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Abstract—Recent work has demonstrated the benefits of features is restricted, and camera motion limited to a terta
ad(ipting adeIiy ptVObabi”?tiC tSLA'\fA approach in sequential  yolume, this leads to systems which also have constant-time
motion and structure estimation from an image sequence. ; ; i ; ;

Unlike standard Structure from Motion (SFM) methods, this computa_mon and an run |_n real “”.‘e to build consistentsnap
‘monocular SLAM’ approach is able to achieve drift-free esti- and estimate motions without drift. Successful m(_)nocular
mation with high frame-rate real-time operation, particularly ~ SLAM examples have used the Extended Kalman Filter (e.g.
benefitting from highly efficient active feature search, map [7]) or Rao-Blackwellized particle filtering ([8]).

management and mismatch rejection. In this paper we follow the probabilistic filtering approach

A consistent thread in this research on real-time monocular which is preferable in the very common scenario of loopy.
SLAM has been to reduce the assumptions required. In this . . . e
paper we move towards the logical conclusion of this direction repeated motlon_ within a restrlcte(_j area, and spe_C|f|caIIy
by implementing a fully Bayesian Interacting Multiple Models ~ Use a full-covariance EKF to estimate the locations of
(IMM) framework which can switch automatically between the camera and features. Maintaining an always-up-to-date
parameter sets in a dimensionless formulation of monocular fyl| PDF over motion and structure estimates has several
SLAM. Remarkably, our approach of full sequential probability attractive advantages. In particular, it allows predictiof

propagation means that there is no need for penalty terms to ts for highly efficient active i h d
achieve the Occam property of favouring simpler models — this measurements for highly efncient acive image search an

arises automatically. We successfully tackle the known stifiness t0 confirm match hypotheses (data association), and also
in on-the-fly monocular SLAM start up without known patterns  intelligent incremental map management [6].

in the scene. The search regions for matches are also reduced in  Qur goal in this paper is to provide a framework within
size with respect to single model EKF increasing the_ rejection which the approach of fully sequential probability propa-
of spurious matches. We demonstrate our method with results - . . .
on a complex real image sequence with varied motion. gation can be apP“ed tany image Seq!ie”?é’h's has S_O
far not been possible because sequential filtering algosth
I. INTRODUCTION depend on assumptions and parameters which determine their
A. Real-time sequential SFM estimation from sequences behaviour. The system of Davison in [7] assumed camera
amotion of certain dynamics (in terms of expected linear
d angular accelerations), a scene with a maximum feature
epth of around 5m and some known scene information in

Camera motion and scene structure estimation from
image sequence of a previously unknown scene has m
often been performed as an off-line optimisation procedu

(e.g. [9]), but with increasing computing power there hav (_ar:]orm ﬁf anb|n|t|all_sat_|?n target. K : h
been several successful recent real-time algorithms.-Real ere has been significant recent work on removing the

time operation requires sequential processing with boding&estrictions of Davison'’s original EKF algorithm. One imipo

computational requirements per frame, and there have beldit research direction was to permit the probabilistic efse

two key paradigms for achieving this. Firstly, algorithmslow'para"ax features, either recently initialised or streme

which we can generically describe &sual odometryap- scene (_j_epths. D_awsqns featufe initialisation schemagusi
n auxiliary particle filter was improved on by @adt al.

proaches sequentially determine motion and structure tﬁg ith ; fG . hod. and then by Ead
concatenating estimates from sliding windows of two o ] with a mixture o aussians mgt od, and t en by =ade
and Drummond [8] and Montiel, Civera and Davison [14],

more time-steps (e.g. [15], [17]) to produce arbitrarilydo ) ; o )
trajectories with constant-time processing cost. Whiles thil3] [4] with a new inverse depth parameterisation which can

approach, which ‘forgets’ about the past, leads to motioﬁe"]‘mle_SSIy cope with fe_at_u_res at any depth, and is able to
estimates which drift over time, the rates of drift can be enadwork W'thOUt any known- initial pattern in the scene. Follow-
extremely low if a great number of features are matched froPh9 this thread of work is the approgch Of. Civeraal. [2]
frame to frame. who have fo.rmulated. a completely dimensionless mqnoc_ular
The second main approach is to use probabilistic filtering -~*M @gorithm. Using an inverse depth parameterisation,

