
Imperial College London

Department of Computing

Robotic Manipulation in Clutter

with Object-Level Semantic Mapping

Kentaro Wada

29th March 2022

Supervised by Prof. Andrew Davison

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely

my own work, and, except where otherwise indicated, describes my own research.

2

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its

contents are licensed under a Creative Commons Attribution-Non Commercial-No

Derivatives 4.0 International Licence (CC BY-NC-ND).

Under this licence, you may copy and redistribute the material in any medium or

format on the condition that; you credit the author, do not use it for commercial

purposes and do not distribute modified versions of the work.

When reusing or sharing this work, ensure you make the licence terms clear to others

by naming the licence and linking to the licence text.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.

3

Abstract

To intelligently interact with environments and achieve useful tasks, robots need

some level of understanding of a scene to plan sensible actions accordingly. Semantic

world models have been widely used in robotic manipulation, giving geometry and

semantic information of objects that are vital to generating motions to complete

tasks. Using these models, typical traditional robotic systems generate motions with

analysis-based motion planning, which often applies collision checks to generate a

safe trajectory to execute. It is primarily crucial for robots to build such world

models autonomously, ideally with flexible and low-cost sensors such as on-board

cameras, and generate motions with succeeding planning pipelines.

With recent progress on deep neural networks, increasing research has worked

on end-to-end approaches to manipulation. A typical end-to-end approach does not

explicitly build world models, and instead generates motions from direct mapping

from raw observation such as images, to introduce flexibility to handle novel objects

and capability of manipulation beyond analysis-based motion planning. However,

this approach struggles to deal with long-horizon tasks that include several steps of

grasping and placement, for which many action steps have to be inferred by learned

models to generate trajectory. This difficulty motivated us to use a hybrid approach

of learned and traditional to take advantage of both, as previous studies on robotic

manipulation showed long-horizon task achievements with explicit world models.

This thesis develops a robotic system that manipulates objects to change their

states as requested with high-success, efficient, and safe maneuvers. In particular,

we build an object-level semantic mapping pipeline that is able to build world mod-

els dealing with various objects in clutter, which is then integrated with various

learned components to acquire manipulation skills. Our tight integration of explicit

semantic mapping and learned motion generation enables the robot to accomplish

long-horizon tasks with the extra capability of manipulation introduced by learning.

4

Acknowledgements

I am very thankful for the support given to me by many people over the course

of my studies, without which this work would not have been possible.

I am particularly grateful to Prof. Andrew Davison for providing me with the

opportunity to pursue a PhD in the Dyson Robotics Laboratory at Imperial College.

As my supervisor and the director of the lab, he was incredibly supportive, patient,

understanding, and trusting. He guided me to do best work possible with interesting

problems helping me to draw big pictures and pursue impactful topics.

I am appreciative of Dyson Technology Ltd. for not only funding my research,

but providing an opportunity for many insightful discussions with Charles Collis,

Iain Haughton and the rest of the robotics research team.

I feel very fortunate being part of the Dyson Robotics Lab, where I had the

opportunity to collaborate with many excellent researchers including Stephen James,

Tristan Laidlow, Daniel Lenton, and Edgar Sucar. I am also thankful for the advice

and discussions with all other members of the Dyson Robotics Lab, past and present:

Stefan Leutenegger, Robert Deaves, Edward Johns, Michael Bloesch, Ronald Clark,

Talfan Evans, Tristan Laidlow, Sajad Saeedi, Raluca Scona, Jan Czarnowski, Eric

Dexheimer, Fabian Falck, Dorian Henning, Charlie Houseago, Ivan Kapelyukh, Xin

Kong, Zoe Landgraf, Shikun Liu, Hidenobu Matsuki, Kirill Mazur, Seth Nabarro,

Andrea Nicastro, Aalok Patwardhan, Marwan Taher, and Shuaifeng Zhi.

Iosifina Pournara gave me a lot of helps, organizing attendance to conferences

and ensuring that I had access to the equipments I needed, as well as providing

general support, advice and encouragement.

Finally, I would like to thank my family and friends for their unconditional care

and support during the PhD. Thank you for supporting me along this long journey.

5

Contents

Contents

1 Introduction 12

1.1 Robotic Manipulation and Visual Perception 12

1.2 Semantic Scene Understanding for Manipulation 16

1.3 Learning and End-to-End Manipulation 23

1.4 Publications . 28

1.5 Thesis Structure . 32

2 Preliminaries 35

2.1 Notation . 36

2.2 Transformations . 37

2.3 Cameras . 43

2.4 Geometry . 46

2.5 Robots . 50

2.6 Physics Simulation . 54

2.7 Deep Learning . 56

3 Object-Level Semantic Mapping for Manipulation 65

3.1 Introduction . 65

3.2 Related Work . 69

3.3 Method . 71

3.4 Experiments . 84

3.5 Conclusion . 91

4 Fine-Grained Manipulation with a Semantic Map 93

6

Contents

4.1 Introduction . 93

4.2 Related Work . 98

4.3 Object-level Semantic Mapping . 98

4.4 Learning Object Extraction . 99

4.5 Experiments . 104

4.6 Conclusion . 114

5 Long-Horizon Manipulation with a Semantic Map 115

5.1 Introduction . 115

5.2 Related Work . 119

5.3 Method . 121

5.4 Experiments . 129

5.5 Conclusion . 133

6 Conclusions and Future Work 137

Bibliography 145

7

List of Tables

List of Tables

2.2 Specs of Realsense D435 . 44

3.1 Baseline Model Results on 6D Pose Estimation 86

3.2 Comparison of Pose Prediction Performance 86

3.3 Effectiveness of Surrounding Information on 6D Pose Estimation 87

4.1 Baseline Comparison of Learned Object Extraction 106

4.2 Quantitative Comparison of Model Ablations 107

4.3 Quantitative Comparison of Real-world Object Extraction 110

5.1 Comparison of Task Completion of Object Reorientation 132

5.2 Comparison of Timings of Object Reorientation 132

8

List of Figures

List of Figures

1.1 The Rise of Vision-based Robotics . 15

1.2 Humanoid Robot Conducting Household Tasks with Semantic Map . . . 20

1.3 Novel Object Grasping with Learned Grasp Point Detection 26

2.1 Transformations in Euclidean Space . 38

2.2 Euler Angles . 39

2.3 Quaternion . 42

2.4 Pinhole Camera Model . 44

2.5 Geometry Representations . 47

2.6 Franka Emika Panda . 51

2.7 Convex Decomposition for Collision Detection 54

2.8 Motion Planning of Collision-free Arm Trajectory 55

2.9 Rendering with a Physics Engine . 56

2.10 Convolutional Layer . 59

3.1 6D pose estimation in Object Piles . 66

3.2 Overview of the 6D Pose Estimation System 68

3.3 Voxel Grids that represent the Surrounding Geometry 75

3.4 Network Architecture for 6D Pose Estimation 76

3.5 Avoiding Local Minima while Training the Pose Prediction Network . . 80

3.6 Pose Prediction Results with Severe Occlusions 84

3.7 Qualitative Comparison of Pose Refinement Methods 87

3.8 Quantitative Comparison of Pose Refinement Methods 88

3.9 Real-time Full Reconstruction of Objects with a Moving Camera 89

9

List of Figures

3.10 Targeted Pick-and-Place Sequence . 90

4.1 Safe Object Extraction with Learned Manipulation Trajectory 95

4.2 System Overview of Learned Object Extraction with Semantic Mapping 97

4.3 Network Architecture for Learning Object Extraction 102

4.4 Qualitative Comparison of Model Variants 108

4.5 Qualitative Comparison of Real-world Object Extraction 110

4.6 Pile Configurations for Real-world Evaluation 111

4.7 Learning-based Motion vs. Heuristic Motion 112

4.8 Adaptation of the Model to Pile Changes 113

5.1 Object Reorientation with Learned Manipulation 116

5.2 System Overview of Specific-posed Object Placement 120

5.3 Learned Selection of Reorientation Poses 126

5.4 Learned Selection of Motion Waypoints 128

5.5 Evaluation Setup of Object Reorientation in Simulation 131

5.6 Qualitative Results of Object Rearrangement in the Real World 134

10

11

List of Figures

12

List of Figures

12

1. Introduction

Chapter 1

Introduction

Contents

1.1 Robotic Manipulation and Visual Perception 12

1.2 Semantic Scene Understanding for Manipulation 16

1.3 Learning and End-to-End Manipulation 23

1.4 Publications . 28

1.5 Thesis Structure . 32

1.1 Robotic Manipulation and Visual Perception

To intelligently interact with environments and achieve useful tasks, robots need

some level of understanding of a scene to plan sensible actions accordingly. Robotic

manipulation, especially, incorporates physical interaction with objects demanding

comprehensive scene understanding compared to other (usually non-physical) in-

teractions such as navigation and communication. Warehouse robots, for example,

need to identify the structure of piled boxes and determine the appropriate order

and motion to unload them based on factors such as the boxes’ mass, orientation

constraints, and inter-box contact and support. Cleaning robots need to identify the

material types of floors and objects to know how they should be cleaned by selecting

suitable detergents, utensils, force, and trajectory. To tidy up a room, robots need

to decide where each object will be stored, and plan an efficient storing procedure

12

1.1. Robotic Manipulation and Visual Perception

using the knowledge of objects’ category and size, usage characteristics, and some

canonical target locations based on the personal preferences of humans.

Robotic manipulation is the capability to interact with objects to change their

position and orientation to achieve goal configurations. This interaction usually

happens via the edge of a robotic arm (i.e., end-effector) conducting motions such

as pushing, grasping, transporting, and placing objects from one place to another.

Today, the greatest successes of manipulation have been in factories for automat-

ing manufacturing processes such as assembly, palletizing, product inspection, etc.

These robots are called industrial robots, and an estimated 2.7 million industrial

robots were operating around the world as of 2020 [IFR, 2020].

The Rise of Manipulation with Vision

The first manipulation robot was developed at Argonne National Laboratory in 1947,

for handling radioactive materials [Goertz, 1952, Goertz, 1964]. This robot did not

have any automation, and was teleoperated by a human operator. The operator’s

motion was replicated with a master-slave system (master: human operator, slave:

robot), and the exerting forces of the robot were given to the human operator as

force feedback.

In the 1950s, the first industrial robot, Unimate, was invented by George De-

vol [Devol, 1961]. Unimate was already in operation in 1961 on a car assembly

line at General Motors, and automated the transportation of die casting from an

assembly line and welding on car bodies, which was a dangerous task for human

workers [CMU, 2003]. As is common in industrial robots even today, Unimate was

designed to do repetitive motions in a manufacturing process given pre-defined ob-

ject locations. Therefore, when this robot was situated in a different environment

or set to do new task, human intervention was required to calibrate and program

motions for adaptation.

To automatically adapt to the variations in a scene, robots need the ability to

perceive the world: to acquire scene representation from sensory inputs. In 1961,

13

1. Introduction

Ernst integrated a touch sensor with a robotic manipulator [Ernst, 1962], which

allowed it to explore a region on a table to localize cubes for grasping and stacking.

Since touch sensors require robots to do interaction before sensing, the operation of

Ernst’s robot was quite slow involving an exhaustive search of the objects.

Vision sensors (i.e., cameras) have always seemed to be a promising alternative

for implementing robotic perception, considering the remarkable ability of humans

to perceive the world with their eyes. Compared to the other sensing abilities of

humans (e.g., touch; sound), visual sensory inputs quickly give rish information

about a large region of a scene from a remote distance and without interaction.

In 1963, Roberts did the pioneering work in visual perception for robots at MIT

Lincoln Laboratory, identifying the 3D locations of plane-faced objects from halftone

images [Roberts, 1963]. His program processed 2D images to detect edge points and

lines, which described objects with a line drawing of polyhedra. This line drawing

was compared to 3D models stored in the program, and the structure of a scene

was recognized when the matching succeeded, identifying the location and geometry

of the objects. This work had a great impact on robotics since 3D information

about objects is crucial for robots to determine interaction points, and this had

been missing in prior 2D image processing and pattern recognition work at that

time.

Inspired by Roberts’ work on 3D vision, several researches tried to integrate it

actually with robotic manipulation [Feldman et al., 1969, Wichman, 1967, Nilsson,

1969]. In 1967, Wichman used a TV camera to detect two cubical blocks on a table

and showed similar capabilities as in the work of Ernst with a touch sensor (block

stacking) [Wichman, 1967]. After stacking the blocks, the robot also used a feedback

loop to improve the alignment of the blocks. By integrating force and vision sensors,

Inoue achieved more complicated manipulations such as peg-in-hole and turning a

crank in 1971 [Inoue, 1971].

Through these initial experiments in vision-based robotic manipulation, it was

learned that real visual data is noisy and the vision algorithms have to deal with

14

1.1. Robotic Manipulation and Visual Perception

this. Even when using simple objects with colors that are distinctive from the

background: e.g., a white cuboid block on a black background shown in Figure 1.1,

the detected edge points could include spurious edges and miss real edges [Shirai,

1987].

(a) Line drawing of a block. (b) A robot inserting a block.

Figure 1.1: A robot inserting a block for assembly with 2D line drawing generated
from a camera image (images are from [Shirai and Inoue, 1973]).

These results encouraged robot vision research to move towards improving al-

gorithms to detect and estimate the pose of more complicated-shaped objects from

noisy sensory inputs. In the early 1980s, it was already possible for industrial robots

to handle overlapping parts in manufacturing using an edge and feature-based vision

systems [Bolles, 1977, Bolles and Cain, 1982].

Although these visual perception systems for manufacturing were quite efficient,

the environments where robots worked had to be heavily controlled. Typically,

the objects presented to a camera had only a single category, the background was

constant, and the camera was fixed; for example, clamps on a belt conveyor with a

top-down camera. The detection area for objects in an image was well-defined (e.g.,

15

1. Introduction

the area of the conveyor belt), and the pose of the objects was well-constrained (e.g.,

stable poses on the conveyor). To work in more general environments to accomplish

general tasks, robots need further intelligence to understand scenes without these

constraints.

1.2 Semantic Scene Understanding for Manipulation

In addition to 3D geometry as discussed in the previous section, semantics are an-

other key aspect of scene understanding giving a high-level knowledge about objects.

During manipulation of objects, robots not only need to know the 3D positions of

an object’s surface where they can interact, but also need to select sensible actions

according to the categories of objects. For example, when a robot is tasked with

storing a clean mug in a cupboard, it needs to know how the mug should be grasped

and placed so that it can accomplish the task as humans would expect. In this mug-

to-cupboard task, humans will probably grasp the mug’s handle or side and place it

in a stable upright orientation. Humans do this very intuitively without seemingly

thinking, but there is deep reasoning behind it: the mug is clean so the rim and

inside should not be touched; the mug can fall from the cupboard, so it should be

placed stably. This reasoning is possible because humans know about mugs and

how they should be treated, and robots also need this high-level knowledge (i.e.,

semantics) to achieve intelligent manipulation.

The Rise of Semantics in Robotics

Semantic scene understanding builds a world model where semantics are associated

with its geometry. The use of semantic world models dates back to the days of

Shakey, the first mobile robot developed at Stanford Research Institute from ap-

proximately 1966 through 1972 [Nilsson, 1984]. Combining research in robotics,

computer vision, and natural language processing, Shakey could perceive scenes,

understand human voice commands, and analyze these commands to execute tasks.

Shakey inspired researchers to work on further development of scene understanding

and navigation for mobile robots with semantics. Flakey, a successor project of

16

1.2. Semantic Scene Understanding for Manipulation

Shakey, reasoned about the beliefs, desires and intentions of users using epistemic

logic [Georgeff and Lansky, 1987]. In 1985, Chatila and Laumond showed automatic

decomposition of a world model into semantic chunks such as rooms, doors, cor-

ridors and obstacles [Chatila and Laumond, 1985]. The world model of rooms was

generated by detecting reference objects using visual and ultrasonic sensors on a

robot called HILARE. Although the level of semantics in [Chatila and Laumond,

1985] was limited to geometrically inferrable properties, its semantic decomposition

of the map allowed some high-level user commands such as “Go to the next room”,

improving human-robot interface. Current applications of this smart navigation can

be seen in human assistant and entertainment prototypes such as smart wheelchairs,

offering seamless navigation towards a goal location by voice commands [Burgard

et al., 1999, Simpson, 2005].

Similarly to navigation, semantics understanding is often incorporated in the task

specification for manipulation: what objects robots should manipulate. There can

be useful robotic tasks that only concern the geometry of objects such as moving a

pile of debris from one place to another. In this case, it might be enough to have only

a geometric 3D understanding of the pile, and the robot will keep scooping objects

up until it finishes. The order of scooping does not matter. However, consider what

happens when this task gets a bit more complicated, with the additional requirement

of separating debris based on material type. This new task requires the robot to

selectively manipulate debris by understanding the materials (i.e., semantic) and

separating them based on that. As seen in this example, semantics added to the task

specification in manipulation can significantly change the actual motions: “move

everything” becomes “separate and move”.

Semantic understanding not only enables more specific task definitions, it also

allows a system to associate extra attributes to the objects detected in a scene. In

the forementioned mug-to-cupboard example, the mug’s attributes can be desired

grasp point (the handle), placement orientation (upright), material (e.g., ceramic

or plastic), mass. This extra information gives robots the possibility to generate

better motions by directly using the attributes (e.g., grasping the desired point;

17

1. Introduction

placing it in the desired orientation); or reasoning from the attributes (e.g., placing

a ceramic mug slowly not to break it). For certain objects, the extra attributes could

be a specific trajectory of motion such as valve rotation or opening a door, enabling

manipulations that are difficult to accomplish otherwise.

After early attempts at navigation with semantics in the late 1980s [Georgeff and

Lansky, 1987, Chatila and Laumond, 1985], there was no significant progress on

the use of semantics due to little interest from industry and navigation research. It

was not until the 2000s that the use of semantic world models acquired more at-

tention from robotic researchers, when life-sized mobile manipulators and humanoid

robots became available. Along with mobility, these robots had all sensors on-board,

notably differentiating themselves from traditional fixed manipulators in industry.

These on-board sensors allow robots to be self-contained and give flexibility to adapt

to different environments without external help of sensors in the environment. This

self-contained ability is crucial for intelligent robots that perform several tasks with

the same hardware.

In the early 2000s, [Petersson et al., 2002] and [Taylor and Kleeman, 2003] integ-

rated vision-based pose estimation with manipulators to show autonomous detection

and grasping of an object on a table. These robots were able to distinguish the target

object from other structures in a scene (e.g., table), and provide semantic attrib-

utes for grasping (i.e., grasp point); however, the demonstrated manipulations were

short-range and limited to a single object, which was not very different from the use

of industrial robots in manufacturing.

Manipulation with a 3D Semantic Map

More comprehensive semantic world models and their applications to manipulation

were seen with a humanoid robot project in Japan in the 2000s. In 1997, the Hu-

manoid Robotics Project (HRP) was launched, aiming at building humanoid robots

to assist in general human activities. This project was lead by Kawasaki Industries

and Hirochika Inoue, who was also leading a research group at the University of

18

1.2. Semantic Scene Understanding for Manipulation

Tokyo. At the start, several Honda P3 robots were bought from Honda Motor,

which were the predecessor of ASIMO created in 2000. In the same year, HRP

launched a customized version of Honda P3 as their first robot, HRP-1, which had

new software system for teleoperation [Hirukawa et al., 2004]. In 2002, the second

generation of HRP, HRP-2 was presented with a newly-designed hardware and soft-

ware system [Hirukawa et al., 2004]. HRP-2 was expected to be a platform for robot-

ics research even after HRP finishes, and its controller system, OpenHRP [Kanehiro

et al., 2002], was designed so that researchers could customize the low-level control

commands, which had not been possible in the Honda P3. Research using HRP-2

was continued at the research group at the University of Tokyo, showing various

task achievements in human’s daily-life activities in the 2000s.

The use of semantic world models for manipulation was heavily explored in this

research group as shown in Figure 1.2. In 2004, Okada et al. presented an integ-

rated software system for HRP-2 [Okada et al., 2004b], which had comprehensive

features for humanoid robot operation such as control, recognition, dialogue, and

planning. One of the significant differences from the original HRP-2 system was that

it had built-in software for 3D modeling [Matsui and Inaba, 1990], with which world

models were created being maintained with perception; from this manipulation mo-

tions were generated being sent to the controller. The capability of this system was

presented in household environments such as a kitchen, showing the manipulation

of various objects including furniture and appliances (e.g., drawers, microwave). To

generate sensible manipulation motions for these various objects, object-specific de-

sired motions were associated to each object in the world model such as the grasp

point and trajectory to open a microwave [Okada et al., 2005]. After developing sev-

eral methods for motion generation based on semantic world models [Okada et al.,

2004a, Okada et al., 2005], they showed various task achievements (e.g., water pour-

ing, dish washing) in a real kitchen environment [Okada et al., 2007] while using

a particle filter to maintain the world model localizing objects and the robot itself

with respect to the model.

After these demonstrations of humanoid robots doing various household tasks,

19

1. Introduction

(a) Kettle detection and pouring.

(b) Tap and water detection for dishwashing.

Figure 1.2: A humanoid robot conducting household tasks using 3D semantic map
and visual perception (images are from [Okada et al., 2005, Okada et al., 2007]).

20

1.2. Semantic Scene Understanding for Manipulation

semantic world models became a standard representation for robots to generate ma-

nipulation motions. Subsequent work enriched the model to have hierarchical scene

structure to work in larger-scale environments [Galindo et al., 2008, Zender et al.,

2008], and expanded attribute information with an automatically built knowledge-

base from the web (e.g., Wikipedia) and human observations [Tenorth et al., 2010].

Along with world representation, research on motion planning in the early 2010s was

also inspired by these demonstrations. OpenRave [Diankov and Kuffner, 2008] auto-

mated trajectory generation and grasp point selection by integrating world models

with collision-based motion planners and grasp synthesis. OMPL [Sucan et al., 2012]

and MoveIt! [Chitta et al., 2012] abstracted the integration of motion planning with

robotic systems using an emerging robotic framework at that time, ROS [Quigley

et al., 2009] developed by Willow Garage.

Despite the variety of manipulation tasks demonstrated in HRP and subsequent

projects, the capability of the vision system to deal with diverse objects and in

cluttered environments was limited. Robots needed to have strong prior knowledge

of the initial state of objects and hardly dealt with occlusions, contact and support

among objects, which are common in cluttered scenes with piles of objects.

Semantic Mapping with Vision

Concurrent with the development of the use of semantic maping in manipulation,

several projects improved visual capability to detect and estimate the pose of ob-

jects [Collet et al., 2009, Collet et al., 2011], demonstrating robotic grasping in a

cluttered table-top environment in the late 2000s to the early 2010s.

To encourage the further development of vision-based object manipulation, a ro-

botic competition, the Amazon Picking Challenge (APC), was first held in 2015 and

continued annually until 2017. Although the task was pick-and-place of known ob-

jects similar to [Collet et al., 2009, Collet et al., 2011], this competition had several

unique challenges; including object diversity and complex configuration. The object

set for the task had different properties, such as texture-rich/less, convex/concave-

21

1. Introduction

shaped, rigid/deformable. Since previous studies on robotic manipulation were

mainly applied to objects with one of these properties (e.g., texture-rich, convex-

shaped, rigid objects in [Collet et al., 2009, Collet et al., 2011]), researchers had to

combine different techniques to recognize all the objects that can appear during the

task [Jonschkowski et al., 2016, Zeng et al., 2017].

The complicated configurations of objects in a scene was also a unique challenge in

APC, introducing inter-object contacts and occlusions. Objects were presented as a

random pile to the robot, and often target objects were overlapped and occluded by

the other distractor objects. In such a situation, robots need deep understanding of

the scene to generate appropriate motions recognizing which objects are overlapping

the target in order to remove them to access the target. Several studies showed

intelligent behavior in complicated piles such as occlusion removal [Schwarz et al.,

2018, Wada et al., 2018]. However, their vision system was often task-specific,

using a fixed top-down camera viewpoint with 2.5D scene understanding, which can

fail to generalize to different tasks or environments that require three-dimensional

understanding of the scene for more general manipulation such as side grasping and

6DoF motions.

As we saw in the previous section, scene representations that are generally useful

for manipulation require properties of 3D and semantics. A promising representation

is object-level semantic map, a world model composed of object models and

their poses, which gives dense geometry and high-level knowledge about objects

for planning manipulation. This representation includes, for example, inter-object

physical relationships such as contact and support, allowing robots to reason about

the causal effect of object configurations to enable high-level motion planning (e.g.,

removing distractors to pick a target object).

Early studies on multi-view semantic mapping emerged in the 2010s, where the

geometry and semantics of objects are accumulated as 3D maps for relatively large-

scale environments (c.f., table-top) using moving cameras. Stuckler and Behnke

showed real-time pose tracking of object models in a scene while building a dense

22

1.3. Learning and End-to-End Manipulation

reconstruction of the background with surfels using an RGB-D camera [Stückler and

Behnke, 2012]. Salas-Moreno et al. showed object-level mapping with joint tracking

of object models and camera poses [Salas-Moreno et al., 2013]. Tateno et al. showed

semantic mapping with a larger number of object models [Tateno et al., 2016].

These studies were later extended to mapping systems without explicit object models

using learned object detection from images. McCormac et al. combined learned 2D

object detection [He et al., 2017] and volumetric reconstruction [Newcombe et al.,

2011] to map objects without pre-defined models [McCormac et al., 2018]. Rünz

et al. [Runz et al., 2018] and Xu et al. [Xu et al., 2019] further extended this

object mapping system to dynamic scenes, where mapped objects can be moved

with human interaction. Note that these researches were generally not applied to

manipulation, usually aiming at room-level scene understanding of large objects.

In this thesis, we aim to build a scene understanding system that is generally useful

in many robotic manipulation tasks. As discussed above, a promising representation

for this purpose is object-level semantic map, a 3D semantic world model composed

of object models giving dense geometry and the high-level knowledge of objects that

is necessary for advanced planning (e.g., removing distractors to pick an occluded

target object). For generality in different environments, we will build a vision system

that acquires this scene understanding using a single RGB-D camera mounted on a

robotic arm. Using the on-board camera, the robot explores and understands a scene

to discover and manipulate target objects to accomplish tasks having generality in

different environments with the same hardware setup. The capability of the vision

system is demonstrated in cluttered piles of objects where heavy occlusions and

inter-object contacts appear.

1.3 Learning and End-to-End Manipulation

With the recent progress in deep neural networks (DNN), increasing robotic research

has worked on learning-based end-to-end manipulation, where robotic actions are

mapped from some inputs with learned parameters. In vision-based manipulation,

23

1. Introduction

the extreme of the end-to-end approach directly generates motions from images:

“pixels to torques”, without building the explicit world models we have seen in the

previous section. This trend began especially after the success of DNN in 2012,

called AlexNet [Krizhevsky et al., 2012], in a large-scale image classification com-

petition, ImageNet [Deng et al., 2009]. This model had a convolutional architecture

represented by convolutional neural networks (CNN) and could extract features from

input images favorably to solve the classification problem. Given a large-scale data-

set of more than 1M images [Deng et al., 2009], the model learned better features

than hand-designed methods, and achieved more accurate classification results. As

neural networks do not have strong constraints on the structure of input-output

pairs, a similar approach could immediately be applied to robotic manipulation by

replacing the classification output with actions such as a grasp point.

Two decades before the rise of DNN, early work in end-to-end control with visual

sensory inputs can be seen in 1989 [Pomerleau, 1989], which showed autonomous

road following by a land vehicle with a system called ALVINN. In this work, the

direction of the vehicle was predicted by a neural network using the road images cap-

tured by a camera and a laser range finder. Unlike traditional neural network-based

controllers at that time, these images were directly fed into the network without any

preprocessing such as extracting a reaching point for controlling manipulator [Hunt

et al., 1992, Bekey and Goldberg, 2012]. Although ALVINN [Pomerleau, 1989]

showed a successful navigation with an end-to-end control, the output was limited

to the 1D space of vehicle direction and was hardly applicable to manipulation,

which requires three-dimensional actions as output.

For robotic manipulation, early studies of end-to-end control from images were

presented in the late 2000s. In 2006, Saxena presented robotic grasping using grasp

points output by a neural network [Saxena et al., 2006, Saxena et al., 2008a, Saxena

et al., 2008b] as shown in Figure 1.3. As the grasp points were predicted directly

from images, the system did not require any explicit models of the objects to be

grasped. To generate the spatial locations of grasp points, Saxena treated this

problem as pixel detection similar to other object detection problems such as face

24

1.3. Learning and End-to-End Manipulation

detection [Rowley et al., 1998]. The detected grasp points were mapped into 3D

space with stereopsis, and a motion planner was used to generate trajectories for

reaching and grasping. To train the neural network, either annotations on real

images or synthetic data of object models with grasp point annotations was used.

This neural network-based grasp point detection was extended using DNN, as its

first application to robotic manipulation. In 2013, Lenz et al. showed an extension

of this grasp detection model using deep neural networks to learn better feature

extraction, enabling generalization to more diverse objects [Lenz et al., 2013]. The

whole scheme of the robotic system was the same to the previous work [Saxena

et al., 2008b], combining discrete detection of grasp points and continuous trajectory

generation with motion planning.

