms an important part
of the recent stream of research on approaching the Struc-
ture From Motion problem using a Bayesian model of the
sequence and sequential filtering. Since the work of [6],
several concepts from off-line SfM have been brought into
this domain; for example: the need for projective point
parametrization [5], the model selection problem [4], or cor-
respondence search [3]. Self-calibration is another important
issue that must be tackled by on-line systems for them to be
truly practical.

III. SUM OF GAUSSIANS (SOG) FILTER

Within the SOG approach [1], the probability density
function of the estimated parametersp (x) is approximated

Fig. 1. Scheme of the Sum of Gaussians (SOG) filter

by a weighted sum of multivariate Gaussians:

p (x) =

ng
∑

i=1

α(i)N
(

x̂(i),P(i)
)

, (1)

where ng stands for the number of Gaussians,x̂(i) and
P(i) are the mean and covariance matrix for each Gaussian
andα(i) represents the weighting factors, which should obey
∑ng

i=1 α(i) = 1 andα(i) ≥ 0.
This Sum of Gaussians probability density function

evolves as follows: at every step, when new measurements
arrive, each one of the Gaussians is updated with the standard
prediction-update Extended Kalman Filter equations. The
central part of the SOG algorithm is, then, a bank of
EKF filters running in parallel. This bank of EKF filters is
illustrated in Figure 1.
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using this formula:
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Finally, an overall mean and covariance for the whole filter
can be computed as follows:
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(5)

These values are used for visualization purposes in our
experiments. Nevertheless, notice (graphically in Figure1)
that this is the only purpose of the overall mean and
covariance as they are not involved either in the filter bank
or in the evolution of the weighting factors.

From this brief introduction, the two fundamental advan-
tages of the SOG filter over the EKF can be intuitively
introduced. First, notice that any probability density function
can be reasonably approximated by a weighted Sum of
Gaussians if we make the number of Gaussiansng high
enough. So, the usual EKF assumption of Gaussian PDF
does not need to hold for the SOG filter. Second, and more
importantly for this work, as we increase the number of
Gaussians the uncertaintyP(i) for each Gaussian becomes
smaller, favoring linearity.

IV. SELF-CALIBRATION USING SOG FILTERING

A. State vector definition

In order to estimate 3D scene structure and camera lo-
cation and calibration the SOG state vectorx, –and hence
every EKF state vectorx(i) that composes the filter bank–
will contain a set of camera parametersxcam and a set of
parametersxmap representing each estimated pointyj .

x =
(

x⊤
cam,x⊤

map

)⊤
, xmap =

(

y⊤
1 , . . . ,y⊤

n

)⊤
(6)

Mapped pointsyj are first coded in inverse depth (ID)
coordinates and converted into cartesian (XYZ) coordinates
if and when their measurement equation becomes linear.

yID
j = (Xc, Yc, Zc, θ, φ, ρ)

⊤
, yXY Z

j = (X,Y,Z)
⊤ (7)

Inverse depth parameters represent the ray when the point
was first observed by(Xc, Yc, Zc), that is the camera optical
centre, and(θ, φ) that are the azimuth-elevation angles
coding the direction; all in the world frame.ρ represents
the inverse of the depth of the feature along that direction.
Full details about this parametrization can be found in [5].

The camera part of the state vectorxcam, as the key
difference from previous work, now includes the internal
calibration parameters to estimate: the focal lengthf , the
principal point coordinatesCx and Cy and the parameters
modelling radial distortionκ1 andκ2.

xcam =
(

x⊤
cal,x

⊤
v

)⊤
; xcal = (f, Cx, Cy, κ1, κ2)

⊤
,

xv =
(

rWC⊤
,qWC⊤

,vW ⊤
, ωC⊤

)⊤

. (8)

Camera motion is modeled with a constant velocity model
[6] that we shall not reproduce here for space reasons.
Camera motion parameters inxv are then camera position
rWC and orientationqWC and respective linear and angular
velocitiesvW andωC .

B. Projection model

The projection model used in this work is fully detailed
here, for a good understanding of the role of the calibration
parameters. The first step of the projection model is to
transform the point coordinates in the world reference frame
to the camera reference frame. In the case of inverse depth
coded points, it is done as follows

hC = RCW (qWC)



ρ









Xc

Yc

Zc



 − rWC



 + m (θ, φ)



 ;

(9)
wherem is the unit vector defined by azimuth and elevation
anglesθ andφ. If the point is coded in cartesian coordinates:

hC = RCW (qWC)









X

Y

Z



 − rWC



 . (10)

Points in the camera reference are projected according to
the pinhole camera model. Appearing in this equation are the
focal lengthf and the principal point coordinatesCx andCy

we want to self-calibrate

h =

(

uu

vu

)

=





Cx − f
hC

x

hC
z

Cy − f
hC

y

hC
z



 , (11)

To compensate for radial distortion a two-parameter model
is applied [15]. To recover the ideal projective undistorted co-
ordinates(uu, vu)

⊤, from the actual distorted ones gathered
by the camera,(ud, vd)

⊤:
(

uu

vu

)

= hu

(

ud

vd

)

=

(
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(

1 + κ1r
2
d + κ2r

4
d

)

Cy + (vd − Cy)
(

1 + κ1r
2
d + κ2r

4
d

)

)

rd =

√

(dx (ud − Cx))
2

+ (dy (vd − Cy))
2 (12)

Here,κ1 andκ2 are the radial distortion coefficients that
complete the internal calibration parameter set we want to
estimate.dx anddy represent the pixel size in both directions
of the image; and are fixed parameters that can be extracted
from the specifications of the camera.