to recursively estimate a full probability density over the ey removed metric and time scales from the SLAM state

current camera pose and the positions of features — adoptiK ctor and tuning parameters from the filter to formulate the
ole problem in terms of dimensionless values interptetab

the core Simulaneous Localisation and Mapping (SLAM L Wh h lar SLAM
approach of the mobile robotics literature. If the number ofS guantities in image space. en such monocufar

algorithms are applied to real image sequences, it is worth
Javier Civera and J. M. M. Montiel are with Departamento derimética  noting the valuable role that Joint Compatibility testirig]
jeolgcéer?llaerr? féjilistzegras,egmversﬂy of Zaragoza, Spdffici vera,  can play in rejecting spurious matches that might otherwise
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B. IMM monocular SLAM model EKF. These reduced search regions increase mismatch
rejection and reduce the processing cost of image search.

| Image Zequlenpde processing reheshon cz(:l)rpfe;_ra mOt'OQ rg ditionally, the computed probabilities per model alldvet
€ls to robustly identify point matches. -line. metho S’segmentation of a sequence into different models.

rely on geometrical models relating two or three images to Section |l discusses and formulates sequential Bayesian

C(;mpl)gte r’r;)atches(.j In [gcg it is shown r}ow d'ﬁereTt mOdel?‘hodel selection. The Interacting Multiple Model approach
shou 'to e used at di erent.parts of a general SequenfbeBayesian model selection is detailed in Ill. Some details
to avc_Jld degenerate geometries. This geometncal moqlgbout the use of IMM in the SLAM problem are given in

selection has been extended to segment different motif) o, v/, Section V verifies the method using real imagery

models between image pairs or tnp!ets [18], [11_]' [21]. and shows how it deals with sequence bootstrap. Finally
In contrast to these two or three-view geometrical modelgaction VI summarises the paper’s conclusions.

the probabilistic motion models used in SLAM are well
suited to modelling long sequences of close images instead !I. BAYESIAN MODEL SELECTION FOR
of discrete sets of images. However a single probabilistic SEQUENCES
model can similarly only deal with sequences which follow In standard single-model monocular SLAM algorithms,
the prescribed model or processing will fail. In this workBayes’ rule combines at every step past estimation informa-
we extend the monocular SLAM method to deal with moreion with current image data. Given the background infor-
than one probabilistic motion model, expanding the range @fiation and the image data at current stBpthe posterior
sequences compatible with the priors represented by a set@bbability density function for the set of parameteis
tuning parameters. We use a sequential Bayesian approaffining our modelM/ is updated via Bayes’ formula:
to model selection.
. . . p(D|OMTI)

Thanks to Bayesian probability propagation, monocular p(0|DMTI) :p(HIMI)W (1)
SLAM with a general translating camera can deal with low p(DIMI)
parallax motions — such as rotations — provided that the In this paper we consider cases where a single mdfies
camera re-observes map features whose locations are wét sufficient to cover all of the sequences we would like to
estimated as a result of parallax observed previously in tieack. Taking full advantage of the fully probabilistic iesé-
sequence, and so model switching is not a must in sont®n that our SLAM approach is performing, we formulate
cases where it would be in the off-line approaches. Howeve?ur multiple model problem in a Bayesian framework.
when monocular SLAM is initialised on-the-fly without a Consider, as Jaynes does in Chapter 20 of his book [10], a
known scene pattern, model selection is an issue. If tHliscrete set of modelst = {M",..., M"} — rather than a
camera initially undergoes a low parallax motion, no retab Single one — which might feasibly describe the assumptions
estimation is possible. Any measurement noise may B¥ & sequential SFM process. We start by assigning initial
considered parallax by the filter producing inconsisteptide Scalar probabilities(AM*|1), ..., P(M"|I) which represent
estimates. We tackle this problem with model selection. Prior belief about the different models based on background

Multiple model methods are well known in maneuveringnformation 7, and which are normalised to add up to one.
target tracking. An excellent and recent survey of this caff N Prior information exists, these probabilities may Ivel
be found in [13]. In our paper, we adapt to the sLAMPe assigned initially equal. o
problem the most widespread of those methods, InteractingAt €ach new image, where we acquire image measure-
Multiple Models (IMM), initially proposed by Blom in [1]. Ments dataD, we update the probability of each model
The IMM estimator is a suboptimal hybrid filter — that is, ccording to Bayes' rule:
it estimates the continuous values of a proccess, and the
discrete probabilities of a set of models — whose main
features are: 1) It assumes that the system can jump betw
the members of a set of models, which is the case
our monocular SLAM estimation, and 2) It offers the bes

compromise between complexity and performance. ) . : ;
P plexity P data given that the model is correct. The denominator is the

