
Imperial College London

Department of Computing

Semantic Neural Representation for

SLAM and Scene Understanding

Shuaifeng Zhi

21st September 2021

Supervised by Prof. Andrew Davison

Co-supervised by Dr. Stefan Leutenegger

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely

my own work, and, except where otherwise indicated, describes my own

research.





Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indic-

ated, its contents are licensed under a Creative Commons Attribution-Non

Commercial 4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any

medium or format. You may also create and distribute modified versions of

the work. This is on the condition that: you credit the author and do not

use it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms

clear to others by naming the licence and linking to the licence text. Where a

work has been adapted, you should indicate that the work has been changed

and describe those changes.

Please seek permission from the copyright holder for uses of this work

that are not included in this licence or permitted under UK Copyright Law.



Abstract

Semantic simultaneous localisation and mapping (SLAM) has advanced

remarkably over the past few years with the application of deep learning tech-

niques. We are in the middle of a rapid progression from SLAM systems that

simply reconstruct geometry towards understanding what is where in scenes.

Semantically enriched maps will ultimately help intelligent robots improve

the range and sophistication of their interactions with the world.

A key enabler of this capability is the scene representation, which defines

how intelligent robots perceive, store and understand environmental attrib-

utes (i.e., physics, semantics, dynamics and interactions) from continuous ob-

servations. Geometric representation itself has long been a central research

topic, and researchers have developed many ways to reconstruct the shape

of scenes accurately and efficiently. We believe that representing geometry

and semantics jointly is the right direction for scene models which are both

optimally efficient and the most useful for actionable intelligence.

The work in this thesis concerns using tools from deep learning to enable

joint representation of both geometry and semantics in SLAM systems and

scene understanding. First we propose to learn code-based compact scene

representations given large-scale datasets of images, depth maps and dense se-

mantic labelling. The code representations of geometry and semantics are

learned separately and enables joint optimisation at runtime, leading to a

new multi-view label fusion approach and a preliminary dense monocular

semantic mapping system. Secondly we explore a scene-specific implicit rep-

resentation jointly encoding appearance, geometry and semantics. Without

any external data, we show that the smoothness and consistency within our

approach enable accurate semantic rendering given only sparse or noisy in-

place annotation. Lastly, the real impact of this implicit representation in an

super-efficient interactive scene labelling tool is shown.
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1. Introduction

1.1 Scene Representation and Understanding for

Robotics

Humans can intelligently perceive and understand the surrounding physical world

using past experience and various sensing observations. Among all types of sensing

modalities including vision, auditory and tactility, etc., the visual sense acts as the

main one and offers rich context information. These sparse and incomplete visual

observations projected from the 3D world are processed with prior information

by human brains to understand the geometry and semantics of the whole scene.

The core of this human capability is scene representation, which incrementally pro-

cesses and converts sensed data into a task-specified, compact and well described

model [Eslami et al., 2018]. As argued by [Pearl, 2017]: “What humans possessed

that other species lacked was a mental representation, a blue-print of their envir-

onment which they could manipulate at will to imagine alternative hypothetical

environments for planning and learning.”

Scene understanding involves many vision tasks such as object recognition, ob-

ject detection, semantic segmentation, visual localisation and reconstruction, etc..

Simultaneous localisation and mapping (SLAM) is one of the most fundamental and

critical research issues whose central problem is to enable robots to build a map of

the 3D scene and concurrently localise itself within it, and is also closely related to

the choice of underlying scene representation. To enrich embodied devices such

as robots with increasing intelligence, a suitable scene representation of the en-

vironment is essential to fulfilling long-term robust scene perception, serving as a

basic building block to understand the world and affect down-stream algorithm

design and applications [Davison, 2018]. Robot arms in factories mainly per-

form in a pre-set environment but with high precision requirement; domestic

robots, like vacuum cleaners, adopt representation which gradually evolves from

randomly bouncing off the walls (representation-free mode) to actively localising

2



1.1. Scene Representation and Understanding for Robotics

itself within rooms after constructing internal maps and path planning. Autonom-

ous vehicles and drones incrementally process scanned images from dynamic en-

vironments under restrictions of computational power and efficiency. These in-

telligent embodied devices need to build and maintain representations of their en-

vironments which permit inference of geometric and semantic properties, such as

the traversability of rooms or the way to grasp objects. Crucially, if this inference

is to be scalable in terms of computing resources, these representations must be

efficient; and if devices are to operate robustly, the employed representations must

cope with all of the variation present in the real world. However, current real-time

scene understanding systems are still a long way from the performance needed for

truly ground-breaking applications [Cadena et al., 2016a, Davison, 2018].

An eventual token-like, composable scene understanding may finally give artifi-

cial systems the capability to reason about space and shape in the intuitive manner

of humans [Wu et al., 2015]. The field of artificial intelligence has long sought

to reproduce the process of scene representation. Bringing deep learning into tra-

ditional hand-designed estimation methods for SLAM has certainly led to big ad-

vances to representations which can capture both shape and semantics (i.e., aug-

mented classical scene representation and neural scene representation) [Cadena

et al., 2016b, Weerasekera et al., 2017], but so far these are problematic in various

ways. In addition, although there have been tremendous efforts in exploring geo-

metry representation in real-time SLAM systems and 3D perceptions, relatively

less attention has been paid to the formulation of semantic representations.

For the reasons presented above, the work presented in this thesis focuses on

using machine learning approaches to explore semantic scene representation in scene

understanding and visual SLAM systems.

3



1. Introduction

1.2 Scene Representations in visual SLAM

Scene representation in visual SLAM (vSLAM) systems has gradually progressed

from sparse feature point sets [Davison, 2003, Mur-Artal and Tardós, 2017] to

dense geometric 3D maps (e.g. point clouds, meshes and voxels shown in Figure

1.1) [Newcombe et al., 2011a, Whelan et al., 2016, Nießner et al., 2013, Engel et al.,

2014, Dai et al., 2017b] and more recently, to neural representations [Bloesch et al.,

2018, Sucar et al., 2021], increasingly involving semantics [Salas-Moreno et al.,

2013, McCormac et al., 2017a, Sünderhauf et al., 2017, Narita et al., 2019, Zhi

et al., 2019, Zhi et al., 2021a].

Figure 1.1: Example of classical geometric representations. From left to right are
point clouds, volumetric grids (voxels), meshes and signed distance field (SDF).

Correspondingly, the taxonomy of vSLAM systems from the adopted repres-

entation can hence be divided into sparse SLAM, (semi-)dense SLAM and recent

neural representation-based SLAM.

Geometric SLAM, from Sparse to Dense

Classical sparse SLAM methods track and reconstruct a set of sparse discrimin-

ative 2D/3D landmarks (e.g., corners, lines, arcs) within the scene, which can be

referred to as a feature-based representation. The selected landmarks are usually

called keypoints which are geometrically robust and consistent under visual ob-

servations from various viewpoints. Keypoints are detected based on low-level

images statistics such as high image gradients. Therefore, sparse SLAM systems

4



1.2. Scene Representations in visual SLAM

assume no prior knowledge of the geometry of the observed scene, and the geo-

metric parameters of all the keypoints are considered conditionally independent

given the camera state. The most commonly used keypoint detection in vSLAM

systems are Harris Corner Detection [Harris and Stephens, 1988], FAST [Rosten

and Drummond, 2006], GFTT [Shi and Tomasi, 1994], etc.

In order to identify keypoints under different camera motions, correspondences

between images are established by finding keypoint pairs sharing most similarit-

ies via descriptors. The descriptors aim to discriminately represent the salient and

distinguishable image regions around keypoint locations, of which repeatability,

distinctiveness, efficiency and locality are the main characteristics. Most popular

local descriptors are SIFT [Lowe, 2004], SURF [Bay et al., 2006], BRIEF [Calon-

der et al., 2010] ,BRISK [Leutenegger et al., 2011] and ORB [Rublee et al., 2011,

Mur-Artal and Tardós, 2014], etc. There have been years of continuous efforts in

the area of image processing community on extraction of keypoints, descriptors

as well as correspondences, ranging from above-mentioned hand-crafted ones to

latest learning-based approaches [Schmidt et al., 2017, DeTone et al., 2018].

Although accurate and efficient tracking and localisation can be enabled by

sparse representation, a small set of landmarks is incapable of providing rich in-

formation about object shapes and surfaces within scenes and hence is less useful to

applications where a dense 3D scene representation is preferred and required. For

example, path planning and navigation of mobile robots require a good sense of

dense occupancy within scenes to determine if it is possible to safely traverse along

certain trajectories to reach a destination; and human-robot interaction with en-

vironments needs a detailed dense model of a scene to enable lively visualisation

and feedback.

Specifically, dense SLAM attempts to utilise and reconstruct 3D information

for all raw pixels from image space with the help of geometric prior knowledge,

5



1. Introduction

typically smoothness over a local image region. Semi-dense representations lie

between sparse and dense ones, where a well-constrained subset of pixels are re-

constructed, and this is usually discussed together with dense representation [En-

gel et al., 2014, Engel et al., 2017, Engel, 2017]. Leveraging the advent of mod-

ern commodity Graphic Processing Units (GPU), dense representation benefits

from its parallel processing power and hence is able to process all raw image in-

formation to achieve real-time performance. DTAM [Newcombe et al., 2011b] is

one of the first dense SLAM systems operating with a single monocular camera

[Pradeep et al., 2013, Pizzoli et al., 2014]. In DTAM the dense geometry of key-

frames is estimated by accumulating photometric information from overlapping

reference images with a small baseline into a perspective cost volume which is then

solved using a variational approach. Robust camera tracking is achieved by dense

image alignment. RGB-D based dense mapping appeared after low-cost commer-

cial depth sensors came out [Microsoft Corp, 2010]. KinectFusion [Newcombe

et al., 2011a] was one of earliest and most influential attempts in this direction.

A global volumetric implicit map using signed distance filed (SDF) is maintained

and camera tracking is aligned by dense registration. [Nießner et al., 2013] and

[Kahler et al., 2015] improved the memory and speed efficiency by adopting a

spatial hashing strategy. ElasticFusion [Whelan et al., 2015] used a surfel based

dense representation and allowed for flexible map deformation during mapping

and loop closure. BundleFusion [Dai et al., 2017b] addressed the fragile temporal

camera tracking, model inconsistency and scalability issue of existing dense SLAM

systems for large-scale scenes by estimating a global set of camera poses given com-

plete history with an efficient hierarchical approach.

Semantic Representation

Impressive progress in geometric SLAM has been achieved [Cadena et al., 2016a]

and dense geometric representation at different scales with fairly accurate detail can
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1.2. Scene Representations in visual SLAM

be reconstructed in real-time with commodity cameras. Nevertheless, there are

still numerous relationships and semantic concepts in a scene, which are beyond

low-level primitives such as points, lines and raw image patches. More general

scene understanding is required, and we need to advance beyond pure geometric

representation towards a semantic-aware one so that robots have the capability to

fulfil a range of complicated tasks, e.g., bringing a cup of tea to a user from the

kitchen to the living room, or tidying and rearranging a room, or robot-human

assistance and interaction, etc. [Batra et al., 2020].

Semantic mapping emerged to build a semantic map of scenes containing and or-

ganizing detailed semantic concepts. Typically, dense semantic labels are painted

on and attached to geometric dense 3D maps. [Hermans et al., 2014] used a ran-

domized decision forest followed by a dense conditional random field (CRF) to

predict and refine semantic segmentation results on 3D a point cloud reconstruc-

tion. Recently with the rise of deep learning [Krizhevsky et al., 2012], convolu-

tional neural networks (CNN) have demonstrated superior performance in vari-

ous computer vision tasks powered by modern GPUs and large training corpuses,

and have become a popular choice of semantic classifier in the latest semantic map-

ping systems [Long et al., 2015, Hazirbas et al., 2016, Lin et al., 2017, Chen et al.,

2018a]. SemanticFusion [McCormac et al., 2017a], shown in Figure 1.2, is one

of the earliest systems to combine a dense geometric SLAM system ElasticFusion

with semantic segmentation from CNNs [Tateno et al., 2017]. 2D semantic pre-

dictions are re-projected to assign multi-class semantic probabilities to the associ-

ated surfels, which are further refined using Bayesian multi-view label fusion. [Na-

kajima et al., 2018] further improved efficiency and performance with the help

of geometric segmentation and a light-weight segmentation CNN. Other work

[Zhao et al., 2017a] and [Narita et al., 2019] tackled 3D material reconstruction

and panoptic semantic reconstruction in similar pipelines.

An alternative to dense semantic representation, object-level representation is

7



1. Introduction

II. RELATED WORK

The works most closely related are Stückler et al. [23] and
Hermans et al. [8]; both aim towards a dense, semantically
annotated 3D map of indoor scenes. They both obtain per-
pixel label predictions for incoming frames using Random
Decision Forests, whereas ours exploits recent advances in
Convolutional Neural Networks that provide state-of-the-art
accuracy, with a real-time capable run-time performance.
They both fuse predictions from different viewpoints in a
classic Bayesian framework. Stückler et al. [23] used a
Multi-Resolution Surfel Map-based SLAM system capable
of operating at 12.8Hz, however unlike our system they
do not maintain a single global semantic map as local key
frames store aggregated semantic information and these are
subject to graph optimisation in each frame. Hermans et
al. [8] did not use the capability of a full SLAM system with
explicit loop closure: they registered the predictions in the
reference frames using only camera tracking. Their run-time
performance was 4.6Hz, which would prohibit processing a
live video feed, whereas our system is capable of operating
online and interactively. As here, they regularised their pre-
dictions using Krähenbühl and Koltun’s [13] fully-connected
CRF inference scheme to obtain a final semantic map.

Previous work by Salas-Moreno et al. aimed to create a
fully capable SLAM system, SLAM++ [19], which maps
indoor scenes at the level of semantically defined objects.
However, their method is limited to mapping objects that are
present in a pre-defined database. It also does not provide the
dense labelling of entire scenes that we aim for in this work,
which also includes walls, floors, doors, and windows which
are equally important to describe the extent of the room.
Additionally, the features they use to match template models
are hand-crafted unlike our CNN features that are learned in
an end-to-end fashion with large training datasets.

The majority of other approaches to indoor semantic la-
belling either focuses on offline batch mapping methods [24],
[12] or on single-frame 2D segmentations which do not
aim to produce a semantically annotated 3D map [3], [20],
[15], [22]. Valentin et al. [24] used a CRF and a per-
pixel labelling from a variant of TextonBoost to reconstruct
semantic maps of both indoor and outdoor scenes. This
produces a globally consistent 3D map, however inference is
performed on the whole mesh once instead of incrementally
fusing the predictions online. Koppula et al. [12] also tackle
the problem on a completed 3D map, forming segments of
the map into nodes of a graphical model and using hand-
crafted geometric and visual features as edge potentials to
infer the final semantic labelling.

Our semantic mapping pipeline is inspired by the re-
cent success of Convolution Neural Networks in semantic
labelling and segmentation tasks [14], [16], [17]. CNNs
have proven capable of both state-of-the-art accuracy and
efficient test-time performance. They have have exhibited
these capabilities on numerous datasets and a variety of data
modalities, in particular RGB [17], [16], Depth [1], [7] and
Normals [2], [4], [6], [5]. In this work we build on the CNN

Fig. 2: An overview of our pipeline: Input images are used
to produce a SLAM map, and a set of probability prediction
maps (here only four are shown). These maps are fused into
the final dense semantic map via Bayesian updates.

model proposed by Noh et. al. [17], but modify it to take
advantage of the directly available depth data in a manner
that does not require significant additional pre-processing.

III. METHOD

Our SemanticFusion pipeline is composed of three sepa-
rate units; a real-time SLAM system ElasticFusion, a Con-
volutional Neural Network, and a Bayesian update scheme,
as illustrated in Figure 2. The role of the SLAM system is
to provide correspondences between frames, and a globally
consistent map of fused surfels. Separately, the CNN receives
a 2D image (for our architecture this is RGBD, for Eigen et
al. [2] it also includes estimated normals), and returns a set
of per pixel class probabilities. Finally, a Bayesian update
scheme keeps track of the class probability distribution for
each surfel, and uses the correspondences provided by the
SLAM system to update those probabilities based on the
CNN’s predictions. Finally, we also experiment with a CRF
regularisation scheme to use the geometry of the map itself
to improve the semantic predictions [8], [13]. The following
section outlines each of these components in more detail.

A. SLAM Mapping

We choose ElasticFusion as our SLAM system.1 For each
arriving frame, k, ElasticFusion tracks the camera pose
via a combined ICP and RGB alignment, to yield a new
pose TWC , where W denotes the World frame and C the
camera frame. New surfels are added into our map using this
camera pose, and existing surfel information is combined
with new evidence to refine their positions, normals, and

1Available on https://github.com/mp3guy/ElasticFusion

Figure 1.2: Pipeline of the SemanticFusion [McCormac et al., 2017a] system com-
bining a dense geometric SLAM and CNN semantic predictions.

another semantic representation offering the potential of object reasoning. The

SLAM++ system [Salas-Moreno et al., 2013] proposed to include detected 3D ob-

jects (e.g., chairs, desks) and other structural priors into pose graph optimisation,

enabling robust relocalisation and AR applications. However, the object database

in SLAM++ is predefined and not scalable to practical complex scenes. Fusion++

[McCormac et al., 2018] and work from Sunderhauf et al. [Sünderhauf et al., 2017]

alleviate this limitation by leveraging on supervised deep neural network for ob-

ject detection (e.g., Mask R-CNN [He et al., 2017a], YOLO [Redmon et al., 2016])
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1.2. Scene Representations in visual SLAM

and construct an object-centric 3D map. In these works, scene graphs are used as

the general underlying representation, which organise all entities of a scene in a

graph where objects and their inter-relationships are modelled as nodes and edges,

respectively [Wald et al., 2020, Wu et al., 2021]. We envision more applications

combing online SLAM systems and scene graph representations to explore more

general reasoning between scene entities, which opens a more complicated and

task-specific decision about which hierarchical and organisation of semantic con-

cepts are important.

Neural Scene Representation in vSLAM

The computer vision and SLAM communities have long sought to explore the

learned scene representations to overcome several problems in the human-designed

ones. Point clouds are raw 3D data which can be easily acquired from LiDAR and

depth sensors nowadays, advancing geometric deep learning like PointNet [Qi

et al., 2016, Qi et al., 2017a, Qi et al., 2017b, Dai and Nießner, 2019, Dai et al.,

2021]. However, the lack of topological information makes it less suitable for

high-level tasks. In contrast, volumetric representation benefits from its clear ty-

pology and regular structure for parallel processing, while sufferring from limited

computational and memory efficiency when representing detailed shape due to

discretisation. As for meshes, adaptively deforming from fixed templates to target

mesh topologies is a nontrivial problem.

As envisioned by “Spatial AI” as the enabling technology for next generation

smart robots, coined by Davison [Davison, 2018], a task-focused and persistent

scene representation, with both learned and designed elements, should be built

which is close to metric 3D geometry, at least locally, and is human understand-

able. This demands for a learned or hybrid representation which works as effi-

ciently as a sparse one but has the ability to offer dense geometry prediction and

semantic reasoning.
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1. Introduction

2D representation learning has been much explored lately thanks to publicly

available large-scale image data. Image-level or pixel-level dense feature represent-

ation can be learned in a supervised or self-supervised manner, and further lever-

aged by down-stream 2D tasks such as 2D object detection, segmentation and even

generative tasks with promising performance [Doersch et al., 2015, Zhang et al.,

2016, Donahue and Simonyan, 2019, Hou et al., 2021]. Seminal work including

GQN [Eslami et al., 2018] and CodeSLAM [Bloesch et al., 2018] proposed to use

view-based code representations learned by a variational auto-encoder (VAE) un-

der a multi-view set-up to achieve inference in 3D space. In GQN, view-synthesis

at novel viewpoints can be retrieved from the merged representation of a few ref-

erence views, but is limited to relatively simple 3D scenes. CodeSLAM also uses

a VAE but encodes dense geometry into a compact and optimisable latent space,

which allows for joint optimisation of dense geometry and camera poses in a real-

time SLAM system (Figure 1.3). SceneCode, which will be discussed in Chapter

3, also encodes dense semantic labelling into compact latent codes and shows the

benefits of code-representation in multi-view semantic label fusion. However, al-

though trained with posed images or depth maps, the code representation is still

view-based and lacks true awareness of the 3D geometry.
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Figure 1.3: Network architecture (left) and qualitative result of a 9-view dense re-
construction using code optimisation (right) in CodeSLAM [Bloesch et al., 2018].