C. Correspondence Search

One of the clear advantages of a recursive Bayesian
approach to the SfM problem is the so-called active search
[7]: the Bayesian propagation of the probabilistic estimation
to the image space defines a small region to search for each
match, reducing computation and the risk of mismatches.

Search regions are computed in a SOG filter as follows:
first, an estimation of the predicted measurements in the
image and its covariance is computed from equations 3 and 4



for each EKF, being the measurement modelh
(i)
k the camera

model described in section IV-B.
And second, an aggregation of all the multivariate Gaus-

sians that represent the predicted measurements for every
EKF is computed.ĥk and Sk are used to define the3σ

ellipses in the image where the matches are searched [7].
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) (

ĥ
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)

(13)

D. Pruning of Gaussians with Low Weight

As it can be assumed that the final estimation result will
be unimodal, Gaussians that repeteadly obtain low weighting
factors can be pruned reducing the computational cost. To
do this, it is adopted the proposal in [14], which makes
use of the Sequential Probability Ratio Test (SPRT) [20].
Experiments have shown that SPRT achieves a high reduction
rate while maintaining similar performance.

For each Gaussiani in the SOG filter, the null hypothesis
H0 is that such Gaussian correctly represents the true state
and the alternative hypothesisH1 that the Gaussian does not
represent the true state. At every stepk, the null hypothesis
is accepted if

k
∏

t=1

L
(i)
t (H0)

L
(i)
t (H1)

> A , (14)

and the alternative hypothesis is accepted (meaning that
Gaussiani can be pruned) if

k
∏

t=1

L
(i)
t (H0)

L
(i)
t (H1)

< B , (15)

whereL(i)
t (H0) andL

(i)
t (H1) are the likelihoods of the

data under hypothesisH0 and H1 at framet. These likeli-
hoods are computed as follows:

L
(i)
t (H0) = N

(

ν
(i)
t ,S
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)
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L
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j=1;j 6=i

α(j)′N
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(17)

α(j)′ =
α(j)

∑ng

k=1;k 6=i α(k)
. (18)

ThresholdsA and B are approximated by the so-called
Wald Boundaries[20] A = 1−αb

αa
andB = αb

1−αa
, whereαa

andαb are the probabilities of type I and type II errors.

V. EXPERIMENTAL RESULTS

Two experiments have been carried to test the performance
of the algorithm. The design of the SOG filter, which is the
same for both experiments, it is explained here previous to
the experimental results.
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Fig. 2. Probability density function considered for the focal length.
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Fig. 3. Probability density function for distortion parametersκ1 andκ2.

An interval for the focal lengthf from around100 pixels
to around600 pixels is considered to be the usual range for
cameras used in robotics. It has been experimentally found
that the projection measurement equation from section IV-
B is fairly linear in intervals of30 pixels. So, in order to
estimate the focal length, the full range of possible focal
length values is divided into18 Gaussians with standard
deviations of7.5 pixels and separation between means of30
pixels. Figure 2 shows the resulting probability distribution
function.

A similar procedure applies forκ1 andκ2. It is considered
that usual values for these parameters go from0 (no ra-
dial distortion) to0.08mm−2 and 0.018mm−4 respectively.
The projection model is approximately linear if these two
variation ranges are divided into2 intervals for κ1 and 3
for κ2. The resulting probability density functions for radial
distortion parameters can be seen in Figure 3.

The final SOG filter will be composed of all possible
combinations of the above divisions, that is18×2×3 = 108
filters.

Finally, regarding the optical centre coordinatesCx and
Cy; as the measurement equation is linear for those param-
eters, they are coded with one single Gaussian. The optical
centre is assumed to be a maximum of10 pixels from the
centre of the image. For a320× 240 image, this results in a
bidimensional Gaussian whose mean is[160, 120] and whose
standard deviations are3.3 pixels in each coordinate.

A. Indoor Sequence

The first sequence used to test the self-calibration algo-
rithm is an indoor sequence taken with a hand-held320×240
IEEE1394 camera in a computer room. The purpose of this
experiment is to test the accuracy of the proposed algorithm,
comparing its results with an offline calibration.