Thanks to the use of ”.““'“p"? models, the range of 'mages rmalizing constant, computation of which can be avoided
that can be processed with a single system tuning is eniarg en the posterior probabilities of a mutually-exclusiet s

X\;emvggk t\év::aheamkz)ijr:aliso(f): T&dgts;t?onnerrr:g%er: choi;tz::?gﬁ%f models are all computed, or alternatively cancels outrwhe
' - P . ( . e ratio of posterior probabilities of different models is
lar velocity) with different angular acceleration covamias, c ?I culated

ity i dhosn, oS0, What s e leihond (D111 of e dta en
Y, 9 y g [{nodel in a monocular SLAM system? It is simply the joint

P(D|MT)
en PDIT) @
ilfl this expression, the first term is the probability of the

{nodel being correct given only the prior information. In
the fraction, the numerator is the likelihood of obtainihg t

P(MJ|DI) = P(M’|I)

and '"_‘ear acceleration covariances. V"’.’l the Bayesian mo tkelihood of all of the feature measurements in an image:
selection of IMM, the system prefers simpler (less generas

models where they fit the data. As a result, the search regions P(DIMI) = 1 Tg-1 3
for the predicted image features are smaller than with desing (DIMT) oY \s|eXp 2" v 3)
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We should note, as Jaynes explains with great clarity, that e | oommesseoruTeR |

in this correctly formulated Bayesian approach to model i
selection there is no need for ad-hoc terms like Minimum

Description Length which penalise ‘complex’ models and---------

favour simple ones. The ‘Occam principle’ of selecting thé -J_»E.
simplest model which is able to capture the detail of the f ’um ‘ Tp ™~
data and avoiding overfitting is taken care of automatically

by correctly normalising our comparison of different madel _ _ _ _
The big difference between our approach and the common Fig. 1. Interacting Multiple Model algorithm scheme
two-view model selection methods (e.g. [11], [21], [18]) Filt initialization (for < 1.9 )

which require penalty terms is that our concept of a model it P'r :éiri'tné'g‘ 'fgg} (g; olbgbi’l ; 't");.r)'

probabilistic at its core, not just geometric (like homqgrg, i = P{Mi|* ) =3 ;

affine, ...). For our use in sequential probabilistic tragkia Mk‘;f;g wei ght - k=L
model must actually define a probability distribution dgrin il = pIMI M},
a transition. This is what makes it possible to calculate \fxjng esti mate-
proper likelihoods for the models themselves, independent i g = B |m, 271 = Y xi_llk_luyll

MUY = mag o Bk

k—1
of parameters. M xi ng covari ance:
'_I'_h_e formulation above_ allows us to obtain posterior prob- Py =32, (P4t |
L 1 y » o
abilities for our models in one frame, but we are interested (&1t — %) ®h e — %) Dl

in propagating these probabilities through a sequences Thi. EKF bank filtering (for i = 1,2, ...,7):
is achieved by defining a vector of model probabilities — a Predi ction: % ,_y, Py, h(Xj 1), Sk
‘state vector’ for models or set of mixing weights: Measurement :  zj

Update: X, Py

(1 F O\ T 6 3. Model probability update (for i = 1,2,...,7):
Fofic = (Mk\k-~-“k\k) : ©) " Nbdel 1ikelihood: Li=A(v:0,85:)
Bhe—1 Lk