When it comes to 3D-aware neural representation, several methods have tried

to learn a 3D-structured latent model [Nguyen-Phuoc et al., 2019, Sitzmann et al.,
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1.2. Scene Representations in visual SLAM

2019a, Park et al., 2020], but still suffer from the limitations coming from the ad-

opted data structure; e.g., 3D latent spaces produced by neural networks using

computationally and memory expensive 3D convolutions are finally limited by

the resolution it can efficiently represent. Instead of directly augmenting classical

representation with powerful deep features, at the other end of the spectrum are

implicit neural representations proposed recently. Pioneering methods including

Scene Representation Networks (SRN) [Sitzmann et al., 2019b], DeepSDF [Park

et al., 2019], Occupancy Networks [Mescheder et al., 2019] and Neural Radiance

Fields (NeRF) [Mildenhall et al., 2020] propose to implicitly represent 3D scenes

using the weights of neural networks which can predict the occupancy and colour

information at a given 3D query position. iMAP [Sucar et al., 2021] proposed

to use a NeRF-like representation with continual learning to establish a real-time

dense tracking and mapping system. Though this is an encouraging advance on

the geometric representation, neural semantic representation is under-explored as

semantic information is usually formulated as an extra property and attached to

underlying geometry. We believe that there is much to gain by focusing on se-

mantic representations which potentially enable joint inference and mutual bene-

fits between semantics and geometry.

In this thesis, we concentrate on formulating joint geometric and semantic scene

representations for scene understanding and semantic SLAM. Specifically, the rep-

resentation should be able to infer rich low-level and high-level information of

scenes to support semantic-level tasks, e.g., motion and structure estimation, and

identifying and interacting with scene entities [Davison, 2018]. In addition, the

representation should be efficiently learned and updated in an incremental man-

ner, ideally in real-time, so that new observations can be incorporated to improve

its priors and effectiveness. Last but not least, the representation should also have

a sense of uncertainty so that instead of being over-confident to outlier samples,

users have access to the fidelity of the predictions [Gal, 2016, Kendall and Gal,
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1. Introduction

2017]. Inspired by these goals, the work discussed in Chapter 3 focuses on learning

a compact code-based semantic representation to tackle multi-view label fusion.

The prior information learned from a training phase enables semantic refinement

at inference time; Chapter 4 alleviates the need for costly external supervision and

the problem of the generalisation gap by adopting a scene-specific implicit repres-

entation. The joint encoding of appearance, geometry and semantics allows for

dense semantic labelling from sparse or noisy in-place supervision. Finally presen-

ted in Chapter 5, a real-time interactive scene labelling and understanding tool is

discussed based on Semantic-NeRF from Chapter 4.

1.3 Contributions

The main results presented in this thesis have been published in three different

research papers. The full list of publications done in conjunction with the thesis, as

well as the video material that provides visualisation of the algorithms developed,

is given in this Section 1.4. The motivation and contribution from each paper is

briefly discussed below.

1.3.1 Paper I: SceneCode: Code-based Semantic

Representation

Research Question: Can we design a compact and optimisable semantic representation

for monocular dense semantic mapping?

While there has been much work on the correct formulation for geometrical

estimation, semantic representation is less explored and state-of-the-art semantic

SLAM systems usually rely on simple semantic representations which store and

update independent label estimates for each surface element (depth pixels, surfels,

or voxels). Consequently, spatial correlation is discarded and fused label maps are

12



1.3. Contributions

incoherent and noisy, which can be partly addressed by expensive post-processing

steps such as CRF.

Inspired by CodeSLAM [Bloesch et al., 2018], we propose SceneCode which

represents dense semantic labels as compact and optimisable latent codes by train-

ing a variational auto-encoder that is conditioned on a colour image. Using this

learned latent space, we can tackle semantic label fusion by jointly optimising the

low-dimenional codes associated with each of a set of overlapping images, produ-

cing consistent fused label maps which preserve spatial correlation. This is sub-

stantially different from the widely adopted element-wise fusion approach. We

also show how this approach can be used within a monocular keyframe based se-

mantic mapping system where a similar code approach is used for geometry. The

probabilistic formulation allows a flexible formulation where we can jointly es-

timate motion, geometry and semantics in a unified optimisation.

SceneCode will be described in detail in Chapter 3.

1.3.2 Paper II: Semantic-NeRF: Implicit Semantic

Representation based on Neural Radiance Field

Research Question: Can we find an efficient semantic representation that does not

scale with scene resolution and does not require external annotation?

Most existing semantic representation learning relies on expensive annotated

datasets and generalises poorly to out-of-distribution unseen samples. Recent im-

plicit neural reconstruction techniques are appealing as they do not require prior

training data, but the same fully self-supervised approach is not possible for se-

mantics because labels are human-defined properties.

Motivated by the fact that semantic labelling is highly correlated with geometry

and radiance reconstruction, as scene entities with similar shape and appearance

13
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are more likely to come from similar classes, we propose Semantic-NeRF, which

extends neural radiance fields (NeRF) to jointly encode semantics with appearance

and geometry, so that complete and accurate 2D semantic labels can be achieved

using a small amount of in-place annotation specific to the scene. The intrinsic

multi-view consistency and smoothness of NeRF benefits semantics by enabling

sparse labels to efficiently propagate. We show the benefit of efficient learning

Semantic-NeRF when labels are either sparse or very noisy in room-scale scenes.

We demonstrate its advantageous properties in various interesting applications

such as an efficient scene labelling tool, novel semantic view synthesis, label de-

noising, super-resolution, label interpolation and multi-view semantic label fusion

in visual semantic mapping systems.

Semantic-NeRF will be discussed in detail in Chapter 4.

1.3.3 Paper III: iLabel: Interactive Scene Understanding in

Real-time using Implicit Scene Representation

Research Question: Can we leverage implicit scene representation to design a real-time

interactive scene understanding system?

We present iLabel: the first online, interactive 3D scene understanding system

based on neural implicit scene representations. A user annotates semantic prop-

erties in a scene via clicks, while simultaneously scanning and mapping it with a

handheld RGB-D sensor. The scene model is updated and visualised in real-time,

allowing the user to focus interactions as needed to achieve ultra-efficient labelling.

iLabel’s underlying model is an MLP trained from scratch in real-time to learn a

joint implicit encoding of geometry, appearance and semantics in 3D. The internal

smoothness and consistency of the representation of shape and appearance is in-

herited by the semantic channel, allowing it to make accurate dense predictions

from very sparse annotations, and regularly auto-segment objects and other re-
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gions. We show that a room or similar scene can be highly accurately labelled

into 10+ semantic categories with only a few tens of clicks, where these categor-

ies are either known in advance or defined in an interactive ‘open-set’ manner by

the user. The quantitative labelling accuracy scales powerfully with the number

of clicks, and rapidly surpasses the accuracy of standard pre-trained semantic seg-

mentation methods. We also demonstrate a variant which uses a binary tree for

hierarchical semantic labelling. iLabel has the flexibility to be used in a variety

of scenarios: from an interactive, user-friendly data annotation or scene labelling

tool to a core perception module enabling intelligent robots to operate in open-set

environments.

In this work Edgar Sucar and I contributed equally, where I focused on the im-

plementation of automatic query generation and quantitative experiments, and

partly contributed to the initial idea of the iLabel system.

iLabel will be discussed in detail in Chapter 5.

1.4 Publications

The work described in this thesis resulted in the following publications:

• Zhi, S., Bloesch, M., Leutenegger, S., and Davison A. (2019). Scenecode:

Monocular dense semantic reconstruction using learned encoded scene

representations. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). [Zhi et al., 2019].

• Zhi, S., Laidlow, L., Leutenegger, S., and Davison A. (2021). In-Place Scene

Labelling and Understanding with Implicit Scene Representation. In

Proceedings of the International Conference on Computer Vision (ICCV). [Zhi

et al., 2021a].
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• Zhi, S. *, Sucar, E.*, Mouton, A., Haughton, I., Laidlow, T., Davison, A.

(2021). iLabel: Interactive Implicit Scene Labelling and Learning in

Real-Time. Under submission. [Zhi et al., 2021b]. (* indicates equal con-

tribution to the paper.)

While not described directly, the following publication was done in conjunction

with this thesis:

• Liu, S., Zhi, S., Johns, E., Davison, A. (2021). Bootstrapping Semantic

Segmentation with Regional Contrast. Arxiv. [Liu et al., 2021].

The following material provides visualisation of some algorithms developed in

this thesis:

• SceneCode: supplementary video at https://youtu.be/MCgbgW3WA1M.

• Semantic-NeRF:

– Project page with various qualitative results at https://shuaifengzhi.

com/Semantic-NeRF/.

– Supplementary video at https://youtu.be/FpShWO7LVbM.

1.5 Thesis structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notations and the necessary concepts including the

variational auto-encoder (VAE) and neural implicit representations used in this

work.
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1.5. Thesis structure

Chapter 3 introduces a compact and optimisable code representation for dense

semantic labelling, based on which we propose a new code based multi-view label

fusion approach leading to coherent and smooth fusion results. We also show the

benefits of code representation in a monocular dense semantic mapping system.

Chapter 4 discusses an efficient scene-specific semantic representation built upon

neural radiance field, i.e., Semantic-NeRF. Motivated by the internal coherence

and multi-view consistency of Semantic-NeRF, we show that accurate dense se-

mantic rendering can be achieved with only sparse or noisy semantic supervision.

Various qualitative and quantitative experiments on Replica and ScanNet datasets

validate its potential applications.

Chapter 5 proposes the first real-time interactive 3D scene labelling and under-

standing system based on deep neural implicit representation. We demonstrate

and discuss its capability of ultra-efficient scene labelling in a variety of challen-

ging real-world scenes.

Chapter 6 concludes this thesis with a summary of the results presented and sug-

gestions for future work.
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Preliminaries
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In this chapter, we review the fundamental concepts and components for the

algorithms presented ahead. We start with mathematical notation and continue

with the pin-hole camera model in Section 2.1.5. Then we present a general in-
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troduction to feedforward deep neural networks including the Multi Layer Per-

ceptron (MLP) and Convolutional Neural Networks (CNN). A brief mathemat-

ical derivation of Variational Auto-Encoder is shown in Section 2.3.2, followed

by a discussion of deep semantic segmentation approaches. The final section in-

troduces implicit neural representations, especially neural radiance fields (NeRF)

originally proposed for photorealistic novel view synthesis.

2.1 Notation

In this work we use the following notation:

2.1.1 General notation

a/A Standard mathematical symbol denotes a scalar apart from common capital

exceptions.

a A bold lower-case symbol denotes an m-dimensional column vector with ai

the i th element as:

a=

















a1

a2
...

am

















,a> = [a1,a2, . . . ,am]. (2.1)

We use ai : j to denote the vector consisting of the elements of a with indices

in the [i , j ] range.

A A bold capital symbol denotes an m× n matrix with ai , j the element at the
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i th row and j th column:

A=

















a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

... . . .
...

am,1 am,2 · · · am,n

















. (2.2)

I The identity matrix, optionally with dimensions as subscript.

0 The zero matrix, optionally with dimensions as subscript.

[·]× The cross-product matrix that produces a skew symmetric matrix from a 3D

vector such that a×b = [a]×b. Given the vector a = [ax ,ay ,az]
>, [a]× can

be computed by:

[a]× =











0 −az ay

az 0 −ax

−ay ax 0











. (2.3)

A A calligraphic capital symbol denotes a set.

2.1.2 Probability

p(x) The probability density function of random variable x.

p(x | y) The conditional probability density function of random variable x given

random variable y.

2.1.3 Spaces and manifolds

R The set of real numbers.

R+ The set of positive real numbers.

Rm The vector space of real m-dimensional vectors.
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Rm×n The vector space of real m× n-dimensional matrices.

Z The set of integers.

N (µ,Σ) The Normal distribution with mean µ and covariance Σ.

S3 The 3-sphere group.

SO(3) The group of 3D rotations.

SE(3) The group of 3D rigid transformations.

� The “box-plus” operator that applies a perturbation expressed in a tangent

space to a manifold state.

� The “box-minus” operator that expresses the difference of two manifold

states in the tangent space.

2.1.4 Frames and transformations

F−→A The Cartesian coordinate frame A in R3.

Av A vector v expressed in coordinate frame F−→A.

CAB The rotation matrix that transforms the vector Bv expressed in coordinate

frame B to one expressed in F−→A as: Av= CAB Bv. The inverse rotation CBA

can be computed as: CBA =C−1
AB =C>AB .

TAB The homogeneous transformation matrix that transforms the homogeneous

vector from coordinates B to A.

2.1.5 Camera Models

fx The horizontal focal length of a camera measured in pixels.

fy The vertical focal length of a camera measured in pixels.
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cx The horizontal offset of a camera centre measured in pixels.

cy The vertical offset of a camera centre measured in pixels.

K The intrinsic camera matrix:

K=











fx cx 0

fy 0 cy

0 0 1











. (2.4)

π(·) The perspective projection function.

π−1(·) The inverse perspective projection function.

2.2 Camera Models

The process of projecting a 3D point from world space to a 2D point in image plane

can be described by a geometric camera model. Though there are various types

of camera models available, the simplest and most commonly used in 3D vision

is the pinhole camera model, describing the imaging process via an infinitesimally

small, single point aperture. At the same time, due to the presence of the camera

lens, distortion is generated during practical projection. In this thesis, we assume

an ideal pinhole camera model is used (Figure 2.1) and therefore all distortions are

assumed to have been corrected.

The pinhole camera model can be mathematically described by intrinsic matrix

K as in Equation 2.4, where fx , fy are the horizontal and vertical focal length, and

cx , cy are the horizontal and vertical camera center offset, respectively, all in pixels.

It is usually assumed that these intrinsic parameters are fixed after manufacturing

and will not change during usage.

As shown in Figure 2.1, a 3D point Cp represented in camera coordinate frame

F−→C can be projected to a 2D coordinate u= [u, v] in the pixel plane via compact
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Figure 2.1: Illustration of the perspective projection process using a
pin-hole camera model(left) and its X-O-Z view (right). Modified from
https://github.com/gaoxiang12/slambook-en/blob/master/resources/
cameraModel/cameraModel.pdf with GNU general public liscense.

matrix multiplication with homogeneous coordinates:











u

v

1











=
1

C pz











fx 0 cx

0 fy cy

0 0 1





















C px

C py

C pz











∆=
1

C pz

KCp. (2.5)

.

From the above equation, we can also observe that: (1) once the depth of a

certain pixel is given, we can also invert the projection process, i.e., unproject a 2D

pixel to its corresponding 3D point in the camera coordinate frame. (2) absolute

depth information, i.e. C pz , is lost during projection and hence it is not possible

to recover depth information using a single monocular camera.

We have shown how to describe a single monocular camera using the pin-hole

camera model. In practice, more types of camera such as stereo cameras, RGB-D

cameras or LIDAR are often used to acquire depth information to support chal-

lenging vision tasks. In this thesis, Chapters 3 and 4 use a monocular set-up, while

Chapter 5 utilises an RGB-D camera which actively measures per-pixel depth.
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2.3 Deep Neural Networks

Deep neural networks (DNN) are a broad and general type of machine learning

algorithm, and have impressively demonstrated their promise in computer vision

in both research and industrial applications. Many challenging vision problems

including scene understanding and representation learning have been greatly ad-

vanced by deep learning techniques [Eigen and Fergus, 2015, Ronneberger et al.,

2015, Long et al., 2015]. Specifically, a deep neural network is a parametric compu-

tational graph made of ‘neurons’ inspired by biological neural networks to learn a

mapping f (·) from input domainX to output domain Y (i.e., labels, representa-

tion). The weights of each neuron are updated with the back propagation technique

to minimise a pre-designed objective loss function over mini-batches of training

data samples, iteratively. After prior information is learned from the training pro-

cess, it is expected to work well on unseen testing data sampled from a similar

distribution.

Though deep neural networks are not the only way to solve these tasks, and have

several unsolved issues such as lack of interpretability and dependence on a huge

amount of (labelled) data in general, we believe that the encouraging achievements

of deep learning are a firm step towards Spatial AI and we use neural representa-

tions broadly in this thesis.

We make use of feedforward deep neural networks in this thesis, whose com-

putational graphs are a-cyclic one. Multi Layer Perceptron or Fully Connected

Network and the Convolutional Neural Networks are two main categories of feed-

forward deep neural networks.

25



2. Preliminaries

2.3.1 Feedforward Neural Networks

Multi Layer Perceptron

A multi layer perceptron is the ‘vanilla’ deep neural network composed of a series

of fully connected layers. In each layer a neuron is connected to all neurons in

the previous adjacent layer, whose inputs are added up with trainable weights and

passed through a non-linear activation function, such as a sigmoid, Tanh, ReLU

or ReLU variations. There are no connections between neurons within the same

layer.

Theoretically the representative power of an MLP is very strong [Hornik, 1989]

and it has little inductive bias by design, which is the assumptions a machine learn-

ing algorithm makes about encountered data. Therefore, despite being a powerful

universal approximator, the unconstrained and flexible MLP tends to overfit train-

ing data and is less efficient at tackling 2D vision tasks where the network size of

MLP scales proportionally with the number of pixels. This leads to the more

efficient design of convolutional neural networks which incorporate stronger in-

ductive biases suiting natural images for 2D and 3D vision tasks, as discussed in the

next subsection. However, a fully connected layer still acts a key component in sev-

eral popular architectures [Simonyan and Zisserman, 2015, Qi et al., 2017a, Park

et al., 2019] and recently we have witnessed a renaissance of MLPs in various vis-

ion tasks, thanks to the injection of inductive biases from overall pipeline design

(e.g., multi-view consistency used in implicit representation learning) [Sitzmann

et al., 2019b, Mildenhall et al., 2020] or to the huge amount of training dataset

(e.g., vision Transformer) [Vaswani et al., 2017, Dosovitskiy et al., 2021].

In Chapter 4 and Chapter 5, we will show how to use a coordinate-based MLP

to learn implicit semantic representations of 3D scenes, in which the input to the

MLP is queried 3D (x, y, z) positions and predict associated occupancy value.
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Convolutional Neural Networks

A convolutional neural network is similar to an MLP in overall design. However,

a CNN explicitly assumes the input data to follow a regular grid pattern, typic-

ally 2D images or 3D voxel grids. Recently there are also graph neural networks

extending the convolution to graph structures.

A convolutional neural network processes input images via a sequence of layers:

convolutional layers, pooling layers and optional fully connected layers. Convo-

lutional layers are the core building blocks of CNN where local connectivity and

parameter sharing are the two main properties enabling efficiently processing of

visual data. Local connectivity means the spatial extent (height and width) of the

connectivity of each neuron, i.e. receptive field, is limited to a local region of input;

while the channel-wise extent is equal to its input. This design solves the network

scaling issue of network size with input dimension. Parameter sharing is another

important design choice to control the total number of trainable parameters. The

common assumption behind it is that salient features detected at a certain posi-

tion should also be detectable at other spatial positions as well. Pooling layers

are periodically inserted between consecutive convolutional layers to reduce the

dimensions of input feature maps to the following network layers. Average pool-

ing and maximum pooling are the two most commonly used pooling types. A

fully connected layer seen in popular CNN architectures is placed at the end for

feature fusion and classification. Mathematically, convolution can be expressed

as matrix multiplication and can efficiently leverage modern computation librar-

ies and GPUs. The trainable weights in a CNN are composed of convolutional

kernels and fully connected neurons, and can be optimised using backpropaga-

tion from mini-batch stochastic gradient descent (SGD). Although only a subset

of deep learning research, numerous CNNs have been proposed and developed

with task specific custom architectures and layers to address vision tasks ranging

from image understanding including classification, object detection, and semantic
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prediction to geometry tasks such as depth prediction, correspondence matching

and pose estimation.

In addition to the superior performance of CNNs as a feature extraction via

supervised or self-supervised training, recent research also reveals that the strong

inductive bias of CNN can act as an effective deep natural image prior [Ulyanov

et al., 2018, Chakrabarty and Maji, 2019, Cheng et al., 2019, Gandelsman et al.,

2019], with promising performance on image inverse problems. Deep internal

learning recently coined by Shocher and Irani [Shocher et al., 2018] leverages the

internal redundancy discovered by a CNN in a totally unsupervised way. It has

been shown that without any prior knowledge of data, the self-similarity within a

single image is enough to train a CNN for a variety of tasks including super resol-

ution, image segmentation, transparency layer separation, or image manipulation

[Shocher et al., 2019, Bell-Kligler et al., 2019, Shaham et al., 2019].

2.3.2 Variational Auto-Encoder

The variational auto-encoder (VAE) is a powerful deep generative model and pro-

posed by Kingma et al. [Kingma and Welling, 2014] for efficient learning and in-

ference of directed probabilistic models (see Figure 2.2). The name ‘auto-encoder’

comes from its derived cost function, a part of which resembles the cost function of

a traditional auto-encoder network (AE). There are striking differences between

variational auto-encoders and classical auto-encoders. Specifically, the VAE is a

generative model while AE is usually a deterministic model.

Encoder Decoder OutputInput

Latent Variables

Figure 2.2: Illustration of a vanilla variational auto-encoder.
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Let us denote the dataset we are interested in as X=
�

x(i)
	N

i=1
, containing N i.i.d.