Later, visual end-to-end manipulation was also applied to continuous motion gen-

eration. In 2016, Levine et al. showed direct mapping of image inputs to joint torque

actions [Levine et al., 2016], achieving various contact-rich manipulation tasks such

as inserting a block into a shape sorting cube, screwing a cap onto a bottle, etc.

Unlike the previous work on grasp detection, this work did not have any extra com-

ponents for motion generation such as inverse kinematics, trajectory planner and

joint position controller (which maps a trajectory to toques). This work was one

of the earliest examples of a pure end-to-end manipulation system, which does not

have any non-learnable components between sensor inputs and motor commands.

Despite this successful demonstration of manipulation in various tasks, pure end-

to-end robot control [Levine et al., 2016] required human demonstrations to pre-train

the continuous motion trajectory. In most of their demonstrations, the actual main

challenge of manipulation must be torque control in contact-rich interaction for box

insertion and cup screwing. However, even learning reaching motions from the initial

state, which should be easily solvable with traditional trajectory generators, required

numerous time-consuming human demonstrations (∼100 trials). This challenge in

end-to-end manipulation also appeared in discrete grasp detection [Lenz et al., 2013]

requiring human annotation of successful grasps. Subsequent studies worked on

25

1. Introduction

(a) Grasp point detection on dishwasher. (b) Dish unloading.

(c) Various object grasping trained with synthetic data.

Figure 1.3: A robot grasping novel objects via learning-based 2D grasp point detec-
tion (images are from [Saxena et al., 2006]).

26

1.3. Learning and End-to-End Manipulation

reducing this burden of trajectory annotation by either self-supervision or learning-

in-simulation.

With self-supervision, robots can learn motions from automatically collectable

data. In 2015, Pinto and Gupta trained a discrete grasp point detection model

using only the grasping experiences collected by robots themselves [Pinto and Gupta,

2016]. Similarly, using self-supervised grasping data collection, in 2016 Levine et al.

showed continuous grasping motions by predicting the next end-effector transition

as the network output. This work was further extended with reinforcement learning

to have more long-horizon motion optimization such as pushing neighboring objects

to grasp an object [Levine et al., 2018, Kalashnikov et al., 2018, Devin et al., 2018].

With learning-in-simulation, robots can learn image-to-action mappings with scrip-

ted motion demonstrations as an alternative to human trajectory demonstrations

in the real world. With training purely in simulation, in 2016 Johns et al. showed

grasping isolated objects on a table using depth images [Johns et al., 2016], and

in 2017 [Tobin et al., 2017, James et al., 2017] showed pick-and-place of objects

using RGB images only. These methods trained network models with various image

augmentations in simulation, to make them robust to the differences in the visual

appearance of objects between simulation and the real world.

Although these studies have made some end-to-end manipulation tasks practicable

and showed a network’s implicit understanding of an object’s semantics, shape, and

graspability, the demonstrated manipulations were still limited to quite short-term

task horizons. Even in the heavily tackled robotic pick-and-place tasks [Pinto and

Gupta, 2016, Levine et al., 2018], robots were often specialized only in grasping

objects, placement was simplified (e.g., randomly dropping into a bin), and the

vision sensors were fixed in the scene. To complete more long-horizon tasks including

navigation and regrasping, robots need more comprehensive scene understanding,

which have not yet been proven possible in these studies on end-to-end manipulation.

In this thesis, we aim to build a robotic system that is able to accomplish long-

horizon and challenging manipulation tasks with a universal intelligence across scene

27

1. Introduction

and task variations. For this goal, we avoid taking a full end-to-end approach to ma-

nipulation, and instead, combine explicit scene understanding using a 3D semantic

map with learning-based manipulation. As we have seen in the use of semantic world

models in the Humanoid Robotics Project (§1.2), capable and intelligent object ma-

nipulation requires significant high-level knowledge about objects (e.g., grasp points,

manipulation trajectories), to which a semantic map hugely contributes. In past re-

searches, this knowledge has mainly been acquired via hand-designed labeling or

analysis [Okada et al., 2007, Diankov and Kuffner, 2008], which is often suboptimal

or time-consuming. Learning-based manipulation has the potential to resolve these

limitations by acquiring optimal motions from data and experience. Exploiting the

potential of the learning-based approach and the rich information of semantic maps,

we show intelligent robotic manipulation that has long-horizon applicability.

1.4 Publications

The contributions made in this thesis have resulted in three main publications.

Paper I: Real-time Semantic Mapping with Object Models

Wada, K., Sucar, E., James, S., Lenton, D. and Davison, A. J. (2020), MoreFusion:

Multi-object Reasoning for 6D Pose Estimation from Volumetric Fusion.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). [Wada et al., 2020].

Project page: https://morefusion.wkentaro.com

Video: https://youtu.be/6oLUhuZL4ko

Code: https://github.com/wkentaro/morefusion

This paper introduces MoreFusion, a vision system that builds object-level se-

mantic map, a world model built from an on-board RGB-D camera. As discussed in

§1.2, an object-level semantic map is a representation that can be generally useful

in different manipulation tasks, giving dense geometric information and high-level

knowledge about objects. To build a map that has both semantically and geomet-

28

https://morefusion.wkentaro.com
https://youtu.be/6oLUhuZL4ko
https://github.com/wkentaro/morefusion

1.4. Publications

rically rich information, we represent the map as a composition of known object

models, which represents the full geometry of objects being pre-built with scanning

or modeling. For these object models, the vision system estimates their position

and orientation in a scene (pose estimation) while a moving camera observes the

scene by capturing RGB-D image sequences. Along with pose estimation, this sys-

tem also does object tracking and dense mapping of background objects. Object

tracking allows the system to accumulate information about the same objects and

avoid duplication. Background reconstruction gives the geometry of unseen objects

that do not have associated pre-built models, and can be used for motion planning

such as generating collision-free trajectories.

To achieve all the requirements of the system, we combine 6D pose estimation with

volumetric mapping, which has been previously separated. This integration allows

us to take a novel approach to pose estimation by exploiting information from multi-

view observations accumulated with volumetric mapping. Our system estimates an

object’s pose using the surrounding geometric reconstruction (e.g., occupied; free

space) extracted from the volumetric map, and this allows the system to reason

about feasible configurations of objects, avoiding intersections between objects and

free spaces. This feasibility check of neighboring objects’ collisions is crucial for pose

estimation of partially observable objects in cluttered environments. We test this

system in object piles in the real-world, and show pick-and-place of target objects

under challenging conditions such as close contacts and heavy occlusion.

MoreFusion will be discribed in detail in Chapter 3.

Paper II: Fine-Grained Manipulation with a Semantic Map

Wada, K., James, S. and Davison, A. J. (2022), SafePicking: Learning Safe

Object Extraction via Object-Level Mapping. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA). [Wada et al., 2022b].

Project page: https://safepicking.wkentaro.com

Video: https://youtu.be/ejjqiBqRRKo

29

https://safepicking.wkentaro.com
https://youtu.be/ejjqiBqRRKo

1. Introduction

Code: https://github.com/wkentaro/safepicking

This paper explores the integration of a semantic map with learning of short-

horizon manipulation, with the specific manipulation goal of efficient and safe ex-

traction of target objects from a pile. When robots must pick a specific object

from a pile, it is often the case that the target object is overlapped and blocked

by distractor objects. In this case, robots can either move the distractors away or

carefully extract the target object to avoid task failure and undesirable consequences

(e.g., dropping the grasped object; damaging the distractor objects). When there

are many distractor objects, object extraction is the more efficient strategy. This

maneuver, however, requires appropriate reasoning about how manipulation mo-

tions affect the surrounding objects’ motions during and after the extraction, which

is challenging even with holistic knowledge about the scene with the semantic map

created by systems like MoreFusion. As discussed in §1.3, learning-based manip-

ulation has the potential to generate optimal motions that hand-designed motion

planning algorithms are unable to accomplish.

We use the capability of learning a model to generate efficient and safe object

extraction from a pile. Although recent work on learning-based manipulation often

works on learning from raw observations (e.g., images) [Levine et al., 2018, Kalash-

nikov et al., 2018], we train the model using a semantic map to maintain the integ-

ration to other capabilities (e.g., exploration of the target object with multi-view

observation of a moving camera). The model receives as input the semantic map

in the vector forms of object categories and poses, and is trained to generate the

object extraction trajectory that least affects the other objects in the pile. We use

the translation of surrounding objects as a safety metric and train the model in

simulation with reinforcement learning using the safety metric as a reward. We

test the system in both simulation and the real world, and show the successful safe

extraction of target objects from a pile.

This system will be described in detail in Chapter 4.

30

https://github.com/wkentaro/safepicking

1.4. Publications

Paper III: Long-Horizon Manipulation with a Semantic Map

Wada, K., James, S. and Davison, A. J. (2022), ReorientBot: Learning Object

Reorientation for Specific-Posed Placement. In Proceedings of the IEEE In-

ternational Conference on Robotics and Automation (ICRA). [Wada et al., 2022a].

Project page: https://reorientbot.wkentaro.com

Video: https://youtu.be/ahWN84sWWJU

Code: https://github.com/wkentaro/reorientbot

This paper explores the integration of a semantic map with learning of long-

horizon manipulation, with the specific manipulation task of creating certain config-

urations of objects with specific-posed placement. When robots must place objects

in a specific pose, it is often the case that they cannot immediately place the grasped

object because of the constrained space at the final placement location. This requires

regrasping at certain points that enable the final placement. This pipeline requires

long-horizon planning of how the grasped object has to be oriented and released to

enable regrasping. As discussed in §1.3, learning-based manipulation often struggles

to achieve such long-horizon tasks that includes several subtasks (e.g., grasping,

reorientation, regrasping, placement). This time-horizon difference is one of the

significant differences from Paper II.

In this paper, the model learns only the key motions for the manipulation task,

instead of learning to generate a fine-grained trajectory as in Paper II. In the task

of specific-posed object placement, the key motions are two-fold: initial grasping

and reorientation (placement for regrasping). With a pile of objects, initial grasping

must be collision-free (i.e., valid) not only during grasping in the pile, but also

during the maneuvers of reorientation. Reorientation has to expose the target

grasp points that enable final placement, while keeping the validity of the initial

grasp. These two key motions require a combinatoric search of possible actions:

(number of grasp points) × (number of reorientation poses), a search which is

infeasible to run in real time with exhaustive search. We use learned models that re-

31

https://reorientbot.wkentaro.com
https://youtu.be/ahWN84sWWJU
https://github.com/wkentaro/reorientbot

1. Introduction

ceive object poses as input similar to Paper II, and evaluate the possible motions to

select the best. We test the system in both simulation and the real world, and show

successful motion generations in long-horizon tasks of specific-posed placement.

This system will be described in detail in Chapter 5.

Additional Papers

While not described directly, the following publications were done in conjunction

with this thesis:

• Sucar, E., Wada, K. and Davison, A. J. (2020), Neural Object Descriptors

for Multi-View Shape Reconstruction. In Proceedings of the Interna-

tional Conference on 3D Vision (3DV). [Sucar et al., 2020].

Project page: https://edgarsucar.github.io/NodeSLAM

Video: https://youtu.be/zPzMtXU-0JE

• James, S., Wada, K, Laidlow, T. and Davison, A. J. (2021), Coarse-to-Fine

Q-attention: Efficient Learning for Visual Robotic Manipulation via

Discretisation. Under Review and Submitted to Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). [James

et al., 2021a].

Project page: https://sites.google.com/view/c2f-q-attention

Code: https://github.com/stepjam/ARM

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation, robot hardware and planning, simulation

platform, and provides a primer on 3D mapping (transformations, cameras, geo-

metry) and deep learning.

32

https://edgarsucar.github.io/NodeSLAM
https://youtu.be/zPzMtXU-0JE
https://sites.google.com/view/c2f-q-attention
https://github.com/stepjam/ARM

1.5. Thesis Structure

Chapter 3 presents MoreFusion, a real-time system that build a semantic map

of a scene with object models. This system combines object-level volumetric recon-

struction and pose estimation, where objects are detected from 2D images, recon-

structed as volume with depth images, and replaced by a pre-built object model

with a confident pose estimate.

Chapter 4 introduces learning-based manipulation for fine-grained motions into

a robotic system with semantic mapping. This integration is explored with the task

of extracting target objects from a pile, where a learned model receives a semantic

map and a heightmap as input to generate 6DoF trajectories for extraction with

minimal undesirable effects on the non-target objects.

Chapter 5 explores the integration of learning-based manipulation with semantic

mapping in long-horizon tasks. This integration is presented with the task of placing

objects in specific poses, where a learned model evaluates numerous samples of coarse

key motions to allow the system to select the best ones to find optimal motions for

grasping, reorientation, regrasping and final placement.

Chapter 6 concludes the thesis with a discussion of the research presented and

suggestions for future work.

33

1. Introduction

34

Chapter 2

Preliminaries

Contents

2.1 Notation . 36

2.2 Transformations . 37

2.2.1 Homogeneous Transformations 37

2.2.2 Euler Angles . 39

2.2.3 Quaternion . 41

2.3 Cameras . 43

2.3.1 Sensor Device . 43

2.3.2 Pinhole Camera Model 43

2.4 Geometry . 46

2.5 Robots . 50

2.5.1 Manipulator: Franka Emika Panda 50

2.5.2 Forward Kinematics . 51

2.5.3 Inverse Kinematics . 52

2.6 Physics Simulation . 54

2.7 Deep Learning . 56

2.7.1 Fully-Connected Layer 56

2.7.2 Convolutional Layer . 58

2.7.3 Gradient-based Optimization 61

35

2. Preliminaries

2.1 Notation

This thesis makes use of the following notation:

𝑎 This font is used for scalars.

a This font is used for 𝑀-dimensional column vectors, where 𝑎𝑖 is the 𝑖th

element of the vector:

a =



𝑎1

𝑎2
...

𝑎𝑀



, a
⊺
=

[
𝑎1 𝑎2 . . . 𝑎𝑀

]
. (2.1)

A This font is for 𝑀 × 𝑁-dimensional matrices, where 𝑎𝑖 𝑗 is the matrix

element at the 𝑖th row and 𝑗
th column:

A =



𝑎11 𝑎12 . . . 𝑎1𝑁

𝑎21 𝑎22 . . . 𝑎2𝑁
...

...
. . .

...

𝑎𝑀1 𝑎𝑀2 . . . 𝑎𝑀𝑁



. (2.2)

a This font is used for the homogeneous coordinate vector corresponding

to the coordinate vector a:

a =



a

1


. (2.3)

I This represents the identity matrix.

O This represents the zero matrix.

36

2.2. Transformations

(·)× This denotes the cross-product operator that produces a skew-

symmetric matrix from a 3-dimensional vector, such that a × b = a
×

b:

a
×
=



𝑎1

𝑎2

𝑎3



×

=



0 −𝑎3 𝑎2

𝑎3 0 −𝑎1
−𝑎2 𝑎1 0



. (2.4)

2.2 Transformations

2.2.1 Homogeneous Transformations

We use rigid transformations between coordinate frames F−→ in three-dimensional

Euclidean space 𝑓 : R3 → R3 to represent the pose of a robot, a camera and objects

in a scene. Between two arbitrary coordinate frames, as in Figure 2.1, F−→𝑎 and F−→𝑏,

rigid transformations are defined as composite of a translation t𝑏𝑎 and rotation R𝑏𝑎,

T𝑏𝑎, which is in the special Euclidean group, 𝑆𝐸 (3):

𝑆𝐸 (3) ,



T𝑏𝑎 =



R𝑏𝑎 t𝑏𝑎

0 0 0 1


| R𝑏𝑎 ∈ 𝑆𝑂 (3), t𝑏𝑎 ∈ R3



, (2.5)

and the rotation R𝑏𝑎 is in the group of special orthogonal matrices, 𝑆𝑂 (3):

𝑆𝑂 (3) ,
{
R𝑏𝑎 ∈ R

3×3 | R
⊺

𝑏𝑎
R𝑏𝑎 = I, 𝑑𝑒𝑡 (R𝑏𝑎) = 1

}
(2.6)

This transformation matrix, T𝑏𝑎, transforms a point x𝑎 ∈ R3 in coordinate frame

F−→𝑎 into another coordinate frame F𝑏−→
:

x𝑏 = T𝑏𝑎x𝑎, (2.7)

where x ≔ [x
1] ∈ R4 represents the homogeneous point that enables the multiplica-

tion with the 4×4 transformation matrix (i.e., homogeneous transformation matrix).

This operation using homogeneous point representation is equivalent to the following

operation with rotation matrix and translation extracted from the transformation

37

2. Preliminaries

A point

Figure 2.1: Transformations between 2 coordinate frame: F−→𝑎, F−→𝑏.

matrix:

x𝑏 ≔



x𝑏

1


=



R𝑏𝑎x𝑎 + t𝑏𝑎

1


. (2.8)

Homogeneous operation allows us to chain transformations of points with simple

matrix multiplications given another frame F−→𝑐 :

x𝑐 = T𝑐𝑎x𝑎 = T𝑐𝑏T𝑏𝑎x𝑎, (2.9)

which is particularly useful when there are a number of coordinate frames in the sys-

tem such as a robot, gripper, camera, and objects. The inverse of the transformation

matrix, T
−1
𝑏𝑎 is:

T
−1
𝑏𝑎 ≔



R𝑏𝑎 t𝑏𝑎

0 0 0 1



−1

=



R
⊺

𝑏𝑎
−R
⊺

𝑏𝑎
t𝑏𝑎

0 0 0 1


=



R𝑎𝑏 t𝑎𝑏

0 0 0 1


= T𝑎𝑏 (2.10)

giving T𝑎𝑏, which is the inverse transformation of T𝑏𝑎.

38

2.2. Transformations

2.2.2 Euler Angles

Euler angles are another common parameterization of rotation alternative to rota-

tion matrix. While the rotation matrix representation in the previous section has 9

parameters: R ∈ R3×3, Euler angles describe rotation with only 3 parameters: yaw

(𝜃𝑧), pitch (𝜃𝑦), and roll (𝜃𝑥).

Geometrically, Euler angles represent rotation angles along the XYZ axes respect-

ively as in Figure 2.2. A full rotation is represented as a sequence of three individual

rotations around different axes, whose order matters to represent unique rotations.

A commonly used order in robotics is YPR-modified : yaw around the Z axis, then

pitch around the modified Y axis, then roll around the modified X axis. When ro-

tating around a modified axis, the new axis direction is used as the previous rotation

changes the direction of the original axes. It has been shown that this YPR-modified

is equivalent to the inverse order with unmodified axes: RPY-unmodified, which is

also commonly used in robotics.

Angle indicates
positive direction

Yaw

Pitch

Roll

Z

X

Y

Figure 2.2: Euler angles define rotations with angles around the XYZ axes.

39

2. Preliminaries

Each axis-aligned rotation of Euler angles can be represented as a rotation matrix:

R(𝜃𝑧) =



cos 𝜃𝑧 − sin 𝜃𝑧 0

sin 𝜃𝑧 cos 𝜃𝑧 0

0 0 1



, (2.11)

R(𝜃𝑦) =



cos 𝜃𝑦 0 sin 𝜃𝑦

0 1 0

− sin 𝜃𝑦 0 cos 𝜃𝑦



, (2.12)

R(𝜃𝑥) =



1 0 0

0 cos 𝜃𝑥 − sin 𝜃𝑥

0 sin 𝜃𝑥 cos 𝜃𝑥



. (2.13)

The overall rotation R can be computed as the matrix multiplications of these ro-

tation matrices:

R = R(𝜃𝑧)R(𝜃𝑦)R(𝜃𝑥), (2.14)

which represents the operations in the order of RPY-unmodified : right-to-left, R(𝜃𝑥),

then R(𝜃𝑦), then R(𝜃𝑧).

Euler angle gives the most compact representation of rotation with only 3 para-

meters that is also intuitively understandable (rotation angles around the axes);

however, it has a critical disadvantage that makes it unsuitable for some applica-

tions. With Euler angles, there are cases where a unique Euler angle cannot be

defined for a given 3D rotation. When pitch (𝜃𝑦) approaches ±90◦, a change in roll

becomes a change in yaw (degenerate case). This means these rotations can all be

represented by either the angles of yaw or roll, and there is no unique correspond-

ence to the Euler angles representation. This non-uniqueness can be critical in some

applications, such as pose prediction by a neural network, where we need another

representation of rotation.

Inverse mapping from a rotation matrix to Euler angles is given as follows: Using

the elements of rotation matrix R = [𝑟𝑖 𝑗] ∈ R3×3, pitch 𝜃𝑦 can be computed:

𝜃𝑦 = 𝑎𝑡𝑎𝑛2(−𝑟31,
√︃
𝑟
2
11 + 𝑟221). (2.15)

40

2.2. Transformations

Depending on the value of pitch 𝜃𝑦, yaw 𝜃𝑧 and roll 𝜃𝑥 are computed as:

𝜃𝑦 = −90◦ →



𝜃𝑧 = 𝑎𝑡𝑎𝑛2(−𝑟23,−𝑟13)

𝜃𝑥 = 0
(2.16)

𝜃𝑦 ≠ ±90◦ →



𝜃𝑧 = 𝑎𝑡𝑎𝑛2(𝑟21, 𝑟11)

𝜃𝑥 = 𝑎𝑡𝑎𝑛2(𝑟32, 𝑟33)
(2.17)

𝜃𝑦 = 90◦ →



𝜃𝑧 = 𝑎𝑡𝑎𝑛2(𝑟23, 𝑟13)

𝜃𝑥 = 0
(2.18)

handling the degenerate cases.

In this thesis, we use Euler angles to represent the relative robots’ end-effector

motions. In Chapter 4, we train a motion model that generates the 6DoF trajectory

to extract objects from a pile. The waypoints of this trajectory are generated as rel-

ative motions from the previous waypoint. We use Euler angles to uniformly sample

rotations along each XYZ axis with small angles, where Euler angles’ degenerate

cases do not happen.

2.2.3 Quaternion

Quaternion is another common parameterization of rotation. Similarly to Euler

angles, a quaternion describes rotation with fewer parameters than a rotation matrix:

4 parameters 𝑞𝑤 , 𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 :

q =

[
𝑞𝑤 𝑞𝑥 𝑞𝑦 𝑞𝑧

]⊺
(2.19)

where q ∈ R4 is a unit vector: |q| | = 1.

A quaternion can be interpreted as an angle-axis representation, a rotation of 𝛼 ∈

R radians around the axis defined by unit vector u =

[
𝑢𝑥 𝑢𝑦 𝑢𝑧

]⊺ ∝
[
𝑞𝑥 𝑞𝑦 𝑞𝑧

]⊺
:

𝑞𝑤 = cos
𝛼

2
(2.20)

[
𝑞𝑥 𝑞𝑦 𝑞𝑧

]⊺
= sin

𝛼

2

[
𝑢𝑥 𝑢𝑦 𝑢𝑧

]⊺
. (2.21)

Figure 2.3 depicts this interpretation of a quaternion in three-dimensional space.

41

2. Preliminaries

Z

X

Y

Angle indicates
positive direction

Figure 2.3: A quaternion defines rotations with angle rotation around an axis.

A rotation matrix R can be computed from quaternion q as the following:

R(q) =



1 − 2(𝑞2𝑦 + 𝑞2𝑧) 2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑧) 2(𝑞𝑧𝑞𝑥 + 𝑞𝑤𝑞𝑦)

2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧) 1 − 2(𝑞2𝑥 + 𝑞2𝑧) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)

2(𝑞𝑧𝑞𝑥 − 𝑞𝑤𝑞𝑦) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑤𝑞𝑥) 1 − 2(𝑞2𝑥 + 𝑞2𝑦)



, (2.22)

giving unique rotation matrix from a quaternion.

In the inverse mapping, a quaternion is extracted from a rotation matrix with an

algorithm proposed by [Bar-Itzhack, 2000]. Given a rotation matrix R = [𝑟𝑖 𝑗], this

algorithm first forms a matrix K as follows:

𝐾 =
1

3



𝑟11 − 𝑟22 − 𝑟33 𝑟21 + 𝑟12 𝑟31 + 𝑟13 𝑟23 − 𝑟32
𝑟21 + 𝑟12 𝑟22 − 𝑟11 − 𝑟33 𝑟32 + 𝑟23 𝑟31 − 𝑟13
𝑟31 + 𝑟13 𝑟32 + 𝑟23 𝑟33 − 𝑟11 − 𝑟22 𝑟12 − 𝑟21
𝑟23 − 𝑟32 𝑟31 − 𝑟13 𝑟12 − 𝑟21 𝑟11 + 𝑟22 + 𝑟33



. (2.23)

A quaternion is given by computing the eigenvector v that corresponds to the largest

eigenvalue of this matrix K. Though this computation gives 2 solutions of qua-

ternions that represents the same rotation matrix: v/| |v| |,−v/| |v| |, we can keep

42

2.3. Cameras

uniqueness by making the sign of 𝑣0 be always positive:

q = sign(𝑣0)
v

| |v| | . (2.24)

This thesis thoroughly uses quaternions to represent the 6D poses of robots, ob-

jects and cameras, as compact and unique representation of rotations giving one-to-

one mapping with rotation matrix.

2.3 Cameras

2.3.1 Sensor Device

The systems built in this thesis use RGB and depth images captured from an RGB-D

camera. We specifically use the Realsense D435 camera [Keselman et al., 2017] in our

real-world experiments, which captures depth using IR projection and stereoscopic

with two IR receivers.

Table 2.2 shows the specifications of the camera provided by the manufacturer1.

Although this camera can capture higher resolution images at higher frequency,

we use 640×480 at 30 fps for both RGB and depth images to save computational

resources for processing the captured images in vision pipelines. These RGB and

depth images are synchronized and registered before use by the algorithms in our

system. In this registration process, depth images are aligned with the RGB image

captured at the same time-stamp, so that the depth value for each pixel of the RGB

image is associated and can be acquired. In the experiments in this thesis, we use

the camera parameters that are hard-coded on the device for this registration.

2.3.2 Pinhole Camera Model

We use the standard pinhole camera model (Figure 2.4) to model RGB-D cameras.

The pinhole camera model describes the relation between 3D points in Euclidean

space and their projection onto the image plane of a camera. With an ideal pinhole

1
https://www.intelrealsense.com/depth-camera-d435/

43

https://www.intelrealsense.com/depth-camera-d435/

2. Preliminaries

Table 2.2: Specs of Realsense D435

RGB

Maximum resolution 1920 × 1080
Field of view 69◦ × 42◦

Maximum frame rate 30 fps
Sensor technology Rolling shutter

Depth

Maximum resolution 1280 × 720
Field of view 87◦ × 58◦

Maximum frame rate 90 fps
Minimum distance ∼ 28cm

Depth accuracy <2% at 2m

camera, the camera aperture is represented as a point and no lenses are used to

focus light, which simplifies the modeling, e.g., geometric distortions, blurriness of

unfocused objects.

Figure 2.4: Pinhole camera model defines the projection of a 3D point p ∈ R3 to
the point on the 2D image plane p

′ ∈ R3, u ∈ R2.

The coordinate frame of the camera F−→𝑐 is defined with XYZ axes [𝑋𝑐 𝑌𝑐 𝑍𝑐].

We set 𝑍𝑐 to face towards the image plane defining the perpendicular axis (principal

axis) and its crossing point with the plane (principal point). Pixel coordinates are

defined on the image plane with [𝑢1 𝑢2], which are parallel to the XY coordinates

44

2.3. Cameras

of the camera frame: [𝑋𝑐 𝑌𝑐].

Let p = [𝑥 𝑦 𝑧]⊺ be a point in the 3D Euclidean space that is visible to the

pinhole camera. This point is projected onto the image plane resulting in 2D pixel

coordinates u. To project the 3D point p onto the image plane as the pixel point

u, p is firstly projected into the image plane: p
′. Using the distance between the

pinhole and principal point, the focal length 𝑓 , p
′ can be described by p = [𝑥 𝑦 𝑧]⊺:

p
′
=



𝑓 𝑥
𝑧

𝑓
𝑦

𝑧

𝑓



= 𝑓



𝑥
𝑧

𝑦

𝑧

1



= 𝑓 p̃ (2.25)

This projected point p
′ is then mapped to pixel coordinates:

u =



𝑓 𝑘 𝑥
𝑧
+ 𝑐𝑥

𝑓 𝑙
𝑦

𝑧
+ 𝑐𝑦


=



𝑓𝑥
𝑥
𝑧
+ 𝑐𝑥

𝑓𝑦
𝑦

𝑧
+ 𝑐𝑦


. (2.26)

Here, 𝑘, 𝑙 denote the scaling between the metric (p) and pixel (u) spaces, accom-

modating the change of unit: meter to pixel, and 𝑐𝑥 , 𝑐𝑦 represent the offsets of the

point in image coordinate space (as it is often the case, we use the origin of the

image coordinate (0, 0) as the left-top corner instead of the center). By definition,

(𝑐𝑥 , 𝑐𝑦) also describes the pixel coordinates of the principal point.

The computation of the 2D pixel point u from the 3D point p can be also described

only with matrix multiplication. Using homogeneous coordinates of u, the mapping

can be denoted:

u =



𝑓𝑥
𝑥
𝑧
+ 𝑐𝑥

𝑓𝑦
𝑦

𝑧
+ 𝑐𝑦

1



=



𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1





𝑥
𝑧

𝑦

𝑧

1



= Kp̃. (2.27)

The four parameters 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , 𝑐𝑦 are called the camera intrinsic parameters and

their combined matrix K is called camera intrinsic matrix.