We fill e with the prior model probabilites ~Vdel probability: pui =

P(M*I),...,P(M"|I) before processing the first image,4. Estimate fusion

and after processing use the valuesugfi as the priors for Overal |l state:

each model in Equation 2 and then replace these values withX«(k = >_; Xk ki

the posterior values calculated. Q’erf' ! covariance. . o
A final step is needed in between processing images, Pk =2 (Pk‘k+(x,€‘k = Xiej) (Reje — Xpgjo) ):uk

which is to apply a mixing operator to account for possible

transitions between models. With a homogeneous Markov

assumption that the probability of transition from one nmode

to any other is constant at any inter-frame interval, this is

achieved by: ll. INTERACTING MULTIPLE MODEL

Pifk—1 = THk-1[k-1 » ™ IMM is presented in the tracking literature as a hybrid
. . . - estimation scheme, well suited to estimating the contisuou
wherer is a square matrix of transition probabilities where : .
. ; state of a system that can switch between several behaviour

each row must be normalised. In the typical case that the . . ) .
. . . . : . modes. This hybrid system is then composed of a continuous
dominant tendancy is sustained periods of motion with one

model, this matrix will have large terms on the diagonal. hpart (the state) and a discrete part (the behaviour modes). T

the models are ordered with some sense of proximity, thceontlnuous part of S.UCh .a system is defined by its state and
easurement equations:

matrix will tend to have large values close to the diagonam
and small ones far away. x(t) = f(x(t),M(@t),w(t),?) (8)

The sequential process of calculating model probabilities 2(t) = h(x(t),M(t),v(),1) 9)
therefore evolves as a loop of mixing and update steps and
at motion transitions in the sequence evidence will accrughere the dynamics of the process and the measurements
over several frames. depend not only on the state(¢) and the process and

J J
Zj Hy—1L%

Fig. 2. Interacting Multiple Model algorithm



measurement noise (¢) and v (¢) at time ¢, but also on V. EXPERIMENTAL RESULTS
the model M (t) that governs the system at time The

" . : . A 1374 frame sequence was recorded witl320 x 240
probability of each of those models being effective at time . .
. . . . wide-angle camera a&0fps. The camera makes a motion
t is coded in the discrete probability vectpg_qx—1, as

: ) . consisting of the following sequence of essential movement
explained in section Il. . : ) .
: . stationary — pure rotation— general motion (translation
Figure 1 shows graphically the structure of the IMM : . :
%and rotation)— pure rotation— stationary. The sequence
’ . as been processed using the dimensionless inverse depth
central part of the algorithm consists of a bankrofilters np 9 : P
o . formulation of [2] and two different types of motion mod-
running in parallel, each one under a different model. An_. . . ;
L i elling. Firstly, IMM EKF formulation with a bank of seven
overall estimation for the state can be obtained as a sum 0 ) : .
models: stationary camera, rotating camera (three angular

the a posteriori e.stllmatlon of ever)./.f!lter weighted with theacceleration levels with standard deviation 0.1, 0.5 and 1
discrete a posteriori model probabilities.

A key aspect of the IMM algorithm is the reinitialisation Ofpixels), and general motion (with 3 acceleration levels for

the filter before the parallel computation of the filter bamnk abOth linear and angular components with standard devition

C o S .~ of 0.1, 0.5 and 1 pixels). Secondly, as a base reference,
every step. This mixing of the estimations allows individua_ . . . . )
: . . single model for general motion with acceleration noise
poor estimates caused by model mismatch to recombine with . : ;

. : tandard deviation of 1 pixel, both angular and linear. Both
estimates from better models, so that the whole filter bar§< lati dth .9 q
benefits from the better estimates ormulations are _fe the same starting image feature detec-

' tions. On analysing the results the advantages of the IMM
IV. INTERACTING MULTIPLE MODEL over single model monocular SLAM become clear. Results

MONOCULAR SLAM ALGORITHM of the comparative experiments can be better observed in the

Given the tracking-oriented IMM algorithm, some aspect@ccompanying videoi rm npg).
have to be taken into account before applying it to our . . .
particular monocular SLAM problem. A. Consistent start up even with rotation

1) Active search ellipses:In the multiple model tracking ~ As was said in the introduction, single model EKF SLAM