(independent and identically distributed) data samples of the variable x (x can be

either discrete or continuous), under the assumption that all samples are generated

from a certain random process with an hidden latent variable z. A typical genera-

tion process with a VAE usually has two steps: (1) The unobserved latent variable

z is generated from the prior distribution : z ∼ p(z) ; (2) a data sample x(i) is gen-

erated from the conditional distribution x ∼ p(x | z). Thereby, as a generative

model, the final objective of a VAE is the distribution:

p (x) =
∫

p (x | z;θ) p (z)dz. (2.6)

However, this integral is usually intractable and the true posterior distribution

of the latent variable p (z | x) is also unknown. To solve these problems, another

distribution called a recognition model q (z | x) is introduced to approximate the

true posterior distribution of the latent variable z. One reason for this approx-

imation is that practically most samples z from prior distribution p (z) will not

contribute to the estimation of p (x); i.e., p (x | z) is almost zero. We expect that

q (z | x), the condition distribution of z given data samples, is more likely to gener-

ate data from x, which constrains the space of valid z values [Doersch, 2016]. Next

we will briefly discuss how we can train the VAE in a tractable way by deducing

the evidence lower bound (ELBO) of the VAE.

To guarantee the validity of the approximation, the Kullback–Leibler diver-

gence (KL divergence denoted as D) between the approximated posterior distribu-

tion q (z | x) and the true one p (z | x) for those z values from q (z | x) is calculated

as shown:

D (q (z | x) ‖ p (z | x)) =
∫

q (z | x) log
q (z | x)
p (z | x)

dz

= Ez∼q [log q (z | x)− log p (z | x)] .
(2.7)
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By applying Bayes rule to the intractable p (z | x) we can bring p (x) into the equa-

tion:

D (q (z | x) ‖ p (z | x)) = Ez∼q [log q (z | x)− log p (x | z)− log p (z)]+ log p (x) .

(2.8)

Hence we can obtain:

log p (x)−D (q (z | x) ‖ p (z | x)) =−D (q (z | x) ‖ p (z))+ Ez∼q [log p (x | z)] . (2.9)

In Equation 2.9, the first LHS term log p (x) is the unknown likelihood prob-

ability of the training set which we are interested in and want to maximize. The

second LHS term of the KL divergence D (q (z | x) ‖ p (z | x)), albeit not tractable,

can be regarded as a non-negative error term indicating whether the approxima-

tion fits well or not and needs to be minimised. In contrast, the whole RHS term,

called the variational lower bound, can be well optimised. Therefore, Equation

2.9 can be changed to:

log p (x)¾−D (q (z | x) ‖ p (z))+ Ez∼q [log p (x | z)] . (2.10)

We can further derive that the empirical cost function of the VAE L with Gaus-

sian latent variables z [Kingma and Welling, 2014] is equivalent to :

L=−D (q (z | x) ‖ p (z))+
1
L

L
∑

l=1

log p
�

x | z(l )
�

, (2.11)

where z(l ) = g
�

x,ε(l )
�

, ε(l ) ∼N (0, I) and g is the deterministic and differentiable

mapping with an auxiliary noise variable ε, which is also called the reparametriz-

ation trick [Kingma and Welling, 2014] to allow the error to back-propagate to

the latent variables. In addition, the first RHS term in Equation 2.11 can also be

computed in a closed form under the Gaussian assumption.

So far we have derived the general formulation of the cost function for a vari-

ational auto-encoder. In Equation 2.11, the first KL divergence term can be re-

garded as a regularisation whereas the second term is the reconstruction error in
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auto-encoder parlance. The probability q (z | x) and p (x | z) can be computed using

neural networks as an encoder and a decoder, respectively. Hence, we can train a

VAE to learn the underlying latent distribution of the data via stochastic gradient

descent (SGD), and new samples can be generated during inference via sampling

from the prior distribution of latent variable p(z). In Chapter 3, a VAE is adop-

ted to learn the code latent representation of dense semantics and geometry, i.e.,

variable z.

2.3.3 Semantic Segmentation using Deep Learning

Semantic segmentation is a dense prediction task of classifying each pixel of an

image into a pre-defined semantic category, and is one of most important vision

tasks in scene understanding. The fully convolutional neural network [Long et al.,

2015] and U-Net [Ronneberger et al., 2015] are seminal CNN architectures in

segmentation (shown in Figure 2.3 and Figure 2.4), with a huge amount of fol-

lowing work, pushing the state-of-the-art on challenging benchmarks including

the PASCAL, MS-COCO, ScanNet datasets [Everingham et al., 2010, Lin et al.,

2014, Dai et al., 2017a] and applications [Zhao et al., 2017b, Chen et al., 2017].

To avoid the expensive annotation cost of dense semantic labelling, weakly-/semi-

/self-supervised approaches for semantic labelling have had more recent attention

to cluster and segment natural images into consistent semantic regions [Zhou et al.,

2018, Hsu et al., 2019, Hung et al., 2019].

In semantic mapping systems, a dense SLAM system provides the key geometric

component for scene understanding, namely a dense map reconstruction and cam-

era localisation, and CNN based segmentation methods usually enable high-level

reasoning beyond geometry. SemanticFusion [McCormac et al., 2017a] assigns

2D semantic segmentations to dense 3D surfel maps; CNN-SLAM [Tateno et al.,

2017] uses both dense depth and label predictions to semantically densify the semi-

dense map from LSD-SLAM and estimate the scale of geometry (Figure 2.5).
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Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [22],
the VGG net [34], and GoogLeNet [35]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [5] to the segmentation task. We then define a
skip architecture that combines semantic information from
a deep, coarse layer with appearance information from a
shallow, fine layer to produce accurate and detailed seg-
mentations. Our fully convolutional network achieves state-
of-the-art segmentation of PASCAL VOC (20% relative im-
provement to 62.2% mean IU on 2012), NYUDv2, and SIFT
Flow, while inference takes less than one fifth of a second
for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [22, 34, 35], but also making progress on lo-
cal tasks with structured output. These include advances
in bounding box object detection [32, 12, 19], part and key-
point prediction [42, 26], and local correspondence [26, 10].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[30, 3, 9, 31, 17, 15, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN)
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [30, 3, 9, 31, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [9, 17], proposals [17, 15],
or post-hoc refinement by random fields or local classifiers
[9, 17]. Our model transfers recent success in classifica-
tion [22, 34, 35] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[9, 31, 30].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
hierarchies encode location and semantics in a nonlinear

1

Figure 2.3: Network architecture of a Fully Convolutional Network (FCN) [Long
et al., 2015].
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 2.4: Network architecture of the U-Net [Ronneberger et al., 2015].
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Figure 2.5: Dense 3D reconstruction from CNN-SLAM [Tateno et al., 2017].

When it comes to the evaluation of 2D semantic segmentation, the most com-

monly used metrics are total pixel accuracy (Pixel Acc.), class average accuracy

(Class Avg. Acc.) and mean intersection-over-union (mean IoU, mIoU, or flat

mean Jaccard index). Specifically, total pixel accuracy simply measures the per-

centage of corrected classified pixels out of the total number pixels in the image;

class average accuracy computes the mean percentage of correct pixels within each

class; mean IoU quantifies the percentage of overlap between the ground-truth

mask and our predicted mask averaged over all classes. Though total pixel accur-

acy describes the overall performance, it is dominated by large regions such as

walls, floors, ceilings; while class average metrics, including class average accuracy

and mean IoU, equally weight all classes and are relatively more sensitive to small

object classes. Assume there are C valid semantic classes, we denote the number

of pixels which belong to ground truth class i and are predicted as class j by ni j .

Therefore, three above-mentioned metrics can be defined as follows:

Total Pixel Accuracy:
∑C−1

i=0 ni i
∑C−1

i=0

∑C−1
j=0 ni j

. (2.12)

Class Average Accuracy:
1
C

C−1
∑

i=0

ni i
∑C−1

j=0 ni j

. (2.13)
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mIoU:
1
C

C−1
∑

i=0

ni i
∑C−1

j=0 ni j +
∑C−1

j=0 n j i − ni i

. (2.14)

2.4 Neural Implicit Representations

A fundamental research interest across computer graphics, computer vision and

SLAM is to find the best underlying scene representation of an environment’s ap-

pearance, geometry and semantics, etc. Classical representations have been suc-

cessfully applied in dense 3D reconstruction. However, they all suffer from dis-

cretisation and are hence inefficient in representing detailed shape, as discussed in

Chapter 1. Recently proposed neural implicit representation has shown prom-

ising results in neural rendering and reconstruction thanks to being continuous

by nature [Sitzmann et al., 2019b, Park et al., 2019, Mildenhall et al., 2020]. The

actual resolution eventually depends on the capacity of the deep neural networks

used.

Figure 2.6: Overview of NeRF. 5D input (3D position and 2D viewing direc-
tion) are fed to a MLP to obtain the corresponding occupancy and radiance value.
Volume rendering technique is used to compute the 2D pixel value traversed by
the ray.

In this thesis, the neural radiance fields (NeRF) [Mildenhall et al., 2020] is of par-
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ticular interest because of its scene-specific nature which means only in-situ obser-

vations are required. Realistic rendering can be obtained at novel viewpoints along

with accurate internal 3D geometry after training with only posed 3D colour im-

ages, shown in Figure 2.6. Given multiple images of a static scene with known

camera intrinsics and extrinsics, NeRF [Mildenhall et al., 2020] uses MLPs to im-

plicitly represent the continuous 3D scene density σ and colour c = (r, g , b ) as

a function of continuous 5D input vectors of spatial coordinates x = (x, y, z) and

viewing directions d= (θ,φ). Specifically, σ(x) is designed to be a function of only

3D position while the radiance c(x,d) is a function of both 3D position and view-

ing direction. To compute the colour of a single pixel, NeRF [Mildenhall et al.,

2020] approximates volume rendering by numerical quadrature, of which hierarch-

ical volume sampling and positional encoding (PE) are two key design choices en-

abling high-quality photorealistic rendering.

Hierarchical volume sampling learns two set of MLP, namely a coarse MLP and

fine MLP concurrently. As a result, the coarse MLP can provide an initial estimate

of scene geometry to the fine network and hence allow it to allocate more samples

to regions expected to be visible under a limited sampling budget. Within one

hierarchy, if r(t ) = o + td is the ray emitted from the centre of projection of

camera space through a given pixel, traversing between near and far bounds (tn

and t f ), then for selected K random quadrature points {tk}
K
k=1 between tn and t f ,

the approximated expected colour Ĉ is given by:

Ĉ(r) =
K
∑

k=1

T̂ (tk)α
�

σ(tk)δk

�

c(tk) , (2.15)

where T̂ (tk) =exp

�

−
k−1
∑

k ′=1

σ(tk)δk

�

, (2.16)

where α (x) = 1−exp(−x), andδk = tk+1− tk is the distance between two adjacent

quadrature sample points.

Positional encoding is shown to be an important ‘trick’ in making NeRF cap-
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able of learning high-frequency details. The axis-aligned positional encoding is

applied to lift each normalised and proximate low dimensional input component

from xy zθφ to a more distinguishable high dimensional space using trigonometry

functions [Vaswani et al., 2017, Mildenhall et al., 2020]:

γ L(p) = (sin(20π p), cos(20π p), . . . , sin(2L−1π p), cos(2L−1π p)) , (2.17)

where L represents the maximum frequency of positional encoding. Fourier fea-

ture mapping [Tancik et al., 2020] further extends the axis-aligned positional en-

coding to a more general formulation which alleviates the deterministic and on-

axis frequencies by using randomly sampled isotropic Gaussian mapping. Given

multi-view training images of the observed scene, NeRF uses stochastic gradi-

ent descent (SGD) to optimise σ and c by minimising photometric discrepancy

between rendered images and observed images.

NeRF has led a sparking explosion of interest in the community [Dellaert and

Yen-Chen, 2020] and many follow-up pieces of work based on NeRF appeared re-

cently [Zhang et al., 2020, Srinivasan et al., 2021, Martin-Brualla et al., 2020]. Our

work in Chapter 4 is also inspired by NeRF. Instead of focusing on photorealistic

rendering, we are interested in its potential as a scene-specific semantic represent-

ation for robots’ scene understanding. Chapter 5 further uses neural implicit rep-

resentation to enable a real-time interactive scene labelling system.
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(2019). SceneCode: Monocular Dense Semantic Reconstruction using Learned Encoded

Scene Representations. Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition. [Zhi et al., 2019]

3.1 Introduction

Figure 3.1: Exemplar result of two-view dense semantic structure from motion
(SfM) using proposed SceneCode system in this work. Compact representations
of semantics and geometry have been jointly optimised with camera pose to obtain
smooth and consistent estimates.

Incremental semantic mapping systems which create 3D semantic maps from

image sequences must store and update representations of both geometry and se-

mantic entities. The most straightforward approaches, such as [Kahler and Reid,

2013, Hermans et al., 2014, McCormac et al., 2017a, Xiang and Fox, 2017, Xiao and

Quan, 2009, Ma et al., 2017]which paint a dense geometric SLAM map with fused

semantic labels predicted from views [Long et al., 2015, Lin et al., 2017, He et al.,
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2017b], are expensive in terms of representation size; label scenes in an incoherent

way where each surface element (depth pixels, surfels, or voxels) independently

stores its own class estimates so that spatial correlation is discarded; and do not

benefit from semantic labelling improving motion or geometry estimation.

At the other end of the scale are approaches which explicitly recognise object

instances and build scene models as 3D object graphs [McCormac et al., 2018,

Sünderhauf et al., 2017, Nicholson et al., 2018, Runz et al., 2018]. These rep-

resentations have the token-like character we are looking for, but are limited to

mapping discrete ‘blob-like’ objects from known classes and leave large fractions

of scenes undescribed.

Looking for efficient representations of whole scenes, we are inspired by sem-

inar work CodeSLAM from Bloesch et al. [Bloesch et al., 2018] which used a

learned encoding to represent the dense geometry of a scene with small codes

which can be efficiently stored and jointly optimised in multi-view SLAM. While

CodeSLAM encoded only geometry, here we propose SceneCode and show that

we can extend the same conditional variational auto-encoder (CVAE) to represent

the multimodal distribution of semantic segmentation.

As in CodeSLAM, our learned low-dimensional semantic code is especially suit-

able for, but not limited to keyframe based semantic mapping systems, and allows

for joint optimisation across multiple views to maximise semantic consistency.

This joint optimisation alleviates the problems caused by the independence of sur-

face elements assumed by most semantic fusion methods, and allows much higher

quality multi-view labellings which preserve whole elements of natural scenes.

We show that compact representations of geometry and semantics can be jointly

learned, resulting in the multitask CVAE used in this chapter (Figure 3.2). This

network makes it possible to build a monocular dense semantic SLAM system

where geometry, poses and semantics can be jointly optimised.
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To summarise, the key contributions of this chapter are:

• A compact and optimisable representation of semantic segmentation using

an image-conditioned variational auto-encoder.

• A new multi-view semantic label fusion method optimising semantic con-

sistency.

• A monocular dense semantic 3D reconstruction system, where geometry

and semantics are tightly coupled into a joint optimisation framework.

3.2 Related Work

In this section we briefly discussed most related works in view-based neural se-

mantic representation of scenes.

2D neural representation of structured semantic segmentation of the type we

propose have been studied by several authors. Sohn et al. [Sohn et al., 2015]

proposed a CVAE to learn the distribution of object segmentation labels using

Gaussian latent variables. Due to the learned distribution, the resulting object

segmentation was more robust to noisy and partially observed data compared to

discriminative CNN models. Pix2Pix from Isola et al. [Isola et al., 2017] used a

conditional Generative Adversarial Network (GAN) to achieve image to image

translation task in which the conditional distribution of semantic labels is impli-

citly learned. However, when used for semantic prediction from colour images,

the GAN training process induces hallucinated objects. In addition, the distribu-

tions learned by GANs are not directly accessible and optimisable in the form we

need for multi-view semantic fusion.

Closest work to ours is [Kohl et al., 2018] from Kohl et al. They proposed a

probabilistic U-Net to address the ambiguities of semantic segmentation due to
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insufficient context information. A CVAE was designed to learn the multimodal

distribution of segmentations given colour images through a low-dimensional lat-

ent space, and it was shown that ambiguities can be well modelled by a compact

latent code. We build on this idea and show that we can use the learned latent

space to integrate multi-view semantic labels, and build a monocular dense SLAM

system capable of jointly optimising geometry and semantics.

RefineNet

RefineNet
RefineNet

RefineNet
RefineNet

RefineNet

RefineNet
RefineNet

Concat&Multiply

Concat&Multiply

Figure 3.2: The proposed multitask conditional variational auto-encoder (mul-
titask CVAE). Depth images and semantic labels (one-hot encoded) are encoded
to two low-dimensional latent codes via VGG-like fully convolutional networks.
These recognition models shown in the dashed boxes are not accessible during
inference. The RGB images are processed by a U-shaped network with a ResNet-
50 backbone. Finally, the sub-parts are combined by ⊗ operations standing for a
combination of broadcasting, concatenation, and element-wise multiplication.
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Figure 3.3: Components of the RefineNet Unit used in our multitask CVAE. Un-
like the original implementation, batch-normalization (BN) is added after each
convolution. BN is necessary in our experiments to stabilise the training of the
RefineNet units.

3.3 Compact Geometry + Semantics Encoding

3.3.1 Image Conditioned Auto-Encoding of Depth and

Semantics

Dense semantic maps, though capture complete shape information with corres-

ponding semantic labels, own high dimensionality and are computationally ex-

pensive to store, process and update. Variational auto-encoder has the right cap-

ability to encode high dimensional input data into an explicit, compact and op-

timisable latent space. Naive auto-encoding of depth maps and semantic labels

are not feasible because there is no access to ground truth depths and labels in

monocular vision systems. Motivated by CodeSLAM [Bloesch et al., 2018], to

enable accurate and efficient encoding with a low-dimensional code, RGB image

conditioned auto-encoding is favoured as images are always available from cam-

era and the latent code can focus on representing information which is not able
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to retrieve from colour images. A multitask variational auto-encoder (multitask

CVAE) is proposed in this work to simultaneously learn two separate codes for

depth and semantics, respectively, on top of a shared backbone extracting image

features. Multitask design here allows for concise network architecture and po-

tentially benefits individual task with complementary information from another

domain.

3.3.2 Multitask CVAE Network Architecture

Our multitask CVAE (see Figure 3.2) learns the conditional probability densities

for depths and semantic segmentations conditioned on colour images in a manner

similar to the compact representation of geometry in CodeSLAM [Bloesch et al.,

2018]. The network consists of three main parts: a U-shaped multitask network

with skip connections and two variational auto-encoders for depth and semantic

segmentation.

The U-shaped multitask network contains one shared encoder with a ResNet-

50 backbone [He et al., 2016] and two separate decoders adopting RefineNet units

[Lin et al., 2017]. Unlike the original implementation, batch normalisation is ad-

ded after each convolution in the RefineNet unit to stabilise training. Each of the

two variational auto-encoders consists of a VGG-like fully convolutional recog-

nition model (encoder) followed by a linear generative model (decoder), which is

coupled with the U-net and thus conditioned on colour images.

More specifically, in the linear decoder the latent code is first broadcast spatially

to have the same height/width and then 1× 1 convolved to have the same dimen-

sionality as the image feature maps from the last RefineNet unit. A merged tensor

is then computed by doing a three-fold concatenation of the broadcast/convolved

code, the RefineNet unit, and an element-wise multiplication of the two. Finally,

convolution (without nonlinear activation) and bilinear upsampling is applied to
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obtain the prediction. The motivation for this procedure is to obtain a linear rela-

tionship between code and prediction which is conditioned on the input image in a

nonlinear manner [Bloesch et al., 2018]— the linearity enabling pre-computation

of Jacobians during inference at test time (see Section 3.4). The predicted depth D

and semantics (unscaled logits before softmax function) S can thus be formulated

as:

D
�

cd , I
�

=D0 (I )+ Jd (I )cd , (3.1)

S
�

cs , I
�

= S0 (I )+ Js (I )cs , (3.2)

where Js/d represents the learned linear influence which only depends on the in-

put colour image, and D0(I ) = D(0, I ) and S0(I ) = S(0, I ). Due to our variational

setup, D0(I ) and S0(I ) can be interpreted as the most likely prediction given the in-

put image alone. Note the generality of this framework, which could be combined

with arbitrary network architectures.

3.3.3 Network Training Configuration

Both the depth and semantic predictions are jointly trained using ground truth

data. In addition to the reconstruction losses discussed in the following sections,

the variational setup requires a KL-divergence based loss on the latent space to

minimise the negative evidence lower bound (ELBO) [Kingma and Welling, 2014]:

Lφ,θ (x) =KL
�

qφ
�

cx | x
�

‖ pθ
�

cx

�

�

, (3.3)

where x can be either depth image D or semantic logits S, qφ
�

cx |X
�

is the ap-

proximated posterior distribution to the unknown and intractable pθ
�

cx |X
�

via

the recognition model (encoder).

We assume latent codes with a factorized standard Gaussian prior distribution,

i.e., p
�

cx

�

∼N (0, I ), and that the approximated posterior distribution qφ
�

cx | x
�

is also a factorized Gaussian distribution q
�

cx | x
�

∼ N (µ,Σ), whose mean and
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variance are predicted by the encoder. So the KL term in Equation 3.3 has a closed

form formulation:

Lφ,θ (x) =
1
2

J
∑

j=1

((1+ log(σ2
j ))− (µ j )

2− (σ j )
2), (3.4)

where µ j and σ j are the j-th element of predicted µ and diag(Σ), respectively. J is

the latent code size. In order to avoid a degrading latent space, we employ a KL

annealing strategy [Bowman et al., 2015, Sønderby et al., 2016]where we gradually

increase the weights of the KL terms from 0 after 2 training epochs.