The perspective projection defined above is not invertible as it collapses the z-

dimension while converting a 3D point to 2D (i.e., all points on the same ray pro-

jected from 3D space end up at the same 2D point). However, given the depth map

45

2. Preliminaries

of the 2D image denoted D(u) = 𝑧, the collapsed z-dimension is recovered to invert

the projection function:

D(u)K−1
u = 𝑧



1
𝑓𝑥

0 − 𝑐𝑥
𝑓𝑥

0 1
𝑓𝑦

− 𝑐𝑦
𝑓𝑦

0 0 1





𝑓𝑥
𝑥
𝑧
+ 𝑐𝑥

𝑓𝑦
𝑦

𝑧
+ 𝑐𝑦

1



= 𝑧



𝑥
𝑧

𝑦

𝑧

1



=



𝑥

𝑦

𝑧



= p. (2.28)

2.4 Geometry

This thesis aims at building a 3D semantic maps of scenes, and the representation

of 3D geometry crucially affects the performance and flexibility of map building and

its utilization. In this section, we describe the 3 major representations we use: point

cloud, occupancy voxel grid, and mesh (Figure 2.5).

A point cloud is a set of 3D points p𝑖 ∈ 𝑃, whose positions are represented with

Cartesian coordinates:

pi = [𝑥𝑖 𝑦𝑖 𝑧𝑖]⊺ (2.29)

Each point represents a point on the surface of an object, such as captured by

depth sensors (e.g., depth camera; LIDAR) in real scenes or generated from 3D

models in software. The point cloud example in Figure 2.5 shows the points sampled

from the original bunny-shaped mesh model. Even though there are gaps between

points, it represents the overall structure of the bunny model when visualized. Extra

information such as color, label, or probability can be associated with each point to

represent, for example, colored geometries captured with RGB-D sensors or point

segmentations with semantic labels.

An occupancy voxel grid is a 3D tensor V = [𝑣𝑘𝑙𝑚] composed of constant-sized

cubes (voxels). Each voxel stores a binary or real value representing the existence of

objects (occupancy). The voxel grid example in Figure 2.5 shows a visualization of

the voxels occupied by the bunny model in the grid. Compared to the point cloud

representation, there are no longer holes on the surface; however, the fine-detailed

surface of the original mesh is lost, while being kept to some extent by the point

cloud representation. To update or query the value of each voxel, each 3D position

46

2.4. Geometry

(a) Point Cloud (b) Occupancy Voxel Grid

(c) Mesh

Figure 2.5: Different representations of 3D geometry.

in Cartesian space p𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]⊺ is mapped into voxel coordinates (index of the

matrix), keeping the spatial consistency. Using the voxel size 𝑠 and grid origin

coordinate p
𝑜
= [𝑥𝑜 𝑦

𝑜
𝑧
𝑜]⊺, the corresponding voxel coordinate l𝑖 is computed:

l𝑖 =



𝑥𝑖−𝑥𝑜
𝑠

𝑦𝑖−𝑦𝑜
𝑠

𝑧𝑖−𝑧𝑜
𝑠



=
p𝑖 − p

𝑜

𝑠
∈ R3. (2.30)

From these voxel coordinates of real-valued indices, integer indices are acquired as:

[𝑘 𝑙 𝑚]⊺ = ⌊l𝑖⌉ ∈ N3
, (2.31)

where ⌊𝑥⌉ describes rounding of a real value into an integer. As in the to point cloud

47

2. Preliminaries

representation, each voxel can store extra information such as colors and semantics

with the occupancy voxel grid representation.

A mesh is composed of a set of 3D points (vertices) and the connectivity, which

defines a set of planes (faces) that represents the surface of the object. Let p𝑖 ∈ 𝑃

be vertices and f 𝑗 ∈ 𝐹 be faces. Vertices are defined as Cartesian coordinates and

faces are defined as 3 indices of vertices to define the triangles (face shapes can be

any polygons, but we exclusively use triangle polygons in this thesis):

p𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]⊺, (2.32)

f𝑖 = [𝑘 𝑙 𝑚]⊺, 𝑘, 𝑙, 𝑚 = 1 . . . |𝑃 |. (2.33)

The order of indices in f𝑖 (clockwise, anti-clockwise) represents the front/back iden-

tity of the faces, and we follow the popular convention of 3D rendering software such

as OpenGL, which treats anti-clockwise polygons as front-facing. The vertices of a

mesh are similar to a point cloud representing 3D points on the surface of objects.

The triangle faces fill the gaps between points that point cloud representations have.

The mesh example in Figure 2.5 shows that clear definition of surfaces without see-

ing through the back surface (cf. point cloud) and fine-detailed surface geometry

(cf. occupancy voxel grid).

As seen in the above, a point cloud and mesh are similar in representation, and we

can see mesh representation as an upgrade of a point cloud by defining faces filling

the gap among points. In our system, a point cloud is exclusively used for processing

depth images after being captured by depth sensors. Once a mesh representation is

acquired from the point cloud observation of a scene, we no longer convert the mesh

model back into a point cloud.

Compared to the point cloud and mesh representations, an occupancy voxel grid

has different properties. Whereas a point cloud and mesh represent only data on

the surface (points and faces), an occupancy voxel grid also contains values inside

and outside the objects: inside is occupied 𝑣𝑖 𝑗𝑘 = 1, outside is unoccupied 𝑣𝑖 𝑗𝑘 = 0.

The actual surface of the object is defined as the boundary of these inside-outside

48

2.4. Geometry

values, typically as 0.5. This means that the surface is defined with the following

implicit equation f(x) = 0:

V(l𝑖) = V(p𝑖) = 0.5 (2.34)

⇒ V(p𝑖) − 0.5 = 0. (2.35)

Therefore, an occupancy voxel grid is called an implicit surface representation, and

in contrast, a point cloud and a mesh are called an explicit surface representation.

Implicit surface representation allows operations that are difficult in explicit rep-

resentation. For example, two voxel grids that have the same coordinate system

can easily compute boolean operations such as conjunction and subtraction of these

grids: 𝑣+𝑘𝑙𝑚 = 𝑣
𝑎
𝑘𝑙𝑚 ∨ 𝑣𝑏𝑘𝑙𝑚, 𝑣

−
𝑘𝑙𝑚 = 𝑣

𝑎
𝑘𝑙𝑚 ∧ ¬𝑣𝑏𝑘𝑙𝑚. Moreover, since an implicit repres-

entation has data points uniformly arranged in space, it can store extra information

about these 3D locations such as labels of observed/unobserved areas, which is use-

ful to differentiate confirmed-empty spaces from unobserved spaces, which are both

represented as spaces with no data in point cloud and mesh representation.

Another significant advantage of voxel grids is the speed of data association. With

Equation 2.30, a new 3D point p
′ can be promptly associated with a voxel v𝑘𝑙𝑚 to

store extra data such as semantics or accumulated observations. A point cloud and

mesh require nearest neighbor search to associate the new point p
′ with one of the

points in the set p𝑖 ∈ 𝑃. This operation of finding the nearest points can take time,

especially when the size of the point set becomes large, whereas association in voxel

grids does not change in speed.

Although voxel grids have numerous advantages, they have several disadvantages.

Firstly, voxel grids take large memory to store data compared to point clouds and

meshes, as they also store data for non-surface volumes, which are the majority of

space in most cases. This limitation can be relaxed to some extent by tree-based

hierarchical representations of voxel grids that allow memory efficient storage using

Octrees [Wurm et al., 2010, Riegler et al., 2017, Vespa et al., 2018], or by voxel

hashing that only stores data for occupied voxels [Nießner et al., 2013, Kahler et al.,

2015]. Also, as we have seen in the voxel association with rounding in Equation 2.31,

49

2. Preliminaries

a voxel grid representation requires discretization of data points, which sacrifices the

accuracy of the data coordinate. One solution for this is reducing the voxel size 𝑠;

however, because of memory constraints, this can only be done with some limits.

This thesis uses all of these representations in the systems of visual perception and

motion generation, to exploit the advantages of each representation appropriately.

Point clouds are mostly used in the early stage of the vision pipelines where depth

information are processed; however, they are also used to keep the original precision

of data points such as RGB-D-based pose prediction in Chapter 3. A voxel grid

is used to in the middle stage of the vision pipeline after converting from a point

cloud to accumulate depth observations for reconstruction and pose estimation from

multi-view observations in Chapter 3. Mesh representations are used throughout this

thesis, from data generation and simulation at training time to motion planning and

visualization at test time.

2.5 Robots

2.5.1 Manipulator: Franka Emika Panda

In this thesis, we predominantly use the Franka Emika Panda robot (Figure 2.6) as

the manipulator in the experiments. Panda is a 7DoF arm with torque sensors in all

7 joints, a payload of 3𝑘𝑔, and a reach of 0.855𝑚. Its total weight is around 18𝑘𝑔.

The torque sensors installed on each joint allow adjustable stiffness and compliance

of the arm with torque control. When the guiding button on the wrist is pressed,

the arm will follow externally applied forces, allowing a user to teach motions to

the robot intuitively. When controlled via software, if these torque sensors detect

unexpected external forces, the robot can stop by itself to avoid critical damage to

itself, objects, and people. Figure 2.6 shows our hardware setup, where we integrate

the Panda robot with a suction gripper using a Dyson vacuum cleaner.

The Panda robot provides a control interface, the Franka Control Interface (FCI),

which is composed of: libfranka, a C++ library that provides low-level control of the

50

2.5. Robots

Figure 2.6: Franka Emika Panda robot that we use in our experiments with the
custom suction gripper with a vaccum cleaner.

Panda, and franka ros, a ROS [Quigley et al., 2009] integration package supporting

ROS control [Chitta et al., 2017].

We use ROS control and its joint position controller to actuate the Panda robot

in our experiments. This joint position controller receives a trajectory as a list

of joint positions, velocities, and times, and controls the joint motors to follow

the trajectory. We compute the joint position with forward/inverse kinematics and

motion planning, and determine velocities and times based on the maximum velocity

limits of the Panda robot. These constraints are provided officially from Franka

Emika at https://frankaemika.github.io/docs/control parameter

s.html.

2.5.2 Forward Kinematics

Forward kinematics are the equations of a robot to compute the coordinates of the

end-effector (e.g., gripper tip) from specified joint positions:

r = 𝑓 (θ), (2.36)

where r ≔ [𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧]⊺ represents the end-effector pose, and θ refers the

vector of the positions of each joint; for an 𝑛-DoF robot, θ ∈ R𝑛. We use forward

51

https://frankaemika.github.io/docs/control_parameters.html
https://frankaemika.github.io/docs/control_parameters.html

2. Preliminaries

kinematics mainly to acquire the end-effector pose after sampling of joint positions

during motion planning and after reading them from the controller.

The forward kinematics for an 𝑛-DoF robot are computed as a composite of the

transformations at each link. These transformations are traced from the base link of

the robots and composed as matrix multiplications using homogeneous transforma-

tions (§2.2.1):

T = T𝑙0𝑙𝑛
= T𝑙0𝑙1

T𝑙1𝑙2
. . .T𝑙𝑛−1𝑙𝑛

, (2.37)

where 𝑙0 represents the base link and 𝑙𝑛 represents the end-effector. From T = [𝑇𝑖 𝑗],

the Euler angle elements 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧 in r can be acquired with the conversion equations

described in §2.2, and 𝑥, 𝑦, 𝑧 are equal to 𝑇14, 𝑇24, 𝑇34.

To compute the transformation from link 𝑙𝑖−1 to link 𝑙𝑖, let us define the rotation

axis of the 𝑙𝑖 as n𝑙𝑖
, the rotation angle as 𝜃𝑖, and the translation as ti with respect

to the origin of the parent link 𝑙𝑖−1. Using these parameters, the homogeneous

transformation matrix of 𝑙𝑖 from 𝑙𝑖−1 can be written as:

T𝑙𝑖−1𝑙𝑖
=



Rn(𝜃𝑖) t𝑖

0 0 0 1


. (2.38)

Here, Rn(𝜃𝑖) refers Rodrigues’ rotation formula as follows:

Rn(𝜃) = I + sin 𝜃n
× + (1 − cos 𝜃) (n×)2. (2.39)

2.5.3 Inverse Kinematics

Inverse kinematics is the inverse of forward kinematics to compute joint positions

that correspond to a specified end-effector pose:

θ = 𝑓
−1(r). (2.40)

Unlike forward kinematics, which gives unique solutions, with 𝑛-DoF robots where

𝑛 > 6 (6 DoF), this function can have multiple solutions for θ. We use inverse

kinematics in this thesis to compute the joint positions to accomplish target grasp

poses, and place poses of the robot during motion planning.

52

2.5. Robots

The inverse kinematics of 𝑛-DoF robots can be computed with an optimization

process with Jacobian matrix J(θ) of the forward kinematics function 𝑓 (θ). The

differentiation of the equation of forward kinematics (Equation 2.36) with respect

to time gives:

¤r =
𝜕 𝑓

𝜕θ
(θ) ¤θ = J(θ) ¤θ, (2.41)

which represents the relation between the end-effector velocity and the joint velocit-

ies. If this Jacobian matrix is a regular matrix, this inverse relation can be acquired

by simply computing inverse of the matrix, J
−1:

¤θ = J
−1(θ) ¤r, (2.42)

from which 𝜃 is optimized to get r close to the target pose. However, generally the

Jacobian matrix is not regular (especially 𝑛 > 6), so the pseudo inverse A
is used

instead to substitute the inverse matrix:

A
#
=




A
−1 (𝑀 = 𝑁 = rank(A))

A
⊺ (AA

⊺)−1 (𝑁 > 𝑀 = rank(A))

(A⊺A)−1A
⊺ (𝑀 > 𝑁 = rank(A))

, (2.43)

for a matrix A = R
𝑀×𝑁 . When a robot have redundant joints 𝑛 > 6, 𝑁 is greater

than 𝑀, so J
#

= J
⊺ (JJ

⊺)−1 is used. Using the pseudo inverse, the joint velocities

can be written with modifying Equation 2.42:

¤θ = J
#(θ) ¤r. (2.44)

When a robot’s joint configuration becomes close to a singularity (J(θ) becomes

not full-rank), pseudo inverse-based optimization becomes unstable while | ¤θ | become

large. Therefore, the SR-Inverse (singularity robust inverse) J
∗ [Nakamura and

Hanafusa, 1986] is commonly used as an alternative to the pseudo inverse J
#:

J
∗(θ) = J

⊺ (JJ
⊺ + 𝜖I), (2.45)

with a damping constant 𝜖 to keep ¤θ well-behaved near singularities.

We use SR-inverse-based optimization to solve inverse kinematics in this thesis.

53

2. Preliminaries

2.6 Physics Simulation

Physics simulation recreates a real-world occurence by computer programs, called

physics engine. A physics engine approximates certain physical processes such as

collision detection, rigid body dynamics, soft body and fluid dynamics. Simulators

are often classified as real-time or high-precision depending on their purpose and

required precision. We adopt a real-time physics engine in this thesis for its speed.

Real-time physics simulation is used throughout this thesis for data generation at

training time and motion planning at test time.

We predominantly use the Bullet physics engine [Coumans et al., 2013]. Bullet

features image rendering, rigid body simulations with gravity, friction, and contact

forces, robot motor torques, and collision detection, and we use all of these in the

systems built in this thesis.

Bullet requires convex-shaped mesh models for efficient collision detection, and if

non-convex-shaped mesh models are given, it automatically treats their convex-hulls

as the collision shape to compute collisions. For the general shaped object models

including concavities, we use the V-HACD [Mamou and Ghorbel, 2009] algorithm

to decompose them into a composite of convex shapes, convex decomposition. Fig-

ure 2.7 shows an example of convex decomposition using the power drill model from

the YCB object dataset [Calli et al., 2015].

Figure 2.7: Convex decomposition of a mesh model for collision detection.

54

2.6. Physics Simulation

We use collision detection of physics engines to generate collision-free motions of

the robot with motion planning of arm trajectory and grasp/place poses. To generate

a collision-free trajectory, we use a widely-used motion planning algorithm, RRT-

Connect [Kuffner and LaValle, 2000], integrating a sampling-based motion planning

library OMPL [Sucan et al., 2012] with the physics engine. Figure 2.8 shows an

example, in simulation, of a robot avoiding collision with a red wall to move a

green cube from left to right in the workspace. In this case, the start and end joint

configurations (left and right positions) are given and the motion planner generates

the intermediate trajectory between them.

Figure 2.8: Motion planning of arm trajectory from one place to another without
colliding the obstacle (red wall).

Rendering is also a crucial component of a physics engine to simulate vision-

based robotics systems in the real world. Along with RGB and depth images, which

correspond to the sensor information captured by an RGB-D camera in the real

world, object ground truth masks can also be acquired in simulation. Figure 2.9

shows an example of rendering 640 × 480 images of RGB, depth, and object masks

of objects in a pile, where object masks are overlaid representing different objects

with different colors. In this thesis, we use such rendered RGB-D images and masks

to train models for vision pipelines such as object detection and pose estimation,

and motion planning such as grasp pose generation based on surface orientation and

object visibilities.

55

2. Preliminaries

Figure 2.9: Rendering of RGB-D and object masks with a physics engine.

2.7 Deep Learning

Deep learning refers to machine learning methods that use artificial neural networks

(ANNs). ANNs were inspired by the signal processing and distributed communica-

tion in biological neurons, where each neuron reacts to its inputs to output a new

signal that is passed to the next neuron. The term “deep” in deep learning refers

to the use of many layers, and often ANNs that have more than 3 layers are called

deep neural networks (DNN).

2.7.1 Fully-Connected Layer

The most basic architecture of DNNs is a fully-connected layer. It computes an

output y as the weighted sum of the input signals x with a shifting parameter

bias b, introducing a non-linearity with an activation function 𝑓 to expand the

expressiveness:

y = 𝑓 (Wx + b), (2.46)

where x ∈ R𝑚, y ∈ R𝑛, W ∈ R𝑛×𝑚, b ∈ R𝑛. Common activation functions are:

step functions, softmax functions, sigmoid functions, and rectified linear functions

(ReLU). A simple feedforward neural network model is composed of sequential fully-

connected layers:

xi+1 = 𝑓𝑖 (W𝑖x𝑖 + b𝑖) (𝑖 = 1 . . . 𝑙) (2.47)

where 𝑙 refers to the number of layers, and 𝑥1 and 𝑥𝑛 refer to the input and output

of the network model. The layers of 1 <= 𝑖 <= 𝑙 − 1 are called a hidden layer, and

the one of 𝑖 = 𝑙 is called a output layer.

56

2.7. Deep Learning

The output of the hidden layer 𝑥𝑖 is also called a feature. In hidden layers, ReLU

is one of the most commonly used activation function 𝑓𝑖:

ReLU(z) = max
⊙

(0, z) = [max(0, 𝑧𝑖)], (2.48)

which computes an element-wise max, max⊙, comparing against 0 and zeroing the

negative elements.

The output of the output layer x𝑙 is used to compute an appropriate loss, with

which the parameters of the network model W𝑖 , b𝑖 are optimized to minimize the loss.

For the output layer, an appropriate activation is selected based on the prediction

target. The most basic activation is an identity function, which is often used for

regression problems:

Identity(z) = z, (2.49)

sigmoid function for binary classification:

Sigmoid(z) = 1

1 + 𝑒−z (2.50)

and softmax function for multi-class classification problems:

Softmax(z) = 𝑒
z

∑
𝑖 𝑒

𝑧𝑖
. (2.51)

A fully connected layer connects every signal of the input 𝑥𝑖 to the output 𝑦𝑖 (dense

connection). When a deep neural network has many layers, this dense connection

gives numerous combinations of output signals, achieving powerful expressiveness of

the model. However, when the dimension of the input 𝑚1 of x1 ∈ R𝑚1 becomes large

(e.g., images), fully connected layers have huge number of parameters of the dense

matrix, W1 ∈ R𝑚2×𝑚1 , causing problems with memory allocation and difficulties

in parameter optimization. A naive solution would be to reduce dimensionality

immediately at the initial layer, making 𝑚2 smaller, but this approach restricts the

expressiveness of the model by losing a large amount of information at the first layer.

57

2. Preliminaries

2.7.2 Convolutional Layer

Convolutional layers [LeCun et al., 1998] mitigate the problem of fully-connected

layers by introducing convolutional operations during the output computation:

y = 𝑓 (W ⊛ x + b), (2.52)

where ⊛ refers to a convolutional operation. A convolutional layer treats the input

x as a matrix (e.g., an image) instead of a vector, taking into account the spatial

structure of images. It encapsulates the strong prior that natural images have self-

similar structure at different pixel locations.

When an ℎ × 𝑤 image is given as the input, a fully-connected layer processes this

as an ℎ𝑤-sized vector connecting every input of the pixels to every output for the

next layer. A convolutional layer, however, treats this input as a ℎ × 𝑤 matrix and

applies convolutions, computing the weighted sum locally, which restricts the region

of computation with a restricted area of connection within the local window. The

local window represented by a weight W is also called kernel and the window size

is called kernel size. With a kernel size of 𝑘, the weight is 4D tensor W ∈ R𝑛×𝑚×𝑘×𝑘 ,

mapping 𝑚-channel image-shaped features into 𝑛-channels.

Figure 2.10 depicts the convolutional operations with a 1-channel 8 × 8 image

(e.g., a gray-scale image that contains pixel intensities) generating 1-channel output

using a kernel sized 3 × 3. The kernel is slid across the input image by shifting the

position. This sliding step is called the stride, and Figure 2.10 shows an example

with a stride of 1. This sliding window operation is applied from top-left corner

to the right-bottom corner, and makes the size of output smaller than the input

image (in this case 8× 8 to 6× 6). To avoid this image size change, padding is often

used where every corner of the image filled with zero (zero-padding). This padding

operation turns the input image size from 8 × 8 to 10 × 10, so that the output size

the same as the input image size, 8 × 8. In practice, the sliding-window operation

of a convolutional layer is computed in parallel on a GPU, since each operation at

different pixel locations is independent.

58

2.7. Deep Learning

8

8

6

6

Figure 2.10: Convolutional layer that processes an 8 × 8 image to generate the
6 × 6 feature map with stride 1.

In the general case with 𝑚, 𝑛-channel images, the kernel computes matrix multi-

plication at each pixel and sums over it:

y = 𝑓 (
𝑘∑︁

𝑖

𝑘∑︁

𝑗

W𝑖 𝑗x𝑖′ 𝑗′ + b), (2.53)

where 𝑖′, 𝑗 ′ refer to the index of the image pixel corresponding to the convolutional

kernel (in the case of 3 × 3 kernel, this index of 𝑖′, 𝑗 ′ iterates the center of the

sliding window and its 8 neighbors), and y ∈ R𝑛×ℎ×𝑤 , x ∈ R𝑚×ℎ×𝑤
, x𝑖′ 𝑗′ ∈ R𝑚,W ∈

R
𝑛×𝑚×𝑘×𝑘

,W𝑖 𝑗 ∈ R𝑛×𝑚, b ∈ R𝑛.

The convolutional layers reduce the number of parameters involved in a neural

network compared to a fully-connected layer. With a ℎ×𝑤, 𝑚-channel image given as

input, a fully-connected layer treats this a vector with ℎ𝑤𝑚 dimension: W ∈ R𝑛×ℎ𝑤𝑚,

which is often huge especially with high-resolution images. With a convolutional

layer, however, the image structure ℎ×𝑤 is kept while producing the feature map y,

and W is reused across images at different positions allowing the weight parameter

59

2. Preliminaries

size to be small: W ∈ R𝑛×𝑚×𝑘×𝑘 , (𝑘 is often chosen from 𝑘 = 3, 5, 7). This small

number of parameters compared to a fully-connected layer allows convolutional lay-

ers to be faster and easier to train even when many layers are stucked to construct

deep architectures to increase the expressiveness with the parameter combinations.

Pooling is widely used with convolutional layers to build a neural network. A

pooling layer reduces the spatial dimensions of the input to build a condensed feature

map. A pooling operation is similar to convolution, but does not have any learning

parameters (weights) and processes the input values with deterministic operations

to compute outputs such as max for max-pooling and average for average-pooling.

These pooling layers also have kernel sizes similarly to convolutional layers and apply

their deterministic operations inside the kernel. The stride is selected appropriately

to reduce image dimensions, for example, the size of the feature map is halved with

a stride of 2. The kernel size is chosen to be larger than or equal to the stride to

cover the whole image during the operation such as kernel size 2 × 2 with stride 2

and kernel size 4× 4 with stride 3 (kernel size 2× 2 with stride 3 skips some pixels).

Upsampling is the inverse layer of pooling. It uses deterministic operations such

as bilinear interpolation to resize feature maps. Similarly to pooling operations,

upsampling is combined with convolutional layers, and is used to restore the original

resolution of an image after downsampling by pooling layers. Upsampling layers are

usually used in the later stages of a neural network model. This image-form output

is often used for pixel-wise regression and classification such as optical flow [Ilg et al.,

2017, Sun et al., 2018] and semantic segmentation [Ronneberger et al., 2015, Zhao

et al., 2017].

When building a network architecture with many layers, convolutional layers and

pooling layers can be combined with fully-connected layers to predict vector-shaped

outputs. After several pooling operations for downsampling and dimensional reduc-

tion, the resolution of feature map can be small enough to vectorize and process

with fully-connected layers. From the vectorized features, these fully-connected

layers predict outputs such as regression values or classification probabilities with

60

2.7. Deep Learning

appropriate activations.

We use the above-mentioned layers to build neural network models throughout the

thesis. The convolutional and pooling layers in our model extract features from 2D

images such as RGB and depth images for visual object recognition (object detection;

pose estimation) in Chapter 3 and motion generation in Chapter 4, Chapter 5. We

also use 3D convolutional layers to process voxel grids to extract 3D features to

object poses in Chapter 3, and use fully-connected layers to predict the score of

motions, from which appropriate ones are selected according to the scene states for

motion generation in Chapter 4 and Chapter 5.

2.7.3 Gradient-based Optimization

The learnable parameters of neural network layers (weights and biases) are optimized

to minimize a certain loss function. For this optimization, gradient descent is widely

used as a first-order optimization algorithm, which iteratively steps the parameters

in the negative direction of the gradient with respect to the loss function to find the

minimum of the function.

With a loss function L(𝜃) and parameters W𝑖 , b𝑖 ∈ 𝜃, the goal of this optimization

is to update the parameters 𝜃 in the direction that reduces the loss to minimize L:

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
𝜕L
𝜕𝜃𝑡

, (2.54)

where 𝑡, 𝑡 +1 refer to training steps, and 𝛼 is the learning rate, which defines the size

of the steps.

When computing the gradient of the loss function 𝜕L
𝜕𝜃𝑡

, there are variations of

how many training examples are used. Standard gradient descent uses all training

examples in the dataset. Although this operation gives the true gradient, it is usually

slow to converge when the dataset size becomes large, and prone to local minima

where the gradient becomes 0.

Stochastic gradient descent (SGD) and mini-batch gradient descent are used to

mitigate this problem. In SGD, a single training example is randomly selected from

61

2. Preliminaries

the dataset to compute the gradient. The stochasticity of how close the computed

gradient is to the true gradient makes the optimization more robust to local minima.

Despite these advantages, SGD restricts the computation of each step to a single

example, not benefitting from parallel computation. Mini-batch gradient descent is

in-between of the two approaches of gradient descent and SGD, and it uses several

examples (a mini-batch) to compute the gradient. The size of this mini-batch (batch

size) is selected to be small enough to have the benefit of stochasticity and large

enough to maximize the benefit of parallel computation. Since the difference between

mini-batch stochastic gradient and SGD is just the batch size and the batch size

is often selected to be much smaller than dataset size, mini-batch gradient descent

is often also considered as SGD. Later on we use the term SGD to refer to both

methods.

The gradient 𝜕L
𝜕𝜃

can be interpreted as the velocity of a ball on the loss curve, and

momentum is also used as a physical analogue to smooth noisy gradients and better

move the parameters with the accumulation of past gradients:

𝑣𝑡+1 = 𝛽1𝑣𝑡 + (1 − 𝛽1)
𝜕L
𝜕𝜃𝑡

(2.55)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑣𝑡+1, (2.56)

where, 𝛽1 specifies exponential decay of momentum, which is often set to 0.9. This

variant is called Momentum SGD.

Another approach to smooth the noisy gradient is called RMSProp. Whereas

Momentum SGD modifies the gradient with accumulation, RMSProp adjusts the

learning rate based on the gradient:

𝑠𝑡+1 = 𝛽2𝑠𝑡 + (1 − 𝛽2)
𝜕L
𝜕𝜃𝑡

2

(2.57)

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√
𝑠𝑡+1 + 𝜖

𝜕L
𝜕𝜃𝑡

, (2.58)

where 𝛽2 refers to the exponential decay of the learning rate scalar, and 𝜖 is a small

scalar to avoid division by zero.

62

2.7. Deep Learning

Adam [Kingma and Ba, 2015] is a method that combines Momentum SGD and

RMSProp to handle noisy gradients:

𝑣𝑡+1 = 𝛽1𝑣𝑡 + (1 − 𝛽1)
𝜕L
𝜕𝜃𝑡

(2.59)

𝑠𝑡+1 = 𝛽2𝑠𝑡 + (1 − 𝛽2)
𝜕L
𝜕𝜃𝑡

2

(2.60)

𝜃𝑡+1 = 𝜃𝑡 −
𝛼

√
𝑠𝑡+1 + 𝜖

𝑣𝑡+1, (2.61)

taking advantages of both methods.