Figure 4 shows three frames of the sequence, one at the
beginning, the second in the middle and the last frame of the
sequence, and with the 3D estimation at each instant. The



Fig. 4. Images and top-down view 3D estimation for frames #20 (a), #80
(b) #260 (c), which is the last frame of the sequence.
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Fig. 5. Estimated calibration parameters over the computer room sequence.
Thick blue line is the estimated value, the horizontal black line is the offline
calibration value and the red thin lines represent the 99% uncertainty region.

evolution of the calibration parameters estimation over the
sequence can be observed in Figure 5. The same figure also
shows the number of Gaussians in the SOG filter at each step.
Notice the steep decrease in the first steps of the estimation,
and how after image 120 of the sequence the SOG filter
is composed of only one filter, becoming an EKF. Table I
details the initial and final values of the estimation with a
99% confidence interval and the offline calibration values for
a better visualization of the accuracy of our self-calibration
results. Notice that although initial values cover a wide range
of variation for the parameters, the SOG ends up with a tight
and consistent estimation for all of them. Estimation results
for the entire sequence are shown in the video accompanying
the paper.

TABLE I

CALIBRATION RESULTS FOR INDOOR SEQUENCE

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 193.0± 1.9 194.1
Cx[pixels] [150, 170] 161.6± 2.3 160.2
Cy [pixels] [110, 130] 127.0± 2.4 128.9
κ1[mm−2] [0, 0.08] 0.0639± 0.0032 0.0633
κ2[mm−4] [0, 0.018] 0.0139± 0.0009 0.0139

TABLE II

CALIBRATION RESULTS FOR THE LOOP CLOSING SEQUENCE.

Initial SOG
Interval

Final SOG
Estimation

Offline
Calibration

f [pixels] [100, 610] 195.0± 0.4 196.9
Cx[pixels] [150, 170] 159.6± 1.0 153.5
Cy [pixels] [110, 130] 133.9± 1.0 130.8
κ1[mm−2] [0, 0.08] 0.0652± 0.0019 0.0693
κ2[mm−4] [0, 0.018] 0.0132± 0.0005 0.0109

B. Loop-Closing Sequence

Loop-Closing is a standard benchmark in SLAM to test
the validity of an estimation algorithm: when a sensor revisits
known areas, the estimation error should be small enough for
the algorithm to recognize previous mapped landmarks.

A challenging indoor loop-closing sequence available as
multimedia material in [5] –previously used to test inverse
depth EKF monocular SLAM with a calibrated camera–
has been used in this experiment. The estimated calibration
values are accurate enough to close the loop. The complete
sequence is shown in the video accompanying the paper.
Figure 6 shows three representative frames of the sequence
and their estimated scene, including the loop closing frame.

As we show in Table II and in Figure 7, the estimated
calibration is close to the offline calibration, but in a slightly
over-confident manner. This experiment when compared with
the previous one presents more difficult linearization issues
because uncertainty increases when the camera explores new
areas, and increases in uncertainty imply more non-linear
effects. Besides, the fixed model for the calibration parame-
ters implies a monotonic uncertainty reduction that becomes
unrealistic after processing several hundred of images.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have presented for the first time an algo-
rithm that fully auto-calibrates a camera within a sequential
Bayesian framework, the only input being a sequence of
images from a moving uncalibrated camera. Due to non-
linearities introduced by the estimation of calibration param-
eters, a Sum of Gaussian filter is used to divide the whole
non-linear range of variation into small almost-linear pieces.
The SOG approach uses several filters in the first steps of the
estimation to cover all of these almost-linear hypothesis.A
pruning algorithm has been added that cuts Gaussians whose
weighting factors are low and reduces the SOG filter to a



Fig. 6. (a) Image and 3D estimation at frame 60. (b) Image and 3D
estimation at frame 330 of the sequence, when first loop-closure feature
(signaled in the image) is detected. (c) Image and 3D estimationat frame
670, the last one of the sequence.

100 200 300 400 500 600
100

150

200

250

300

100 200 300 400 500 600

145

150

155

160

165

100 200 300 400 500 600

120

125

130

135

140

100 200 300 400 500 600
0

0.05

0.1

100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

100 200 300 400 500 600
0

25

50

75

100

f [pixels] C
x
 [pixels]

C
y
 [pixels] κ

1
 [mm−2]

κ
2
 [mm−4]

Number of
Gaussians

Fig. 7. Estimated calibration parameters over the loop closing sequence.
Thick blue line is the estimated value, the horizontal black line is the offline
calibration value and the red thin lines represent the 99% uncertainty region.

simple EKF in a few steps so complexity is reduced after an
initial computation overhead. As the multiple Gaussians have
to be kept only at initial stages when the map size is small,
we expect the computational complexity to be low enough
to achieve real time performance.

Experimental results with real-images show that an accu-
rate and consistent camera calibration is achieved for a wag-
gling motion in an indoor sequence. A loop closure has been
successfully performed, achieving calibration values close to
offline calibration, what is a remarkable achievement, though
the estimation is somewhat inconsistent due to non-linearities
and to the unrealistic monotonic uncertainty reduction that
EKF produces when dealing with static parameters.

Regarding future lines of work, an interesting one would

be to analyze how this self-calibration algorithm behaves
with respect to degenerate camera motion. Also, being al-
ready demonstrated that sequential camera self-calibration is
feasible for a camera with fixed unknown parameters, next
natural step is to deal with varying calibration parameters.
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