To compute the reconstruction loss of depth images, as in [Bloesch et al., 2018],

the raw depth values d are first transformed via a hybrid parametrisation called

proximity, p = a/(a+ d ), where a is the average depth value, which is set to 2m in

all of our experiments. In this way, we can handle raw depth values ranging from

0 to +∞ and assign more precision to regions closer to the camera. An L1 loss

function together with data dependent homoscedastic uncertainty [Kendall and

Gal, 2017] is used as the reconstruction error:

Lφ,θ (d ) =
N
∑

i=1

�
�

�

epi − pi

�

�

bi

+ log
�

bi

�

�

, (3.5)

where N is the number of pixels, epi and pi are the predicted proximity and input

proximity of the i -th pixel, and bi is the predicted uncertainty of the i th pixel.

Semantic segmentation labels, which are discrete numbers, are one-hot encoded

before being input to the network. Therefore, the multi-class cross-entropy func-

tion is a natural option for calculating the reconstruction loss using the predicted

softmax probabilities and one-hot encoded labels:

Lφ,θ (s) =−
1
N

N
∑

i=1

C
∑

c=1

k (i)c log p (i)c , (3.6)

where C is the number of classes, k (i)c is the c -th element of the one-hot encoded

labels for the i -th pixel and p (i)c is the predicted softmax probability in the same

position.
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Figure 3.4: Multitask CVAE at inference time. Both semantic code and depth code
are initialised to full zero codes.

Hence, the total reconstruction loss Lt ot al is a linear combination of Lφ,θ (d )

and Lφ,θ (s):

Lt ot al = αd ∗ Lφ,θ (d )+αs ∗ Lφ,θ (s) , (3.7)

where the weight on the multitask reconstruction error αd and αs are adaptively

learned during training as the task-dependent uncertainty [Kendall et al., 2018].

We found this learned weighting scheme provides better overall performance than

equal weighting.

In all of our experiments, we train the whole network in an end-to-end manner

using the Adam optimiser [Kingma and Ba, 2015] with an initial learning rate

of 10−4 and a weight decay of 10−4. The ResNet-50 backbone is initialised using

ImageNet pre-trained weights, and all other weights are initialised using He et al.’s

method [He et al., 2015].

3.4 Fusion via Multi-View Code Optimisation

In a multi-view setup, depth, semantics, and motion estimates can be refined based

on consistency in overlapping regions by making use of dense correspondences,
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Figure 3.5: Illustration of semantic reconstruction from SceneCode system [Zhi
et al., 2019].

shown in Figure 3.5. While the use of photometric consistency is well-established,

here we also introduce semantic consistency, i.e. any given part of our scene should

have the same semantic label irrespective of viewpoint. The semantic consistency

is less affected by disturbances such as non-Lambertian reflectance, but may be

subject to quantisation errors and cannot be directly measured. The underlying

intuition of semantic consistency loss in Equation 3.11 is that corresponding pixels

must have the same semantic label, and thus similar (but not necessary the same)

softmax categorical probabilities. Unlike the photo-consistency assumption, the

semantic consistency assumption is comparatively weak since it is not anchored

to any actual measurement, though this is somewhat alleviated by the zero-code

prior described above. Nevertheless, as the viewpoint varies, different semantic

cues may become available and a previously semantically ambiguous region may

become more distinctive. Instead of fusing this information element-wise [McCor-

mac et al., 2017a], the estimates are propagated all the way back to the semantic

code, allowing spatial information fusion.

Given no additional information, an all-zero code is the most likely code be-

cause of the multivariate Gaussian prior assumption during training (see Section

3.3.3). Hence, the corresponding zero code predictions D0 and S0 in Equation 3.1

and Equation 3.2 are the most likely prediction (i.e., monocular prediction) for

depths and semantics, respectively. This zero code prediction can thus be used
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both as an initialisation value and as a prior during optimisation at test time (dur-

ing which we have no access to depths or semantic labels). The main motivation

to treat zero code predictions as prior information is that, as discussed above, there

is no intrinsic semantic cost to guarantee correct convergence during multi-view

semantic refinement, therefore zero code can act as a regularisation term which

drives the optimisation to find local minima near the origin point of latent space.

The probabilistic formulation of the system allows it to embed depth, semantics

and motion into a unified probabilistic framework and thereby combine an arbit-

rary number of information sources including images, semantic constraints, pri-

ors, motion models or even measurements from other sensors.

3.4.1 Geometry Refinement

In analogy to [Bloesch et al., 2018], given an image IA with its depth code cA
d ,

and a second image IB with estimated relative rigid body transformation TBA =

(RBA, tBA) ∈ SO (3)×R3, the dense correspondence for each pixel u in view A is:

w
�

uA,cA
d ,TBA

�

=π
�

TBAπ
−1 (uA, DA [uA])

�

, (3.8)

where π and π−1 are the projection and inverse projection functions, respectively.

DA stands for DA=D
�

cA
d , IA

�

, and the square bracket operation [u]means a value

look-up at pixel location u. We can then establish the photometric error ri based

on the photo-consistency assumption [Kerl et al., 2013]:

ri = IA [uA]− IB

�

w
�

uA,cA
d ,TBA

��

. (3.9)

Similarly, we can derive the geometric error term rz as:

rz =DB[w(uA,cA
d ,TBA)]− [TBAπ

−1(uA, DA[uA])]Z, (3.10)

where [·]Z refers to the depth value of a point.
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3.4.2 Semantics Refinement

Given images IA, IB sharing a common field of view (FOV), and their pre-softmax

predictions SA and SB generated from semantic codes cA
s and cB

s , we propose to

establish a semantic error term via dense warping:

r
′

s =DS
�

SA [uA] , SB

�

w
�

uA,cA
d ,TBA

���

, (3.11)

where DS can be an arbitrary function measuring distance/dissimilarity [Cha and

Srihari, 2002]. In the scope of this paper, DS is chosen to be the Euclidean distance

after applying softmax on the logits. Establishing the semantic error on top of

semantic labels is not adopted here due to the loss of multi-class information and

the induced non-differentiability from argmax operation.

The underlying intuition of Equation 3.11 is that corresponding pixels must

have the same semantic label, and thus similar (but not necessary the same) soft-

max categorical probabilities. However, unlike photometric and geometric errors

(Equation 3.9 and 3.10) which are intrinsic to geometry, so that multi-view optim-

isation leads to better geometry estimation, semantic loss itself (Equation 3.11) is

under-constrained and not intrinsic to semantic refinement. Simply minimising

semantic error can be trivially solved by assigning arbitrary consistent but incor-

rect semantic labels to the correspondences. For example, corresponding pixels

belonging to "table" still have zero semantic error if they are all classified to "chair".

To avoid trivial solution, prior information/regularisation is needed. We pro-

pose to leverage on the zero code semantic prediction (i.e., the likelihood predic-

tion of single view) and make it a new regularisation term in Equation 3.11. Our

final semantic error term is:

rs = r
′

s +λ
�







csA










2

2
+







csB










2

2

�

, (3.12)

where λ is the weight on the regularisation term.
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Unlike the photo-consistency assumption, the semantic consistency assump-

tion in Equation 3.12 is comparatively weak since it is not anchored to any ac-

tual measurement, though this is somewhat alleviated by the zero-code prior de-

scribed above. Nevertheless, as the viewpoint varies, different semantic cues may

become available and a previously semantically ambiguous region may become

more distinctive. Instead of fusing this information element-wise [McCormac

et al., 2017a], the estimates are propagated all the way back to the semantic code,

allowing spatial information fusion.

The semantic error term in Equation 3.12 is differentiable not only w.r.t. the

semantic code csA
and csB

, but to camera pose and the depth of the reference key-

frame as well, making it possible to affect geometry using semantic information.

This naturally enables semantic information to influence motion and structure es-

timation, i.e., the framework will for instance attempt to align chairs with chairs

and walls with walls. In this chapter, we focus on refining the semantics using

estimated motion and geometry while leaving the opposite direction as exciting

future research. The Jacobians can be computed using the chain rule:

∂ rs

∂ csA

=
∂ rs

∂ DS
∂ DS
∂ SA

∂ SA

∂ csA

, (3.13)

∂ rs

∂ csB

=
∂ rs

∂ DS
∂ DS
∂ SB

∂ SB

∂ csB

, (3.14)

∂ SB [v]
∂ tBA

=
∂ SB [v]
∂ v

∂ π(x)
∂ x

, (3.15)

∂ SB [v]
∂ RBA

=
∂ SB [v]
∂ v

∂ π(x)
∂ x

�

−RBAπ
−1(u, d )

�× , (3.16)

where × is the skew symmetric matrix form of a 3D vector, together with the
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following abbreviations:

v= w
�

uA,cdA
,TBA

�

, (3.17)

x=RBAπ
−1 (uA, DA [uA])+ tBA, (3.18)

∂ x
∂ RBA

=
�

−RBAπ
−1 (uA, DA [uA])

�× . (3.19)

Benefits of Linear Decoder

Both photometric, geometric and semantic errors are differentiable w.r.t. the input

camera poses and latent codes, so that Jacobians can be computed using the chain

rule. Due to the designed linear relationship we can pre-compute the Jacobian of

network predictions w.r.t. the codes which is computationally expensive to evalu-

ate due to dense convolution operations. The depth-to-code and semantic-to-code

Jacobians can be evaluated via numerical auto-differentiation using deep learning

libraries such as Tensorflow and Pytorch.

Probabilistic Formulation

There is a principled and probabilistic explanation behind our refinement process.

Minimizing r
′

s in Equation 3.11 can be viewed as Maximum Likelihood Estimation

(MLE) of semantic code cs:

cs = argmax
cs

p
�

rs | cs

�

. (3.20)

If the individual term p
�

rs | cs

�

of each correspondence obeys an independent

and identically distributed (i.i.d.) Gaussian distribution, solving Equation 3.20

becomes a classical least-square problem.

In addition, since the prior of the latent code in our network is a Gaussian (See

Section 3.3.3), Equation 3.12 can be formulated as a Maximum A Posteriori (MAP)

problem:

cs = argmax
cs

p
�

cs | rs

�

= argmax
cs

p
�

rs | cs

�

p (cs) . (3.21)
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Although our semantics refinement approach targets a monocular keyframe

based SLAM system, it can be adopted as a semantic label fusion module in ar-

bitrary SLAM system such as stereo or RGB-D SLAM systems.
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Figure 3.6: Semantic mapping formulation. Each keyframe has a colour image I ,
depth code cd and semantic code cs . Second order optimisation can be applied to
jointly or separately optimise camera motion, geometry and semantics.

3.5 Monocular Dense Semantic SLAM

Here we can integrate the geometry and semantics refinement processes into a

preliminary keyframe based monocular SLAM system. The map is represented by

a collection of keyframes, each with a camera pose and two latent codes, one for

geometry and one for semantics, as shown in Figure 3.6. We follow the standard

paradigm of dividing the system into tracking (front-end) and mapping (back-end)

and alternate between them [Klein and Murray, 2007]. In the present chapter, for

efficiency reasons, the tracking module estimates the relative 3D motion between

the current frame and the last keyframe using the photometric residual only [Baker

and Matthews, 2004].

52



3.6. Experiments

The mapping module relies on dense N-frame structure from motion, by min-

imising photometric, geometric and the proposed semantic residuals with a zero-

code prior between any two overlapping frames, which can be formulated as a non-

linear least-squares problem. As in CodeSLAM [Bloesch et al., 2018], we employ

loss functions that (i) remove invalid correspondences, (ii) perform relative weight-

ing for different residuals, (iii) include robust Huber weighting, (iv) down-weight

strongly slanted and potentially occluded pixels. The differentiable residuals are

minimised by a damped Gauss-Newton solver. In addition, the linear decoder al-

lows us to pre-compute the Jacobians of the network prediction w.r.t. the code for

each keyframe. Because the semantic residual relies not only on the semantic code

but also on data association, during mapping we adopt a stage-wise optimisation.

We first jointly optimise the geometry and poses, then optimise the semantic re-

sidual, and lastly jointly optimise both geometry and semantics. In this way, we

tightly couple geometry and semantics into a single optimisation framework.

3.6 Experiments

Please also see our submitted video which includes further demonstrations: ht-

tps://youtu.be/MCgbgW3WA1M.

To test our method, we use three indoor datasets: the synthetic SceneNet RGB-

D dataset [McCormac et al., 2017b], and the real-world NYUv2 [Silberman et al.,

2012] and Stanford 2D-3D-Semantic datasets [Armeni et al., 2017]. Compared to

outdoor road scenes [Geiger et al., 2012, Cordts et al., 2016], indoor scenes have

different challenges with large variations in spatial arrangement and object sizes,

and full 6-D motion.
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Figure 3.7: Reconstruction and zero code prediction performance of different set-
ups on the NYUv2 and SceneNet RGB-D test sets. mIoU (higher is better) and
proximity error (lower is better) are used to evaluate the performance of semantic
segmentation and depth prediction, respectively. Reconstruction performance
(i.e., given ground truth data as network input) increases with code size. The qual-
ity of zero code predictions is comparable to a discriminative baseline model Re-
fineNet for semantic segmentation, and better on depth prediction. Using a non-
linear decoder leads to little improvement and requires expensive re-estimation of
Jacobians per step as discussed in Section 3.4.

3.6.1 Datasets

NYUv2 has 1,449 pre-aligned and annotated images (795 in the training set and

654 in the test set) 1. We cropped all the available images from 640 × 480 to valid

regions of 560× 425 before further processing. The 13 class semantic segmentation

task is evaluated in our experiments.

Stanford 2D-3D-Semantic is a large scale real world dataset with a different set

1https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Figure 3.8: Qualitative results on the NYUv2 (left), SceneNetRGB-D (middle)
and Stanford (right) datasets. Input colour images are at the top. We show ground
truth, encoded predictions (code from encoder) and zero code predictions (mon-
ocular predictions) for depth and semantic labels. Incorrect semantic predictions
in regions which are ambiguous for monocular predictions are corrected by ex-
tra information in the compact latent codes. Black regions are masked unknown
classes.

of 13 semantic class definitions 2. 70,496 images with random camera parameters

are split into a training set of 66,792 images (areas 1, 2, 4, 5, 6) and a test set of 3,704

images (area 3). We rectified all images to a unified camera model.

The synthetic SceneNet RGB-D dataset provides perfect ground truth annota-

tions for 5M images 3. We use a subset: our training set consists of 110,000 images

by sampling every 30th frame of each sequence from the first 11 original training

splits. Our test dataset consists of 3,000 images by sampling every 100th frame
2http://buildingparser.stanford.edu/dataset.html
3https://robotvault.bitbucket.io/scenenet-rgbd.html
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3. SceneCode

from the original validation set.

All input images are resized to a resolution of 256×192. During training, we use

data augmentation including random horizontal flipping and jittering of bright-

ness and contrast. At test time, only single scale semantic prediction is evaluated.

3.6.2 Image Conditioned Scene Representation

We first quantitatively inspect the influence of code size on both the NYUv2 and

SceneNet RGB-D datasets by measuring reconstruction performance. We use the

same latent code size for depth images and semantic labels for simplicity. We also

train a discriminative RefineNet for semantic segmentation and depth estimation

separately as a single task prediction-only baseline models (i.e. code size of 0). Fig-

ure 3.7 shows results for depth and semantic encoding with different code size and

setups. The reconstruction performance indicates the capacity of the latent en-

coding for variational auto-encoders. Due to the encoded information, the recon-

struction is consistently better than single view monocular prediction, which also

shows competitive performance compared to discriminative baselines. Further-

more, reconstruction performance does not benefit from a non-linear decoder and

we observe diminishing returns when the code size is larger than 32, and therefore

choose this code size for later experiments.

The qualitative effects of our image conditioned auto-encoding of size 32 are

shown in Figure 3.8. The zero code predictions are usually similar to the encoded

predictions, though errors in ambiguous regions are corrected given the additional

encoded information. Figure 3.9 displays the learned image dependent Jacobians

of the semantic logits w.r.t. entries in the code. We see how each code entry is

responsible for certain semantically meaningful regions (e.g. examine the sofa Jac-

obians). Additionally, each code entry also has a tendency to decrease the prob-

ability of other ambiguous classes. For two images from different viewpoints, the
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image dependent Jacobians show high consistency.

3.6.3 Semantic Label Fusion using Learned Codes

Statistics Mean Std Max Min
Rotation (degree) 5.950 9.982 163.382 0.028

Translation (meter) 0.149 0.087 0.701 0.001

Table 3.1: The statistics of the relative 3D motion between consecutive frames
extracted from SceneNet RGB-D.

Our semantic refinement process can be regarded as a label fusion scheme for

multi-view semantic mapping. An important advantage of code-based fusion com-

pared to the usual element-wise fusion approaches for label fusion is its ability to

naturally obtain spatially and temporally consistent semantic labels by performing

joint estimation in the latent code space. This means that pixels are not assumed

i.i.d when their semantic probabilities are updated, leading to smoother and more

complete label regions.

To isolate only label estimation, our experiments use the SceneNet RGB-D data-

set where precise ground truth depth and camera poses are available to enable per-

fect data association. We also mask out and ignore occluded regions. We use the

zero-code monocular predictions as the initial semantic predictions for all fusion

methods.

In Figure 3.10 we show the result of semantic label fusion given two views taken

with a large baseline. The RHS zero code prediction struggles to recognise the

table given the ambiguous context. The high information entropy indicates that

the predicted semantic labels are uncertain and are likely to change during optim-

isation. In contrast, the LHS zero code prediction is able to accurately segment

the table with relatively low entropy. By minimising the semantic cost between

two views, the optimised semantic representations are able to generate consistent
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Figure 3.10: An example of two-view semantic label fusion with our method.
From top to bottom rows: input colour image, ground truth semantic label, zero
code prediction, optimised label (minimising semantic cost), information entropy
of the zero-code softmax probabilities, information entropy of the optimised soft-
max probabilities.
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predictions, successfully leading to the disambiguation of the RHS into a well seg-

mented and smooth prediction. The entropy of both views is reduced as well.

Similar improvements can also be observed in other regions. In addition, it is

interesting to observe that the entropy map exhibits consistency with the scene

structure, showing that the network can recognise the spatial extent of an object

but struggles with the precise semantic class.

Qualitative results for different label fusion methods are shown in Figure 3.11.

The results of both element-wise fusion approaches are obtained by integrating the

probabilities of the other images into each current frame, while our result simply

comes from pairing all the later frames to the first frame. For a sequence of 5 con-

secutive frames with small baselines, the zero code predictions are all similar and

show consistent incorrect predictions in certain regions, for example, in the front

object. We can observe that proposed code optimisation is able to generate much

smoother predictions, while it is challenging for other approaches to improve in

this case.

As a result, when there is a difficult, ambiguous region (indicated by low qual-

ity zero code predictions and high entropy), the element-wise label fusion meth-

ods lead to results which are only marginally better. However, the representation

power in the learned compact code enables much smoother predictions with cor-

rect labels to be obtained through optimisation. After optimisation, the reduced

entropy for these regions indicates that the network is much more confident.

As indicated by Figure 3.9, semantically meaningful regions are refined coher-

ently during optimisation, leading to smooth and complete segmentation, and this

property is automatically carried over into our code-based semantic fusion results.

This makes our approach strongly different from element-wise fusion approaches

which neglect local correlations and can result in noisy and incoherent labels, al-

though this can be partly addressed by an expensive post-CRF process [Chen et al.,
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Figure 3.11: Qualitative comparison of different label fusion methods. 5 consecut-
ive frames with a small baseline are chosen. Our method can effectively fuse multi-
view semantic labels to generate smoother semantic predictions even there are con-
sistent incorrect predictions in monocular predictions, highlighted by dashed red
circles.
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2018a, McCormac et al., 2017a].

Next we provide a quantitative comparison of various label fusion methods.

2000 images sampled from 1000 sequences (2 images per sequence) from SceneNet

RGB-D validation set are used to evaluate the performance. We augment every

extracted image with a variable number of subsequent images in the sequence to

obtain short multi-view sequences (1-4 frames). Since the trajectories of SceneNet

RGB-D are randomly generated, a good variety of relative transformations and

baselines are included in this set. Table 3.1 shows the motion statistics from the

sampled subsets.

Table 3.2 shows the effectiveness of three multi-view label fusion methods given

a various number of views. Our label fusion approach using code optimisation

outperforms others methods. The improvement in total pixel accuracy is not sig-

nificant because of the large area of walls and floors in the dataset. However, the

large improvement in the mIoU metric shows that our method is able to consider

more on high-order statistics, indicating smoother predictions and better results

on other small objects or fine structures.