In this thesis, we predominantly use Adam as the optimizer for training neural

network models in our system.

63

2. Preliminaries

64

Chapter 3

Object-Level Semantic Mapping

for Manipulation

Contents

3.1 Introduction . 65

3.2 Related Work . 69

3.3 Method . 71

3.3.1 Object-level Volumetric Fusion 71

3.3.2 Volumetric Pose Prediction 74

3.3.3 Collision-based Pose Refinement 80

3.3.4 CAD Alignment . 83

3.4 Experiments . 84

3.4.1 Evaluation of Pose Prediction 85

3.4.2 Evaluation of Pose Refinement 87

3.4.3 Full System Demonstration 88

3.5 Conclusion . 91

3.1 Introduction

As discussed in Chapter 1, the ability to build semantic world models using on-board

cameras is vital for robots to complete long-horizon manipulations and varied tasks.

65

3. Object-Level Semantic Mapping for Manipulation

(a) Pose Estimation

(b) Volumetric Fusion (c) Real Scene

Figure 3.1: MoreFusion, our object-level semantic mapping system, produces ac-
curate 6D object pose predictions by explicitly reasoning about occupied and free
space via a volumetric map.

66

3.1. Introduction

A complete semantic world model composed of object CAD models allows manip-

ulations in complex scenes (e.g., object piles) enabling reasoning about inter-object

geometric relationships (e.g., contact, support) and object-specific manipulations

(e.g., desired grasp points, place poses). However, inferring object configurations

in cluttered environments such as piles (Figure 3.1) is challenging even with state-

of-the-art methods for object detection [Li et al., 2017, He et al., 2017] and pose

estimation [Xiang et al., 2018, Wang et al., 2019] due to the limited visibility of ob-

jects that are mutually occluding and in contact. In such situations, it is crucial for

the vision system to exploit multi-view observations and the geometric relationships

among objects, which are often not used in previous work that focuses on single-view

and per-object pose estimation.

In this chapter, we present a vision system that tackles semantic mapping of ob-

jects (object-level semantic mapping) in such challenging scenes, producing a per-

sistent 3D multi-object representation from multi-view images. Our system, More-

Fusion , has four main components, as highlighted in Figure 3.2: 1) 2D object

detection is fed to object-level fusion to make a volumetric occupancy map of ob-

jects. 2) A pose prediction network that uses RGB-D data and the surrounding

occupancy voxel grid makes 3D object pose estimates. 3) Collision-based pose re-

finement jointly optimizes the poses of multiple objects with differentiable collision

checking. 4) The intermediate volumetric representation of objects is replaced with

information-rich CAD models. This system runs in real-time using a single RGB-D

camera.

Our system takes full advantage of depth information and multiple views to estim-

ate mutually consistent object poses. The initial rough volumetric reconstruction

is utilized for neural network-based pose prediction and collision-based pose refine-

ment by using the knowledge of these objects’ surrounding geometry as occupancy

information. This visual capability to infer the poses of multiple objects with oc-

clusion and contact enables robotic planning for pick-and-place in a cluttered scene.

An example of this is removing obstacle objects for picking the target red box in

Figure 3.1.

67

3. Object-Level Semantic Mapping for Manipulation

(b
) V

o
lu

m
e
tric

 P
o
se

 P
re

d
ic

tio
n

R
G

B
-D

F
ree

T
a

rg
et

N
o
n

-ta
rg

et

Target

Extraction

C
u

rren
t V

iew

Pose Network

6D Pose

S
u
rro

u
n
d
in

g
-a

rea
 In

fo
rm

a
tio

n

D
ep

th

(a
) O

b
je

c
t-le

v
e
l V

o
lu

m
e
tric

 F
u

sio
n

Object

Detection

R
G

B
M

a
sks

C
a
m

era

P
o
se

Volumetric Fusion

U
n

kn
o

w
n

 O
b

jects

Camera

Tracking

(c
) C

o
llisio

n
-b

a
se

d
 P

o
se

 R
e
fin

e
m

e
n

t

Im
p
en

etra
b
le S

p
a
ce

H
yp

o
th

esized

O
ccu

p
ied

 S
p

a
ce

V
o
lu

m
etric M

a
p

6
D

 P
o
se

C
o
llisio

n

L
o

ss
u
p
d
a
te

p
o
se

K
n

o
w

n
 O

b
jects

V
o

lu
m

etric M
a

p

Differentiable

Voxelization
Surrounding

Extraction

(d
) C

A
D

 A
lig

n
m

e
n

t

F
igu

re
3.2:

O
u
r
6
D

p
o
se

e
stim

a
tio

n
sy

ste
m
.

O
b

ject
segm

en
tation

m
ask

s
from

R
G

B
im

ag
es

a
re

fu
sed

in
to

a
v
olu

m
etric

m
a
p

,
w

h
ich

d
en

otes
b

oth
o
ccu

p
ied

an
d

free
sp

ace
(a).

T
h

is
volu

m
etric

m
ap

is
u

sed
alon

g
w

ith
R

G
B

-D
d

ata
o
f

a
targ

et
ob

ject
cro

p
to

m
ake

an
in

itial
6D

p
ose

p
red

iction
(b

).
T

h
is

p
ose

is
th

en
refi

n
ed

v
ia

d
iff

eren
tiab

le
collisio

n
ch

eck
in

g
(c)

an
d

th
en

u
sed

a
s

p
a
rt

o
f

a
C

A
D

align
m

en
t

sta
ge

to
en

rich
th

e
v
olu

m
etric

m
a
p

(d
).

68

3.2. Related Work

In summary, the following contributions are made in this chapter:

• Pose prediction with surrounding spatial awareness. A neural network-

based model uses occupancy voxel grids as impenetrable space during object

pose prediction;

• Joint optimization of multi-object poses, in which the scene configuration

with multiple objects is evaluated and updated by gradient-based optimization

with differentiable collision checking;

• Full integration of semantic mapping of objects in a real-time system,

in which the object-level volumetric reconstruction is exploited for incremental

and accurate pose estimation.

3.2 Related Work

Template-based methods are one of the main approaches to pose estimation. Tra-

ditionally, these methods involve generating templates by collecting images of the

object from varying viewpoints in an offline training stage and then scanning the

template across an image to find the best match using a distance measure [Hutten-

locher et al., 1993, Steger, 2001]. These methods are sensitive to clutter, occlusions,

and lighting conditions, leading to many false positives, which in turn require post-

processing. LINEMOD [Hinterstoisser et al., 2011, Hinterstoisser et al., 2012a] is a

template-based method that generates templates by combining silhouette gradient

orientations from RGB images and surface normal orientations from depth images

— improving the detection of texture-less objects in cluttered scenes. Extensions

of this method involve the use of 3D models to generate many templates of the ob-

jects from different viewing angles [Hinterstoisser et al., 2012b], as well as an effort

to increase their speed using a cascade framework [Rios-Cabrera and Tuytelaars,

2013].

Sparse feature-based methods have been a popular alternative to template-

based methods for many years [Lowe, 2001, Nister and Stewenius, 2006, Philbin

69

3. Object-Level Semantic Mapping for Manipulation

et al., 2007]. These methods extract scale-invariant points of interest from images,

describing them with local descriptors such as SIFT [Lowe, 2004] or SURF [Bay

et al., 2008], and then storing them in a database to be later matched at test

time to obtain a pose estimate using a method such as RANSAC [Fischler and

Bolles, 1981]. This processing pipeline can be seen in manipulation systems such

as MOPED [Collet et al., 2011], where structure from motion is used to merge the

information from each training image into a sparse 3D model, which is used to obtain

the pose based on 3D point-to-point correspondences between a stored model and

the test model. MOPED has inspired further work, such as the addition of depth

information at multiple stages in the pipeline [Tang et al., 2012]. Recently, instead

of using hand-crafted features, they have been learned through examples [Holzer

et al., 2012, Rosten et al., 2008]. As these methods look for features in the input

data, they assume that objects have sufficient texture, leading to poor performance

or failure on texture-less objects.

The use of deep neural networks is now prevalent in the field of 6D pose estimation.

PoseCNN [Xiang et al., 2018] was one of the first systems to train an end-to-end

system to predict an initial 6D object poses directly from RGB images, which was

then refined using depth-based ICP [Besl and McKay, 1992]. Recent RGB-D-based

system includes PointFusion [Xu et al., 2018] and DenseFusion [Wang et al., 2019],

which individually process the two sensor modalities (convolutions for RGB, Point-

Net [Qi et al., 2017] for point-cloud), and then fuse them to extract pixel-wise dense

feature embeddings. Our work is most closely related to these RGB-D and learning-

based approaches with deep neural networks. Unlike prior work that tackles pose

estimation with per-object pose prediction using a point cloud, our method predicts

each object’s pose by utilizing a more structured volumetric representation that also

incorporates the geometric information of surrounding objects, allowing inter-object

consistency reasoning.

70

3.3. Method

3.3 Method

Our system estimates the 6D pose of a set of known objects given RGB-D images

of a cluttered scene. Each object has an associated mesh model with complete

geometry and texture (CAD model), and the goal of the system is to estimate the

transformation between the world model and the CAD model. We represent 6D

poses as a homogeneous transformation matrix T = [R|t] ∈ 𝑆𝐸 (3), where R ∈ 𝑆𝑂 (3)

is the rotation matrix and t ∈ R3 is the translation vector.

The system, summarized in Figure 3.2, can be divided into four key stages. (1)

An object-level volumetric fusion stage that accumulates depth measurements

with the object instance masks predicted by object detection along with camera

tracking to produce a persistent volumetric map of known and unknown objects.

(2) A volumetric pose prediction stage that uses the surrounding geometric

information from the volumetric map along with the RGB-D and object’s masks

to produce an initial pose prediction for each of the objects. (3) A collision-

based pose refinement stage that jointly optimizes the pose of multiple objects via

gradient descent using differentiable collision checking between object CAD models

and the occupancy voxel grids extracted from the volumetric map. (4) A CAD

alignment stage that replaces the intermediate voxel grid reconstruction of each

object with a CAD model, which contains more rich information in a compact

representation (matrix of voxel grid vs. integer ID of the CAD model). In the

following sections, we describe the details of each of these stages.

3.3.1 Object-level Volumetric Fusion

Building a volumetric map is the first stage of object-level semantic mapping, allow-

ing the system to gradually increase its knowledge about the scene until it achieves

confident poses of the detected objects. For volumetric fusion, we build a pipeline

similar to previous work [McCormac et al., 2018, Sünderhauf et al., 2017, Xu et al.,

2019], combining RGB-D camera tracking, object detection, and depth-based volu-

metric reconstruction.

71

3. Object-Level Semantic Mapping for Manipulation

RGB-D Camera Tracking

Given that the camera is mounted on the end of a robotic arm, we can retrieve

the accurate pose of the cameras using forward kinematics (§2.5.2) and the well-

calibrated parameters of the camera: intrinsic parameters for the projection (§2.3.2),

and extrinsic parameters for transformation between the camera and the robot arm.

However, to also allow our system to be used with a hand-held camera, we adopt

the sparse SLAM framework ORB-SLAM2 [Mur-Artal and Tardós, 2017] for cam-

era tracking. Unlike its monocular predecessor ORB-SLAM [Mur-Artal and Tardós,

2014], ORB-SLAM2 allows RGB-D input and tracks camera pose in metric space,

providing the accurate scale of the map and camera positions. This is crucial for

the subsequent volumetric reconstruction stage where we accumulate depth meas-

urements into a 3D voxel grid in metric space.

Object Detection

Following prior work [McCormac et al., 2018, Xu et al., 2019], we use the state-of-

the-art object detection system, Mask R-CNN [He et al., 2017] to acquire object

masks from RGB images. Mask R-CNN receives an RGB image as input and pro-

cesses it with convolutional layers to extract features, which are processed by another

convolutional layer to predict an initial guess of object bounding boxes with object

existence probabilities. These initial guesses are used as the region of interest (ROI)

to extract the features only inside the region with a pooling operation called ROI-

Align. These pooled features are further processed to predict object classes, refined

bounding boxes, and object masks with subsequent fully-connected and convolu-

tional layers.

We train this object detection model to detect the YCB objects [Calli et al., 2015]

using existing datasets [Wada et al., 2020, Xiang et al., 2018], which are a mix of

real and synthetic images. Although this model is fairly accurate, it can give false

positives with a low threshold of detection confidence, so we use a relatively high

confidence threshold of 75%. This high threshold favors false negatives in detecting

objects; however, the multi-view prediction allows the model to run on multiple

72

3.3. Method

frames, and eventually finds objects with a confident prediction.

Volumetric Reconstruction

We use volumetric occupancy reconstruction to track objects and accumulate depth

observations in different views. For efficient accumulation, we use the Octree-based

occupancy volumetric fusion framework, OctoMap [Hornung et al., 2013]. Its Octree

structure allows us to efficiently query the associated voxel 𝑣 ∈ V for a query 3D

point from new observation 𝑧𝑡 , and the occupancy probability of the voxel 𝑝(𝑣 |𝑧1:𝑡)

at time 𝑡 is updated with new observation 𝑝(𝑣 |𝑧𝑡) with a Bayesian update:

logit(𝑣 |𝑧1:𝑡+1) = logit(𝑣 |𝑧1:𝑡) + logit(𝑣 |𝑧𝑡) (3.1)

where logit(𝑝(𝑥)) = log(𝑝(𝑥)
1 − 𝑝(𝑥))).

As we collect the observations 𝑧𝑡 from the moving camera, we fuse the new observa-

tions into the surface reconstruction, filtering sensor noise and building an accurate

reconstruction of the objects.

To associate a 3D point from the observation 𝑧𝑡 with the corresponding voxel

𝑣
𝑜 ∈ V

𝑜 of an object 𝑜, we have two tracking mechanisms for camera and object

instances. Camera tracking provides the transformation from the camera to the map

frame, and in our system, this is given by either the forward kinematics of the robotic

arm or an external RGB-D SLAM system as mentioned before. Object instance

tracking gives the corresponding voxel grid of an object instance in which the new

depth observation is accumulated. Object tracking is achieved via comparisons

of the 2D binary masks of the detected masks D𝑖 and rendered masks M
𝑜 of the

mapped objects. The detected masks D𝑖 are obtained by object detection and the

rendered masks M
𝑜 are given by the projection of the voxel grid of each mapped

object. Comparison is accomplished by computing the intersection over the union

(IoU) between these masks:

IoU𝑜
𝑖 =

M
𝑜 ∧ D𝑖

M
𝑜 ∨ D𝑖

. (3.2)

When this metric (IoU𝑜
𝑖) is over a threshold of 0.4, 𝐷𝑖 is recognized as another

observation of the object 𝑜 and accumulated into its voxel grid V
𝑜. Otherwise, a

73

3. Object-Level Semantic Mapping for Manipulation

new voxel grid is initialized to reconstruct a new instance of an object.

We use this object-level volumetric reconstruction as an intermediate representa-

tion, which only contains information about the visible surface of an object. In the

later stages of the system pipeline, this representation will be replaced by a CAD

model, which is much more compact and includes complete geometric information

(e.g., the back surface).

3.3.2 Volumetric Pose Prediction

Our system retrieves surrounding geometry from the volumetric map assist to the

pose prediction of the objects. The surrounding geometry is extracted and represen-

ted as occupancy voxel grids, and is fed into the pose prediction model to predict a

consistent pose estimate by incorporating spatial awareness of the surrounding ob-

jects. In this section, we describe how this surrounding information is represented

and used in pose prediction.

Occupancy Voxel Grids as Surrounding Information

Each target object for pose prediction carries its occupancy voxel grid. The voxels

that make up this grid can be in one of the following states as shown in Figure 3.3:

(1) Space occupied by the object itself, V
self from the target object reconstruction,

where depth measurements are accumulated. (2) Space occupied by other objects,

V
other from the volumetric reconstruction of the surrounding objects. (3) Free space

V
free where depth rays have passed through and there were no depth measurements.

(4) Unknown space V
unknown, unobserved during the volumetric mapping because of

occlusions or sensor range limits.

Ideally, the bounding box of surrounding information should cover the whole

volume of the target object even if it is occluded. This means the bounding box size

should change depending on the target object size. Since we need to use a fixed voxel

dimension for neural network-based prediction (e.g., 32× 32× 32), we use a different

voxel sizes for each object. Given the CAD model of each object, we compute the

74

3.3. Method

(a) Scene (b) Self (Vself) (c) Other (Vother)

(d) Free (Vfree) (e) Unknown (Vunknown)

Figure 3.3: Surrounding spatial information. These figures show the occupancy
grid (32 × 32 × 32 voxels) of the red bowl. The free (d) and unknown (e) grids are
visualized with points instead of cubes for clarity.

diagonal of its bounding box, which defines the maximum dimension of the object.

The voxel size is set to be the length of the diagonal divided by the voxel dimension.

Pose Prediction Network

The initial 6D pose of each object is predicted via a deep neural network that accepts

both the occupancy voxel grids (§3.3.2) and masked RGB-D images. The architec-

ture is summarized in Figure 3.4, and can be categorized into 4 core components:

(1) 2D feature extraction from RGB using a ResNet; (2) Point-wise encoding of

RGB features and point cloud; (3) Voxelization of the point-wise features followed

by 3D convolutions; (4) Point-wise pose prediction from both 2D and 3D features.

2D Feature Extraction from RGB Even when depth measurements are avail-

able, RGB images still carry vital sensor information for precise pose prediction.

With ther color and texture detail, RGB images can be an especially strong signal

for the pose prediction of highly-textured objects. Moreover, for geometrically sym-

75

3. Object-Level Semantic Mapping for Manipulation

3
D

-C
N

N

ResNet18

Encoder

M
a

sked
 R

G
B

M
a

sked

P
o

in
t C

lo
u

d

Voxelization

F
ea

tu
re G

rid

3D-CNN

Point-wise

Features

3
D

 F
ea

tu
res

Points

Extraction

Point-wise

Features
In

d
ices

T
ra

n
sla

tio
n

O
rien

ta
tio

n

C
o

n
fid

en
ce

M
L

P

M
L

P

M
L

P

6
D

 P
o

se

Point-wise

Encoder

2
D

 F
ea

tu
res

1
6
✕

1
6
✕

1
6

8
✕

8
✕

8

A
rg

m
a

x

(C
o

n
fid

en
ce)

S
cen

e

O
th

er
F

ree

Point-wise

Encoder

Im
p

en
etra

b
le S

p
a

ces

(a
) 2

D
 F

e
a
tu

re
 E

x
tra

c
tio

n
(b

) P
o
in

t-w
ise

 E
n

c
o
d
in

g
(c

) 3
D

 F
e
a
tu

re
 E

x
tra

c
tio

n
(d

) P
o
in

t-w
ise

 P
re

d
ic

tio
n

F
igu

re
3.4:

N
e
tw

o
rk

a
rch

ite
c
tu

re
for

p
ose

p
red

iction
u

sin
g

m
ask

ed
R

G
B

-D
im

ages
o
f

th
e

targ
et

ob
ject

an
d

su
rrou

n
d

in
g

in
form

-
a
tion

rep
resen

ted
b
y

o
ccu

p
an

cy
grid

s.

76

3.3. Method

metric objects, this texture information is crucial for resolving the ambiguity of the

object poses, which cannot be accomplished only with depth observations.

Following [Wang et al., 2019, Xu et al., 2018], we use a ResNet18 [He et al.,

2016] with added upsampling layers [Zhao et al., 2017] to extract features from

masked RGB images. Though both prior methods [Wang et al., 2019, Xu et al.,

2018] used cropped images of objects with a bounding box, we used masked images

which makes the network invariant to changes in background appearance, and also

encourages it to focus on retrieving surrounding information using the occupancy

grids. For feature extraction, the original input image is first downsampled by 8 and

then upsampled to the original image size while downscaling the channel size from

512 to 32. Unlike [Zhao et al., 2017], we resize the input image to the same size:

256 × 256, for faster batch inference.

Point-wise Encoding of RGB Features and Point Cloud Similarly to pre-

vious work on RGB-D pose estimation [Xu et al., 2018, Wang et al., 2019], both the

RGB features and extracted point-cloud points (using the target object mask) are

encoded via several fully connected layers (similar to the PointNet architecture [Qi

et al., 2017]) to produce point-wise features, which are then concatenated.

The RGB features and point cloud increase the channel size with 2 fully connected

layers for each (RGB features: 32 → 64 → 128, point cloud: 3 → 8 → 16). We

keep the same channel size as [Wang et al., 2019] for encoding RGB but reduce the

channel size for point cloud encoding. This is because, in contrast to a PointNet-

based approach [Wang et al., 2019], our 3D-convolution-based approach provides

the location information for each point via the volumetric structure of the feature

voxel grid. High dimensional encoding would be unnecessarily redundant.

After this separated encoding of RGB and point cloud point-wise features, we

concatenate them at the first ⊕ from the left in Figure 3.4. From each output from

two fully connected layers, concatenation gives two point-wise feature vectors which

have 72(= 64 + 8) and 144(= 128 + 16) channels respectively.

77

3. Object-Level Semantic Mapping for Manipulation

Voxelization and 3D Convolutional Processing From these point-wise fea-

tures, we build a feature grid by averaging the features associated with the same

voxels. Having the same dimensions as the occupancy grid, this feature volume can

be combined with the occupancy grid extracted from volumetric fusion. The con-

catenated voxel grid is processed by 3D convolutional layers to extract hierarchical

3D features, reducing the voxel dimension and increasing the channel size. We pro-

cess the original grid (voxel dimension: 32) with 2-stride convolutions to produce

hierarchical features (voxel dimension: 16, 8).

An important design choice in this pipeline is to perform 2D feature extraction

before voxelization, instead of directly applying 3D feature extraction on the voxel

grid of raw RGB pixel values. Though 3D convolutions and 2D convolutions have

similar behavior when processing RGB-D input, it is hard to use 3D convolutions

on a high-resolution grid, unlike a 2D image, and also the voxelized grid can have

more missing points than an RGB image because of sensor noise in the depth image.

Point-wise Pose Prediction from 2D-3D Features To combine the 2D and

3D features for pose prediction, we extract points from the 3D feature grid that

correspond to the point-wise 2D features with trilinear interpolation. During this

interpolation, the original locations of 3D points is mapped into voxel coordinates

to extract features from neighboring voxels. These 3D and 2D features are con-

catenated as point-wise feature vectors for pose prediction, from which we predict

pose [R̂𝑖 |̂t𝑖] and confidence 𝑐𝑖 as in [Wang et al., 2019]. The rotation matrix R̂𝑖

is constructed from the quaternion predicted by the network. From the predicted

confidence scores, we choose the most confident pose as the final prediction.

Training the Pose Prediction Network

Training Loss To train pixel-wise pose prediction, we use a training loss similar

to DenseFusion [Wang et al., 2019], which is an extended version of the model

alignment loss of PoseCNN [Xiang et al., 2018]. For each pixel-wise prediction,

this loss computes the average distance between corresponding points of the object

78

3.3. Method

model transformed with ground truth and the predicted poses (pose loss).

Let [R|t] be the ground truth pose, [R̂𝑖 |̂t𝑖] be the 𝑖-th point-wise prediction of

the pose, and p𝑞 ∈ 𝑃 be a point sampled from the object model. The pose loss is

formulated as:

L𝑖 =
1

|𝑋 |
∑︁

𝑞

| | (Rp𝑞 + t) − (R̂𝑖p𝑞 + t̂𝑖) | |. (3.3)

For symmetric objects, which have ambiguity in the correspondence with the object

model, the nearest neighbor of transformed points is used as the correspondence

(symmetric pose loss):

L𝑖 =
1

|𝑋 |
∑︁

𝑞

min
p
𝑞
′ ∈𝑋

| | (Rp𝑞 + t) − (R̂𝑖p𝑞
′ + t̂𝑖) | |. (3.4)

The confidence of the pose prediction is trained with these pose losses in an un-

supervised way. Let 𝑁 be the number of pixel-wise predictions and 𝑐𝑖 be the 𝑖-th

predicted confidence. The final training loss L is formulated as:

L =
1

𝑁

∑︁

𝑖

(𝐿𝑖𝑐𝑖 − 𝜆 log(𝑐𝑖)), (3.5)

where 𝜆 is the regularization scaling (we use 𝜆 = 0.015 following [Wang et al., 2019]).

Local Minima in Symmetric Pose Loss Though the symmetric pose loss

(Equation 3.4) is designed to handle symmetric objects using nearest neighbor

search, we found that this loss is prone to get stuck to local minima compared to the

standard pose loss (Equation 3.3), which uses 1-to-1 ground truth correspondence

with the object model. Figure 3.5b shows the examples where the symmetric pose

loss struggles to avoid local minima with a non-convex object.

To tackle this issue, we introduce a warm-up stage with a standard pose loss

(e.g., 1 epoch) during training before switching to the symmetric pose loss. This

training strategy with warm-up allows the network first to be optimized for pose

prediction without the local minima problem though ignoring symmetries, and then

to be optimized while considering symmetries. This gives much better results for

pose estimation of symmetric objects with non-convex shapes (Figure 3.5c).

79

3. Object-Level Semantic Mapping for Manipulation

(a) Scene (b) Symmetric pose loss (c) With loss warm-up

Figure 3.5: Avoiding local minima with loss warm-up. Our loss warm-up (c)
gives much better pose estimation for complex-shaped (e.g., non-convex) symmetric
objects, for which a symmetric pose loss (b) is prone to local minima.

3.3.3 Collision-based Pose Refinement

In the previous section, we showed how we combine image-based object detection,

RGB-D images, and volumetric reconstruction of the shapes of nearby objects to

make per-object pose predictions with a network forward pass. This per-object pose

prediction can often give good initial pose estimates, but not necessarily a mutually

consistent set of estimates for objects that are in close contact with each other. In

this section, we, therefore, introduce a test-time pose refinement module that can

jointly optimize the poses of multiple objects.

For joint optimization, we introduce differentiable collision checking, by composing

occupancy voxelization of the object CAD model, and an intersection loss between

occupancy grids. As both are differentiable, this allows us to optimize object poses

using gradient descent with optimized batch operation on a GPU.

An alternative approach would be sequential refinement by confirming each hypo-

thesis one by one and feeding the confirmed hypotheses to the prediction network.

80

3.3. Method

However, this approach requires a heuristic to choose the refined object for each step

(e.g., closest-to-furthest from the camera for less-to-most-occluded), and one-by-one

forward passes of the network, which would be generally much slower than a batch

operation.

Differentiable Occupancy Voxelization

The voxelization of feature vectors mentioned in §3.3.2 uses feature vectors using

points and is differentiable for the feature vector. In contrast, the occupancy voxel-

ization needs to be differentiable for the points to optimize the transformation that

produces these point locations. This means the values of each voxel in the occu-

pancy grid must be a function of the points, which have been transformed by the

estimated object pose.

Let p𝑞 be a point, 𝑠 be the voxel size, and p
𝑔 be the origin of the voxel (i.e.,

left bottom corner of the voxel grid). We can transform the point into a voxel

coordinates with:

l𝑞 =

p𝑞 − p
𝑔

𝑠
(3.6)

For the index u𝑘 = [𝑘, 𝑙, 𝑚]𝑇 ∈ N3 of each voxel 𝑣𝑘 we compute the distance 𝛿 from

the point:

𝛿𝑞𝑘 = | |u𝑘 − l𝑞 | |. (3.7)

The occupancy value of each voxel is determined to be proportional to the distance

from the nearest point, resulting in the occupancy value of the voxel 𝑣𝑘 computed

as:

𝛿𝑘 = min(𝛿𝑡 ,min
𝑞

(𝛿𝑞𝑘)) (3.8)

𝑣𝑘 = 1 − 𝛿𝑘

𝛿
𝑡
, (3.9)

where 𝛿𝑡 is the distance threshold.

81

3. Object-Level Semantic Mapping for Manipulation

Occupancy Voxelization for a Target Object

This differentiable occupancy voxelization gives occupancy grids from an object

model and hypothesized object pose. For a target object 𝑜𝑚, the points sampled

from its CAD model p𝑞 are transformed with the hypothesized pose [R𝑚 |t𝑚]: p
′
𝑞 =

R𝑚p𝑞 + t𝑚, from which the occupancy value is computed. The point is uniformly

sampled from the CAD model (including internal parts), and gives a hypothesized

occupancy grid for the target object 𝑔
target
𝑚 .

Similarly, we perform this voxelization for the surrounding objects 𝑜𝑛. Unlike

the target object voxelization, the surrounding objects 𝑜𝑛 are voxelized in the voxel

coordinates of the target: l
𝑜
𝑞 = (p𝑜

𝑞 − p
𝑔
𝑚)/𝑠𝑚 where p

𝑔
𝑚 is the occupancy grid origin

of the target object and 𝑠𝑚 is its voxel size. This gives the hypothesized occupancy

grids for surrounding objects of the target object: V
nontarget
𝑛 .