literature, little attention is given to the matchingleads to inconsistent mapping if the camera initially under
(data association) proccess, which is crucial in SLAMJOeS low parallax motion. In the analysed sequence, we have
algorithms. If matching is mentioned, as in [12], it is@n extreme case of this as the camera is either stationary or
said that the most general model, that is, the modéptating for more than 600 frames. Figure 3 compares the
with the largest covariance, is used to compute th@stimation results with a single model EKF and our IMM
measurement covariance for gating correspondences algorithm at step 600, when the camera has performed non-
the implication is ‘always to expect the worst'. translational motion. Features are plotted as arrows if (as
In monocular SLAM, most of the time this weakestshould be the case) no finite depth has been estimated after
search region is unnecesary large, increasing both t#ee no parallax motion. It can be observed that, for the singl
computational cost and the risk of obtaining a falsénodel case, all features have collapsed to narfalse; depth
match. A more realistic search region can be defined stimates while in the IMM case all of the features have no
the combination of the individual filters weighted bydepth estimation.
their discrete probabilities. The only assumption that _ ) .
has to be made is that motion changes are smootﬁ; Low risk of spurious matches due to small search regions
a reasonable assumption when dealing with image It can be noticed in Figure 4 that although high process
sequences. The form of the image search regions i®ise models are necessary in order to retain trackingriestu
therefore determined by the following equations: during high accelerations, these models are scarcely wsed f
any length of time. In hand-held camera sequences, constant

Xklk—1 = ZX;C\’“*W;C\"’* (10) velocity motions are much more common than accelerated
’ , . ones. This is reflected by the model probabilities, as we
Pyr1 = D (Plcy + Gapeot — Ko X1D)  see that the highest probabilities are given to the lower
i , , acceleration noise models on most frames.
(Xijk—1 = Xpee1) D=1 (12)  When using a single model estimation, we are forced to
hyp—1 = h(zgp_1) (13) choose the most general model in order to maintain tracking
S, = chPkUclekT + R, (14) under high acceleration. As process noise directly inflasnc

search region size, we are forced to maintain large search
2) Map management: As detailed in [6], map manage- regions, unnecessary most of the time. As a consequence,
ment strategies for deleting bad features and addinge risk of obtaining false matches grows. As IMM selects at
new ones are convenient in monocular SLAM. Wegny time the most probable motion model, preferring simpler
are also using inverse depth to cartesian conversiQfiodels, it adjust the search region to the real motion at any
[3] in order to reduce the computational cost of thajme, resulting in considerably reduced ellipses and lavger
algorithm. the risk of mismatches.
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Fig. 4. Posterior model probabilities along the sequencehEaodel is
represented by its acceleration noise standard devjatioa .| expressed
in pixels, following the notation in [2]. Notice that the prability for the
most general modelo(, = 1pzl,o0, = 1pzxl) is always unde0.01. The
stationary camera model (a) and low acceleration noise mobgkngd (c)
. ) ) are assigned the highest probabilities in most of the framespite of being
Fig. 3.  (a, left) frame 600 and (a, right) 3D top view of the IMM rarely selected, the high acceleration noise models are tamtdo keep the

estimation at this frame. The camera has been either Statimna[}tating features track at the frames where motion Change occurs (smﬂssare
until this frame. It can be seen in Fig. 4 that rotation and séimera yisible at these points).

models have high probability throughout this early part af gequence.
IMM, correctly, has not estimated any feature depth —featureose depths
have not been estimated (their depth uncertainties, storéavérse depth
formulation, encompass infinity) are plotted as arrows—.ftajne and top-
viewed estimation with single-model monocular SLAM. The ogeneral
model has led to narrow, false depth estimates. When the caraesiattes
this inconsistent map leads to false matches that cause thmagen to fail,
as seen in (d) at frame 927 of the sequence. On the other harehdiws
the correct map estimation performed by the IMM algorithm.

(=

In Figure 5 the large factor of reduction in the size of
search ellipses can be observed. Subfigure (a) shows a detai
of a feature search region at frame 100, at the top using
IMM and at the bottom using a single model. Search regions
in subfigure (b) correspond to the same feature at frame
656, when camera starts translating and high acceleration
is detected. Notice that the IMM ellipse slightly enlarges
in adapting to this motion change, but continues to be
smaller than the single-model one. Finally, (c) exhibite th
consequences of having unnecessary big search regioses: fal
correspondences happen. Due to mismatches like this one,

the estimation in this experiment fails catastrophically. ~ Fig- 5. (a), IMM (top) and single-model (bottom) feature seaetiipse
when the camera is rotating. (b), the same feature IMM and esimgidel

C. Camera motion model identification search regions when the camera begins to translate. (c), naisrmathe
) ) single-model case caused by an unnecesary large ellipsddésinot occur
The IMM not only achieves better performance in prodin the IMM estimation. Several mismatches like this one in thghlyi

cessing the sequence but also provides a tool to Segméq‘ﬂetitive texture of the brick wall eventually lead to ftiacking failure.
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