Input Image GT Code Opt. Label Opt. Sem. Error Opt. Entropy

Figure 3.12: Two-view semantic label fusion without zero code prior. The se-
mantic error has been minimised with higher confidence while the desks have
consistent but incorrect predictions.
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#Views Method Pix. Acc. Cls. Acc. mIoU

1 - 75.167 63.330 41.713

2

Multiplication 75.424 63.629 42.326

Average 75.374 63.549 42.220

Ours 75.725 63.750 43.842

Ours (w/o prior) 74.498 60.646 39.600

3

Multiplication 75.542 63.815 42.692

Average 75.451 63.754 42.213

Ours 75.815 63.827 44.231

4

Multiplication 75.578 63.950 42.795

Average 75.358 63.767 42.102

Ours 75.668 63.720 44.263

Table 3.2: The effectiveness of different label fusion methods on 2000 images
sampled from SceneNet RGB-D. The large improvement on the metric of inter-
section over union shows that our label fusion lead to smoother predictions.

Effect of Code Prior during Semantic Optimisation

During semantic optimisation we use a zero-code regularisation term. Without

this term, the optimisation may be drawn to locally consistent but incorrect se-

mantic labels. Figure 3.12 demonstrate the necessity of this prior during semantic

refinement, incorrect labels are predicted while the entropy and semantic error are

low. Table 3.2 shows that the accuracy of two-view label fusion without a zero-

code prior is even lower than single view prediction, underlining the importance

of this prior.

3.6.4 Monocular Dense Semantic SLAM

We present example results from our preliminary full monocular dense semantic

SLAM system. Due to the prior information on geometry encoded in the system,

the system is very robust during initialisation and can manage pure rotational mo-

tion. The system currently runs in a sliding window manner. Figures 3.1 and 3.13
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Figure 3.13: Qualitative results of two-view structure from motion on two selected
frames from Stanford dataset (first 3 rows) and the SceneNet RGB-D dataset (last
row). The compact representations of both semantics and geometry are (jointly)
optimised with camera pose to obtain a dense map with consistent semantic labels
and relative camera motion.
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Figure 3.14: Qualitative result of monocular dense semantic SLAM system in bath-
room and kitchen sequences of the NYUv2 dataset.

show examples of two-view dense semantic structure from motion from different

datasets. We also build a preliminary keyframe-based monocular dense semantic

SLAM system, shown in Figure 3.14. A 7-frame sliding window is applied to trade-

off between optimisation efficiency and reconstruction quality.

3.7 Conclusion and Future Work

In this chapter, we have shown that an image-conditioned learned compact repres-

entation can coherently and efficiently represent semantic labels. This semantic

code can be optimised across multiple overlapping views to implement semantic

fusion with many advantages over the usual methods which operate in a per-surface-

element independent manner. As well as proving this fusion capability experi-

mentally, we have built and demonstrated a prototype full dense, semantic mon-
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ocular SLAM system based on learned codes where geometry, poses and semantics

can all be jointly optimised.

It is true that our approach, like element-wise fusion methods, relies on robust

data association via successful geometric reconstruction. In this chapter we have

still not proven that simultaneous joint optimisation of geometry and semantics

from scratch will converge, but show very promising results from a staged ap-

proach where we first jointly optimise geometry and motion to reach reliable

dense correspondence, then semantics, and finally full joint optimisation. Prac-

tical dense SLAM systems usually rely on some kind of staged optimisation as well.

From the rigorous probabilistic point of view, joint optimisation allows the con-

sideration of the full correlated distribution of structure, motion and semantics,

and we certainly hope and plan to keep moving towards systems which work in

this way. We believe that our work here on probabilistic and efficient semantics

representation is a step in the right direction.

However, there are still a number of unsolved problems which were encountered

in this chapter and will direct the research in later chapters and future work.

Current code-based representation is attached to keyframes, and hence is a 2D

representation focusing on local scene properties. In the longer term, it is prom-

ising to distribute the encoding ability of such compact representation to larger-

scale scene properties such as scene-level geometry and semantics, or to more spe-

cific ones such as object instances [Sucar et al., 2020, Li et al., 2020], which could

possibly be used to compose an abstract semantic scene graphs where each concept

can be described as an efficient latent code.

In addition, exploring the possibility of using semantics to refine geometry with

intrinsic semantic error terms is also exciting future research direction. Currently

the zero code regularisation acts as a strong prior to avoid trivial solutions during

optimisation and semantics mainly benefits from geometry, while the opposite
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direction is still not well investigated.

Like other supervised learning systems, SceneCode still relies on a collection of

paired training samples of RGB image, depth map and dense semantic class labels.

In addition to costly dense semantic annotations, the prior information learned by

a CVAE is also limited to the distribution of training data, though the generalisa-

tion gap can be mitigated to some extent by the capabilities of code optimisation

at inference time. This asks us to seek more diverse datasets or efficient learning

strategies for real world applications. One possible solution is to adopt weakly

or semi-supervised learning to reduce the labelling demand and better leverage

the correlation between these related dense prediction vision tasks [Zamir et al.,

2018, Zamir et al., 2020].

In the next chapter, we will demonstrate a scene-specific implicit scene repres-

entation to alleviate the generalisation gap and reliance on external datasets.
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Parts of this Chapter appear in: Zhi, S., Laidlow, T., Leutenegger, S. and Davison, A.

(2021). In-Place Scene Labelling and Understanding with Implicit Scene Representa-

tion.In Proceedings of the International Conference on Computer Vision (ICCV). [Zhi et al.,

2021a]

4.1 Introduction

Enabling intelligent agents, such as indoor mobile robots, to plan context-sensitive

actions in their environment requires both a geometric and semantic understand-

ing of the scene. Machine learning methods have proven to be valuable in both

geometric and semantic prediction tasks, but the performance of these methods

suffers when the distribution of the training data does not match the scenes ob-

served at test-time. Though the issue can be mitigated by gathering costly annot-

ated data or semi-supervised learning, it is not always feasible in open-set scenarios

with various known and unknown classes. For this reason, it is advantageous to

have methods that can self-supervise. In particular, there has been recent success in

using appealing scene-specific methods (e.g. NeRF [Mildenhall et al., 2020]) that

implicitly represent the shape and radiance of a single scene with a neural network

trained from scratch using only images and associated camera poses. But the same

fully self-supervised approach is not possible for semantics of a novel scene be-

cause labels are human-defined properties. The best that could be achieved would

be to cluster self-similar structures of a scene into categories; but some labelling

would always be needed to associate these clusters with human-defined semantic

classes. It is worth investigating whether scene-specific representation can be ap-

plied to semantics and enable semantic scene understanding of robots in open-set

environments, i.e., attaching custom class labels to a geometric model.

The tasks of estimating the geometry of a scene and predicting its semantic la-

bels are strongly related, as parts of a scene that have similar shape and appear-
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ance are more likely to belong to the same semantic category than those which

differ greatly, which has also been shown in work on multitask learning [Zamir

et al., 2018, Liu et al., 2019] where networks that simultaneously predict both

shape and semantics perform better than when the tasks are tackled separately.

In this work we show how to design a scene-specific network for joint geomet-

ric and semantic prediction and train it on images from a single scene with only

weak semantic supervision and no geometric supervision. Specifically, we extend

neural radiance fields (NeRF) to jointly encode semantics with appearance and

geometry, i.e. Semantic-NeRF, so that complete and accurate 2D semantic la-

bels can be achieved using a small amount of in-place annotations specific to the

scene. Because our single network must generate both geometry and semantics,

the correlation between these tasks means that semantics prediction can benefit

from the smoothness, coherence and self-similarity learned by self-supervision for

geometry, enabling sparse labels to efficiently propagate. We show the benefit of

this approach when labels are either sparse or very noisy in room-scale scenes. In

addition, multi-view consistency is inherent to the training process and enables

the network to produce accurate semantic labels of the scene, including for views

that are different from any in the input set.

Our system takes as input a set of RGB images with associated known camera

poses. We also supply some partial or noisy semantic labels for the images, such

as ground truth labels for a small fraction of the images, or noisy or coarse label

maps for a higher number of images. We train our network to jointly produce im-

plicit 3D representations of both the geometry and semantics for the whole scene,

and evaluate our system both quantitatively and qualitatively on scenes from the

Replica dataset [Straub et al., 2019], and qualitatively on real-world scenes from

the ScanNet dataset [Dai et al., 2017a]. Generating dense semantic labels for a

whole scene from partial or noisy input labels is important for practical applica-

tions, like when a robot encounters a new scene and either only a small amount of
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Fusion via Learning

Label Denoising Super-Resolution

Label Propagation Label Synthesis

Label Interpolation

Figure 4.1: Neural radiance fields (NeRF) jointly encoding appearance and geo-
metry contain strong priors for segmentation and clustering. We build upon this
to create a scene-specific 3D semantic representation, Semantic-NeRF, and show
that it can be efficiently learned with in-place supervision to perform various po-
tential applications.

in-situ labelling is feasible, or only an imperfect single-view network is available.

We demonstrate advantageous properties of Semantic-NeRF in various interesting

applications such as an efficient scene labelling tool, novel semantic view synthesis,

label denoising, super-resolution, label interpolation and multi-view semantic la-

bel fusion in visual semantic mapping systems.

4.2 Related Work

Most existing 3D semantic mapping and understanding systems work by attach-

ing (fused) semantic labels to a 3D geometric representation created by a standard

reconstruction method. For example, [Hermans et al., 2014] uses point clouds,

[McCormac et al., 2017a] and [Runz et al., 2018] use surfels, [Narita et al., 2019]
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uses voxels, and [McCormac et al., 2018] uses signed distance fields. These classical

3D geometric representations are all limited in their ability to efficiently represent

fine details in complex topologies. Volumetric representations, for example, have

a convenient structure for parallel processing or use with convolutional neural

networks, but suffer from large memory requirements due to discretisation that

ultimately limits the resolution it can represent.

To help overcome these limitations, many learning-based representations have

been developed. Code-based representations, for example, use the latent code of

an auto-encoder as a compact representation of the scene. However, as discussed

in Section 1.2, although trained with depth maps or camera poses, they are still

view-based representations and lacked true awareness of 3D geometry.

There has been much promising recent work on using neural implicit scene rep-

resentations. As these are continuous representations, they can easily handle com-

plicated topologies and do not suffer from discretisation error, with the actual rep-

resentative resolution depending on the capacity of the neural network used. The

Scene Representation Network (SRN) [Sitzmann et al., 2019b]was one of the first

methods to use a multi layer perceptron (MLP) as the neural representation of a

learned scene given a collection of images and associated poses. DeepSDF [Park

et al., 2019] and DIST [Liu et al., 2020] used deep decoders to learn implicit signed

distance functions (SDFs) of various shape instances of the same class, and Occu-

pancy Networks [Mescheder et al., 2019, Peng et al., 2020] learned an implicit 3D

occupancy function for shapes or large scale scenes given 3D supervision. Kohli

et al. [Kohli et al., 2020] also proposed to learn a joint implicit representation

of appearance and semantics for 3D shapes on top of an SRN using a linear seg-

mentation renderer. After being trained in a two-step semi-supervised manner, the

network can synthesise novel view semantic labels from either colour or semantic

observations.
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The methods mentioned above involve extensive pre-training on collections of

data to learn priors about the shapes or scenes they are used to represent. Although

promising generalisation capability has been shown across different instances or

scenes, it is not always possible to get adequate data for various unseen environ-

ments. The alternative is a scene-specific representation which requires minimum

in-place labelling effort.

NeRF [Mildenhall et al., 2020] and other systems based on it [Zhang et al.,

2020, Martin-Brualla et al., 2021, Trevithick and Yang, 2021, Srinivasan et al.,

2021] use MLPs to overfit input from a single bounded scene and act as an implicit

volumetric representation for realistic view-synthesis. In 2D representation/view-

based Semantic SLAM system such as SceneCode [Zhi et al., 2019], if we have a

very close look to a desk, it is likely to be mistakenly recognised as floor. In 3D-

aware representation-based system such as NeRF [Mildenhall et al., 2020], since

we have access to 3D scene space, once we know that certain 3D position has cer-

tain semantic class, we should still predict the correct semantic even the 2D view

point becomes challenging.

In this work, we treat NeRF as a powerful scene-specific 3D implicit represent-

ation, and extend it to include semantic representation which can be efficiently

learned from sparse or noisy annotations (Figure 4.1).

4.3 Method

4.3.1 Semantic-NeRF

We now show how to extend NeRF to jointly encode appearance, geometry and

semantics. As shown in Figure 4.2, we augment the original NeRF by appending

a segmentation renderer before injecting viewing directions into the MLP.

We formalise semantic segmentation as an inherently view-invariant function
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Figure 4.2: Semantic-NeRF network architecture. All fully connected layers have
256 neurons and ReLU activations except those with 128 neurons before semantics
and radiance predictions. 3D position (x, y, z) and viewing direction (θ, φ) are
fed into the network after positional encoding. Volume density σ and semantic
logits s are functions of 3D position only while colours c additionally depend on
viewing direction.

that maps only a world coordinate x to a distribution over C semantic labels via

pre-softmax semantic logits s(x):

c= FΘ(x,d) , s= FΘ(x) , (4.1)

where FΘ represents the learned MLPs.

Similar to Equation 2.15, the approximated expected semantic logits Ŝ(r) of a

given pixel in the image plane can be written as:

Ŝ(r) =
K
∑

k=1

T̂ (tk)α
�

σ(tk)δk

�

s(tk) , (4.2)

where T̂ (tk) =exp

�

−
k−1
∑

k ′=1

σ(tk)δk

�

, (4.3)

with α (x) = 1 − exp(−x) and δk = tk+1 − tk is the distance between adjacent

sample points. Semantic logits can then be transformed into multi-class probabil-

ities through a softmax normalisation layer.
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4.3.2 Network Training

We train the whole network from scratch under photometric loss Lp and semantic

loss Ls :

Lp =
∑

r∈R

h







Ĉc (r)−C(r)
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Ĉ f (r)−C(r)









2

2

i

, (4.4)

Ls =−
∑

r∈R

�

C
∑

c=1

p c (r) log p̂ c
c (r)+

C
∑

c=1

p c (r) log p̂ c
f (r)

�

, (4.5)

where R are the sampled ray batches within each optimisation step, and C(r),

Ĉc (r) and Ĉ f (r) are the ground truth, coarse volume predicted and fine volume

predicted RGB colours for ray r, respectively. Similarly, p c , p̂ c
c and p̂ c

f are the

multi-class semantic probability at class l of the provided ground truth map, coarse

volume and fine volume predictions for ray r, respectively. Ls is chosen as a multi-

class cross-entropy loss to encourage the rendered semantic labels to be consistent

with the provided labels, whether these are ground-truth, noisy or partial obser-

vations. Hence, the total training loss L is:

L= Lp +λLs , (4.6)

where λ is the weight of the semantic loss and is set to 0.04 to balance the mag-

nitude of both losses [Kohli et al., 2020]. In practice we find that actual perform-

ance is not sensitive to λ value and setting λ to 1 gives us similar performance.

These photometric and semantic losses naturally encourage the network to gener-

ate multi-view consistent 2D renderings from the underlying joint representation.

4.3.3 Implementation

A scene-specific semantic representation is obtained by training the network from

scratch for each scene individually. We use setup and hyper-parameters similar

to [Mildenhall et al., 2020]. Specifically, we use hierarchical volume sampling to

jointly optimise coarse and fine networks, where the former provides importance
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sampling bias so that the latter can distribute more samples to positions likely to be

visible. At each optimisation step we randomly pick one image from the training

pool and randomly select a ray batch of 1024 rays due to memory limitation. The

number of samples per ray through the coarse network Nc and fine network N f is

set to 64 and 192 (64+ 128), respectively.

Axis-aligned positional encoding γ (·) of length 10 and 4 are applied to 3D posi-

tions and viewing directions and therefore the length of inputs after PE is Lγ (x) =

2 ∗ 3 ∗ 10 = 60 and Lγ (d) = 2 ∗ 3 ∗ 4 = 24. In addition, since we have no depth

information, we simply set the bounds of ray sampling to 0.1m and 10m respect-

ively across experiments without careful tuning to span indoor scenes. Note that

a well-adjusted bound per scene or frame will potentially take better advantage of

sampling budget, which is not the scope of this work and can be part of future

work.

Training images are resized to 320x240 for all the experiments. We implement

our model in PyTorch [Paszke et al., 2019] and train it on a single RTX2080-Ti

GPU with 11GB memory. We train the neural network using the Adam optimiser

[Kingma and Ba, 2015] with a learning rate of 5e-4 for 200,000 iterations (approx-

imately 10-11 hours).

4.4 Experiments and Applications

After training on colour images and semantic labels with associated poses, we ob-

tain a scene-specific implicit 3D semantic representation. We evaluate its effective-

ness quantitatively by projecting the 3D representation back into 2D image space

where we have direct access to explicit ground truth data. We aim to show the

benefits and promising applications of efficiently learning such a joint 3D rep-

resentation for semantic labelling and understanding. We kindly urge readers to

inspect more qualitative results in the project page https://shuaifengzhi.com/
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4. Semantic-NeRF

Semantic-NeRF/ and video https://youtu.be/FpShWO7LVbM.

4.4.1 Indoor Scene Datasets and Data Preparation

Replica Replica [Straub et al., 2019] is a reconstruction-based 3D dataset of 18

high fidelity scenes with dense geometry, HDR textures and semantic annotations.

We use the Habitat simulator [Savva et al., 2019] to render RGB colour images,

depth maps and semantic labels from randomly generated 6-DOF trajectories sim-

ilar to hand-held camera motions. We follow the procedure from SceneNet RGB-

D [McCormac et al., 2017b], and lock the roll angle with the camera up-vector

pointing along the y-axis.

We use the provided 88 semantic classes from Replica in scene-specific exper-

iments and also manually map these labels to the popular NYUv2-13 definition

[Silberman et al., 2012, Eigen and Fergus, 2015] in Section 4.4.4 for multi-view se-

mantic label fusion, following the mapping convention from ScanNet [Dai et al.,

2017a]. For each Replica scene of rooms and offices, we render 900 images at resol-

ution 640x480 using the default pin-hole camera model with 90 degree horizontal

field of view. We sample every 5th frame from the sequence to compose the train-

ing set and also sample intermediate frames to make the test set.

ScanNet ScanNet [Dai et al., 2017a] is a large-scale real-world indoor RGB-D

video dataset of 2.5M views in 1513 scenes with rich annotations including se-

mantic segmentation, camera poses and surface reconstructions. We train our

Semantic-NeRF on ScanNet scenes using only the provided colour images, camera

poses and 2D semantic labels. The sequences in each scene are evenly sampled so

that the total amount of training data is roughly 300 frames. During experiments

we select several indoor room-scale scenes and train one Semantic-NeRF per scene

using posed images and semantic labels from the NYUv2-40 definition.
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4.4.2 Semantic Neural Radiance Fields

In this work we introduce semantic neural radiance fields, though there are no

physical semantic photons which makes its definition less intuitive, we argue that

the volume rendering equation discretises an integral over the radiance field as a

weighted summation. The weights can be interpreted as termination probabilities,

which means a higher weight is given to the first intersected surface. This inter-

pretation shows how we can use the volume rendering equation to render any field

defined in 3D, such as colour, depth or semantics. As will be demonstrated in later

experiments, the advantages of learning such implicit semantic fields over explicit

ones lie in the compactness and efficiency in representing complex shapes as well

as the baked-in multi-view consistency, which alleviates the discretisation error

and post-optimisation in Chapter 3.

We check the influence of semantics on appearance and geometry by quantitat-

ively computing the quality of rendered RGB images and depth maps on Replica

scenes with and without semantic prediction enabled. Peak signal-to-noise ratio

(PSNR) is used to measure the quality of the rendered colour images and the met-

rics used to evaluate the 2D depth maps are shown in Table 4.1.

As shown in Table 4.2, there is no clear difference which suggests that the cur-

rent network has the capacity to learn these tasks jointly. Note that we might

expect that significant high quality semantic labelling information could feasibly

improve reconstruction quality, but in this paper we are focused on how geometry

can help semantics in the opposite situation where semantic labelling is sparse or

noisy.

4.4.3 Semantic View Synthesis with Sparse Labels

We first train our Semantic-NeRF framework for novel view semantic label syn-

thesis using all available RGB images with camera poses and corresponding se-
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2D Depth Metrics

Abs Rel 1
n

∑

|d − dg t |/dg t

Abs Diff 1
n

∑

|d − dg t |

Sq Rel 1
n

∑

|d − dg t |
2/dg t

RMSE
Ç

1
n

∑

|d − dg t |
2

δ < 1.25i 1
n

∑

(max ( d
dg t

,
dg t

d )< 1.25i )

Table 4.1: Definitions of depth metrics used in Table 4.2. n is the number of valid
depth pixels, d and dg t are rendered depths at testing poses and corresponding
ground truth depths, respectively.