Intersection Loss for Collision Check

Occupancy voxelization gives the hypothesized occupied space of the target V
target
𝑚

(the 𝑚-th object in the scene) and the surrounding objects V
nontarget
𝑛 . The occu-

pancy grids of surrounding objects are built in the voxel coordinates (center, voxel

size) of the target object and aggregated with an element-wise max operation:

V
nontarget
𝑚 = max

𝑛
V
nontarget
𝑛 . (3.10)

This gives a single impenetrable occupancy grid. In addition to this impenetrable

occupancy grid from the pose hypotheses of surrounding objects, we also use oc-

cupancy information from volumetric fusion: occupied space including background

objects V
other
𝑚 , and free space V

free
𝑚 (Figure 3.3), as additional impenetrable area:

V
impen
𝑚 = V

other
𝑚 ∨ V

free
𝑚 . The collision penalty loss Lc+

𝑖 is computed as the intersec-

tion between the hypothesized occupied space of the target and the impenetrable

surrounding grid:

V
target−
𝑚 = max

⊙
(Vnontarget

𝑚 ,V
impen
𝑚) (3.11)

Lc+
𝑚 = (Vtarget

𝑚 ⊙ V
target−
𝑚))/

∑︁

𝑘

V
target
𝑚 , (3.12)

82

3.3. Method

where max⊙ is element-wise max and ⊙ is element-wise multiplication of the voxel

grid matrices.

Though this loss correctly penalizes collisions between the target and surrounding

objects, optimizing for this alone is not enough, as it does not take into account the

visible surface constraints on the target object V
self
𝑚 . The other term in the loss is

the intersection between the hypothesized occupied space of the target and this grid

Lc+
𝑚 , to encourage the surface intersection between the object pose hypothesis and

volumetric reconstruction:

Lc−
𝑚 = (Vtarget

𝑚 ⊙ V
self
𝑚)/

∑︁
V
self
𝑚 . (3.13)

We compute these losses of collisions and surface alignment for 𝑁 number of objects

with a batch operation on a GPU, and sum them as the total loss L:

L =
1

𝑁

∑︁

𝑚

(Lc+
𝑚 − Lc−

𝑚). (3.14)

This loss is minimized with gradient descent (§2.7.3), allowing us to jointly optimize

the pose hypotheses of multiple objects all together.

3.3.4 CAD Alignment

After performing pose estimation and refinement, we spawn object CAD models

into the map once there is enough agreement on the poses estimated in different

views. To compare object poses estimated in different camera coordinates, we first

transform those poses into world coordinates using the tracked pose from the camera

tracking module (§3.3.1). These transformed object poses are compared using a pose

loss, which we also use for training the pose prediction network (§3.3.2). For the

most recent 𝑁 pose hypotheses, we compute the pose loss for each pair, which gives

𝑁 (𝑁 − 1) pose losses: L𝑖 (1 ≤ 𝑖 ≤ 𝑁 (𝑁 − 1)). We count how many pose losses are

under the threshold (L𝑡): 𝑀 = count[[L𝑖 < L𝑡]]. When 𝑀 reaches a threshold, we

initialize the object with that agreed pose.

83

3. Object-Level Semantic Mapping for Manipulation

(a) Scene (b) Ground Truth

(c) DenseFusion∗ (d) MoreFusion−occ (e) MoreFusion

Figure 3.6: Pose prediction with severe occlusion. Our proposed model (More-
Fusion) performs consistent pose prediction for 3 objects in clutter, while the baseline
(DenseFusion∗) and a variant without occupancy information (MoreFusion−occ) fail.

3.4 Experiments

In this section, we first evaluate how well pose prediction (§3.4.1) and refinement

(§3.4.2) performs on 6D pose estimation datasets. We then demonstrate the system

running in a robotic pick-and-place task(§3.4.3).

Dataset

We evaluate our pose estimation components using the 21 classes of the YCB ob-

jects [Calli et al., 2015] used in the YCB-Video dataset [Xiang et al., 2018]. The

YCB-Video dataset has been commonly used for the evaluation of 6D pose estima-

tion in prior work [Xiang et al., 2018, Wang et al., 2019]. However, since all of the

84

3.4. Experiments

scenes are table-top, this dataset has limited diversity of object configurations, and

few challenging cases such as occlusion and close contact among objects.

To make evaluation possible with heavy occlusion and arbitrary object orienta-

tions, we built our own synthetic dataset: Cluttered-YCB (Figure 3.6). We use

the physics engine Bullet [Coumans et al., 2013], introduced in §2.6, to place ob-

ject models with feasible configurations from random poses. This dataset has 1200

scenes (train : val = 5 : 1) and 15 camera frames for each.

Metric

We used the same metric as prior work [Xiang et al., 2018, Wang et al., 2019],

which evaluates the average distance between corresponding points: ADD, ADD-S.

These metrics are equivalent to the pose losses. ADD uses ground truth as in Equa-

tion 3.3 and ADD-S uses nearest neighbors as correspondence as in Equation 3.4,

transforming the model with the ground truth and estimated pose. These distances

are computed for each object pose in the dataset and plotted with error threshold

on the x-axis and accuracy on the y-axis. The metric is the area under the curve

(AUC), using 10cm as the maximum threshold for the x-axis.

3.4.1 Evaluation of Pose Prediction

Baseline Model

We used DenseFusion [Wang et al., 2019] as a baseline model. For a fair comparison

with our proposed model, we reimplemented DenseFusion and trained it with the

same settings (e.g., data augmentation, normalization, loss).

Table 3.1 shows pose prediction results on the YCB-Video dataset using the de-

tection mask of [Xiang et al., 2018], where DenseFusion is the official GitHub im-

plementation 1 and DenseFusion∗ is our version, which includes the warm-up loss

(§3.3.2) and centralization of the input point cloud (analogous to the voxelization

step in our model). We find that the addition of these two components leads to a

1
https://github.com/j96w/DenseFusion

85

https://github.com/j96w/DenseFusion

3. Object-Level Semantic Mapping for Manipulation

big performance improvement. In the following evaluations, we use DenseFusion∗ as

the baseline model.

Table 3.1: Baseline model results on the YCB-Video dataset, where DenseFu-
sion is the official implementation and DenseFusion∗ is our reimplemented version.
ADD and ADD-S are metrics that use point-to-point differences of an object model
transformed using ground-truth and predicted poses.

Model ADD(-S)↑ ADD-S↑
DenseFusion 83.9 90.9
DenseFusion∗ 89.1 93.3

Results

We compared our model (MoreFusion) with the baseline model (DenseFusion∗). For

a fair comparison, both models predict object poses from a single-view, meaning that

MoreFusion is only allowed to use occupancy information from a single-view depth

observation. We trained models using a combination of the Cluttered-YCB and

the YCB-Video datasets and tested them separately with ground truth masks. The

results (Table 3.2, Figure 3.6) show that MoreFusion consistently predicts better

poses via its volumetric CNN and surrounding occupancy information. A larger

improvement is achieved for heavily occluded objects (visibility<30%).

Table 3.2: Pose prediction comparison, where the models are trained with the
combined dataset and tested separately.

Model Test Dataset ADD(-S)↑ ADD-S↑
DenseFusion∗

YCB-Video
88.4 94.9

MoreFusion 91.0 95.7

DenseFusion∗
Cluttered YCB

81.7 91.7
MoreFusion 83.4 92.3

DenseFusion∗ Cluttered YCB

(visibility<0.3)
59.7 83.8

MoreFusion 63.5 85.1

To specifically evaluate the effect of using surrounding occupancy as an input, we

tested the trained model (MoreFusion) by feeding in different levels of occupancy

information: discarding the occupancy information from a single-view observation

-occ; full reconstruction of non-target objects +target−; and full reconstruction of

background objects +bg. Table 3.3 shows that the model gives better predictions as

86

3.4. Experiments

more and more occupancy information is provided, which is what is possible in our

incremental, multi-view object mapping system. This comparison also shows that

even without occupancy information (MoreFusion−occ), our model performs better

than DenseFusion∗ purely because of the 3D convolutional architecture.

Table 3.3: Effect of occupancy information tested on the Cluttered-YCB dataset
with the model trained in Table 3.2.

Model ADD(-S)↑ ADD-S↑
DenseFusion∗ 81.7 91.7

MoreFusion−occ 82.5 91.7
MoreFusion 83.4 92.3

MoreFusion+target− 84.7 93.3

MoreFusion+target−+bg 85.5 93.8

3.4.2 Evaluation of Pose Refinement

We evaluate our pose refinement method, Iterative Collision Checking (ICC), against

Iterative Closest Point (ICP) [Besl and McKay, 1992]. Since ICP only uses a masked

point cloud of the target object without any reasoning about surrounding objects,

a comparison of ICC with ICP allows us to evaluate how well and in what cases the

surrounding-object geometry used in ICC specifically helps pose refinement.

Figure 3.7 shows a typical example where the pose prediction has object-to-object

intersections because of less visibility of the object (the yellow box). ICC refines

object poses to better configurations than ICP by using the constraints from nearby

objects and free-space reconstruction.

(a) No Refinement (b) ICP Refinement (c) ICC Refinement

Figure 3.7: Pose refinement from intersecting object poses, where we compare
the Iterative Collision Checking (ICC) against Iterative Closest Point (ICP).

87

3. Object-Level Semantic Mapping for Manipulation

For quantitative evaluation, we used the Cluttered-YCB dataset with pose es-

timates refined from initial pose prediction by MoreFusion in Table 3.2. Figure 3.8

shows how the metric varies with different visibility in the dataset, and shows that

the combination of the two methods (+ICC+ICP) gives consistently better poses

than the others methods. With few occlusions (visibility >= 40%), ICC does not

perform as well as ICP because of the discretization via voxelization (we use a 32-

dimensional voxel grid). However, results are at their best with the combination of

the two optimizations, where ICC resolves collisions in discretized space and then

ICP aligns surfaces more precisely.

0.2 0.4 0.6 0.8 1.0
Visibility of Object

0.8

0.9

1.0

AU
C

of
 A

DD
(-S

)

No Refinement
+ICP
+ICC
+ICC+ICP

Figure 3.8: Pose refinement results on the Cluttered YCB-Video dataset, where
the proposed Iterative Collision Check (ICC) gives the best results when combined
with ICP.

3.4.3 Full System Demonstration

We demonstrate the capability of our full system, MoreFusion, with two demonstra-

tions: scene reconstruction, in which the system detects each known object in the

scene and aligns an object CAD model (shown in Figure 3.9); and secondly, a ro-

botic pick-and-place task, where the robot is requested to pick a target object from

a cluttered scene by intelligently removing distractor objects to access the target

object (shown in Figure 3.10).

88

3.4. Experiments

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Real-time full reconstruction. Our system gradually increases its
knowledge about the scene with volumetric fusion (a) and incremental CAD align-
ment (b) for the final reconstruction (c). The pose hypotheses of surrounding objects
(e.g., drill, yellow box) are utilized to refine pose predictions to perform pose estim-
ation for heavily occluded objects (e.g., red box) (d)-(f).

Object-level Scene Reconstruction

Figure 3.9 shows reconstruction results in two different scenes. This figure shows

how our system successfully tracks each object in the volumetric fusion and aligns

the object model incrementally (top row). In a more difficult setup (bottom row),

where some objects are heavily occluded, the system first initializes less-occluded

objects (drill, yellow box) and then initializes the heavily occluded object (red box)

after reasoning together with the surrounding object configurations. These results

demonstrate the capability of our system as a whole to gradually enrich scene un-

derstanding from volumetric fusion to full reconstruction.

Targeted Object Pick-and-Place

The ability to build an object-level full reconstruction of a scene is typically useful

for the robotic pick-and-place of specified objects. These reconstructions allow the

robot to reason about the picking order to successfully remove obstructing objects

89

3. Object-Level Semantic Mapping for Manipulation

In
itia

l sta
te

M
o

vin
g

 th
e d

istra
cto

r o
b

jects
P

ickin
g

 th
e ta

rg
et o

b
ject

Scene1Scene2

F
igu

re
3.10:

T
a
rg

e
te
d
p
ick

-a
n
d
-p

la
c
e
d
e
m
o
n
stra

tio
n

,
w

h
ere

th
e

rob
ot

m
u

st
m

ove
ob

stru
ctin

g
ob

jects
to

th
e

yellow
con

tain
er,

p
ick

th
e

target
ob

ject
(red

b
ox

in
S

cen
e

1;
red

b
ow

l
in

S
cen

e
2),

an
d

th
en

p
la

ce
it

in
th

e
ca

rd
b

oa
rd

b
ox

.

90

3.5. Conclusion

before picking the target object. In Figure 3.10, we show a successful application

of MoreFusion to a robot arm, which must move obstructing objects to a container,

pick a target object, and then place it in the cardboard box.

3.5 Conclusion

In this chapter, we have shown consistent and accurate pose estimation of objects

that may be heavily occluded by and/or in close contact with other objects in

cluttered scenes. Our real-time and incremental pose estimation system, which

is composed of object-level volumetric fusion, pose prediction using surrounding

geometry, and collision-based multi-object pose refinement, builds an object-level

map that describes the full geometry of the objects in the scene. This enables the

robot to manipulate objects in complicated piles via intelligence of disassembling of

occluding objects and oriented placing.

To further improve object pose estimation in cluttered scenes, an interesting future

direction is to introduce physics reasoning into the pose optimization process. For a

3D object pose estimate to be feasible, the pose should not only not intersect other

objects, but also be supported by other objects or surfaces, and that it provides

sufficient support to other objects. A physics simulator with gravity, friction, and

even deformation could be incorporated into our approach, though it is not yet

fully clear how to use it in optimization efficiently. More generally, we expect that

estimation of the poses of known objects will be part of a more general scene inference

approach such as with optimizable shapes.

The manipulations demonstrated in this chapter were simple and exhaustive. To

pick target objects in a pile occluded by other objects, the robot needed to move all

the occluding objects first to reach and pick the target objects. This is because the

collision-based motion planner we use in this chapter is strictly aimed at generating

collision-free trajectories, and the overlapping objects have to be removed first to

find solutions for the occluded target objects. Although this collision-free motion

generation gives safe object rearrangement, avoiding damage and destruction, it

91

3. Object-Level Semantic Mapping for Manipulation

could be possible to accomplish similarly safe target picking with fewer manipulation

steps by selecting different motions. This motivates us to combine our semantic

mapping system with learning-based manipulation motion generation as will be

described in the following chapters: Chapter 4, Chapter 5.

92

Chapter 4

Fine-Grained Manipulation

with a Semantic Map

Contents

4.1 Introduction . 93

4.2 Related Work . 98

4.3 Object-level Semantic Mapping 98

4.4 Learning Object Extraction . 99

4.4.1 Grasp Point Selection 99

4.4.2 Fusion of Raw and Pose Observations 99

4.4.3 Manipulation Model . 101

4.4.4 Model Training . 102

4.5 Experiments . 104

4.5.1 Baseline Comparison . 105

4.5.2 Model Ablations . 107

4.5.3 Real-world Experiments 109

4.6 Conclusion . 114

4.1 Introduction

There has been continued research interest in integrating vision-based semantic map-

ping with manipulation for its potential to alter object states to achieve various

93

4. Fine-Grained Manipulation with a Semantic Map

useful tasks, such as part assembly [Stevšić et al., 2020, Zakka et al., 2020], ex-

tracting objects from clutter [Zeng et al., 2017], and arranging objects in a specific

posture [Gao and Tedrake, 2019, Manuelli et al., 2019]. In Chapter 3, we demon-

strated the capability of traditional manipulation pipelines, composed of perception

to build an explicit scene representation of objects (semantic world model) followed

by planning to search for a collision-free arm trajectory. As an alternative to this

traditional pipeline, learning-based approaches have emerged recently as discussed

in Chapter 1, directly inferring actions from observations (usually raw sensor in-

formation) with implicit scene understanding.

Although the traditional pipeline has been successful in structured environments,

manipulation in cluttered environments is still challenging because of close contacts

and occlusions among objects. In Chapter 3, we tackled in-clutter manipulation

by combining vision-based semantic mapping and collision-based motion planning.

However, this pipeline requires robots to move distractor objects away one by one

to ensure there are collision-free manipulation trajectories, which can be inefficient

when many objects are overlapping each other. In this situation, robots can struggle

to safely extract occluded objects when requested to do so with a single grasp for

efficiency. If robots try to extract occluded objects with a naive manipulation tra-

jectory (e.g., moving straight upwards), this may cause destructive effects on the

objects, which could be particularly critical when dealing with fragile objects.

To tackle this challenge to the traditional pipeline, in this chapter we explore the

approach of integrating learning-based motion planning with vision-based semantic

mapping to replace collision-based motion planning. Specifically, we learn a fine-

grained 6D motion trajectory for a short-horizon task (target object extraction from

a pile) with a model that predicts the residual motions of the end-effector step-by-

step. This model receives as input an observation (e.g., camera image, object pose)

and must predict the next best action as a transformation of the end-effector. To

minimize destructive effects on non-target objects in the pile (e.g., the trajectory

shown in Figure 4.1), we train the model with reinforcement learning to penalize

the translations of the other objects during object extraction.

94

4.1. Introduction

Figure 4.1: SafePicking, our manipulation system for object extraction, extracts
target objects with minimum disturbance by generating a safe end-effector trajectory given
raw observations and object poses retrieved from an object-level semantic map.

This fine-grained motion generation for a short-horizon task is in line with previ-

ous studies on learning-based object grasping [Devin et al., 2018, Kalashnikov et al.,

2018, Levine et al., 2018], where a learning model predicts end-effector transform-

ations and grasp commands. Despite the use of raw observations as input for the

model (e.g., RGB-D images) being common in prior work, we argue that semantic

information such as object poses can give vital cues as to how objects should be

manipulated. Especially in our task of object extraction, which requires a proper

understanding of the occluded parts of objects, we observe that the model generates

better motions with object poses even when pose estimation errors are incorporated.

On the other hand, however, when the pose estimate has errors such as misdetec-

95

4. Fine-Grained Manipulation with a Semantic Map

tion and pose-difference, a model that only uses object poses (as in learning-based

game agents [Brockman et al., 2016, Baker et al., 2020]) would have poor perform-

ance. To handle these estimation errors, we combine raw observations with object

poses, enabling the model to gain high performance from pose information as well

as robustness from the raw observations.

Our system, SafePicking , shown in Figure 4.2, is composed of 1) object-level

semantic mapping that builds a pose map of objects while exploring the tar-

get object, and 2) learning-based motion planning to generate an end-effector

6D trajectory from raw depth (depth images) and pose estimates (predicted object

poses) using a neural network. The grasp point is determined to be the centroid of

the visible surface of the object, and observations are transformed into the grasp

point coordinate frame to be agnostic to the grasp point (canonicalization). This

combination of semantic mapping and canonicalization makes our learned manipu-

lation model general to variable object position in the workspace and enables the

model to learn faster. We train the model in physics simulation.

To our best knowledge, this is the first work that tackles safe object extraction,

where a robot is tasked with picking an occluded target object with a single grasp

while minimizing the disturbance of the surrounding objects. In experiments, we

demonstrate and evaluate our integrated system in the real world. In summary, the

main contributions in this chapter are:

1. Introducing safe object extraction as a novel manipulation task: a ro-

bot must pick occluded target objects from a pile with a single grasp while

minimally disturbing surrounding objects.

2. Fusion of raw observations and pose estimates in learning-based motion

planning, achieving high performance and robustness to estimation errors.

3. An integrated robotic manipulation system with semantic mapping and

learning-based motion planning, to demonstrate efficient and safe extraction

of occluded target objects from a pile in the real world.

96

4.1. Introduction

N

RG
B-
D

ca
m
er
a

Ta
rg
et

ob
je
ct

O
bj
ec
t-l
ev
el
m
ap
pi
ng

Ta
rg
et
ob
je
ct
ex
tra
ct
io
n

Le
ar
ni
ng
-b
as
ed

m
ot
io
n
pl
an
ni
ng

O
bs
er
va
tio
n

fu
si
on

A
ct
io
n

se
le
ct
io
n

M
LP

H
ei
gh
tm
ap

Ta
rg
et

fla
gs

O
bj
ec
t

po
se
s

O
bj
ec
t

cl
as
se
s

Ta
rg
et
m
as
k

F
ig

u
re

4
.2

:
S
y
st
e
m

o
v
e
rv

ie
w

,
w

h
ic

h
co

n
si

st
s

of
1)

ob
je

ct
-l

ev
el

m
ap

p
in

g
w

it
h

vo
lu

m
et

ri
c

re
co

n
st

ru
ct

io
n

a
n

d
p

o
se

es
ti

m
a
ti

o
n

o
f

d
et

ec
te

d
ob

je
ct

s
w

it
h

an
on

-b
oa

rd
R

G
B

-D
ca

m
er

a,
an

d
2)

le
ar

n
in

g
-b

as
ed

m
ot

io
n

p
la

n
n

in
g

fo
r

ob
je

ct
ex

tr
a
ct

io
n

u
si

n
g

a
s

in
p

u
t

th
e

es
ti

m
a
te

d
o
b

je
ct

p
os

es
an

d
ra

w
d

ep
th

ob
se

rv
at

io
n

s
in

th
e

fo
rm

of
a

h
ei

gh
tm

ap
,

w
h

ic
h

re
cu

rs
iv

el
y

ge
n

er
at

es
an

en
d

-e
ff

ec
to

r
tr

a
je

ct
o
ry

w
it

h
N

st
ep

s.

97

4. Fine-Grained Manipulation with a Semantic Map

4.2 Related Work

The use of deep learning for robotic manipulation has become widespread (§1.3) with

its progress in visual recognition with convolutional networks and observation-to-

action policy learning [Levine et al., 2016, Zeng et al., 2020b, James et al., 2021b].

With convolutional networks, prior work [Levine et al., 2018, Pinto and Gupta,

2016, Zeng et al., 2018b] has demonstrated robotic grasping from a single view

without explicitly modeling object geometry. For optimizing the policy for a sequen-

tial motion, other work has applied deep reinforcement learning for indiscriminate

grasping [Kalashnikov et al., 2018, Zeng et al., 2018a], discriminate (i.e., targeted)

grasping [Devin et al., 2018, Fang et al., 2018], and retrieval [Kurenkov et al., 2020].

Our work is along the lines of the work on discriminative object manipulation [Devin

et al., 2018, Fang et al., 2018, Kurenkov et al., 2020], but we focus on how to ma-

nipulate objects after grasping instead of grasping itself, which has not been well

explored in previous work. Moreover, we exploit object-level scene understanding

for learning-based robotic manipulation by feeding in estimated poses along with

raw observations given in the form of a heightmap.

4.3 Object-level Semantic Mapping

To build a map of objects and find the target objects in a scene from an RGB-D

camera sequence, we use the object-level semantic mapping system, MoreFusion,

introduced in Chapter 3. To find the object specified as the picking target, we query

the object’s geometric information from the map using the target object class, which

provides its mask and estimated pose.

An alternative approach for this object exploration is using only single-view object

detection. This single-view approach would work when the task workspace is small

enough for a single view to capture the visible surface of all objects (as in prior

work [Devin et al., 2018, Fang et al., 2018]). However, in a large workspace, a

single-view can fail to capture the crucial observation of the target object because

of truncation. Furthermore, when two instances of the same target object exist in a

98

4.4. Learning Object Extraction

scene, and one of them is blocked by distractor objects and the other is not, with an

explicit object map we could choose the less-blocked instance as the manipulation

target, whereas a single-view approach may end up choosing the instance that is more

challenging to manipulate. These limitations of single-view estimation motivate us

to build an object-level map from multiple views.

4.4 Learning Object Extraction

To train the motion planning model, we use deep Q-learning [Mnih et al., 2015],

an off-policy, model-free reinforcement learning algorithm. By collecting episodes

through exhaustive exploration of the action space, this algorithm learns a policy

that maximizes the cumulative reward of each episode. We use the sum of transla-

tions of the non-target objects as the negative reward (i.e., penalty) in this algorithm

so that the model acquires manipulation skills that minimize the overall disturbance

of a pile.

4.4.1 Grasp Point Selection

We select the centroid of the visible surface of the target object as the grasp point

p = [𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧]⊺. The surface geometry and mask of the target object are given

from the object-level map. To determine the grasp orientation, we compute the

quaternion q = [𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 , 𝑞𝑤]⊺ that gives the minimal transformation to align the

axis of the suction cup n𝑔 to the normal of the grasp point n𝑠 on the object surface:

[𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧]⊺ = n𝑔 × n𝑠 (4.1)

𝑞𝑤 =

√︄∑︁

𝑖

n
2
𝑔,𝑖 +

∑︁

𝑖

n
2
𝑠,𝑖 + (n⊺𝑔 · n𝑠). (4.2)

4.4.2 Fusion of Raw and Pose Observations

We take advantage of both raw and pose observations by feeding them as input to the

model at both training and test time. The raw observation is a heightmap generated

from depth images, giving unprocessed raw information about the visible surface

of objects in the workspace. The pose observation is extracted from the object-

99

4. Fine-Grained Manipulation with a Semantic Map

level map giving, complete geometry and semantics though with the possibilities of

misdetection and offsets on the object poses.

These two observations give different benefits. Raw observations are little pro-

cessed before they are fed into the model, so are less prone to systematic errors

than pose observations. In contrast, a pose observation gives complete semantics

and geometry (e.g., occluded parts of the objects), which is missing in the raw ob-

servation, though is possibly subject to errors. Fusion of these two observations

provides comprehensive information for the model to achieve both better perform-

ance in object extraction (less disturbance of a pile) and robustness to estimation

errors (misdetection, pose-difference).

Raw Observation

For the raw observation, we build a heightmap from the depth images from the

RGB-D camera. This heightmap represents the heights of the objects’ surfaces from

the ground plane and gives information about the visible surface of objects.

We build this heightmap by centering the XY coordinates of the grasp point 𝑝𝑥 , 𝑝𝑦

in the image coordinate of the heightmap, which canonicalizes the observations with

respect to the grasp point, with XY bounds of the area the heightmap is representing.

In our experiments, we use 0.004m as the size each cell represents and 128 as the

image height and width dimensions, which gives ±0.256𝑚 (= 0.004 · 128/2) XY

bounds for the heightmap.

Pose Observation

As for pose observations, at training time we extract ground truth object poses and

classes from the simulator we use to train the manipulation model. At test time,

we extract object poses from the object-level map, which we build with MoreFusion

using the on-board camera on the robot arm. To feed as the input to our model, we

represent object pose with target flags (O, 1) with a binary vector, classes (O, C)

with one-hot vectors, and poses (O, 7) with a set of position (O, 3) and quaternion

100

4.4. Learning Object Extraction

(O, 4), giving both semantic and geometric information for objects, where O is the

number of detected objects and C is the number of object classes.

Before we feed this information into the model as input, we canonicalize the

object pose as we do with the heightmap by centering the grasp point in the pose

coordinate frame. We subtract the XY coordinates of the grasp point 𝑝𝑥, 𝑝𝑦 from

each pose of the object, which gives aligned pose observation along with the raw

observation (depth information given as heightmap), allowing the model to exploit

useful information from either of them as needed.

4.4.3 Manipulation Model

Action

We formulate manipulation as a residual 6D end-effector transformation, discret-

izing each axis of translation and rotation. We discretize the translation space in

increments of 0.05 m and discretize the rotation with Euler angles (§2.2.2) in in-

crements of 22.5 = 180/8 degrees. Each residual has either 0, positive or negative

value, to give combinations of 36 = 729 possible actions.

This residual action is taken 𝑁 times to generate a motion trajectory. To give

information about previously taken actions to the model, we feed the previous end-

effector poses as input to the model as well as the other observations of the scene

(heightmap, pose). This temporal information given as input allows the model to

incrementally reason about the trajectory as it is generated.

Network Architecture

Our model represents a Q-function that predicts the discounted return given the

observation 𝑜𝑡 at time 𝑡. Once trained, we evaluate this Q-function over a set of

actions 𝑎 ∈ 𝐴 and take the highest-valued one 𝑎:

𝑎 = arg max
𝑎

𝑄(𝑎, 𝑜𝑡). (4.3)

101

4. Fine-Grained Manipulation with a Semantic Map

Figure 4.3 shows the network architecture. The heightmap observation is pro-

cessed by a convolutional (Conv) encoder and downsized into a feature vector. This

vector is concatenated with pose observations and processed by a transformer en-

coder [Vaswani et al., 2017]. With a transformer encoder, we can handle an arbitrary

number and order of object poses as input. This encoder outputs features whose

batch size is the same as the input features (the number of objects 𝑂). We compute

the mean of these features to build global features following [Baker et al., 2020] and

predict the Q-value with a fully-connected layer.

Target
flags

Previous
end-effector trajectory

Action
Q-value

M
ean

Linear

Transformer
encoder

Conv
encoder

Object
poses

Object
classes

Evaluation
action

Heightmap Target mask

Figure 4.3: Network architecture, which uses heightmap and object poses to predict
a Q-value for 6DoF end-effector actions. We feed end-effector residual motions as the eval-
uation action, from which the best-scored action is selected as the next action at test time.

Aside from the visual observations, this network receives two additional inputs:

the evaluation action, and the previous end-effector trajectory. The evaluation ac-

tion is fed in the form of a residual 6D pose represented as translation and quaternion

vectors and is one of the candidate actions from which the best action is selected at

the next step. The previous end-effector trajectory represents the history of actions

the model has taken, allowing it to generate a consistent next action along with the

context. The previous trajectory is input as a list of 6D poses.

4.4.4 Model Training

Reward

Disturbance of surrounding objects during manipulation can be classified in the

following ways:

102

4.4. Learning Object Extraction

• Falling, which happens when overlapping objects are supported by the target,

and they fall after the extraction of the target;

• Sliding, which happens when overlapping objects have to be displaced to create

a space to extract the target.