Network Set-up
Depth RGB

AbsRel↓ AbsDiff↓ SqRel↓ RMSE↓ δ < 1.25↑ δ < (1.25)2↑ δ < (1.25)3↑ PSNR↑

W/ Semantics 0.017 0.032 0.007 0.096 0.993 0.997 0.998 32.27

W/O Semantics 0.018 0.032 0.009 0.102 0.993 0.996 0.998 32.80

Table 4.2: Quantitative evaluation of effects of predicting semantics on appearance
and geometry on Replica dataset.

mantic labels (i.e., 180 images) from a randomly generated sequence of a certain

scene. This fully-supervised setup acts as an upper bound on the semantic seg-

mentation performance of Semantic-NeRF given abundant labelled training data.

However, in practice it is expensive and time-consuming to acquire accurate

dense semantic annotations for all observed images in a scene. Considering the

redundancy in semantic labels among overlapping frames, we borrow the idea of

key-framing from SLAM systems and hypothesise that providing labels for only

selected frames should be enough to train the semantic representation efficiently.

We choose key-frames by evenly sampling from sequences and train the networks

from scratch with semantic labels only coming from those selected key-frames,

while the synthesis performance is always evaluated on all test frames.
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Figure 4.3: Quantitative performance of Semantic-NeRF trained on Replica with
sparse semantic labels. Sparsity ratio is the percentage of frames dropped com-
pared to full sequence supervision. Three standard metrics are used to evaluate
semantic segmentation performance on test poses (higher is better). Performance
gracefully degrades with fewer labels due to uncovered or occluded regions, indic-
ating the possibility of efficient dense labelling from fewer annotations. Results
with only two labelled key-frames (?) show remarkably competitive performance.
The baseline length metric shows the average camera translation distance between
two spatially consecutive keyframes with semantic labelling.

Figure 4.3 validates our assumption that semantics can be efficiently learned

from sparse annotations with a sparsity ratio ranging from 0% to 95%, together

with the corresponding camera motion baselines as a complementary indication.

Only marginal performance loss occurs when less than 10% semantic frames are

used, and this is mainly caused by renderings of regions which are unobserved or

occluded from key-frames. To take this even further, we manually select just two

key-frames (99% sparsity ratio) from each scene to cover as much of the scene as

possible. It turns out that our network, trained only with two labelled keyframes,
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can render accurate labels from various viewpoints. Corresponding qualitative

results of view synthesis are shown in Figure 4.4.

4.4.4 Semantic Fusion

In addition to being able to learn the semantic representation with sparse annota-

tions due to the redundancy present in the semantic labels, another important

property of Semantic-NeRF is that multi-view consistency between semantic la-

bels is enforced by design, as we formulate volume density σ and semantic logits s

to be only a function of 3D location x.

In semantic mapping systems (e.g. [Sünderhauf et al., 2017, McCormac et al.,

2017a, Narita et al., 2019]), multiple 2D semantic observations are integrated into

a 3D map or target frames to produce a more consistent and accurate semantic

segmentation. Multi-view consistency is the key concept and motivation in se-

mantic fusion, and the training process of Semantic-NeRF itself can be seen as a

multi-view label fusion process. Given multiple noisy or partial semantic labels,

the network can fuse them into a joint implicit 3D space so that we can extract

denoised labels when we re-render the semantic labels from the learned represent-

ation back to input training frames.

We show the capability of Semantic-NeRF to perform multi-view semantic label

fusion under a number of different scenarios: pixel-wise label noise, region-wise

label noise, low-resolution dense or sparse labelling, partial labelling, and using

the output of an imperfect CNN.

Semantic Label Denoising

Labels with Pixel-wise Noise We corrupt ground-truth training semantic labels

by adding independent pixel-wise noise. Specifically, we randomly select a fixed

portion of pixels per training frame and randomly flip their labels to arbitrary ones
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Figure 4.4: Synthesised semantic labels at testing poses given 100% and 10% of
ground truth labels during training. From left to right we show the ground truth
colour and semantic images for reference, and rendered semantic labels and their
information entropy given 100% and 10% supervision, respectively. Bright parts
of the entropy map match well to object boundaries or ambiguous/unknown re-
gions in the corresponding training set-up.
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(including the void class). After training using only these noisy labels, we obtain

denoised semantic labels by rendering back to the same training poses.

Figure 4.5 and 4.6 shows qualitative results from label denoising. When 90% of

training pixels are randomly flipped, and it is difficult even for a human to recog-

nise the underlying structure of the scene, the denoised labels still retain accurate

boundaries and detail, especially for fine structures. Compared with Figure 4.4,

the entropy in this denoising task is higher because the noisy training labels lack

the multi-view consistency of clean ones. In addition, regions with void class tend

to have the highest uncertainty since noisy pixels in void regions are not optimised

during training. Quantitative results shown in Table 4.3 also confirm that accurate

denoised labels are obtained after training-as-fusion.

While pixel-wise denoising with such severe corruption is not a realistic applic-

ation, it is still a very challenging task and, more importantly, highlights our key

observation that training itself is a fusion process which enables coherent render-

ings benefiting from the internal consistency and smoothness of implicit joint rep-

resentation.

Labels with Region-wise Noise We further validate the effectiveness of semantic

consistency by randomly flipping the class labels of certain whole instances in-

stead of pixels in the label maps. This is a better simulation of the behaviour of

real single-view CNNs because a whole object can easily be labelled as a similar

but incorrect class from an obstructed or ambiguous view.

We choose Replica Room_2 containing 8 instances of chairs as the testing scene.

For each chair instance, we compute the occupied area ratio (i.e., ratio of the num-

ber of pixels belonging to that instance to the total number of pixels in the image

for each ground truth label frame) and then sort the label maps in the sequence

based on this occupied area ratio. Two criteria are used for selecting frames in
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Figure 4.5: Qualitative results for semantic denoising. Even when 90% of all train-
ing labels are randomly corrupted, we can recover an accurate denoised semantic
map. From left to right are noisy training labels, denoised labels rendered from
the same poses after training, and information entropy. The overall high entropy
we see in denoising tasks indicates the large inconsistency among noisy training
labels.

which to randomly perturb each instance: (1) Sort: Select label maps with the

least occupied area ratio. The intuition for this is that frames with partial obser-

vations are more likely to be mislabelled by semantic label prediction networks

due to ambiguous context. (2) Even: Select label maps evenly from the sorted

sequences introducing more large inconsistent regions into the training process.

Figure 4.7 shows the qualitative results of the re-rendered semantic labels after

training. We indeed observe that semantic labels of the chair instances can be cor-

rected due to the enforcement of multi-view consistency during training. Table

4.3 also shows that there are steady improvements while it becomes much harder
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Figure 4.6: Additional results of pixel-wise semantic denoising with 90% noise
ratio.

to render improved labels when a larger fraction of labels are perturbed.

Super-Resolution

Semantic label super-resolution is a useful application for scene labelling as well.

In an incremental real-time semantic mapping system, a light-weight CNN pre-

dicting low-resolution semantic labels might be adopted to reduce computational

cost (e.g. [Nakajima et al., 2018]). Another possible use case is in a scene labelling

tool, since manual annotation in coarse images is much more efficient.

Here we show that we can train Semantic-NeRF with only low-resolution se-

mantic information but then render accurate super-resolved semantics for either

the input viewpoints or novel views. We test two different strategies to generate
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Figure 4.7: Qualitative results of rendered labels when we randomly change the
training semantic class label (blue) of chair instances. From left to right: training
label with region-wise noise; recovered semantic labels rendered from the same
poses; and information entropy, highlighting regions with noisy predictions.
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(a) Super-resolution with scale ×8

(b) Super-resolution with scale x16

Figure 4.8: Qualitative results of semantic label super-resolution. We train
Semantic-NeRF with only low resolution labels (interpolated or sparsely sampled)
and obtain super-resolved labels by re-rendering semantics from the same poses.
Left and right shows training labels and super-resolved labels, respectively. Note
that the sparse labels have been zoomed-in 4 times and overlaid on top of colour
images for the ease of visualisation.
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(a) Super-resolution using coarse label (b) Super-resolution using sparse label

Figure 4.9: Additional qualitative results of semantic label super-resolution with
scale ×8.
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Pixel-Wise Denoising Metrics

Noise Ratio mIoU Avg Acc Total Acc

50% Input Label 0.191 0.534 0.533
Denoised Label 0.951 0.969 0.994

90% Input Label 0.041 0.145 0.145
Denoised Label 0.877 0.908 0.989

Region-Wise Denoising mIoU

Noise Ratio 30% 40% 50%

Sort Input Label 0.866 0.842 0.793
Denoised Label 0.895 0.893 0.803

Even Input Label 0.741 0.692 0.684
Denoised Label 0.796 0.747 0.733

Table 4.3: Quantitative evaluation for label denoising on Replica dataset. Noise
ratio is the percentage of changed pixels per frame, and for each instance the per-
centage of changed frames meeting selected criterion, respectively. mIoU is used
for region-wise denoising as it is more sensitive to the incorrect predictions on
chair classes within the scene. Both tables are computed against clean training la-
bels.

low-resolution training labels, with and without interpolation as shown in Figure

4.8. Given a down-scaling factor S = 8 for instance:

(1) All ground truth labels are down-scaled from 320× 240 to 40× 30 before

being up-scaled back to the original size using nearest neighbour interpola-

tion.

(2) All pixels except those from the low-resolution label maps (row and column
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divisible by 8) are masked by the void class so as not to contribute to the

training loss.

While method (1) uses interpolated labels to provide ‘dense’ supervision to a

sampled ray batch but will incorrectly interpolate some pixels, method (2) provides

sparse but geometrically accurate labels. We report super-resolution performance

on training poses from all Replica scenes with two scales S = 8 and S = 16 in Table

4.4. Figures 4.1, 4.8 and 4.9 show examples where detailed semantic information

is recovered through the fusion of many low-resolution or sparsely annotated se-

mantic frames.

Though both setups contain the same amount of information within input la-

bels, as can be observed, method (2) tends to reach relatively better quality and

is more helpful to achieve accurate labels for fine structures at high resolution,

indicating that sparsely sampled pixels can be correctly interpolated guided by un-

derlying appearance and geometry information, while the possible misalignments

between semantics and geometry in method (1) potentially lead to some degrada-

tion in performance especially on object boundaries.

The promising results in semantic label denoising and super-resolution tasks

mainly benefit from the fact that a joint representation of appearance, geometry

and semantics is learned implicitly by Semantic-NeRF. For example, missing se-

mantic information in one frame may be observed in other views; corrupted or

incorrect hypothesis from ambiguous context are less usual to appear than the

correct one; semantic label of the same 3D position tend to be similar; semantic

information of local regions with similar appearance are likely to be the same.

These are all taken into consideration into the proposed joint representation.

91



4. Semantic-NeRF

Super-Resolution Metrics

Down-Scaling Factor mIoU Avg Acc Total Acc

Dense S=8 0.610 0.710 0.923

S=16 0.433 0.535 0.855

Sparse S=8 0.887 0.928 0.987

S=16 0.800 0.866 0.977

Table 4.4: Quantitative evaluation of label super-resolution, with good perform-
ance with either sampled or interpolated low-resolution labels. The mIoU metric
shows that sparse but geometrically accurate labels are more helpful for fine struc-
tures at high resolution.

Label Propagation

Our super-resolution experiments have shown the ability of Semantic-NeRF to

interpolate rich details from low-resolution annotations. For a practical scene-

annotation tool, straightforward annotations from a user in the form of clicks or

scratches or strokes are desirable, and expected that those sparse clicks can expand

and propagate to accurately and densely label the scene. The practical cases are

when we bring an intelligent robot into a brand new environment, we allow the

robots to spend some time on learning from the scenes while there are some sparse

manual annotations provided by the user.

To simulate user annotations, for each class within label maps we randomly se-

lect a continuous subregion with which to apply a ground-truth label while leav-

ing the rest unlabelled. Results in Figure 4.10 and Table 4.5 show that supervision

from one single pixel per class/frame can lead to surprisingly high quality rendered

labels with well preserved global and fine structure. Object boundaries are gradu-

ally refined when more supervision is available and the incremental improvements
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Figure 4.10: Label propagation results using partial annotations of a single-pixel,
1% or 5% of pixels per class within frames, respectively. Accurate labels can be
achieved even from single-clicks, which are zoomed-in 9 times for visualisation
purposes.

from more sparse labels tend to saturate.

Multi-view Semantic Fusion of Monocular CNN Predictions

We have shown that a semantic representation can be learned from sparse or noisy

or partial supervisions. Here we further validate its practical value in multi-view

semantic fusion using CNN predictions.

There have been several classical pixel-wise semantic fusion approaches [Her-

mans et al., 2014, McCormac et al., 2017a, McCormac et al., 2018] to integrate

monocular CNN predictions from multiple viewpoints to refine segmentation.

For fair comparison, here we have separated out the widely-adopted multi-view
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Label Propagation Metrics

# Labelling per Class mIoU Avg Acc Total Acc

Single Click 0.602 0.937 0.908

1% 0.706 0.934 0.944

5% 0.836 0.946 0.971

10% 0.884 0.957 0.980

Table 4.5: Evaluation of label interpolation and propagation on Replica scenes
using test poses. Even single-pixel supervision leads to competitive performance
on the accuracy metrics, which highlights the effectiveness of the representation
for interactive scene labelling.

fusion approaches from such systems. Two baseline techniques are: Bayesian fu-

sion, where multi-class label probabilities of corresponding pixels are multiplied

together and then re-normalised (e.g. [McCormac et al., 2017a]), and average fu-

sion, which simply takes the average of all label distributions (e.g. [McCormac

et al., 2018]).

To prepare training data in Replica dataset, we render two different sequences

per Replica scene to cover various parts of scenes. Each sequence consists of 90

frames evenly sampled from 900 renderings of size 640×480 with semantic labels

remapped to NYUv2-13 class convention.

We choose DeepLabV3+ [Chen et al., 2018b] with a ResNet-101 backbone as

the CNN model for monocular label predictions. To generate decent monocular

CNN predictions and avoid over-fitting, we first train DeepLab on SUN-RGBD

dataset [Song et al., 2015], and then fine-tune it using data from all Replica scenes

except the one chosen for training Semantic-NeRF and label fusion evaluation. We

repeat this fine-tuning process and train one individual Deeplab CNN model for
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each test scene.

Monocular CNN predictions of the test scene are used for two purposes: (1)

training supervision for our scene-specific Semantic-NeRF model; (2) monocu-

lar predictions (per-pixel dense softmax probabilities) for baseline multi-view se-

mantic fusion methods. We train Semantic-NeRF using posed colour images to-

gether with CNN-predicted labels for 200,000 steps and then re-render the fused

semantic labels back to the training poses as fusion results.

It is important to note that both baseline fusion techniques require depth in-

formation to compute the dense correspondences between frames while ours only

requires posed images. We report the average performance across all testing scenes

in Table 4.6, in which ground truth depth maps are used for the two baseline ap-

proaches to represent a ‘best case scenario’. Our method achieves the highest im-

provement across all metrics, showing the effectiveness of our joint representation

in label fusion.

4.4.5 Ablation Studies on Positional Encoding

Axis-aligned positional encoding (PE) of 3D positions are used in this paper as

discussed in Section 4.3.3 and the length of positional encoding L relates to the

maximum frequency used and affects the rendering quality.

Figure 4.11: Label propagation results using partial annotations of a single-pixel
with various positional encoding length.

We show results of label propagation from a single click in Replica Room_1

with L ranging from 5 to 40, shown in Table 4.7 and Figure 4.11. Using only
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Semantic Fusion mIoU Avg Acc Total Acc

Monocular 0.659 0.763 0.855

Bayesian Fusion * 0.668 0.764 0.865

Average Fusion * 0.586 0.703 0.814

Bayesian Fusion † 0.666 0.761 0.862

Average Fusion † 0.586 0.708 0.808

NeRF-Training (Ours) 0.680 0.772 0.870
* Using ground truth depth for data association.
† Using learned depth of Semantic-NeRF for data association.

Table 4.6: Comparison of multi-view semantic label fusion methods. Our ap-
proach relying on consistency of scene representations outperforms baselines
aided with depth maps.

L mIOU Avg Acc Total Acc

5 54.74 91.72 85.95

10 61.23 93.21 89.81

20 57.57 93.59 89.12

30 58.36 92.49 88.51

40 58.07 92.65 87.90

Table 4.7: Quantitative evaluation of various positional encoding length in label
propagation task on Replica Room_1.
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low-frequency components (L = 5) leads to over-smoothed 2D renderings, while

using high-frequency ones (L = 40) leads to noisy interpolations, which aligns

with findings in [Mildenhall et al., 2020, Tancik et al., 2020]. L of 10 empirically

performs the best.

We further check the effect of raw 3D coordinates within positional encoding.

By default, all experiments in this chapter have raw input xy z value concatenated

with its positional encoding. We perform its ablation study on single click label

propagation using all Replica scenes with and without raw xy z, respectively. As

shown in Table 4.8, there is no clear difference between two set-ups and includ-

ing raw xy z value performs better in mIoU metric and comparably in accuracy

metrics, indicating that the raw xy z value encourages the final segmentation to be

locally smooth and coherent.

PE Set-up mIOU Avg Acc Total Acc

w/ xy z (default) 59.34 93.30 90.02

w/o xy z 57.62 93.22 89.87

Table 4.8: Ablation study of raw xy z value in positional encoding on the Replica
dataset.

4.4.6 Semantic 3D Reconstruction from Posed Images

After training Semantic-NeRF with in-place semantic annotation, we can also ex-

tract an explicit 3D scene from it to inspect the implicit 3D representation.

Geometric meshes are extracted by first querying the MLP on dense 3D grids

of the scene and then applying marching cubes. The attached semantic texture

is rendered by treating the negative normal direction of vertices in the mesh as

the ray marching directions during volume rendering. Specifically, a ray is emit-

ted starting from a certain distance away (e.g., set to 0.1m in our experiments)

along normal direction of the vertex, and traverses through the vertex following
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its negative normal direction. Volume rendering is applied along the ray to obtain

semantic label.

Qualitative results of semantic 3D reconstruction (voxel grid of resolution 2563)

for three Replica room scenes are shown in Figure 4.12. Note that Semantic-NeRF

is able to predict decent geometry and semantics even in occluded regions (e.g.,

areas behind the sofa) and fill the holes to some extent in unobserved regions.

4.5 Conclusion

We have shown that adding a view-invariant semantic output to a scene-specific

implicit MLP model of geometry and appearance means that complete and high

resolution semantic labels can be generated for a scene when only partial, noisy

or low-resolution semantic supervision is available, motivated by the redundancy

in semantic labelling as well as the consistency and smoothness inherent in the

proposed representation. This method has practical uses in robotics or other ap-

plications where scene understanding is required in new scenes where only limited

labelling is possible.

Enabling real time rendering from NeRF-like neural implicit representations

is an important and active research area as well. There have been many recent

attempts [Sitzmann et al., 2021, Garbin et al., 2021, Yu et al., 2021a, Reiser et al.,

2021] to accelerate volume rendering of NeRF. In addition to inference, the burden

of expensive training can be mitigated by cloud computing or improved general-

isation capability given extra priors [Yu et al., 2021b, Trevithick and Yang, 2021].

Online learning of NeRF has already been shown to be possible given RGB-D ob-

servations, where depth input helps fast convergence of implicit dense geometry,

enabling SLAM applications [Sucar et al., 2021]. Efforts in these areas will result in

reductions in time and memory complexity and step towards deployment on mo-

bile computing platforms as an exciting future direction. However, the scalability
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4.5. Conclusion

Figure 4.12: Semantic 3D reconstruction obtained using Semantic-NeRF. Note
that our learned scene-specific 3D representation predicts decent geometry and
semantics in occluded regions and fills the holes caused by unobserved regions to
some extent.
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of NeRF to faithfully learn accurate geometry of larger and more cluttered scenes

is still under exploration. Instead of increasing the sampling budgets and compu-

tational resources, more fundamental modifications of pipeline formulations are

expected [Barron et al., 2021, Oechsle et al., 2021].

An interesting direction for future research of Semantic-NeRF is interactive la-

belling, where the continually training network asks for the new labels which

will most resolve semantic ambiguity for the whole scene, leading to our work

in Chapter 5.
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5. iLabel

Work within this chapter describes the system iLabel and was conducted under close

collaboration with Edgar Sucar, leading to the paper: Zhi, S.*, Sucar, E.*, Mouton, A.,

Haughton, I., Laidlow, T., Davison, A. (2021). iLabel: Interactive Implicit Scene La-

belling and Learning in Real-Time. Under submission. [Zhi et al., 2021b]

(* indicates equal contribution to the paper.)

5.1 Introduction

An intelligent autonomous agent must build an internal representation of its en-

vironment which goes beyond geometry and colour to include a semantic under-

standing of the scene. Research on neural implicit representation has shown that

a coordinate-based MLP network can be trained from scratch in a single scene

via automatic self-supervision to accurately and flexibly represent geometry and

appearance [Park et al., 2019, Mescheder et al., 2019, Mildenhall et al., 2020].

Semantic-NeRF [Zhi et al., 2021a] from Chapter 4 demonstrated that the com-

pression, intrinsic smoothness and multi-view consistency of these representations

are inherited by additional output channels which can be used to predict dense se-

mantic properties over the scene, allowing sparse supervised labels to propagate

efficiently. The iMAP system [Sucar et al., 2021] showed for the first time that

a neural implicit MLP can be trained in real-time, without any prior data, while

capturing a scene with a handheld RGB-D camera.

In this chapter, we build on iMAP and Semantic-NeRF to introduce iLabel, the

first online, interactive 3D scene understanding system based on neural implicit

scene representations. It allows users to annotate semantic properties in a scene

via clicks, while simultaneously scanning and mapping it with a handheld RGB-

D sensor. Correspondingly, high-quality dense semantic scene reconstruction can

be obtained from scratch with only a few minutes of scanning and a few tens of

semantic click annotations. The scene model is updated and visualised in real-
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time, allowing the user to focus interactions as needed to achieve ultra-efficient

labelling. iLabel’s underlying model is an MLP trained from scratch in real-time

to learn a joint implicit encoding of geometry, appearance and semantics in 3D.

The internal smoothness and consistency of the representation of shape and ap-

pearance is inherited by the semantic channel, allowing it to make accurate dense

predictions from very sparse annotations, and regularly auto-segment objects and

other regions. Our approach requires no prior training on semantic datasets and

can therefore be applied in novel contexts, with categories decided on-the-fly by

the user in an open-set manner. Additionally, semantic categories can be defined

either as a flat set of classes or hierarchical tree, where the user can choose the spe-

cificity of their labels at run time. For example, a user could start by labelling some

objects as ‘furniture’ and later break down that class into ‘chair’, ‘table’, ‘bed’, etc.

Typically, a deep neural network trained on datasets of thousands of images with

dense, high-quality human annotations is used to semantically label a new scene.

Not only is there a high cost to creating these training datasets, but the quality of

labelling produced by these networks can be poor due to the distance between the

distributions of the training data and the test scene. Instead, our approach allows

for high-quality labelling with minimal human in-situ interaction because the user

monitors the semantic map as it updates in real-time and clicks only as needed to

correct it. The smoothness properties of the MLP mean that regions and objects

are coherently represented, and can frequently be labelled with only one click.

Sometimes, not even a single click is required as the correct properties will be

transferred from already labelled parts of the scene. We have shown that a room

or similar scene can be highly accurately labelled into 10+ semantic categories

with only a few tens of clicks, where these categories are either known in advance

or defined in an interactive ‘open-set’ manner by the user.

As the representation also includes a notion of semantic uncertainty, the user

can alternatively take on a more passive role in the labelling process. iLabel can
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examine the entropy of the semantic classes at sampled surface points and ask the

user to provide labels where uncertainty is greatest, which is named automatic

query generation in this work. Such interaction may ease the burden of manual

annotation in practical applications, such as a future intelligent household robot

scanning a new environment for the first time.

In numerous qualitative examples, we demonstrate the power and flexibility of

iLabel to provide high-quality, dense semantic labelling in a wide variety of scenes

with minimal human interaction. We also show the benefits of a hierarchical se-

mantic class representation qualitatively, and perform ablation studies to invest-

igate the properties of the underlying MLP. Quantitative experiments on both

synthetic and real-world datasets show that the labelling accuracy of iLabel scales

powerfully with the number of clicks, and that with just a few tens of clicks, iLabel

can outperform a state-of-the-art RGB-D semantic segmentation method trained

on datasets with thousands of dense annotations.

Overall, iLabel has the flexibility to be used in a variety of scenarios: from an

interactive, user-friendly data annotation or scene labelling tool to a core percep-

tion module enabling intelligent robots to operate in open-set environments. The

main contributions of this work can be summarised as follows:

• Propose the first real-time, online, interactive scene understanding system,

of which an MLP is the sole representation.

• Introduce a novel 3D-aware hierarchical segmentation encoded by binary

tree structures.

• Automatic query generation leveraging on uncertainty sampling strategies

for localisation-free labelling.
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5.2 Related Work

Online Scene Understanding and Labelling Existing real-time, dense semantic

mapping systems typically contain two parallel modules: 1) an RGB-D based geo-

metric SLAM system, maintaining a dense 3D map of the scene, and 2) a semantic

segmentation module that predicts dense semantic labels of the scene [Hermans

et al., 2014, Stückler and Behnke, 2014, McCormac et al., 2018, Nakajima et al.,

2019]. Multi-view semantic predictions are incrementally fused into the geometric

model, yielding densely-labelled, coherent 3D scenes. While semantic segmenta-

tion has been performed using a variety of techniques [Krähenbühl and Koltun,

2011, Nguyen et al., 2017, Krähenbühl and Koltun, 2011, Long et al., 2015, Chen

et al., 2018b], it is an inherently user-dependent and subjective problem [Martin

et al., 2001]. User-in-the-loop systems are therefore crucial in enabling full flexib-

ility when defining semantic relations between entities in a scene. In this context,

the works most closely related to ours are SemanticPaint [Valentin et al., 2015]

and Semantic Paintbrush [Miksik et al., 2015].

SemanticPaint [Valentin et al., 2015] is an online, user-in-the-loop system that

allows the user to label a scene during capture. To this end, the user interacts with

a 3D volumetric map, built from an RGB-D SLAM system, via voice and hand

gestures [Nießner et al., 2013]. A streaming random forest classifier, using hand-

crafted features called Voxel-Oriented Patches (VOPs), learns continuously from

the user gestures in 3D space. The forest predictions are used as unary terms in

a conditional random field (CRF) to propagate the user annotations to unseen re-

gions. As the CRFs are built upon the reconstructed data, there is an underlying

assumption that this data is good enough to support label propagation. In practice

SemanticPaint requires a full initial scan of scenes before any labelling can be done,

which additionally has four distinct modes: 1) Labelling; 2) Propagation; 3) Train-

ing and 4) Testing, the user must manually switch between them which makes
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the whole process cumbersome and slow. SemanticPaint is therefore restricted to

comparably simple scenes and its efficacy in complex real-word scenarios is lim-

ited. Semantic Paintbrush [Miksik et al., 2015] extends this framework to operate

in outdoor scenes. Using a purely passive stereo setup for extended range and out-

door depth estimation, users visualise the reconstruction through a pair of optical

see-through glasses and can draw directly onto it using a laser pointer to annotate

the objects in the scene. The system learns in an online manner from the these

annotations and is thus able to segment other regions in the 3D map.

In contrast to [Valentin et al., 2015, Miksik et al., 2015], iLabel does not rely on

hand-crafted features and complex engineering pipelines, benefiting instead from

a powerful joint internal representation of shape and appearance; and provides a

unified interface for online reconstruction, segmentation and labelling which leads

to a much simpler and intuitive system overall.

Hierarchical Segmentation Finding the underlying hierarchical structure of

complex scenes is a long-standing problem in computer vision for scene under-

standing. Hierarchical segmentation focused on representing the scene using a

tree-structure, i.e., a set of segmentations with different detail levels where the seg-

mentations at finer levels (child nodes) are nested with respect to those at coarser

levels (parent nodes). Because the real-world scenes are hierarchical in nature, hier-

archical semantic representation provides a holistic, compact and comprehensive

reasoning over components of scene graphs than a standard flat segmentation in

which each segment is assumed to be independent to others.

Early attempts [Arbelaez et al., 2010, Arbeláez et al., 2014] used low-level image

statistics to extract an ultrametric contour map (UCM), leading to further work

on using CNNs for hierarchical segmentation in a supervised manner [Xie and

Tu, 2015, Maninis et al., 2016, Mo et al., 2019, Hiroaki Aizawa, 2021]. It is still

less evident in the community how to well tackle hierarchical segmentation using
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deep neural networks, especially given that various datasets include a significant

variation in the scene, such as object/stuff categories, arrangement and their lay-

outs. We show that iLabel alleviate these problems and can build a user-defined

hierarchical scene segmentation interactively and store it within the weights of a

single MLP.

5.3 iLabel: Online, Interactive Open-Set Labelling

and Learning

5.3.1 iLabel System Overview

iLabel is built on top of the iMAP SLAM system [Sucar et al., 2021]. iMAP repres-

ents 3D scenes using an implicit neural representation, parameterised by a multi

layer perceptron (MLP) that maps a 3D coordinate to a colour and volume density.

It jointly optimises the MLP and the camera poses of selected keyframes through

differential volume rendering with actively sampled sparse pixels for higher effi-

ciency, while tracking the position of a moving RGB-D camera against the neural

implicit representation. These design choices lead to a real-time and long-term

RGB-D SLAM enabling complete and accurate construction.

The overview pipeline of the iLabel system is shown in Figure 5.1. The system

works in three concurrent processes: tracking, mapping and labelling. Following

the design spirit of PTAM (Parallel Tracking and Mapping) [Klein and Murray,

2007], the tracking operates at around 10Hz and the mapping works at 2Hz on

our desktop or laptop configuration. The GUI visualisation and labelling process

is capable of rendering full frames at 1
6 of the original image resolution at 8FPS.

iLabel augment iMAP with an extra semantic head to the MLP that predicts

either a flat class distribution or a binary hierarchical tree (see Section 5.3.3). In

parallel to iMAP, a user provides annotations via clicks in the keyframes. Scene
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semantics are then optimised through semantic rendering of these user-selected

pixels. The smoothness and compactness priors present in the MLP enable the

user-supplied labels to be automatically and efficiently propagated throughout the

scene. iLabel is thus able to produce accurate, dense predictions from very sparse

annotations and to regularly auto-segment objects and other regions not labelled

by the user. The ability to simultaneously reconstruct and label a scene in real-

time allows for ultra-efficient labelling of new regions and for easy correction of

errors in the current semantic predictions.

Labelling GUI

Keyframe selection

Volume rendering

Marching cubes

Labelling process

Mapping
process

Implicit scene 
representationTracking

process

RGBDepth

pose

pixel labels

Figure 5.1: Overview of the iLabel system pipeline, including three processes:
tracking, mapping and labelling work in parallel. Tracking process enables frame-
rate camera tracking of input RGB-D frames; labelling process supports user in-
teraction with GUI and visualisation; mapping process is responsible for learn-
ing scene representation using joint optimisation of appearance, geometry and se-
mantics from the labelling process.

5.3.2 Network Architecture

The MLP adopted in iLabel is shown in Figure 5.2. Similar to iMAP [Sucar et al.,

2021], optimisable Gaussian Fourier feature mapping of dimension 93 with si-

nusoidal activation is applied to input 3D position x = (x, y, z) [Tancik et al.,

2020, Sitzmann et al., 2020], which is implemented as an extra MLP layer. The

sizes of four hidden fully-connected (FC) layers are all set to 256, shared by three

predictions heads of volume density, RGB colour and semantics. Different from
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NeRF [Mildenhall et al., 2020], viewing direction is not taken for colour predic-

tion because photorealistic rendering is not the target, which also eases the learn-

ing task. The size of semantic head is set to a relatively large value (i.e., 20) which

is enough to cover maximum number of potential incoming classes within a real

world scene.

Figure 5.2: MLP architecture used in iLabel. The network predicts three differ-
ent properties of given position (x, y, z) including volume density, RGB and se-
mantics, of which all are formulated as view-invariant mapping.

5.3.3 Semantics Representation and Optimisation

At the heart of iLabel is the continuous optimisation of the underlying implicit

scene representation described in Figure 5.2:

Fθ(x) = (c, s,σ), (5.1)

where Fθ is an MLP parameterised by θ; c, s and σ are the radiance, semantic

logits and volume density at the 3D position x= (x, y, z), respectively. The scene

representation is optimised with respect to volumetric renderings of depth, colour

and semantics, computed by compositing the queried network values along the

back-projected ray of pixel [u, v]:

D̂[u, v] =
N
∑

i=1

wi di , Î [u, v] =
N
∑

i=1

wici , Ŝ[u, v] =
N
∑

i=1

wisi , (5.2)
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where wi = oi
∏i−1

j=1(1−o j ) is the ray-termination probability of sample i at depth

di along the ray; oi = 1− exp(−σiδi ) is the occupancy activation function; δi =

di+1− di is inter-sample distance.

As in [Sucar et al., 2021], geometry and keyframe camera poses {TW C } are op-

timised by minimising the discrepancy between the captured and rendered RGB-D

images from sparsely sampled pixels. Semantics are optimised with respect to only

the user-labelled pixels, with two different activations and losses, corresponding

to the two semantic modes described below. Figure 5.3 gives an overview of the

semantic rendering process and the activation functions applied to the rendered

logits.

𝑥
𝑦
𝑧

𝑠!
𝑠"
𝑠#
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0

1

0

Hierarchical Semantics

Flat SemanticsImplicit Scene Network

Semantic Logits

𝑠𝑖𝑔𝑚𝑜𝑖𝑑

𝑠𝑜𝑓𝑡𝑚𝑎𝑥

0.5

Semantic Rendering

Figure 5.3: Illustration of semantic rendering in iLabel. Implicit scene network is
queried for rendering semantic logits; softmax or sigmoid activations are applied
for either flat or hierarchical segmentation modes, respectively.

Flat Semantics As per [Zhi et al., 2021a], the semantic outputs of network, si ,

are multi-class semantic logits which are converted into the image space by differ-

ential volume rendering (Equation 5.2) followed by a softmax activation: Ŝ[u, v] =

softmax(Ŝ[u, v]). Semantics are then optimised using the image cross-entropy loss

between the provided class ID and the rendered predictions.
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Hierarchical Semantics We propose a novel hierarchical semantic representa-

tion through a binary tree, which allows for labelling and predicting semantics at

different hierarchical levels. While the network output, si , is still represented by

an n-dimensional flat vector, n now corresponds to the depth of the binary tree

as opposed to the number of semantic classes. The semantic logits are rendered in

the same manner, but the image activation and loss functions differ.

A sigmoid activation function is applied to the rendered logits, producing values

in the range [0,1]. The j th rendered output value, Ŝ j [u, v] = sigmoid(Ŝ j [u, v]),

corresponds to the branching factor at tree level j . To obtain a hierarchical se-

mantic prediction, each value Ŝ j [u, v] is set to 0 or 1 by thresholding Ŝ j [u, v] at

0.5. In the hierarchical setting, the user-supplied label corresponds to selecting a

specific node in the binary tree. This label is transformed into a binary branch-

ing representation, and a binary cross entropy loss is computed for each rendered

value. A label selecting a tree node at level L only conditions the loss on the output

values up to and including level L: Ŝ j [u, v], j ∈ {1, ..., L}.

With reference to the top half of Figure 5.13, the network outputs three values

corresponding to the three levels in the tree. First, the user separates the scene

into foreground and background classes. A background label corresponds to the

vector [0,∗,∗] where ∗ indicates that no loss is calculated for the second and third

rendered values. The user then divides the background class further into wall and

floor, where the wall label corresponds to vector [0,1,∗]. The binary hierarchical

representation allows the user to separate objects in stages. For example the user

first separates a whole bookshelf from the rest of the scene, and later separates

the books from the shelf without contradicting the initial labels, meaning that no

labelling effort is wasted.

111



5. iLabel

Figure 5.4: Overview of automatic query generation process. Uncertainty-based
sampling is used to decide which keyframe and pixel are selected to query label
from the oracle. The right chair gets incorrect label propagation result and owns
relative higher uncertainty. Generated queries on this chair will correct the seg-
mentation result and reduce the overall uncertainty on chair regions.

5.3.4 Semantic User Interaction Modes

Our system allows for two modes of interaction: 1) manual interaction, the usual

interactive mode of iLabel, where users provide semantic labels in image space via

clicks, and 2) automatic query generation, where the system generates automatic

queries for the labels of informative pixels, driven by semantic prediction uncer-

tainty (Figure 5.4). The latter mode eases the burden of localisation task in manual

annotation, and users could provide labels via text or voice. Several query genera-

tion strategies are explored such as random sampling, softmax entropy, least con-

fidence and margin sampling [Settles, 2009] and these uncertainty-based sampling

strategies can integrate seamlessly with deep neural networks with little computa-

tional overhead [Settles, 2009, Ren et al., 2020].

Here we briefly introduce the applied strategies of uncertainty-based sampling

and how they are applied to iLabel:

Random Sampling: Randomly sample a pixel position from all candidates as the

query pixel position.

Softmax Entropy: Information entropy computed from softmax probabilities is

used to measure semantic uncertainty. Coordinate of pixel owning highest
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entropy is selected as the query position.

Least Confidence: Coordinate of the pixel whose maximum softmax probability

value over classes is the minimum among all candidates is selected as the

query pixel position.

Margin Sampling: Coordinate of the pixel whose most and second most prob-

abilities have the minimum discriminativeness is selected as the query pixel

position.

Under automatic query generation mode, iLabel relies on the adopted sampling

strategy to decide which keyframe to select and then which pixel to query on

the selected keyframe. Specifically, dense uncertainty maps for each keyframe are

periodically updated and summed to have a frame-wise uncertainty, indicating the

overall uncertainty of the keyframe. As a result, keyframe with higher total un-

certainty is more likely to be selected, on which the query pixel position is then

determined as well.

5.3.5 Implementation Details

iLabel operates in a multiprocessing, single or multi-GPU framework, running

three concurrent processes: 1) tracking, 2) mapping, and 3) labelling (see Figure

5.1). The mapping process encompasses optimising the MLP parameters with

respect to a growing set of W keyframes and associated RGB-D observations:

{(Ii , Di ,Ti )}
W
i=1. As per [Sucar et al., 2021], the photometric loss Lp and geomet-

ric loss Lg are minimised on sparse, information-guided pixels. iLabel performs

an additional optimisation on K user-selected pixels (ξi ) in each keyframe and in-

troduces a semantic loss Ls , minimising the following objective function:

argmin
θ

1
K

W
∑

i=1

∑

(u,v)∈ξi

e g
i [u, v]
︸ ︷︷ ︸

Lg

+αp e p
i [u, v]
︸ ︷︷ ︸

Lp

+αs e s
i [u, v]
︸ ︷︷ ︸

Ls

, (5.3)
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where:

e p
i [u, v] =

�

�

�Ii[u, v]− Îi[u, v]
�

�

� , e s
i [u, v] =−

C
∑

c=1

Sc
i [u, v] log(Ŝ

c

i [u, v])

e g
i [u, v] =

�

�

�Di[u, v]− D̂i[u, v]
�

�

�

q

D̂va r [u, v]
, D̂va r [u, v] =

N
∑

i=1

wi (D̂[u, v]− di )
2,

and in the hierarchical setting:

e s
i [u, v] =

L
∑

l=1

−Sc
i [u, v] log(Ŝ

c

i [u, v])− (1− Sc
i [u, v]) log(1− Ŝ

c

i [u, v]), (5.4)

αc andαs are set to 5 and 8, the Adam optimiser is used with poses and map learning

rates of 0.003 and 0.001.

iLabel does not have explicit/specific refinement process, and all user clicks are

involved in the joint optimisation in Equation 5.3. The optimisation keeps work-

ing and growing with changing sparse samples for colour and geometry recon-

struction, and increasing annotated pixels for semantics, colour and depth as well.

The labelling process coordinates user interactions (clicks and labels) and con-

trols the rendering of semantic images and meshes (via marching cubes on a dense

voxel grid queried from the MLP). In practice the user can choose to perform an-

notations while scanning, or to perform scanning first followed by labelling or

to perform both, and we leave this choice to the user depending on the applica-

tion scenario. From a probabilistic point of view, joint optimisation in Equation

5.3 allows the consideration of the joint distribution of structure, motion and se-

mantics, including their cross correlations. In iLabel, since the semantic labelling

is extremely sparse, we expect the corrections of structure estimates to propagate

to semantic estimates. In addition, the joint optimisation in Equation 5.3 leads

to a simple formulation for the online learning process which makes iLabel more

straightforward for users to operate than similar interactive methods, which we

will address more in Section 5.4.1.
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5.4 Experiments and Applications

iLabel is an interactive tool intended for real-time use and we therefore emphasise

that its strengths are best illustrated qualitatively. To this end, we provide extensive

examples to demonstrate iLabel in a variety of interesting scenes. Additionally,

we perform a quantitative comparison to a state-of-the-art, fully-supervised RGB-

D segmentation baseline [Chen et al., 2020], in real and synthetic scenes from

Replica and ScanNet datasets [Straub et al., 2019, Dai et al., 2017a], representative

of the intended operating environment of iLabel.

Live images captured from MS Kinect Azure RGB-D sensor of 720p resolution

(1280x720) are used in all the qualitative experiments. Images in quantitative ex-

periments from Replica and ScanNet datasets have resolutions of 1200x680 and

640x480, respectively. These images serve as input to the iLabel system. For visu-

alising the rendering in the online system we render the images at 1/6 resolution

for efficiency on a different process running at 8fps. For quantitative evaluations,

we render the images in full resolution and compute corresponding metrics.

5.4.1 Qualitative evaluation

As the geometry, colour and semantic heads share a single MLP backbone, user

annotations are naturally propagated to untouched regions of the scene without

specifying an explicit propagation mechanism (e.g. pairwise terms of a CRF used

in [Valentin et al., 2015]). This, together with a user-in-the-loop, enables ultra-

efficient scene labelling with only a small number of well-placed clicks.