Both of these effects are undesirable. The falling effect can damage the object

and the sliding effect can expand the pile and workspace that can make later task

continuation harder.

To cover both effects, we use the sum of the translations of non-target objects as

the safety metric. When an object falls a large distance, not only does the translation

of the object itself become large, but it can also hit other objects, causing a chain

reaction of moving objects. By using the “sum” of the L2 norm of translations, we

can encourage the model to minimize the number of objects affected as well as the

translations of the individual object.

Deep Q-Learning

We compute the safety metric as the reward 𝑟𝑡 at each time step 𝑡. Using this

reward, we train the deep Q-network to minimize the following Bellman equation:

𝑞𝑡 ,𝑎 = 𝑄(𝑜𝑡 , 𝑎) (4.4)

𝑞𝑡 ,𝑎 = 𝑟𝑡 + 𝛾max
𝑎
𝑄(𝑜𝑡+1) (4.5)

L = |𝑞𝑡 ,𝑎 − 𝑞𝑡 ,𝑎 |, (4.6)

where 𝛾 is the time discount of the reward, Q is the live network updated every

training step, and 𝑄 is the target network, a copy of the live network updated less

frequently to avoid overfitting.

Training in Simulation

We train the manipulation model in a physics-based simulation environment us-

ing the physics engine introduced in §2.6, since it is difficult to measure collisions

103

4. Fine-Grained Manipulation with a Semantic Map

between a grasped object and its surroundings when a robot manipulates objects

in the real world. Furthermore, it is time-consuming and challenging to build dif-

ferent configurations of objects for each trial of the learning processes, and ensure

the safety of both the robot and objects during exploration, as the robot might

make a dangerous motion which breaks objects or makes object configurations not

restorable.

To let the robot experience various configurations of objects, we procedurally gen-

erate object piles while simulating physics to build a set of feasible piles. For a given

set of object models, we define the 3D space where those models can be spawned.

Each step randomly selects one of the object models and an object position and

orientation from the defined 3D space, from which we apply physics simulation until

the spawned object stops moving with no collisions, making the object pile stable.

This generation process produces arbitrary object orientations and overlaps that are

physically feasible, from which the robot can learn a successful policy to manipulate

objects by understanding the geometric relationships with the surrounding objects.

4.5 Experiments

We evaluate our method by assigning the robot to grasp and extract a target object

from a pile using safety as the task metric. We train our learning models in simula-

tion, using YCB CAD models [Calli et al., 2015], and evaluate performance in both

simulation and the real world.

Training detail

We build the learning model with PyTorch [Paszke et al., 2019] and a simulation

environment built with Bullet [Coumans et al., 2013] (§2.6). To train the model,

we run a single process to update the model parameters using the action-state pairs

collected from multiple processes that asynchronously run the learned model to act

in different simulation environments. For this asynchronous data collection and

104

4.5. Experiments

training, we use an open-source framework 1.

As for the training hyperparameters, we use batch size 128, and Adam [Kingma

and Ba, 2015] (§2.7.3) as the optimizer with parameters of 𝛼 = 0.001, 𝛽1 = 0.9, 𝛽2 =

0.999. From the start of training, we use Epsilon Greedy exploration, which linearly

balances random action selection and policy-based action selection according to the

number of iterations (in the beginning, it uses random selection more frequently), to

collect data up to 5000 iterations. We use replay ratio 16 (the number of updates per

data collection), and synchronize the model parameters in different processes every

100 iterations, allowing the model in the exploration processes to collect episodes

with the new parameters.

Metric

To evaluate the performance of the model, we define safety metrics that represent

how safely the robot extracts occluded target objects. As discussed in §4.4.4, this

metric should represent the disturbance of non-target objects caused by falling or

sliding. In the experiments, we use the following metrics:

• The sum of translations, which evaluates effects caused by both falling and

sliding, as discussed in §4.4.4;

• The sum of max velocities, which primarily evaluates falling effects, as a larger

distance fall gives higher velocity since objects are accelerated with gravity.

4.5.1 Baseline Comparison

Naive motion

In Table 4.1, we compare our method against several alternatives. The simplest

motion is joint linear interpolation to the reset pose, in which the end-effector is

located in free space with the suction cup faces the ground plane. When the target

1
https://github.com/stepjam/YARR

105

https://github.com/stepjam/YARR

4. Fine-Grained Manipulation with a Semantic Map

Table 4.1: Baseline comparison, in which we compare our learned model with baseline
methods using the safety metric. Tested in 600 unseen pile configurations in simulation.

Safety metric
Method Input Noise translation↓ velocity↓
Naive -

no

0.701 1.919
Heuristic - 0.578 1.624
RRT-Connect pose 0.520 1.643
SafePicking pose, heightmap 0.465 1.419

RRT-Connect pose
yes

0.532 1.645
SafePicking pose, heightmap 0.465 1.433

object is overlapped by distractor objects, this motion introduces many collisions

among objects, causing falling and sliding, giving the lowest scores.

Heuristic motion

As a simple heuristic for extracting objects from a pile, we use a motion that ex-

tracts the grasped object with a straight motion towards the +Z direction of the

world coordinate. Although this motion can cause many collisions with overlapping

objects, on average it gives better results than the naive motion, which interpolates

motions in joint space irrelevant to the physical prior (e.g., gravity direction) in 3D

space (Table 4.1).

Collision-based motion planning

As another baseline, we use a collision-based motion planning method, RRT-Connect

[Kuffner and LaValle, 2000] (§2.6). RRT-Connect samples many configurations of

the arm in 3D space while checking for collisions to find the connections between

them, and uses the world model of a scene to compute collisions. We use the same

Bullet [Coumans et al., 2013] physics engine for collision checking, as is used for

physics simulation throughout this thesis (§2.6). Although this motion planning

method can produce non-destructive extraction motion when it finds a collision-free

path, it struggles to find relatively safe trajectories when a complete collision-free

path does not exist. In this case, the motion planner ends up giving a naive motion,

which can cause significant movement of the surrounding objects. Table 4.1 shows

106

4.5. Experiments

that RRT-Connect gives comparable results to the Heuristic motions (better in

translation, worse in velocity). Meanwhile, our learned model (SafePicking) gives

the best results, as we would would hope given that it is trained to minimize pile

disturbance with reinforcement learning instead of just minimizing collisions.

4.5.2 Model Ablations

We evaluate 3 model variants with different inputs to compare the effect of different

observations on the learned model (Table 4.2). We also evaluate its robustness by

adding noise to the pose observation (misdetection, pose-difference) based on the

visibility of objects. Raw-only receives as input only a heightmap generated from

a depth image. Pose-only uses object pose as input, which gives more complete

information about objects, and gives better results than Raw-only even with noise

in the input object poses. Our full model, Pose+Raw, receives both heightmap and

object pose as input, compensating for the error in object pose by using the visible

surface information from a heightmap. The results show that the combination of

pose and heightmap works best in the presence of errors. As one would expect,

when given perfect pose information (no pose noise), there is no benefit to having

additional heighmap information; however, in reality, predicted poses will always

have some errors, and so the addition of pose noise shows the benefit of fusing

poses and heighmap observations. Figure 4.4 shows qualitative results, in which the

model with object poses gives better motions for object extraction with minimal

disturbance of the other objects.

Table 4.2: Ablation study, in which we compare the variants of the learned model
with/without adding noise to the pose observation. Tested in 600 unseen pile configurations
in simulation.

Safety metric
Variant Input Noise translation↓ velocity↓
Raw-only heightmap

no
0.507 1.491

Pose-only pose 0.477 1.430
Pose+Raw pose, heightmap 0.465 1.419

Pose-only pose
yes

0.487 1.449
Pose+Raw pose, heightmap 0.465 1.433

107

4. Fine-Grained Manipulation with a Semantic Map

(a) S
cen

e 1
(b

) S
cen

e 2

Raw-onlyPose+Raw

F
igu

re
4.4:

Q
u
a
lita

tiv
e
c
o
m
p
a
riso

n
o
f
v
a
ria

n
ts

o
f
o
u
r
m
e
th

o
d

,
in

w
h

ich
w

e
com

p
are

R
a
w
-o
n
ly,

w
h

ich
u

ses
on

ly
th

e
h

eigh
tm

ap
o
b

serva
tio

n
,

a
n

d
o
u

r
fu

ll
m

o
d

el
P
o
se+

R
a
w

th
a
t

u
ses

b
oth

ob
ject

p
oses

a
n

d
h

eigh
tm

ap
.

W
e

u
se

th
e

sam
e

an
d

con
stan

t
cam

era
v
iew

p
oin

t
in

ea
ch

scen
e

(th
e

co
lu

m
n

a
x
is).

108

4.5. Experiments

4.5.3 Real-world Experiments

We evaluate our system in the real world using the same robotic system intro-

duced in §2.5.1: a Franka Emika Panda robot with an RGB-D camera (Realsense

D435 [Keselman et al., 2017]) mounted on the wrist, and a suction gripper built using

a Dyson vacuum cleaner. Similarly to Chapter 3, we integrate the robotic controller

with the vision and motion planning system using the Robotic Operation System

(ROS) framework [Quigley et al., 2009], which enables inter-process communication

of sensory data (e.g., RGB-D images, robotic arm joint states), perception results

(e.g., object detections, poses), and motion commands (e.g., target joint positions

and velocities).

Evaluation Metric

For the numerical experiments in the real world, we use heightmap difference between

before and after the task as the safety metric, as depicted in Figure 4.5. The use of

a different metric from the evaluation in simulation is because the metrics used in

simulation (total translations and velocities of the objects at every step) are chal-

lenging to measure in the real world (requiring time-consuming pose annotations).

To evaluate the heightmap difference, the robot scans the object pile and builds a

heightmap before and after the execution of the task (Figure 4.5a, b). The pixel

regions of the target object are excluded from the comparison as the target object is

intentionally moved, and its difference should not be penalized. These two height-

maps built before/after the task are compared to measure the pixel-wise height

difference as shown in Figure 4.5c as a difference map (top) and a mask (bottom)

with a threshold of 0.01𝑚. From these difference images, we compute the difference

volume (with the pixel size of the heightmap of 0.004𝑚) and mask size to use them

as the safety metrics.

Quantitative evaluation

Using the heightmap-based evaluation metric, we evaluate the variants of our learned

models in the real world. For the task configuration, we use similar settings to the

109

4. Fine-Grained Manipulation with a Semantic Map

(a) Heightmap (before) (b) Heightmap (after) (c) Difference
Figure 4.5: Real-world safety evaluation by comparing pile heightmaps built be-
fore/after manipulation. The region of the target object (blue pitcher in this case), which is filled
with a black color in the heightmaps, is excluded from the comparison.

simulation, where target objects are partially occluded by the other objects in a pile

and the robot is tasked with extracting the target object with a single grasp while

minimizing the disturbance of the other objects. Table 4.3 shows the comparison of

our learned models (Raw-only and Pose+Raw) for 20 configurations, some of which

are shown in Figure 4.6. After each task, we manually reset the scene to provide

the same object configuration to different methods. This comparison gives results

consistent with the ablation study in simulation, showing that pose information is

beneficial for motion generation and enables the model (Pose+Raw) to select safe

actions compared to using only raw observations (Raw-only).

Table 4.3: Real-world model comparison, in which we evaluate learned models by
comparing the heightmaps before/after each task. Each model is tested in the same 20 configurations
with same target objects.

Safety metric
Variant Diff mask [%]↓ Diff volume [litter]↓
Raw-only 7.1 3.2

Pose+Raw 4.4 2.1

110

4.5. Experiments

(Initial state)
Sc
en
e
1

Sc
en
e
2

Sc
en
e
3

Raw-only
(Final state)

Pose+Raw
(Final state)

Figure 4.6: 3 pile configurations out of the 20, we use to the learned models in the real
world. We measure the performance with the heightmap-based safety metric. Consistent with the
results in simulation, the model generates better motions when given a fused observation of object
poses and a heightmap (Pose+Raw).

Qualitative evaluation

Figure 4.7 shows qualitative comparison between heuristic and learned motions.

This comparison demonstrates that the learned model is more capable of safely

extracting target objects while minimizing the effects on surrounding objects.

Figure 4.8 demonstrates the adaptation of our learned model to changes in a pile

configuration. This result shows that the model successfully captures the geometric

relationship between the target and distractor objects, changing its motion to avoid

disturbance of the distractor objects.

111

4. Fine-Grained Manipulation with a Semantic Map

HeuristicLearned

(a) S
cen

e 1
(a) S

cen
e 2

F
igu

re
4.7:

L
e
a
rn

e
d

v
s.

h
e
u
ristic

m
o
tio

n
.

W
e

com
p

are
th

e
m

otion
fro

m
ou

r
learn

ed
p

lan
n

er
w

ith
an

u
p
w

ard
straigh

t
m

otion
(h

eu
ristic)

to
ex

tra
ct

ta
rg

et
o
b

jects
(a

:
y
ellow

b
ox

,
b

:
b

lu
e

p
itch

er).
T

h
e

learn
ed

m
o
d

el
su

ccessfu
lly

ad
ap

ts
to

d
iff

eren
t

p
ile

con
fi

gu
ration

s,
avo

id
in

g
co

llisio
n

s
(a

)
a
n

d
th

e
o
b

ject
d

ro
p

fro
m

th
e

co
n
tain

er
(b

),
w

h
ich

h
ap

p
en

w
ith

th
e

h
eu

ristic
m

otion
.

112

4.5. Experiments

(a) Initial configuration

(b) +Wooden block

(c) +Mustard bottle

(d) +Blue pitcher

Figure 4.8: Pile change adaptation of the learned model, where we incrementally add
distractor objects with the same target, blocking the previously selected action. The model
shows successful adaptation to the change of the pile, avoiding disturbance in all cases.

113

4. Fine-Grained Manipulation with a Semantic Map

4.6 Conclusion

In this chapter, we have integrated a learning-based manipulation with the object-

level semantic mapping system we built in Chapter 3, focusing on generating a short-

horizon yet fine-grained 6D motion trajectories to safely extract objects from a pile.

The motion model is trained via reinforcement learning so that it generates a safe

trajectory that enables single-grasp target picking while avoiding the disturbance to

the other objects in a pile.

Our integration of learning-based manipulation is also made robust to estimation

errors in the world states by combining raw sensory information with estimated

state information as input. Estimation errors are unavoidable in visual perception,

especially in complex scenes such as object piles, and can result in missing heavily

occluded objects or estimating incorrect poses with offsets. The heightmap input

gives robustness to estimation errors being directly generated from raw depth ob-

servations, and the pose input allows better motion generation via rich semantic

information about the scene.

The focus in this chapter was learning fine-grained motions for short-horizon ma-

nipulation. We showed that the integration of learning-based manipulation with

semantic mapping enables robots to acquire manipulation skills that cannot be

achieved with a traditional motion planner or end-to-end learning-based manipu-

lation that uses only raw observations.

Despite the successful integration of semantic mapping and learning-based ma-

nipulation for a short-horizon task, it is still unclear how useful the semantic map is

for more long-horizon manipulation tasks. Long-horizon manipulation can include

several steps of grasping and placement that all have to be combined in an optimal

way to achieve the final task goals. In Chapter 5, we tackle this question with a

manipulation task that needs long-horizon planning of motions.

114

Chapter 5

Long-Horizon Manipulation

with a Semantic Map

Contents

5.1 Introduction . 115

5.2 Related Work . 119

5.3 Method . 121

5.3.1 Object-Level Semantic Mapping 122

5.3.2 Motion Waypoint Generation 123

5.3.3 Motion Trajectory Generation 127

5.4 Experiments . 129

5.4.1 Evaluation in Simulation 130

5.4.2 Real-world Evaluation 132

5.5 Conclusion . 133

5.1 Introduction

In the previous chapter, we have explored short-horizon yet fine-grained motion

generation with a learned manipulation model combined with vision-based semantic

mapping, in a task of object extraction of occluded target objects from a pile. How-

ever, as discussed in Chapter 1, manipulation is not limited to short-horizon tasks

115

5. Long-Horizon Manipulation with a Semantic Map

and can include several steps of grasping and placement requiring long-horizon plan-

ning for selecting the best motions to complete the task. In this chapter, we tackle

a manipulation task of specific-posed object placement, which requires long-horizon

motion planning including reorientation and regrasping to achieve desired grasps

that enable the final placement.

1

2

3

4

1

2

3

4

Figure 5.1: ReorientBot, our manipulation system for object specific-posed place-
ment, picks, reorients, regrasps, and places objects in various target configurations. Learned
components enable object reorientation with significant rotation using dynamic placement
(released and stabilized with gravity), which is hardly achievable with human heuristics.

116

5.1. Introduction

Placing objects in a specific pose is a vital capability for robots to rearrange

the world into arbitrary configurations of objects. This capability enables various

applications such as product display, storing, or packing, which require tidy, secure,

and space-saving object arrangements. When objects must be specifically placed,

reorientation is often a crucial manipulation step, to change the object pose in favor

of the subsequent task steps as in Figure 5.1. Reorientation makes a specific surface

of the object accessible when the goal configuration restricts the feasible grasp points

and they are inaccessible in the initial state of the object. With a pile of objects,

the grasp points can be initially blocked by the ground plane or the surrounding

objects, forcing the robot to rotate or flip the target object for regrasping.

Traditionally, object reorientation has been accomplished with human-designed

reorientation poses (e.g., 90-degree rotation), for which a motion planner generates

trajectories to reorient objects [Tournassoud et al., 1987, Wan et al., 2019]. Although

the motion planner can generate decent reorientation trajectories given appropriate

and diverse reorientation poses, the motions are often inefficient due to the limited

diversity of the pose candidates, requiring multiple steps to reorient objects when a

significant orientation change is required (e.g., flipping). A single-step reorientation

would be a solution to this inefficiency; however, it requires careful design of the

reorientation poses, which must be both placeable and re-graspable. Because of

these combinatorial and complex requirements, human heuristics (e.g., a canonical,

upright orientation as the reorientation pose) do not achieve high levels of success.

To overcome the limitations of human heuristics for motion generation, an altern-

ative is a learning-based approach to generate successful and efficient motion traject-

ories. Although learning-based approaches for robotic manipulation have become

common [James et al., 2021b, Levine et al., 2016], especially in short-horizon manip-

ulation tasks such as indiscriminate grasping without precise placement [Kalashnikov

et al., 2018, Levine et al., 2018] and the object extraction shown in Chapter 4, it

is still unclear how to best model long-horizon tasks as it becomes harder to train

models as the task horizon increases. For specific-posed placement, the reorientation

motion has to be selected considering the succeeding regrasping and placement.

117

5. Long-Horizon Manipulation with a Semantic Map

Our method uses a sampling-based approach, where learned models evaluate the

quality of candidate motion waypoints. This learned model predicts the success

and efficiency of the coarse waypoints from which trajectories are generated by tra-

ditional collision-based motion planning. This waypoint evaluation (cf. trajectory

evaluation by feeding a long list of waypoints) assumes that the coarse waypoints

(e.g., grasp and reorientation poses for object reorientation) stand for the whole

trajectory and can be used for evaluation before actually generating the whole tra-

jectory. This early evaluation drastically reduces the planning time, allowing the

model to use numerous motion candidates to find the best motion.

Using this approach, we build ReorientBot , a hybrid system that integrates

learned manipulation and traditional motion planning along with vision-based se-

mantic mapping (Figure 5.2). The state of the scene is captured by the vision

pipeline presented in Chapter 3, MoreFusion. Given this state information, we

generate motion proposals of the trajectory’s start (grasp/regrasp pose) and end

(reorientation/placement pose) waypoints with prediction and filtering by learned

models, which are then fed into motion planning to generate trajectories. To our

best knowledge, this is the first work that shows efficient single-step object reorient-

ation with dynamic motions, for specific-posed placement with diverse initial and

goal states of objects. We demonstrate the capability of the system in the real

world showing a real-time scene understanding, planning, and manipulation. To

summarize, the contributions in this chapter are:

• The first work on single-step object reorientation with dynamic mo-

tions, enabling a robot efficiently reorient objects for object rearrangement

from an arbitrary initial state to goal state;

• Learned motion waypoint selection, which enables hybrid, long-horizon

motion planning taking advantage of the generality of traditional motion plan-

ning and the inference speed and robustness of learned models;

• A full real-time manipulation system, showing capable object rearrange-

118

5.2. Related Work

ment with visual semantic mapping, motion generation with learned waypo-

ints, and planned trajectories.

5.2 Related Work

As the crucial step in isolating objects from a scene, object picking has been widely

studied since early robotic research as discussed in Chapter 1. Recent work has

integrated vision-based object segmentation and grasp planning to achieve object

picking in a more challenging, cluttered environment with object overlap and oc-

clusions [Jonschkowski et al., 2016, Zeng et al., 2017, Wada et al., 2017]. To deal

with unseen objects, several previous studies have trained a model generating ob-

ject class agnostic grasp proposals from input images [Pinto and Gupta, 2016, Zeng

et al., 2018b, Hasegawa et al., 2019]. As a different approach to grasp proposals

for unseen objects, there have been several studies on training learning models that

predict the next best action given as input an image of the scene [Levine et al.,

2018, Kalashnikov et al., 2018]. Although these studies on learned manipulation

models have shown a strong capability of picking objects in various situations (e.g.,

occluded, unseen), the placement motion after picking has been mostly simple (e.g.,

dropping in a box) without knowing how the object is grasped.

A couple of studies tackle the whole pipeline of robotic pick-and-place, including

decent object placement in a specific pose. kPAM [Manuelli et al., 2019] has designed

semantic keypoint detection for grasp point selection and place trajectory genera-

tion, demonstrating an intended grasp point selection and trajectory generation for

placement. Shome et al. [Shome et al., 2019] have shown a tight object packing of

box-shaped objects incorporating a hand-crafted reorientation motion. These stud-

ies on specific-posed placement restrict either the initial state (e.g., target grasp

point is accessible), goal state (e.g., few different orientations), or shape (e.g., box)

of objects. We tackle object placement with diverse initial and goal states, with

various-shaped objects in the YCB object set [Calli et al., 2015].

Robotic research on object reorientation and regrasping dates back to the 1980s

119

5. Long-Horizon Manipulation with a Semantic Map

G
oalstate

Pick-and-reorientPick-and-place

1)Visualscene
understanding

2)M
otion

waypointgeneration
(start,end

waypoints)
3)M

otion
trajectory

generation

Sam
pling

Sam
pling

G
rasp

poses

G
rasp

poses
R
econstruction

R
econstruction

Sam
pling

G
iven

Filtering

Filtering

Place
pose

R
eorientposes

M
otion

planning

M
otion

planning

F
igu

re
5.2:

O
v
e
rv

ie
w

o
f
R
e
o
rie

n
tB

o
t,

a
h
y
b

rid
sy

stem
of

trad
ition

a
l

m
otion

p
lan

n
in

g
an

d
learn

ed
(�

,
�

)
com

p
on

en
ts,

con
sistin

g
of:

1)
v
isio

n
-b

a
sed

6
D

p
o
se

estim
a
tio

n
a
n

d
vo

lu
m

etric
recon

stru
ction

;
2
)

m
otion

w
ay

p
oin

t
gen

eration
;

3)
tra

jectory
gen

eration
w

ith
m

otion
p

lan
n

in
g.

120

5.3. Method

with the seminal work by Tournassoud et al. [Tournassoud et al., 1987], and it has

been tackled as one of the core skills of robotic manipulation [Cole et al., 1992,

Rohrdanz and Wahl, 1997, Wan and Harada, 2016b]. Lozano-Pérez et al. [Lozano-

Pérez and Kaelbling, 2014] and Wan et al. [Wan and Harada, 2016a, Wan et al.,

2019] have developed a whole system of object reorientation and placement by plan-

ning multi-step reorientation with sampling stable states of the object on a plane.

Although they have shown successful object reorientation given enough time of ex-

ecution, they sacrifice the motion efficiency by discarding promising unstable poses

that will eventually become stable in the desired orientation after being released.

This restriction makes reorientation with significant rotation (e.g., flipping objects)

difficult, even when achievable in a single step. In this chapter, we use unstable

reorientation poses from which the object will eventually settle down to the desired

state, to achieve single-step, efficient object reorientation.

In-hand manipulation has also been tackled as a solution to reorienting objects

to achieve a specific orientation. Dafle et al. [Dafle et al., 2014] showed an in-hand

regrasping capability with a three-fingered hand such as rolling and flipping. An-

drychowicz et al. [Andrychowicz et al., 2020] and Akkaya et al. [Akkaya et al., 2019]

extended this further to a five-fingered hand to show even more dexterous manipula-

tion skills such as solving a Rubik’s cube. Although promising, the robot’s capability

heavily depends on the specially designed robotic hand, limiting its applicable en-

vironments (the hand is often attached to a fixed base), object sizes, and poses. In

this chapter, we use a suction gripper with a general-purpose robotic manipulator,

both of which are widely used for robotic manipulation in industry and research

communities.

5.3 Method

Given the goal state of the target object, our system runs object detection, pose

estimation, motion planning, and manipulation to rearrange the target object to the

goal pose. This system, shown in Figure 5.2, consists of 1) visual semantic mapping

121

5. Long-Horizon Manipulation with a Semantic Map

that builds a 3D representation of objects via 6D pose estimation and volumetric

reconstruction with the vision pipeline introduced in Chapter 3; 2) motion waypoint

generation that gives the pairs of start and end arm configurations with learning-

based filtering; 3) motion trajectory generation with a collision-based motion planner

while selecting the best pair of waypoints using another learned model.

This system includes reorientation and regrasping as needed, which is determined

via planning the direct pick-and-place from an initial state to a goal state. If this

planning fails to find a collision-free motion, the system switches to another motion

planner for reorientation. We repeat this process until the motion planner finds a

collision-free path for pick-and-place. We optimize the reorientation step to change

the object’s orientation successfully and efficiently to make the target grasp point

accessible to place it in the specified goal pose. For this optimization, we sample

numerous candidates of the reorientation pose, which a learned model evaluates via

feasibility (the existence of a collision-free trajectory) and efficiency (the length of

the trajectory) prediction.

5.3.1 Object-Level Semantic Mapping

Consider a pick-and-place task, with target objects in a pile from which the robot

must grasp, reorient, regrasp, and place the objects into goal states. This pipeline

requires robots to semantically understand the scene differentiating target and non-

target objects. To place target objects in a specific pose, it is necessary for robots to

know the objects’ initial poses in a pile to compute the transformations the robots

must apply to the objects to achieve the goal state via grasping and placement. For

non-target objects, semantic understanding of the objects (object category and geo-

metry) might not be as important as the target’s since their geometric information

is used only for collision avoidance when there are no occlusions for objects. In this

chapter, we focus on the reorientation of target objects with no occlusions assuming

their extraction is done beforehand by the object extraction pipeline we built in the

previous chapter. We use a heightmap to represent non-target objects, which allows

faster training and better generalization, being agnostic to semantics and robust to

122

5.3. Method

estimation errors at test time.

We run the object-level semantic mapping system, MoreFusion (Chapter 3), to

find the target object using an on-board RGB-D camera with a robotic arm. More-

Fusion detects objects from an RGB image with a neural network-based object

detector and a volumetric 6D pose estimation for the detected objects. Using the

target object class given as the task goal, the 6D pose of the target object (the initial

state in a pile) is extracted from the map to be used for the motion planning in the

succeeding pipeline.

The heightmap is built from depth images captured by the on-board RGB-D

camera to represent the state of non-target objects. A heightmap represents the

distance of the top surface from the ground at each XY location and is agnostic to

semantics and semantic estimation errors as it is purely built from raw observations

(depth images). As for the depth images to build the heightmap, we use the top-

down view of the RGB-D camera towards the pile. We set the pile center to be the

center of the heightmap, having fixed XY bounds of the workspace covered to give

consistent and overall information of the scene.

5.3.2 Motion Waypoint Generation

The start and end configurations of the robot and the target object (i.e., grasp

and placement poses) define the waypoints of the motion trajectory. These two

waypoints are used along with the semantic map of the scene to generate collision-

free trajectories. To generate these waypoints, we combine random sampling and

learned filtering to select the feasible and most efficient waypoint to execute.

Sampling Waypoints for Pick-and-Reorient

The goal of the pick-and-reorient stage is to change the target object orientation

such that the robot can grasp specific grasp points for final placement where feasible

grasps can be limited (e.g., box packing; shelf storing). A grasp pose represents a

starting waypoint, and a reorientation pose represents an end waypoint. We sample

123

5. Long-Horizon Manipulation with a Semantic Map

the grasp poses in the 3D reconstruction from visual scene understanding and sample

the reorientation poses in an open, planar space near the pile.

Grasp Pose For reorientation, grasp poses are sampled on the initial state of the

target object in a pile. Given the pose of the object from pose estimation, we render

the object with a virtual camera in simulation to extract its mask and depth images

from which we sample the grasp poses. We transform the depth image into a point

cloud (§2.3.2) and compute the surface normals by applying sliding windows on the

point cloud. Given the object mask aligned to the point cloud and normals, we

randomly extract ∼ 30 points and normal vectors on the object surface, which gives

the position and orientation of the grasp pose as a quaternion q = [𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧 , 𝑞𝑤]⊺.

We compute this quaternion from the normal of the suction gripper n𝑔 and the

surface normal vector n𝑠 with Equation 4.1.