A core strength of iLabel is the highly compressed scene representation learnt by

the lightweight MLP. We have observed that the resulting embeddings are highly

correlated for coherent 3D entities in the scene (e.g. objects, surfaces, etc.). Con-

sequently, iLabel is able to segment these entities very efficiently, even with a single

click. This is illustrated in Figures 5.5 and 5.6, where only a few clicks generate
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Figure 5.5: Precise segmentations can be obtained from just 1 or 2 clicks per object.
From top to bottom are keyframes with user clicks, rendered 2D segmentation and
semantically annotated 3D mesh, respectively.

complete and precise segmentations for a wide range of objects and entities, ran-

ging from small, coherent objects (e.g. fruit) to deformable and intricate entities

(clothing and furniture). The ability of iLabel to propagate labels across coherent

shapes is highlighted further in Figure 5.7, where we show a comparably high-

quality segmentation of the fruit scene with colour optimisation disabled (i.e. the

system relies entirely on depth). The fact that iLabel is able to produce high-quality

segmentations with no colour information demonstrates the power of the underly-

ing representation learnt by the MLP and shows that iLabel is not solely dependent
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Figure 5.6: Ultra-efficient label propagation: iLabel produces high-quality seg-
mentations of coherent 3D entities with very few user clicks, approximately 20–30
per scene.

Figure 5.7: In removing the use of colour optimisation for scene reconstruction,
only a few extra clicks are required to achieve a comparable quality of segmentation
to that shown in Figure 5.5.
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on colour and can continue to operate when colour information is not available

or is poor (e.g. under low lighting). However, the addition of colour absolutely

improves labelling efficiency.

The coordinate-based representation avoids quantisation and allows the net-

work to be queried at arbitrary resolutions. This property allows reconstruction

of detailed geometry and skeletal shapes that, when semantically labelled, render

very precise segmentations. Figure 5.8 illustrates high-fidelity segmentations of

objects which would be challenging for a standard CNN.

Bed Chair Floor Furniture Objects Wall

Segmentation
(RGB-D CNN)

Segmentation
(iLabel) Reconstructed Mesh

Figure 5.8: Segmentation results for challenging skeletal objects; left: pre-trained
CNN SA-Gate on ScanNet (see Section 5.4.2), right: iLabel. CNNs struggle to
predict correct and accurate segmentations on objects with fine structures, while
iLabel is capable of recognising them leveraging on the learned implicit represent-
ation.

iLabel can be used as an efficient tool for generating labelled scene datasets. For

example, a scene of a complete room with 13 classes, can be fully segmented with

high precision with only 140 user clicks (Figure 5.9). Alternatively, iLabel can be

used to tag individual objects for generating object-asset catalogues (Figure 5.10)

to aid robotic manipulation tasks, for example.
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Figure 5.9: Whole-room semantic mesh and selected image semantic projections
from only 140 clicks. We reconstruct and semantically label a whole room in
under 5 mins.

Figure 5.10: Catalogue of object mesh assets separated with iLabel.

While iLabel is particularly powerful at segmenting coherent entities, Figure

5.11 also demonstrates its ability to propagate user-supplied labels to disjoint ob-

jects exhibiting similar properties to the labelled objects. Each example shows

label transfer between similar objects where only one has been labelled (e.g. (a)

boxes on the bed, (b) food boxes and plastic cups and (c) toy dinosaurs). The table

and chairs scene in Figure 5.11 (d) is especially interesting. Only four clicks are

supplied: the label for the chair leg (blue) propagates to the leg of the table and the

legs of the other chairs, while the table-top label (yellow) propagates to the seats

of the chairs.
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Figure 5.11: Generalisation: iLabel is able to transfer user labels to objects ex-
hibiting similar properties. It is worth highlighting that the segmentation in the
outdoor café scene (bottom row) was achieved with only 4 clicks.
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User interactions We have demonstrated the labelling efficiency of iLabel when

using the simplest user interactions (clicks). Here we note that a stroke (e.g. with

a finger or stylus) is equivalent, in terms of user effort, to a single click and ar-

guably more natural from a UI perspective. Figure 5.12 qualitatively compares

the labelling efficiency of clicks versus strokes and demonstrates that strokes (rep-

resented as dense collections of clicks) yield superior segmentations for the same

number of user interactions, as strokes can be regarded as a dense sequence of user

clicks.

In this work we choose user annotations to be the challenging clicks to highlight

the labelling efficiency of iLabel.

Hierarchical scene segmentation Figure 5.13 demonstrates iLabel’s hierarch-

ical mode. The colour-coded hierarchy (defined on-the-fly) is shown together with

segmentations and scene reconstructions from each level. The results show the

capacity of this representation to group objects at different levels, which has po-

tential in applications where different tasks demand different groupings.

The advantages of the hierarchical semantic representation are qualitatively dif-

ferent from a flat one, allowing users/robots to simultaneously and compactly la-

bel a scene at different semantic levels without contradicting labels, for example

an object can be both labelled as book and shelf at different levels in the hierarchy,

is not fundamentally possible with a flat representation.

Comparison to SemanticPaint As an online interactive scene understanding

system, SemanticPaint (SPaint) [Valentin et al., 2015] is the only other comparable

system. SemanticPaint requires a full initial scan of scenes before any labelling can

be done, which additionally has four distinct modes: 1) Labelling; 2) Propagation;

3) Training and 4) Testing, the user need to switch between them which makes

the whole process relatively cumbersome and slow. In contrast, iLabel provides a
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Figure 5.12: Clicks vs. strokes: Scenes can be labelled more efficiently and natur-
ally using strokes.

122



5.4. Experiments and Applications

Wall
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Floor Furniture Object
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Wall Floor Frame Drawer BooksToys
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Doors Footwear Clothing
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s

Coats

Level 1 Level 2 Level 3Hierarchical Tree

Figure 5.13: Binary tree as well as the segmentations at each level from the hier-
archical mode of iLabel.

unified interface for online reconstruction, segmentation and labelling which leads

to a much simpler and intuitive system overall.

A qualitative comparison is given in Figure 5.14. We can observe that given the

same initial user annotations, the initial label propagation results of SemanticPaint

are less complete and noisier compared to those of iLabel. With additional 5-

10 subsequent corrective strokes and multiple switches among different working

modes, SemanticPaint achieves qualitatively comparable segmentations to iLabel.

In contrast, iLabel gives smooth and accurate segmentation with<10 user strokes

with a single pass of sequences. Overall, iLabel demonstrated competitive seg-
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mentation quality with a much simpler and easier-to-use system design.

User strokes Spaint: Initial strokes and after corrections iLabel: Initial strokes

Figure 5.14: Qualitative comparison between SemanticPaint and proposed iLabel
system. The first column shows the keyframe and user supplied annotation in
form of strokes which are well supported by both systems. There are a total of 9
and 7 strokes for desk and shelves scenes, respectively. The middle two columns
demonstrate, after a full scan of the scene, the label propagation result given ini-
tial strokes and the one after additional training, inference and user corrections of
SemanticPaint, respectively. The right column shows the performance of iLabel
given only initial strokes without further operations.

5.4.2 Quantitative evaluation

We evaluate iLabel’s 2D semantic segmentation performance in both typical user-

interaction mode and automatic query generation mode, with varying numbers of

clicks per scene, on the public datasets Replica [Straub et al., 2019] and ScanNet

[Dai et al., 2017a]. We report the mean intersection-over-union (mIoU), averaged

over 13 classes.

Datasets The Replica dataset [Straub et al., 2019] is a reconstruction-based syn-

thetic dataset, containing 18 scenes with high-quality 3D meshes, photo-realistic

textures and rich annotations. ScanNet [Dai et al., 2017a] is a large-scale real-

world indoor dataset composed of approximately 2.5M views obtained from 1513

scenes. We test on the official ScanNet validation sets and generate RGB-D test se-
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quences and ground-truth semantic labels from the Replica dataset using Habitat-

Sim [Savva et al., 2019] with randomly-generated 6DoF trajectories. All semantic

labels are remapped to the popular NYUv2-13 standard [Eigen and Fergus, 2015].

Evaluation is performed on uniformly-sampled frames from each test sequence,

to ensure a faithful comparison against the supervised baseline. For each candidate

test frame, we record its relative pose with respect to the nearest keyframe during

scanning from the tracking process, as keyframe poses are continually optimised

in the mapping process. During evaluation, the camera poses of the candidate test

frames are then obtained using the recorded relative pose and the latest updated

pose of its corresponding nearest keyframe. These retrieved poses are finally used

to render the 2D segmentation masks for iLabel at specific viewpoints.

Baselines Performance is evaluated against SA-Gate with a ResNet-101 based

DeepLabV3+ backbone [Chen et al., 2018b, Chen et al., 2020], which is the cur-

rent state-of-the-art CNN model in RGB-D segmentation.

For Replica, we pre-train SA-Gate using the SUN-RGBD dataset [Song et al.,

2015] and fine-tune on our generated test sequences. We adopt a leave-one-out

strategy, whereby fine-tuning is performed independently for each test sequence

using the remaining sequences in the test set. For ScanNet, we train SA-Gate dir-

ectly on the official training sets, achieving 63.98% mIoU on the validation sets.

Approximately 11k and 25k training images were used for training on Replica and

ScanNet respectively. The ResNet-101 backbone is initialised with ImageNet pre-

trained weights [Russakovsky et al., 2015] in all experiments. As per [Chen et al.,

2020], depth maps are encoded using the HHA encoding [Gupta et al., 2014],

while the fast depth completion technique [Ku et al., 2018] is used for hole-filling

in the ScanNet dataset.
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(c) Automatic query generation.

Figure 5.15: Quantitative evaluation of 2D semantic segmentation. Both inter-
action modes are evaluated and outperform supervised baselines with a small an-
notation budget.
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Results Figure 5.15 show the performance of iLabel with user-supplied clicks

compared against the supervised baseline (dashed horizontal line) for the Replica

(left) and ScanNet (middle) datasets. With as few as 40 user clicks, iLabel matches

the state-of-the-art. On the Replica scenes, iLabel significantly outperforms the

baseline with >60 clicks and performance continues to scale powerfully as the

number of user interactions is increased. Despite the huge difference between su-

pervised baselines and iLabel, the quantitative results aim at demonstrating the

labelling efficiency and quality of iLabel given only few clicks.

iLabel outperforms the baseline on ScanNet with few clicks as well, while the

performance gap is not as pronounced. This can be attributed to the lower-quality

depth images in ScanNet, inaccurate 2D ground-truth masks and void regions in

the ground-truth masks arising from the projection process used to generate them

[Dai et al., 2017a]. While the performance of iLabel is dependent on reliable pose

tracking and hence high-quality depth data, tracking is not a core contribution of

this work and we argue that the performance observed on the Replica dataset is

thus more representative of the gains obtainable by iLabel, given suitable operat-

ing conditions. Figure 5.8 additionally shows a qualitative comparison of the seg-

mentation masks on challenging skeletal objects generated by iLabel and SA-Gate

trained on ScanNet.

Figure 5.15c confirms the effectiveness of automatic query generation, which

opens the possibility for contactless scene labelling, e.g., by voice command. All

the discussed uncertainty sampling strategies reach human performance except

random sampling strategy, as rare classes are hardly sampled during evaluation,

leading to degradation in mIoU metrics. Best performance of each strategy during

different rounds are reported. As expected, automatic mode would be less efficient

at labelling than human interaction, however, it is still very promising as similar

performance can be achieved in only 400 clicks. One reason for this result is that

users tend to focus on fixing incorrect segmentations directly while uncertainty-
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based sampling requires more samples to allocate clicks on those regions, partic-

ularly small instances. One possible solution to reduce this gap between manual

labelling and automatic labelling is the combination of both modes, where manual

clicks serve as bootstrapping before switching to automatic query mode to have a

better estimation of uncertainty. How to estimate good uncertainty with in-situ

labelling is an exciting area for future work and worth further exploration.

5.5 Conclusion

We have presented iLabel and shown that online, scene-specific training of a com-

pact MLP model which encodes scene geometry, appearance and semantics al-

lows ultra-sparse interactive labelling to produce accurate dense semantic segment-

ation, far surpassing the performance of standard pre-trained approaches. As real-

time scene understanding system, iLabel works only with in-situ supervision and

therefore is able to work in various live and open-set environments with either

user-supplied clicks or automatically predicted queries. We would also like to ex-

plore more applications of iLabel such as custom dataset creation for supervised

methods, bootstrapping for weakly/semi-supervised learning techniques and ro-

bot learning.

Despite promising results, the label propagation mechanism of iLabel works

well mainly for proximal regions and/or those sharing similar geometry or tex-

ture. A deeper understanding of this mechanism is necessary to enable better con-

trol of this process and to improve generalisation performance (e.g. class-based

generalisation), which could further improve labelling efficiency and segmenta-

tion quality of the system. In addition, the formulation of hierarchical segmenta-

tion is currently limited to a binary tree, though the tree does not necessarily need

to be balanced as the user can select which nodes to further divide. A more gen-

eral hierarchical representation where each node can have an arbitrary number of
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children is an interesting problem for future work.

Fortunately, as architectures and methods for neural implicit representation of

scenes continue to improve, we expect these gains to be passed on to our labelling

approach, and for tools like iLabel to become highly practical for applications

where users are able to teach AI systems efficiently about useful scene properties.
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CHAPTER 6

Conclusions and Future Work

All the methods developed in this thesis focus on neural semantic scene representa-

tions, using either external datasets or in-place labelling. While our qualitative and

quantitative evaluation on extensive datasets and real-world scenes have shown the

benefits of such semantic representations, we have also discussed their shortcom-

ings. In this final chapter, we summarise the key novel contributions and results

presented in this thesis and further discuss their current limitations and potential

directions for improvement and future research.

Chapter 3 presented SceneCode, a compact and optimisable code representation

for dense semantic labelling. The conditional distribution of semantic segmenta-

tion given colour images is learned within latent codes and the prior information is

used for tackling multi-view semantic label fusion. Through minimising a multi-

view semantic error term, our approach reaches coherent and smooth labelling

efficiently by code optimisation and outperforms element-wise fusion baselines.

The use of compact code representations of both geometry and semantics from

a multitask CVAE allows for a concise monocular dense semantic reconstruction

system.

While the system achieves promising results on various sequences from a similar
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distribution to its training data, the generalisation capability of fully supervised

representations to challenging unseen real world scenes remains barely satisfact-

ory. Despite great progress in semantic segmentation techniques leveraging high-

quality datasets with predefined semantic categories, how to enable better transfer-

ability of such semantic representation to new environments and even unknown

classes in the open-set world remains as an open research problem [Pham et al.,

2018b, Pham et al., 2018a, Nakajima et al., 2019]. Weakly-/semi-/self-supervision

based deep learning approaches have gained more attention recently to alleviate

the expenses of label collection and take better advantage of unlabelled natural

images [Liu et al., 2021, Zou et al., 2021, Hung et al., 2019, Araslanov and Roth,

2020].

Another exciting venue of future search is enabling joint optimisation of both

comes from the fact that joint optimisation of dense geometry and semantics from

scratch still does not guarantee better estimation of both modalities, therefore a

stage-wise optimisation is taken in SceneCode. Though we believe better network

architecture design and stronger backbone would potentially alleviate this issue by

much improved monocular predictions and proper initial code value [Czarnowski

et al., 2020], a key missing factor lies in semantic error term which is not intrinsic

to describe semantic labelling and extra regularisation is required to prevent trivial

solutions. Considering the subjective nature of semantic concept, it is worth in-

vestigating if it is feasible to find such an intrinsic description of semantic labelling,

either by design or by learning from data, so that joint inference of both geometry

and semantics can be realised. Perhaps a more interesting way to enable joint infer-

ence is to explore a joint code representation so that cross-correlation is naturally

taken into consideration during optimisation .

Driven by discussed limitations above imposed by fully supervised scene repres-

entations, Chapter 4 turned to scene-specific semantic representations and intro-

duced Semantic-NeRF. Scene-specific representations are at the other end of the
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spectrum from supervised ones as only in-situ annotation is required. A 3D-aware

joint implicit representation of appearance, geometry and semantics is leaned in

our work by augmenting NeRF with extra semantic outputs. We find that the un-

derlying smoothness, coherence and multi-view consistency of the self-supervised

geometric reconstruction enable semantics to efficiently propagate from a sparse

set of noisy annotations. Therefore, a collection of posed colour images together

with a small amount of semantic supervision is enough to learn a joint impli-

cit scene representation capable of rendering accurate dense labels at novel view-

points. This idea has been extensively validated in different applications includ-

ing semantic view synthesis, semantic label denoising, semantic super-resolution,

sparse label propagation and multi-view semantic fusion.

In this work we have demonstrated the benefits of encoding semantics within

the 5D manifold represented by coordinate-based MLPs leveraging its strong cor-

relation to appearance and geometry, and we are confident that not only semantics,

but a wide variety of scene properties beyond semantic classes could be encoded

as well such as material type, reflectance, and affordances. Representation like this

could be especially useful to intelligent robots. Robots could efficiently learn such

representations of their working environments from user annotations and need

not rely on generalisation from prior datasets.

Semantic-NeRF requires computationally expensive off-line training and volume

rendering, which prohibits real-time application and is inefficient to update with

new observations. Many papers building on NeRF [Garbin et al., 2021, Lindell

et al., 2021, Yu et al., 2021a] have attempted to accelerate rendering speed given a

trained NeRF model, or improve training efficiency given extra information and

priors [Yu et al., 2021b, Trevithick and Yang, 2021, Sucar et al., 2021]. Never-

theless, it does mean that explicit representations are useless because there are still

tremendous applications where an explicit map is essential. For example, tasks

including path planning, manoeuvring and obstacle avoidance usually require an
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explicit and easy to process map representation. We envision the advantages of

both types will eventually merged and there have been promising recent work at-

tempting hybrid representations [Popov et al., 2020, Martel et al., 2021].

Our final contribution presented in Chapter 5 is iLabel, the first scene under-

standing system capable of real-time, interactive and incremental ultra-efficient

labelling with only a single MLP as the underlying representation. Inspired by the

success of implicit representation in SLAM [Sucar et al., 2021] and sparse label

propagation [Zhi et al., 2021a], iLabel aims to address issues related to off-line ap-

proaches and bring us closer to a challenging and practical scenario. Instead of con-

ducting off-line data collection and annotation/labelling with pre-determined con-

cepts and training, we show that a user or robot can create a personalised semantic

reconstruction tailored to their own intentions, knowledge and experience. iLabel

offers the opportunity of performing all parts in an online and interactive manner,

from low-level camera localisation and dense mapping up to high level semantic

segmentation and system training. Meanwhile, the user keeps receiving immedi-

ate feedback from the system and can provide continuous corrections and new

annotations. In addition to the overall system contribution, several novel com-

ponents are also proposed including hierarchical segmentation, automatic query

generation guided by uncertainty sampling. Qualitative results on a wide range of

real word scenes demonstrate the ultra-efficient labelling performance of iLabel.

During experiments we have qualitatively found that similarity in appearance

and geometry as well as proximity influence label transfer, which performs the

best on coherent entities. Therefore, if users want to segment many instances of

the same class, this is possible by clicking on each of the instances (if they differ

significantly in the aforementioned properties), or by clicking on a subset of the

instances if they do exhibit some similarities. In the future, we would like to ex-

plore a deeper understanding of the propagation mechanism within iLabel so we

could investigate the most effective places to assign clicks, reaching higher labelling
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efficiency and segmentation quality.

We would also like to work on the improving geometric performance of the

iLabel system. Current camera tracking and mapping are both driven by volume

rendering from implicit representation, yet they face challenges in robustly work-

ing with rapid motions and predicting crisp reconstruction. A possible path is to

combine the camera tracker from mature geometric SLAM systems (e.g., ORB-

SLAM) and our neural tracker: correspondences established by sparse features

could serve as candidates for active sampling and provide initial camera transforma-

tions [Matsuki et al., 2021, Zuo et al., 2021]. The reconstruction from iLabel tends

to be over-smooth due to the continuity and the way we extract it, i.e., repeatedly

querying the MLP on a dense voxel grid and then applying marching cubes to ex-

tract a mesh. It is still under active exploration what is the best way to discover

and retrieve the represented scenes. More structural and semantic priors could

be injected into the mapping process, e.g., regions annotated as walls, tabletops

and floors are likely to be planar and explicitly regularise the reconstruction. Hy-

brid representations, mentioned in the paragraphs above, are another promising

direction where classical representations and neural implicit representation could

be merged. For example, the lattice structure from volumetric grids allows con-

volution operations bringing strong inductive biases like translation equivariance,

while implicit representation enables efficient encoding of complex shape topolo-

gies without an excessive memory consumption. As an exciting new research area,

we expect future advances in implicit representation to further benefit iLabel.

There are of course many remaining research problems unsolved before reach-

ing a truly useful representation for Spatial AI systems [Rosen et al., 2021]. The se-

mantic representations throughout this thesis assume a static environment, while

the extension of them to deformable, dynamic scenes are challenging and still open

problems. In addition, with increasing properties and relationship among entit-

ies to present high-level comprehension, we expect that a graph-like distributed
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scene representation with hierarchical structure would finally emerge to fulfil this

requirement, which could also require a suitable computational hardware.
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