Reorientation Pose We sample reorientation poses within a workspace adjacent

to the pile, though in practice the reorientation poses could be sampled on any

pre-defined surface. During this sampling, we check for collisions between the CAD

model of the target object and the scene using the volumetric reconstruction of

non-target objects.

Since exhaustive collision checking of arbitrary positions and orientations is time-

consuming, we first determine XY positions where any orientation will be collision-

free. We use a cube with the dimensions of the longest axis of the object, which

gives a quick collision check with the pile reconstruction. As for the workspace where

reorientation poses are sampled, we use 0.5𝑚 × 0.3𝑚 rectangular space discretizing

it by 10 and 8 each giving 10 × 8 = 80 candidates. These candidate positions are

evaluated with the cube to filter positions that cause collisions being too close to

the pile, which is typically critical for large objects.

Given the selected XY positions, we compute the Z position and orientation using

the actual CAD model of the object instead of the abstracted cube. We discretize

the orientation by 8 in each axis of the Euler angles (§2.2.2), which gives 83 = 512

124

5.3. Method

orientations for each XY position. For each orientation, we compute the distance

between the object’s bottom and the ground plane and set the Z position to put

the object on the plane with a small margin of 2𝑐𝑚. Since we sampled positions

where arbitrary orientations would be collision-free in the XY position sampling,

we can reuse the same Z positions and orientations for other XY locations. This

multistep sampling avoids the slow, combinatorial evaluation of reorientation poses,

whose number could be (XY positions) × (orientations) = 80 × 512 = 40, 960.

This sampling of the reorientation poses includes unstable states on the plane,

which eventually settle down to a stable state after the release. These unstable

poses allow the robot to reorient the object with significant rotation in a single step,

for example, grasping the backside of the object to flip to the front by leaning the

object on the plane while creating a space for the suction gripper to avoid collisions

with the ground plane as shown in Figure 5.1.

Learning to Select Reorientation Poses

Not all the given reorientation poses (40,960 candidates) enable the robot to regrasp

the object with the intended grasp for the final placement. To filter these unuseful

poses, we introduce a learned model that predicts whether the reorientation pose

will enable the intended regrasping or not with the pipeline shown in Figure 5.3.

This pipeline uses a learned model to evaluate reorientation pose candidates and

selects the top-1000 best-scored poses to be processed in the succeeding pipeline.

The learned model (right in Figure 5.3) receives a reorientation pose and target

grasp pose as input and predicts the success of regrasping after the object is released

and settles down. We also feed the pile heightmap to allow the model to take the

collisions into account. The model encodes the heightmap with 6 layers of 3 × 3

convolutional with max-pooling and ReLU activations (ConvNet). The output is

concatenated with the object’s initial pose, label, reorientation pose, and grasp pose

and processed by 3 linear layers (MLP) to predict the grasp validity, which is trained

with binary cross-entropy loss as a 0–1 probability.

125

5. Long-Horizon Manipulation with a Semantic Map

To train the model, we use physics simulation and motion planning (§2.6) to

evaluate reorientation poses. Given a randomly sampled reorientation pose, an

object model is spawned in simulation to apply physics to infer how the object will

settle down after being released with that reorientation pose. Given the stable states

of reoriented objects by applying physics, motion planning is applied to test whether

the target grasp pose is achievable. This planning result gives the binary label of

whether the pair of reorientation pose and grasp pose is feasible (grasp validity in

Figure 5.3), and is used as a training signal for the model.

Filtering

ConvNet

object label

initial pose
(wrt. world)

reorient pose
(wrt. world)

grasp pose
(wrt. object)

MLP

grasp validity

Heightmap

Filtering

Sampling

Reorient poses
(uniformly sampled)

Reorient poses
(probably graspable)State

Figure 5.3: Learned selection of reorientation poses, using a learned model to
select poses from the uniformly sampled reorientation poses.

Sampling Waypoints for Pick-and-Place

The goal of the pick-and-place stage is to place the target object in the specific

pose given as a task goal. The grasp pose represents the start waypoint and the

specified final pose represents the end waypoint of the pick-and-place trajectory.

Grasp Pose We sample grasp poses from the visible surface of the target object in

the goal state with virtual rendering (cf. initial state for reorientation). We position

a virtual camera facing the virtually placed object with a slight translation of 0.3𝑚

from the goal pose, whose direction is determined by the direction of the opening of

the container for placement: horizontal with shelves, vertical with boxes. By using

this virtual rendering, we can sample only the grasp poses visible from the opening

126

5.3. Method

of the container while filtering infeasible grasp poses in the back. The grasp position

is sampled randomly from the visible surface, and the orientation is determined with

the same process as §5.3.2, generating 30 grasp poses (left of Figure 5.3).

Place Pose For placement, we use the object’s place pose given as the task goal.

To this goal state, we transform the sampled grasp poses at the object’s initial state

to compute the end-effector pose at placement.

5.3.3 Motion Trajectory Generation

We integrate a learned model with motion planning to introduce waypoint selection

for efficient planning and execution.

Learning to Select Motion Waypoints

Motion planning runs fast with a few pairs of start and end waypoints (0.1–1.0

seconds) and can generate a collision-free trajectory while evaluating and filtering

unusable pairs. However, when the number of pairs becomes large (>100), the plan-

ning time becomes untenable for real-time use (10–100 seconds). For this problem,

we introduce a learning-based model that predicts the validity of the pairs (i.e., the

probability that the motion planner finds a collision-free path given those pairs),

which we use to filter unusable waypoint pairs before feeding them into the motion

planning (Figure 5.4).

With the two motion trajectories in the task (pick-and-reorient and pick-and-

place), we apply learning-based waypoint selection only to the pick-and-reorient

motion. This design choice is because the waypoints for pick-and-place motion are

well constrained by the end waypoint (the place pose), which is unique and given as

the task goal (whereas numerous possible reorient poses must be compared for pick-

and-reorient), therefore it is not necessary to use the learned model for the real-time

motion selection. It is also likely that placing configurations vary at test time with

different object poses or placement environments (e.g., shelf storing, box packing),

where it would be difficult for a learned model to adapt without retraining.

127

5. Long-Horizon Manipulation with a Semantic Map

State
Motion planning

Filtering

Reorient poses
(probably graspable)

Grasp poses
(randomly sampled)

Filtering

ConvNet

object label

initial pose
(wrt. world)

reorient pose
(wrt. world)

grasp pose
(wrt. object)

grasp validity reorient validity

trajectory validity trajectory length

MLP

Heightmap

Figure 5.4: Learned waypoint selection, with predicting validity and efficiency to
filter waypoints before motion planning.

Metrics for Selection The model predicts 3 validities: grasp pose, reorientation

pose, and trajectory, each representing the existence of collision-free states between

the robot and the scene. Although a single validity could cover the entirety of

the grasp and reorientation pose (start and end states) and the trajectory (middle

states), we separated these to help the model reason about why the whole trajectory

might be invalid (e.g., which of the start/end/middle states are invalid).

After filtering by validity, several waypoints could remain as candidates with sim-

ilar predicted validity scores. Therefore, we have introduced another metric: effi-

ciency, which is often regarded as the secondary metric of robotic tasks [Batra et al.,

2020]. We use joint-space trajectory length as the efficiency metric, which highly

correlates with execution time.

After taking the highest-scored 10 waypoints with the trajectory validity scores,

we sort them with efficiency before feeding them into the motion planner. Despite

the randomness in the planning algorithm while finding collision-free trajectories,

we observe a strong correlation between the given waypoints and the generated tra-

jectory (i.e., they are consistent). With this correlation, the learned model predicts

meaningful scores to select waypoints that generate the best motion trajectory.

128

5.4. Experiments

Training the Model For the waypoint selection, we use a similar model archi-

tecture as the reorientation pose selection (§5.3.2) by only changing the outputs

(right of Figure 5.4). Given the start and end waypoints (grasp pose, initial object

pose, reorientation pose), this model predicts the validity and efficiency of the tra-

jectory that will be generated by the motion planner, taking collision with objects

in the scene into account using the heightmap. We train this model with binary

cross-entropy loss for the validities and L1 loss for the trajectory length.

To collect training data of reorientation validities and trajectory length, we use a

physics engine (§2.6) generating stable object piles by applying a physics simulation

on the randomly spawned object models (train : test = 1000 : 200 configurations).

We determine the target object based on its visibility (>95%). We sample grasp

poses from the mesh vertices and sample reorientation poses on the pre-defined

reorientation space (e.g., a space next to the pile). These sampled poses of grasping

and reorientation are evaluated by collision checking and motion planning to provide

the validities of the waypoints, and the validity and length of the trajectory.

Collision-free Trajectory Generation

Given the selected waypoints, we generate motion trajectories with collision-based

motion planning, which uses the 3D geometry from the semantic mapping to check

for collisions between the robot and the scene.

5.4 Experiments

We evaluate our method, ReorientBot, via a set of pick-and-place tasks that re-

quire appropriate object reorientation and grasp selection before being placed in

a given goal pose. We train our learned models in simulation, using YCB object

models [Calli et al., 2015, Xiang et al., 2018] and evaluate them in both simulation

and the real world. We use a Franka Emika Panda robot, using its kinematics model

(URDF) in simulation.

129

5. Long-Horizon Manipulation with a Semantic Map

Implementation Detail

We use PyTorch [Paszke et al., 2019] to implement the learned models, training with

Adam optimizer [Kingma and Ba, 2015] (§2.7.3) with parameters of 𝛼 = 0.001, 𝛽1 =

0.9, 𝛽2 = 0.999. We stop training as the learning curve converges. For training

data collection, we use a physics engine, Bullet [Coumans et al., 2013] (§2.6), to

simulate the behavior of objects after being released in unstable reorientation poses

for training waypoint evaluation model (§5.3.2), and stable object pile generation

and trajectory evaluation for training trajectory evaluation model (§5.3.3). For the

motion planning to generate collision-free trajectory from start and end waypoints,

we use RRT-Connect [Kuffner and LaValle, 2000] implemented with OMPL [Sucan

et al., 2012] integrating with the collision checking on the physics engine (§2.6).

5.4.1 Evaluation in Simulation

We evaluate the system in 200 unseen piles randomly generated in physics simulation

(the test set used in §5.3.3). As the goal state, we randomly assign an object pose

on the shelf where the same objects are tightly aligned, as shown in Figure 5.5.

To show the generality and performance variation, we use 2 types of suction

grippers in this experiment:

• I-shape (Figure 5.5), used in previous work [Zeng et al., 2020a], which has a

thin vacuum hose aligned with the gripper;

• L-shape, used in our real-world experiments, where the cup axis is translated

from the palm for the suction hose.

As the baseline for single-step object reorientation, we designed heuristic reorient-

ation poses that are stable on a plane and make the target grasp point accessible.

For simplicity and generality among various objects, we use the upright orientation

of objects and Z-axis rotation as the candidate reorientation poses. To ensure tar-

get grasp points are accessible after placement in the reorientation poses, we choose

130

5.4. Experiments

Z-axis orientations that make the target grasp face in the -X direction (facing the

robot). Figure 5.5b shows the examples of this heuristic reorientation pose for the

goal state in Figure 5.5a, where the front face of the target object (cracker box)

faces towards robots with some variations in Z-axis orientation.

(a) Task configuration (b) Heuristic reorient poses

Figure 5.5: Evaluation setup in simulation, tasking the robot to rearrange the
target object from the initial state to the goal state.

Task Completion

Table 5.1 shows the comparison of the success rate, whose criteria are the geometric

distance between the placed state and the goal state, and with 10 seconds time limit

for reorientation planning. We use the area under the curve (AUC) of the point-

to-point distance with a threshold between 0 and 10cm, considering AUC>90% as

success (the same metric of pose estimation in §3.4). Table 5.1 shows that, compared

to the baseline, ReorientBot gives relative improvements of 23-36% in reorientation

success, 17-47% in placement success, and 60-81% in overall success. The success

rate with the L-shape gripper is lower than the I-shape gripper because of the more

extensive gripper base and cup offset from the palm axis, which restricts collision-

free arm configurations. The improvements in reorientation and placement show

that the proposed learned models play a vital role for motion generation in both

stages, improving the overall performance of specific-posed object placement.

131

5. Long-Horizon Manipulation with a Semantic Map

Table 5.1: Task completion, comparing our method (ReorientBot) with the baseline
(Heuristic) with goal configurations unachievable without reorientation (146 tasks).

Gripper Method
Success%
(reorient)↑

Success%
(place)↑

Success%
(overall)↑

I-shape
Heuristic 71.9 81.0 58.2

ReorientBot 97.9 95.1 93.2

L-shape
Heuristic 74.0 58.3 43.2

ReorientBot 91.1 85.7 78.1

Timing

Table 5.2 shows the comparison of the planning and execution time of object re-

orientation between our method and baseline. We measure the planning time with

both the wall clock and execution time in the simulation. We send the motion tra-

jectory (a list of joint positions) to the position controller with a constant speed of

∼1.2 rad/s (=70 deg/s). As this execution speed can vary in the real world, we also

report the trajectory length, which highly correlates to the execution time. The

results in Table 5.2 show that our method has improvements of 24-30% in planning

time and 20-22% in execution time compared to the baseline.

Table 5.2: Timing, comparing our method (ReorientBot) with the baseline (Heuristic).
It reports only when both methods successfully complete task; 38/146 tasks in Table 5.1.

Gripper Method
Planning
time [s]↓

Execution
time [s]↓

Trajectory
length [rad]↓

I-shape
Heuristic 3.3 4.0 4.2

ReorientBot 2.5 3.2 3.3

L-shape
Heuristic 3.0 3.6 3.6

ReorientBot 2.0 2.8 2.7

5.4.2 Real-world Evaluation

We evaluate our system in the real world with the robotic system introduced in

§2.5.1, a Franka Emika Panda robot with an RGB-D camera (Realsense D435)

mounted on the arm, and a suction gripper implemented with a vacuum cleaner.

Figure 5.6 shows the sequences of the pick and place motions of the robot for the

specified goal configuration on a shelf and in a box. These examples show the cap-

ability of our system to reorient objects both successfully and efficiently (with short

132

5.5. Conclusion

arm trajectory), utilizing dynamic reorientation. The examples also demonstrate

precise placement (e.g., inserting the yellow box into the narrow gap of the drill)

and generality in various goal configurations (side and top-down placement).

5.5 Conclusion

In this chapter, we have explored learning-based manipulation in a long-horizon

task, working on object placement in a specific pose, which requires several steps

of grasping and placement for reorienting and regrasping the objects. Unlike the

fine-grained motions in short-horizon tasks in previous chapter, long-horizon tasks

require explicit segmentation of motions into small stages (e.g., grasping, reorienta-

tion, regrasping, placing) so that the model can focus on learning each segment for

convergence, but also require overall motion optimization at the same time. We ex-

ploit the semantic map and known object models to segment motions specifying the

goal of each segment, such as achieving a certain grasp pose, reorientation pose, and

placement pose. This goal specification for each motion segment enables the sys-

tem to optimize motions against the overall completion of long-horizon tasks (e.g.,

selecting the best reorientation pose for the succeeding regrasping and placement).

Our system integrates learned motion selection and traditional motion planning

to maintain the capabilities of learning (selection of appropriate reorientation poses

and efficient trajectories) and generality of planning (flexible trajectory generation

based on the goal state and constraints at test time). The resulting system improves

the robots’ capability in object placement compared to a baseline in both efficiency

and success rate and has shown capable object reorientation with significant rota-

tion (e.g., flipping with 180◦ rotation) using a dynamic placement for reorientation

(released and stabilized with gravity) and precise placement in various target con-

figurations (shelf storing, box packing).

By using learned motion selection with coarse waypoints (start, end configuration

of a trajectory), we have shown that learned motion models can achieve long-horizon

tasks that include several manipulation steps: grasping, reorientation, regrasping,

133

5. Long-Horizon Manipulation with a Semantic Map

G
rasp

Place
R
eorient

R
egrasp

Box packing

G
rasp

Place
R
eorient

R
egrasp

Shelf storing

Initialstate

Initialstate
G
oalstate

G
oalstate

F
igu

re
5.6:

R
e
a
l-w

o
rld

re
su

lts,
in

w
h

ich
th

e
rob

ot
rearran

ges
ob

jects
from

its
in

itial
state

in
th

e
p

ile
to

th
e

sp
ecifi

ed
goal

state.
T

h
e

reo
rien

t
m

o
tio

n
in

clu
d

es
a

d
y
n

a
m

ic
m

o
tio

n
to

a
ccom

p
lish

th
e

orien
tation

th
a
t

lead
s

to
su

ccessfu
l

p
lacem

en
t

w
ith

a
sh

ort
arm

tra
jectory.

134

5.5. Conclusion

and placement. The semantic information extracted from the semantic map is util-

ized to generate the intermediate goals in a long-horizon task, which is a different

use of the semantics from previous chapter where object semantics were used as rich

geometric information to reason physical support and contact among objects.

The two different applications of learning-based manipulation: fine-grained mo-

tions in short-horizon tasks, coarse motions in long-horizon tasks, indicate that

these approaches can be combined appropriately to achieve even more diverse ma-

nipulation tasks. The long-horizon planning gives coarse waypoints of the motion

trajectory, and fine-grained motion trajectories are generated based on the waypo-

ints by a motion planner. In this chapter, a traditional motion planner is used to

generate fine-grained trajectory from coarse waypoints, but this part can also be

replaced by a learned motion planner when the learned capability is necessary as

in previous chapter. Regardless of whether traditional motion planning or learned

motion planning is used, the object-level semantic map is crucial for long-horizon

tasks to divide a task into subtasks with intermediate goals so that overall motion

can be optimized via each subtask’s optimization.

135

5. Long-Horizon Manipulation with a Semantic Map

136

Chapter 6

Conclusions and Future Work

A number of contributions have been presented in this thesis that aim to create cap-

able robotic manipulation systems through the integration of semantic mapping and

motion generation. In particular, we built a real-time semantic mapping system us-

ing an on-board RGB-D camera that is able to map objects with their CAD models.

This system gives a holistic understanding of scenes and is even able to deal with

complex scenes that have overlap, close contact, and support among objects (e.g.,

object piles). The built semantic map is used to solve various manipulation tasks

such as distractor object removal, occluded object extraction, object reorientation,

and specific-posed object placement. Hybrid motion generation combining learned

and non-learned planning is applied with the explicit semantic map, enabling the

robot to perform capable manipulations in tasks that require motion generation to

have the properties of both fine-grained motions and long-horizon planning.

In Chapter 3, a semantic mapping pipeline was presented where objects in a scene

were incrementally reconstructed with an RGB-D image sequence from a moving

camera. The pipeline initially reconstructed objects with occupancy voxel grids by

accumulating depth measurements into each object’s grid and then replacing the grid

with a CAD model after a confident pose estimate was acquired. The pose estimation

was accomplished with neural network-based pose prediction and gradient-based

pose refinement, both of which exploited the voxel grid reconstruction. Using this

vision pipeline, pick-and-place of target objects in a pile was presented where a robot

137

6. Conclusions and Future Work

built a semantic map of the scene with an on-board camera and planned collision-free

motion trajectory for picking the target objects. During motion planning, objects

overlapping with the target were detected as distractors and removed to make the

target accessible and pickable without collisions.

At this point, the system was composed in a classical way with traditional (non-

learned) collision-based motion planning integrated into a vision pipeline capable of

mapping various objects in a cluttered scene with a single moving camera. Although

this integrated system showed successful completions of picking known target objects

in a pile even with heavy and multi-layered occlusions, the manipulation capabil-

ity was limited by the motion planner requiring a strictly collision-free path. For

changing object states in a scene, the collision-free motion would be the safest man-

euver, affecting only the state of the single object the robot is currently interacting

with. However, if efficiency is also considered as a task goal, the motion planning

would need to be modified to incorporate it as a new metric for achieving both

safety and efficiency in task completion. In the case of picking target objects from

a pile, exhaustive distractor removal would be time-consuming and inefficient, and

target objects could be directly extracted with a carefully planned trajectory that

minimizes the effects on other objects in the pile.

To overcome this limitation in motion planning, in Chapter 4, we introduced

a learning-based motion planner that generates a trajectory while optimizing the

motions for a task metric other than collision avoidance. We specifically tackled

target-picking of objects with occlusions in a pile. Robots planned the safest motions

to extract the target objects while minimizing effects on the distractors’ translations

and velocities, which could cause undesirable results such as object damage and

expansion of the pile and workspace. In the new system, a learned model predicted

6DoF end-effector transformations, which generated a fine-grained trajectory with

recursion, to extract objects with a short path (for efficiency) while minimizing

surrounding objects’ translations (for safety). Unlike common end-to-end motion

models, which map raw image observations to actions, this learned model used

object poses in the semantic map along with the raw sensor information from depth

138

images. This combination of rich semantic and geometric information from object

poses, and unprocessed and robust information from depth images (no estimation

errors included) achieved both high success and robustness.

Although the system in Chapter 4 was capable of performing object extraction

with fine-grained motions, the time horizon of the task was limited to be short: a

single trajectory to extract the object. By combining with other motions, it would

be possible to repeat the process of grasping, extracting, and placing for multiple

objects to conduct relatively long-horizon tasks. However, in that case, each motion

would need to be separately planned and optimized with the time horizon limited to

each motion, and one motion would not necessarily end in the best starting state for

the next motion. Long-horizon tasks include several grasping and placing sub-tasks

that should be jointly optimized to achieve the best performance. A straightforward

application of learning-based motion generation to long-horizon tasks would also

not work due to the difficulty of training a model to convergence when the model

struggles to find successful trajectories during exploration. It was not clear how

long-horizon tasks could be handled by exploiting the capability of learning-based

motion generation and the rich information of a semantic map.

In Chapter 5, we explored the application of semantic maps and learned motion

generation to long-horizon manipulation tasks. We specifically tackled the place-

ment of objects in specific poses, where robots may need to change the orientation

of objects by regrasping so that the final placement is possible. This task requires

several steps of grasping and placement: grasping from a pile, reorientation, regrasp-

ing, and placement in the target pose, all of which have to be optimized to achieve

high levels of success in the overall task. To avoid the combinatorial problem of

possible trajectories in fine-grained motion generation, we introduced coarse waypo-

ints that were evaluated with learning models. With these coarse samples of motion

waypoints, it was possible for learned models to evaluate their combinations in a

longer horizon of tasks. These waypoints determine a rough route for the trajectory

generated by the subsequent collision-based motion planner. Combined with a se-

mantic map that allows waypoint sampling, the learned waypoint selection enables

139

6. Conclusions and Future Work

the robot to achieve capable object reorientation and regrasping for specific-pose

placement.

A straightforward extension of the attempts in Chapter 4 and Chapter 5 would be

possible by integrating fine-grained motion generation with long-horizon planning

using learning-based methods for both. Though in Chapter 5 we demonstrated

learned motions in long-horizon tasks with the fine-grained motions generated by

a non-learned motion planner, the entire trajectory could also be generated using

learned models. As demonstrated in Chapter 4, learned models are able to optimize

motions at training time for efficiency (c.f., brute-force motion sampling) and fuse

various inputs from both semantic and raw sensory observation. The two learning

approaches of coarse waypoint generation and fine-grained trajectory generation

based on the waypoints can be combined to take advantage of both approaches. In

the context of manipulation in cluttered scenes, the capability of this new integration

can be demonstrated, for example, in a single-step extraction of occluded objects

for reorientation and placement, enabling robots to achieve efficient specific-posed

placement even with heavily occluded objects.

For developing more capable robotic systems, an important future direction would

be the integration of manipulation with navigation. Robotic navigation has been

worked on for many years (§1.2) and recently it has acquired significant interest

with the rise of self-driving cars. Most of the previous studies on navigation have

been working on collision avoidance by setting the research challenge as to how to

handle dynamic objects that appear in front of the robots, and navigation in static

environments has often been regarded as an easy problem. However, when navig-

ation is integrated with manipulation, even static-environment navigation can be

challenging. With manipulation, the policy for navigation would be quite different:

navigation without manipulation basically maximises the distance from other objects

to avoid collisions, whereas navigation with manipulation has to take robots close to

objects so they can reach them. Aiming at interaction with objects, robots not only

have to reach navigation goals efficiently with a short path but also adjust the navig-

ation goal for subsequent manipulation while maintaining a collision-free trajectory,

140

e.g., grasping from certain directions where there are fewer objects with which to

collide. When robots manipulate large objects (e.g., door, furniture) [Murooka et al.,

2014, Saito et al., 2011], it would also be crucial to change the base location during

manipulation for reachability and torque limits.

Manipulation with various end-effectors would also be an interesting direction to

work on with advancement in both hardware and software. This thesis has focused

on manipulation with suction grippers, which compensate for errors in the alignment

and allowed us to simplify the grasping algorithm to focus on post-grasp manipula-

tion. However, suction grippers often struggle to grasp objects without flat surfaces,

which motivates the adoption of other types of grippers such as pinch grippers. In

addition to expanding the variety of graspable objects, a different gripper structure

can give robots more diverse manipulation skills, such as in-hand object manipula-

tion with multi-fingered grippers. Multi-fingered grippers have shown the capability

of changing the orientation of box-shaped objects in the real world [Andrychowicz

et al., 2020] and various objects in simulation [Chen et al., 2021]. Most of the real-

world experiments have been done with a gripper attached on a fixed base (without

any manipulator) as the hardware is massive and heavy. It would be a vital step

to make the gripper more accessible and applicable to mobile manipulators so that

researchers can explore what kind of maneuvers are possible with the gripper using

human-like maneuvers (humans change the way they use their hand depending on

the task, e.g., grasping and pushing forms are quite different). As a variation of

end-effectors, research on tool handling would also be important, where tools are

automatically grasped or attached to the existing grippers. Carefully designed tools

give extra capability for robots to imitate human activities (e.g., a book stand for

sorting, a spatula for cooking, a towel for cleaning) and maneuvers (e.g., pushing,

scooping, wiping), potentially substituting for a human-like multi-fingered gripper.

Expanding the capability of semantic mapping to a more diverse set of objects

would be vital to enable robots to achieve various and challenging manipulation

tasks. The vision pipeline in this thesis (Chapter 3) was limited to a certain set of

objects (YCB objects [Calli et al., 2015]) limiting the variations of object shapes

141

6. Conclusions and Future Work

and properties; however, robots need to be able to handle more diverse objects to

be useful in the real-world environments such as those in warehouses, retail, and

households. The object set can have a wide variety of appearances, shape variations

among the same object categories (e.g., diversity of mug shapes), articulated objects

(e.g., doors, drawers), and deformable objects (e.g., clothes towels). Even with such

challenging objects, we believe that explicit semantic understanding of a scene (cf.

implicit, end-to-end) would be an important step for capable robotic manipulation,

as we showed with the object set in this thesis. The semantic mapping pipeline

can be naturally extended to handle more object categories with a larger model

database as demonstrated in a certain scale by [Tateno et al., 2016, Avetisyan et al.,

2019]. With parameterized object models (e.g., scale, height), the pipeline will be

able to handle shape variations optimizing the compact parameters to adjust to the

actual objects, as several works have demonstrated with a few object categories and

variations [Kundu et al., 2018, Sucar et al., 2020, Runz et al., 2020]. Similar to

these parametrized models, articulated objects can also be explicitly modeled with

parameters such as joint angles [Li et al., 2020], and the motion generation based

on the potentially noisy estimation of these would be interesting future research.

Regarding completely deformable objects such as clothes, it is an open question as

to how they should be modeled. Although end-to-end, implicit scene understanding

could be indispensable for deformable object modeling, the vision pipeline for that

can be a hybrid of explicit and implicit modeling. With a once-folded cloth, humans

quickly understand the deformation with its fold and angle (explicit understanding),

whereas humans probably would not try to estimate such deformation models with a

crumpled cloth for manipulation (implicit understanding). The distinction between

explicit and implicit scene understanding in human brains could depend on the state

of the objects, and future vision pipelines might need to have both properties.

Finally, there has been a lot of research working on intelligent Embodied AI

in the computer vision and machine learning communities. Embodied AI covers

agents with general intelligence, including both virtual ones (e.g., in games) and

physical robots, and it encourages researchers to work on more challenging machine

142

learning problems that are not limited to static datasets but with growing datasets

self-collected by agents. Building simulators that are efficient and close to reality

would be a key driver to pushing forward this research in building Embodied AI and

especially for robots that will be deployed in the real world. There have been sev-

eral works that build simulation environments that are designed for training robot

agents [Kolve et al., 2017, Savva et al., 2019, James et al., 2020, Xiang et al., 2020];

however, still very few real-world task achievements are presented and demonstra-

tions often happen in simulation. This limited real-world deployment is presumably

due to the sim-to-real gap of sensory observations and poor performance in long-

horizon tasks (making it impossible to maintain the necessary levels of safety and

performance in real-world applications). Semantic world models, where raw im-

ages are abstracted into a semantic representation, would be crucial for learning

long-horizon tasks with high-performance and generalization. It would be an ideal

future direction to keep them tightly integrated with explicit semantic mapping

and learned motion generation to continue to improve the capability of robots to

accomplish useful tasks in the real world.

143

6. Conclusions and Future Work

144

Bibliography

Bibliography

[Akkaya et al., 2019] Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., Mc-

Grew, B., Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., et al. (2019).

Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113. 121

[Andrychowicz et al., 2020] Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz,

R., McGrew, B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A.,

et al. (2020). Learning dexterous in-hand manipulation. International Journal of

Robotics Research (IJRR), 39(1):3–20. 121, 141

[Avetisyan et al., 2019] Avetisyan, A., Dahnert, M., Dai, A., Savva, M., Chang,

A. X., and Nießner, M. (2019). Scan2CAD: Learning cad model alignment in

rgb-d scans. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 142

[Baker et al., 2020] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G.,

McGrew, B., and Mordatch, I. (2020). Emergent tool use from multi-agent auto-

curricula. In Proceedings of the International Conference on Learning Represent-

ations (ICLR). 96, 102

[Bar-Itzhack, 2000] Bar-Itzhack, I. Y. (2000). New method for extracting the qua-

ternion from a rotation matrix. Journal of guidance, control, and dynamics,

23(6):1085–1087. 42

145

Bibliography

[Batra et al., 2020] Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,

J., Koltun, V., Levine, S., Malik, J., Mordatch, I., Mottaghi, R., Savva, M., and

Su, H. (2020). Rearrangement: A challenge for embodied AI. arXiv preprint

arXiv:2011.01975. 128

[Bay et al., 2008] Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). SURF:

Speeded Up Robust Features. Computer Vision and Image Understanding

(CVIU), 110(3):346–359. 70

[Bekey and Goldberg, 2012] Bekey, G. A. and Goldberg, K. Y. (2012). Neural net-

works in robotics, volume 202. Springer Science & Business Media. 24

[Besl and McKay, 1992] Besl, P. and McKay, N. (1992). A method for Registration

of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 14(2):239–256. 70, 87

[Bolles, 1977] Bolles, R. C. (1977). Verification vision for programmable assembly.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-

CAI). 15

[Bolles and Cain, 1982] Bolles, R. C. and Cain, R. A. (1982). Recognizing and

locating partially visible objects: The local-feature-focus method. International

Journal of Robotics Research (IJRR), 1:57 – 82. 15

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym. arXiv pre-

print:1606.01540. 96

[Burgard et al., 1999] Burgard, W., Cremers, A. B., Fox, D., Hähnel, D., Lake-

meyer, G., Schulz, D., Steiner, W., and Thrun, S. (1999). Experiences with an

interactive museum tour-guide robot. Artificial Intelligence, 114:3–55. 17

[Calli et al., 2015] Calli, B., Singh, A., Walsman, A., Srinivasa S. and, Abbeel, P.,

and Dollar, A. M. (2015). The YCB object and Model set: Towards common

benchmarks for manipulation research. In International Conference on Advanced

Robotics (ICAR), pages 510–517. 54, 72, 84, 104, 119, 129, 141

146

Bibliography

[Chatila and Laumond, 1985] Chatila, R. and Laumond, J.-P. (1985). Position ref-

erencing and consistent world modeling for mobile robots. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 17, 18

[Chen et al., 2021] Chen, T., Xu, J., and Agrawal, P. (2021). A system for general

in-hand object re-orientation. In Conference on Robot Learning (CoRL). 141

[Chitta et al., 2017] Chitta, S., Marder-Eppstein, E., Meeussen, W., Pradeep, V.,

Tsouroukdissian, A. R., Bohren, J., Coleman, D., Magyar, B., Raiola, G., Lüdtke,

M., et al. (2017). ros control: A generic and simple control framework for ros.

The Journal of Open Source Software, 2(20):456–456. 51

[Chitta et al., 2012] Chitta, S., Sucan, I., and Cousins, S. (2012). Moveit! IEEE

Robotics and Automation Magazine. 21

[CMU, 2003] CMU, C. M. U. (2003). Unimate. 13

[Cole et al., 1992] Cole, A. A., Hsu, P., and Sastry, S. S. (1992). Dynamic control

of sliding by robot hands for regrasping. IEEE Transactions on Robotics and

Automation. 121

[Collet et al., 2009] Collet, A., Berenson, D., Srinivasa, S. S., and Ferguson, D.

(2009). Object recognition and full pose registration from a single image for

robotic manipulation. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). 21, 22

[Collet et al., 2011] Collet, A., Martinez, M., and Srinivasa, S. S. (2011). The moped

framework: Object recognition and pose estimation for manipulation. Interna-

tional Journal of Robotics Research (IJRR), 30(10):1284 – 1306. 21, 22, 70

[Coumans et al., 2013] Coumans, E. et al. (2013). Bullet physics library. Open

source: bulletphysics. org. 54, 85, 104, 106, 130

[Dafle et al., 2014] Dafle, N. C., Rodriguez, A., Paolini, R., Tang, B., Srinivasa,

S. S., Erdmann, M., Mason, M. T., Lundberg, I., Staab, H., and Fuhlbrigge,

T. (2014). Extrinsic dexterity: In-hand manipulation with external forces. In

147

Bibliography

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). 121

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.

(2009). Imagenet: A Large-Scale Hierarchical Image Database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 24

[Devin et al., 2018] Devin, C. M., Jang, E., Levine, S., and Vanhoucke, V. (2018).

Grasp2Vec: Learning object representations from self-supervised grasping. In

Conference on Robot Learning (CoRL). 27, 95, 98

[Devol, 1961] Devol, G. C. (1961). U.S. Patent 2,988,237. 13

[Diankov and Kuffner, 2008] Diankov, R. and Kuffner, J. (2008). Openrave: A plan-

ning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA,

Tech. Rep. CMU-RI-TR-08-34. 21, 28

[Ernst, 1962] Ernst, H. A. (1962). MH-1, a computer-operated mechanical hand. In

Proceedings of the Spring Joint Computer Conference. 14

[Fang et al., 2018] Fang, K., Bai, Y., Hinterstoisser, S., Savarese, S., and Kalakrish-

nan, M. (2018). Multi-task domain adaptation for deep learning of instance grasp-

ing from simulation. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). 98

[Feldman et al., 1969] Feldman, J., Feldman, G. M., Falk, G., Grape, G., Pearlman,

J., Sobel, I., and Tenenbaum, J. M. (1969). The stanford hand-eye project. In Pro-

ceedings of the International Joint Conference on Artificial Intelligence (IJCAI).

14

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample

consensus: a paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM, 24(6):381–395. 70

148

Bibliography

[Galindo et al., 2008] Galindo, C., Fernández-Madrigal, J., González, J., and Saffi-

otti, A. (2008). Robot task planning using semantic maps. Robotics and Autonom-

ous Systems, 56(11):955–966. 21

[Gao and Tedrake, 2019] Gao, W. and Tedrake, R. (2019). kPAM-SC: Generalizable

manipulation planning using keypoint affordance and shape completion. arXiv

preprint arXiv:1909.06980. 94

[Georgeff and Lansky, 1987] Georgeff, M. P. and Lansky, A. L. (1987). Reactive

reasoning and planning. In Proceedings of the National Conference on Artificial

Intelligence (AAAI). 17, 18

[Goertz, 1952] Goertz, R. C. (1952). Fundamentals of general-purpose remote ma-

nipulators. Nucleonics, 10(11):36–42. 13

[Goertz, 1964] Goertz, R. C. (1964). Manipulator systems developed at anl. In

Proceedings of the Conference on Remote Systems Technology. 13

[Hasegawa et al., 2019] Hasegawa, S., Wada, K., Kitagawa, S., Uchimi, Y., Okada,

K., and Inaba, M. (2019). GraspFusion: Realizing complex motion by learning

and fusing grasp modalities with instance segmentation. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 119

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask

R-CNN. In Proceedings of the International Conference on Computer Vision

(ICCV). 23, 67, 72

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 77

[Hinterstoisser et al., 2012a] Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P.,

Navab, N., Fua, P., and Lepetit, V. (2012a). Gradient Response Maps for Real-

Time Detection of Texture-Less Objects. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI). 69

149

Bibliography

[Hinterstoisser et al., 2011] Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S.,

Konolidge, K., Navab, N., and Lepetit, V. (2011). Multimodal Templates for

Real-Time Detection of Texture-less Objects in Heavily Cluttered Scenes. In

Proceedings of the International Conference on Computer Vision (ICCV). 69

[Hinterstoisser et al., 2012b] Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Brad-

ski, G., Konolige, K., and Navab, N. (2012b). Model-Based Training, Detection

and Pose Estimation of Texture-less 3D Objects in Heavily Cluttered Scenes. In

Proceedings of the Asian Conference on Computer Vision (ACCV). 69

[Hirukawa et al., 2004] Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fuji-

wara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., et al. (2004).

Humanoid robotics platforms developed in hrp. Robotics and Autonomous Sys-

tems, 48(4):165–175. 19

[Holzer et al., 2012] Holzer, S., Shotton, J., and Kohli, P. (2012). Learning to ef-

ficiently detect repeatable interest points in depth data. In Proceedings of the

European Conference on Computer Vision (ECCV). 70

[Hornung et al., 2013] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C.,

and Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping frame-

work based on octrees. Autonomous Robots. 73

[Hunt et al., 1992] Hunt, K. J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P. J.

(1992). Neural networks for control systems—a survey. Automatica, 28(6):1083–

1112. 24

[Huttenlocher et al., 1993] Huttenlocher, D. P., Klanderman, G. A., and Rucklidge,

W. J. (1993). Comparing images using the hausdorff distance. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 15(9):850–863. 69

[IFR, 2020] IFR, I. F. o. R. (2020). Ifr presents world robotics report 2020. 13

[Ilg et al., 2017] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and

Brox, T. (2017). FlowNet 2.0: Evolution of optical flow estimation with deep net-

150

Bibliography

works. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 60

[Inoue, 1971] Inoue, H. (1971). Computer controlled bilateral manipulator. Jsme

International Journal Series B-fluids and Thermal Engineering, 14:199–207. 14

[James et al., 2017] James, S., Davison, A. J., and Johns, E. (2017). Transferring

End-to-End Visuomotor Control from Simulation to Real World for a Multi-Stage

Task . In Conference on Robot Learning (CoRL). 27

[James et al., 2020] James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. (2020). RL-

Bench: The robot learning benchmark and learning environment. IEEE Robotics

and Automation Letters, 5(2):3019–3026. 143

[James et al., 2021a] James, S., Wada, K., Laidlow, T., and Davison, A. J. (2021a).

Coarse-to-fine q-attention: Efficient learning for visual robotic manipulation via

discretisation. Under Review and Submitted to Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 32

[James et al., 2021b] James, S., Wada, K., Laidlow, T., and Davison, A. J. (2021b).

Coarse-to-fine q-attention: Efficient learning for visual robotic manipulation via

discretisation. arXiv preprint arXiv:2106.12534. 98, 117

[Johns et al., 2016] Johns, E., Leutenegger, S., and Davison, A. J. (2016). Deep

learning a grasp function for object manipulation under gripper pose uncertainty.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems

(IROS). 27

[Jonschkowski et al., 2016] Jonschkowski, R., Eppner, C., Höfer, S., Mart́ın-Mart́ın,

R., and Brock, O. (2016). Probabilistic multi-class segmentation for the amazon

picking challenge. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS). 22, 119

[Kahler et al., 2015] Kahler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr,

P. H. S., and Murray, D. W. (2015). Very High Frame Rate Volumetric In-

151

Bibliography

tegration of Depth Images on Mobile Device. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR). 49

[Kalashnikov et al., 2018] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog,

A., Jang, E., Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V., et al.

(2018). Qt-opt: Scalable deep reinforcement learning for vision-based robotic

manipulation. In Conference on Robot Learning (CoRL). 27, 30, 95, 98, 117, 119

[Kanehiro et al., 2002] Kanehiro, F., Fujiwara, K., Kajita, S., Yokoi, K., Kaneko,

K., Hirukawa, H., Nakamura, Y., and Yamane, K. (2002). Open architecture

humanoid robotics platform. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 19

[Keselman et al., 2017] Keselman, L., Iselin Woodfill, J., Grunnet-Jepsen, A., and

Bhowmik, A. (2017). Intel realsense stereoscopic depth cameras. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW). 43, 109

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for

stochastic optimization. In Proceedings of the International Conference on Learn-

ing Representations (ICLR). 63, 105, 130

[Kolve et al., 2017] Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,

Herrasti, A., Gordon, D., Zhu, Y., Gupta, A. K., and Farhadi, A. (2017).

AI2-THOR: An interactive 3d environment for visual ai. arXiv preprint

arXiv:1712.05474. 143

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Im-

ageNet classification with deep convolutional neural networks. In Neural Inform-

ation Processing Systems (NIPS). 24

[Kuffner and LaValle, 2000] Kuffner, J. J. and LaValle, S. M. (2000). RRT-connect:

An efficient approach to single-query path planning. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). 55, 106, 130

152

Bibliography

[Kundu et al., 2018] Kundu, A., Li, Y., and Rehg, J. M. (2018). 3D-RCNN:

Instance-level 3d object reconstruction via render-and-compare. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

142

[Kurenkov et al., 2020] Kurenkov, A., Taglic, J., Kulkarni, R., Dominguez-Kuhne,

M., Garg, A., Mart́ın-Mart́ın, R., and Savarese, S. (2020). Visuomotor mech-

anical search: Learning to retrieve target objects in clutter. arXiv preprint

arXiv:2008.06073. 98

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324. 58

[Lenz et al., 2013] Lenz, I., Lee, H., and Saxena, A. (2013). Deep learning for de-

tecting robotic grasps. In Proceedings of Robotics: Science and Systems (RSS).

25

[Levine et al., 2016] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-

to-end training of deep visuomotor policies. The Journal of Machine Learning

Research, 17(1). 25, 98, 117

[Levine et al., 2018] Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen,

D. (2018). Learning hand-eye coordination for robotic grasping with deep learn-

ing and large-scale data collection. International Journal of Robotics Research

(IJRR), 37(4-5):421–436. 27, 30, 95, 98, 117, 119

[Li et al., 2020] Li, X., Wang, H., Yi, L., Guibas, L. J., Abbott, A. L., and Song, S.

(2020). Category-level articulated object pose estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 142

[Li et al., 2017] Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. (2017). Fully convolutional

instance-aware semantic segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 67

153

Bibliography

[Lowe, 2001] Lowe, D. (2001). Local Feature View Clustering for 3D Object Recog-

nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 69

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision (IJCV), 60(2):91–110. 70

[Lozano-Pérez and Kaelbling, 2014] Lozano-Pérez, T. and Kaelbling, L. P. (2014).

A constraint-based method for solving sequential manipulation planning prob-

lems. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Sys-

tems (IROS). 121

[Mamou and Ghorbel, 2009] Mamou, K. and Ghorbel, F. (2009). A simple and

efficient approach for 3d mesh approximate convex decomposition. In Proceedings

of the IEEE International Conference on Image Processing (ICIP). 54

[Manuelli et al., 2019] Manuelli, L., Gao, W., Florence, P., and Tedrake, R. (2019).

kPAM: Keypoint affordances for category-level robotic manipulation. Proceedings

of the International Symposium on Robotics Research (ISRR). 94, 119

[Matsui and Inaba, 1990] Matsui, T. and Inaba, M. (1990). Euslisp: An object-

based implementation of lisp. Journal of Information Processing, 13(3):327–338.

19

[McCormac et al., 2018] McCormac, J., Clark, R., Bloesch, M., Davison, A. J., and

Leutenegger, S. (2018). Fusion++:volumetric object-level slam. In Proceedings of

the International Conference on 3D Vision (3DV). 23, 71, 72

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,

et al. (2015). Human-level control through deep reinforcement learning. Nature.

99

[Mur-Artal and Tardós, 2014] Mur-Artal, R. and Tardós, J. D. (2014). ORB-SLAM:

Tracking and Mapping Recognizable Features. In Workshop on Multi View Geo-

metry in Robotics (MVIGRO) - RSS 2014. 72

154

Bibliography

[Mur-Artal and Tardós, 2017] Mur-Artal, R. and Tardós, J. D. (2017). ORB-

SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D

Cameras. IEEE Transactions on Robotics (T-RO), 33(5):1255–1262. 72

[Murooka et al., 2014] Murooka, M., Noda, S., Nozawa, S., Kakiuchi, Y., Okada,

K., and Inaba, M. (2014). Manipulation strategy decision and execution based on

strategy proving operation for carrying large and heavy objects. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA). 141

[Nakamura and Hanafusa, 1986] Nakamura, Y. and Hanafusa, H. (1986). Inverse

kinematic solutions with singularity robustness for robot manipulator control.

Journal of Dynamic Systems, Measurement, and Control, 108(3):163–171. 53

[Newcombe et al., 2011] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,

Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon,

A. (2011). KinectFusion: Real-Time Dense Surface Mapping and Tracking. In

Proceedings of the International Symposium on Mixed and Augmented Reality

(ISMAR). 23

[Nießner et al., 2013] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M.

(2013). Real-time 3D Reconstruction at Scale using Voxel Hashing. In Proceedings

of SIGGRAPH. 49

[Nilsson, 1969] Nilsson, N. J. (1969). A mobile automaton: An application of artifi-

cial intelligence techniques. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI). 14

[Nilsson, 1984] Nilsson, N. J. (1984). Shakey the robot. 16

[Nister and Stewenius, 2006] Nister, D. and Stewenius, H. (2006). Scalable Recogni-

tion with a Vocabulary Tree. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 69

[Okada et al., 2004a] Okada, K., Haneda, A., Nakai, H., Inaba, M., and Inoue, H.

(2004a). Environment manipulation planner for humanoid robots using task graph

155

Bibliography

that generates action sequence. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS). 19

[Okada et al., 2007] Okada, K., Kojima, M., Tokutsu, S., Maki, T., Mori, Y., and

Inaba, M. (2007). Multi-cue 3d object recognition in knowledge-based vision-

guided humanoid robot system. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS). 19, 20, 28

[Okada et al., 2005] Okada, K., Ogura, T., Haneda, A., Fujimoto, J., Gravot, F.,

and Inaba, M. (2005). Humanoid motion generation system on hrp2-jsk for daily

life environment. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 19, 20

[Okada et al., 2004b] Okada, K., Ogura, T., Haneda, A., Kousaka, D., Nakai, H.,

Inaba, M., and Inoue, H. (2004b). Integrated system software for hrp2 humanoid.

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). 19

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyT-

orch: An imperative style, high-performance deep learning library. In Advances

in neural information processing systems. 104, 130

[Petersson et al., 2002] Petersson, L., Jensfelt, P., Tell, D., Strandberg, M., Kragic,

D., and Christensen, H. I. (2002). Systems integration for real-world manipula-

tion tasks. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 18

[Philbin et al., 2007] Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.

(2007). Object Retrieval with Large Vocabularies and Fast Spatial Matching. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 69

[Pinto and Gupta, 2016] Pinto, L. and Gupta, A. (2016). Supersizing self-

supervision: Learning to grasp from 50k tries and 700 robot hours. In Proceedings

156

Bibliography

of the IEEE International Conference on Robotics and Automation (ICRA). 27,

98, 119

[Pomerleau, 1989] Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle

in a neural network. Technical report, CARNEGIE-MELLON UNIV PITTS-

BURGH PA ARTIFICIAL INTELLIGENCE AND PSYCHOLOGY. 24

[Qi et al., 2017] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep

Learning on Point Sets for 3D Classification and Segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 652–660. 70, 77

[Quigley et al., 2009] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,

Leibs, J., Wheeler, R., and Ng, A. Y. (2009). Ros: an open-source robot op-

erating system. ICRA workshop on open source software, 3(3.2):5. 21, 51, 109

[Riegler et al., 2017] Riegler, G., Osman Ulusoy, A., and Geiger, A. (2017). Octnet:

Learning deep 3d representations at high resolutions. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 49

[Rios-Cabrera and Tuytelaars, 2013] Rios-Cabrera, R. and Tuytelaars, T. (2013).

Discriminatively trained templates for 3d object detection: A real time scalable

approach. In Proceedings of the International Conference on Computer Vision

(ICCV). 69

[Roberts, 1963] Roberts, L. G. (1963). Machine perception of three-dimensional

solids. PhD thesis, Massachusetts Institute of Technology. 14

[Rohrdanz and Wahl, 1997] Rohrdanz, F. and Wahl, F. M. (1997). Generating and

evaluating regrasp operations. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA). 121

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-

Net: Convolutional networks for biomedical image segmentation. In Proceedings

of the International Conference on Medical Image Computing and Computer As-

sisted Intervention (MICCAI). 60

157

Bibliography

[Rosten et al., 2008] Rosten, E., Porter, R., and Drummond, T. (2008). Faster and

better: A machine learning approach to corner detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 32(1):105–119. 70

[Rowley et al., 1998] Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural

network-based face detection. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), 20(1):23–38. 25

[Runz et al., 2018] Runz, M., Buffier, M., and Agapito, L. (2018). MaskFusion:

Real-time recognition, tracking and reconstruction of multiple moving objects.

In Proceedings of the International Symposium on Mixed and Augmented Reality

(ISMAR). 23

[Runz et al., 2020] Runz, M., Li, K., Tang, M., Ma, L., Kong, C., Schmidt, T., Reid,

I., Agapito, L., Straub, J., Lovegrove, S., et al. (2020). FroDO: From detections

to 3d objects. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 142

[Saito et al., 2011] Saito, M., Chen, H., Okada, K., Inaba, M., Kunze, L., and Beetz,

M. (2011). Semantic object search in large-scale indoor environments. In Proceed-

ings of the IEEE/RSJ Conference on Intelligent Robots and Systems Workshops

(IROSW). 141

[Salas-Moreno et al., 2013] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H.,

Kelly, P. H. J., and Davison, A. J. (2013). SLAM++: Simultaneous Localisation

and Mapping at the Level of Objects. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 23

[Savva et al., 2019] Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E.,

Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., Parikh, D., and Batra, D.

(2019). Habitat: A Platform for Embodied AI Research. In Proceedings of the

International Conference on Computer Vision (ICCV). 143

158

Bibliography

[Saxena et al., 2006] Saxena, A., Driemeyer, J., Kearns, J., and Ng, A. Y. (2006).

Robotic grasping of novel objects. In Neural Information Processing Systems

(NIPS). 24, 26

[Saxena et al., 2008a] Saxena, A., Driemeyer, J., Kearns, J., Osondu, C., and Ng,

A. Y. (2008a). Learning to grasp novel objects using vision. In Experimental

Robotics. 24

[Saxena et al., 2008b] Saxena, A., Driemeyer, J., and Ng, A. Y. (2008b). Robotic

grasping of novel objects using vision. International Journal of Robotics Research

(IJRR), 27(2):157–173. 24, 25

[Schwarz et al., 2018] Schwarz, M., Lenz, C., Garćıa, G. M., Koo, S., Periyasamy,

A. S., Schreiber, M., and Behnke, S. (2018). Fast object learning and dual-arm

coordination for cluttered stowing, picking, and packing. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 22

[Shirai, 1987] Shirai, Y. (1987). Three-dimensional computer vision. In Symbolic

Computation. 15

[Shirai and Inoue, 1973] Shirai, Y. and Inoue, H. (1973). Guiding a robot by visual

feedback in assembling tasks. Pattern Recognition, 5:99–106. 15

[Shome et al., 2019] Shome, R., Tang, W. N., Song, C., Mitash, C., Kourtev, H., Yu,

J., Boularias, A., and Bekris, K. E. (2019). Towards robust product packing with

a minimalistic end-effector. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 119

[Simpson, 2005] Simpson, R. C. (2005). Smart wheelchairs: A literature review.

Journal of rehabilitation research and development, 42 4:423–36. 17

[Steger, 2001] Steger, C. (2001). Similarity measures for occlusion, clutter, and illu-

mination invariant object recognition. In Joint Pattern Recognition Symposium.

69

159

Bibliography

[Stevšić et al., 2020] Stevšić, S., Christen, S., and Hilliges, O. (2020). Learning to

assemble: Estimating 6D poses for robotic object-object manipulation. IEEE

Robotics and Automation Letters, 5(2):1159–1166. 94

[Stückler and Behnke, 2012] Stückler, J. and Behnke, S. (2012). Model learning

and real-time tracking using multi-resolution surfel maps. In Proceedings of the

National Conference on Artificial Intelligence (AAAI). 23

[Sucan et al., 2012] Sucan, I. A., Moll, M., and Kavraki, L. E. (2012). The open

motion planning library. Robotics & Automation Magazine, IEEE, 19(4):72–82.

21, 55, 130

[Sucar et al., 2020] Sucar, E., Wada, K., and Davison, A. J. (2020). NodeSLAM:

Neural object descriptors for multi-view shape reconstruction. In Proceedings of

the International Conference on 3D Vision (3DV). 32, 142

[Sun et al., 2018] Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). PWC-Net:

CNNs for optical flow using pyramid, warping, and cost volume. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

60

[Sünderhauf et al., 2017] Sünderhauf, N., Pham, T. T., Latif, Y., Milford, M., and

Reid, I. (2017). Meaningful maps with object-oriented semantic mapping. In Pro-

ceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

71

[Tang et al., 2012] Tang, J., Miller, S., Singh, A., and Abbeel, P. (2012). A textured

object recognition pipeline for color and depth image data. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 70

[Tateno et al., 2016] Tateno, K., Tombari, F., and Navab, N. (2016). When 2.5D

is not enough: Simultaneous reconstruction, segmentation and recognition on

dense slam. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 23, 142

160

Bibliography

[Taylor and Kleeman, 2003] Taylor, G. and Kleeman, L. (2003). Fusion of mul-

timodal visual cues for model-based object tracking. In Australasian Conference

on Robotics and Automation (ACRA). 18

[Tenorth et al., 2010] Tenorth, M., Kunze, L., Jain, D., and Beetz, M. (2010).

Knowrob-map-knowledge-linked semantic object maps. In IEEE-RAS Interna-

tional Conference on Humanoid Robots. 21

[Tobin et al., 2017] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and

Abbeel, P. (2017). Domain randomization for transferring deep neural networks

from simulation to the real world. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS). 27

[Tournassoud et al., 1987] Tournassoud, P., Lozano-Pérez, T., and Mazer, E.

(1987). Regrasping. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). 117, 121

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

In Neural Information Processing Systems (NIPS). 102

[Vespa et al., 2018] Vespa, E., Nikolov, N., Grimm, M., Nardi, L., Kelly, P. H.,

and Leutenegger, S. (2018). Efficient octree-based volumetric SLAM supporting

signed-distance and occupancy mapping. IEEE Robotics and Automation Letters.

49

[Wada et al., 2022a] Wada, K., James, S., and Davison, A. J. (2022a). ReorientBot:

Learning object reorientation for specific-posed placement. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 31

[Wada et al., 2022b] Wada, K., James, S., and Davison, A. J. (2022b). SafePicking:

Learning safe object extraction via object-level mapping. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 29

[Wada et al., 2018] Wada, K., Kitagawa, S., Okada, K., and Inaba, M. (2018). In-

stance segmentation of visible and occluded regions for finding and picking target

161

Bibliography

from a pile of objects. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS). 22

[Wada et al., 2017] Wada, K., Okada, K., and Inaba, M. (2017). Probabilistic 3d

multilabel real-time mapping for multi-object manipulation. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 119

[Wada et al., 2020] Wada, K., Sucar, E., James, S., Lenton, D., and Davison, A. J.

(2020). MoreFusion: Multi-object reasoning for 6D pose estimation from volu-

metric fusion. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 28, 72

[Wan and Harada, 2016a] Wan, W. and Harada, K. (2016a). Achieving high suc-

cess rate in dual-arm handover using large number of candidate grasps, handover

heuristics, and hierarchical search. Advanced Robotics, 30(17-18):1111–1125. 121

[Wan and Harada, 2016b] Wan, W. and Harada, K. (2016b). Developing and com-

paring single-arm and dual-arm regrasp. IEEE Robotics and Automation Letters.

121

[Wan et al., 2019] Wan, W., Igawa, H., Harada, K., Onda, H., Nagata, K., and

Yamanobe, N. (2019). A regrasp planning component for object reorientation.

Autonomous Robots, 43(5):1101–1115. 117, 121

[Wang et al., 2019] Wang, C., Xu, D., Zhu, Y., Mart́ın-Mart́ın, R., Lu, C., Fei-

Fei, L., and Savarese, S. (2019). DenseFusion: 6D object pose estimation by

iterative dense fusion. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 67, 70, 77, 78, 79, 84, 85

[Wichman, 1967] Wichman, W. M. (1967). Use of optical feedback in the com-

puter control of an arm. Technical report, STANFORD UNIV CALIF DEPT OF

COMPUTER SCIENCE. 14

[Wurm et al., 2010] Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and

Burgard, W. (2010). OctoMap: A Probabilistic, Flexible, and Compact 3D Map

162

Bibliography

Representation for Robotic Systems. In Proceedings of the ICRA 2010 Workshop

on Best Practice in 3D Perception and Modeling for Mobile Manipulation. 49

[Xiang et al., 2020] Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M.,

Jiang, H., Yuan, Y., Wang, H., et al. (2020). Sapien: A simulated part-based

interactive environment. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 143

[Xiang et al., 2018] Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2018). Po-

seCNN: A convolutional neural network for 6D object pose estimation in cluttered

scenes. In Proceedings of Robotics: Science and Systems (RSS). 67, 70, 72, 78,

84, 85, 129

[Xu et al., 2019] Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A., and

Leutenegger, S. (2019). MID-Fusion: Octree-based object-level multi-instance

dynamic slam. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 23, 71, 72

[Xu et al., 2018] Xu, D., Anguelov, D., and Jain, A. (2018). PointFusion: Deep

sensor fusion for 3D bounding box estimation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR). 70, 77

[Zakka et al., 2020] Zakka, K., Zeng, A., Lee, J., and Song, S. (2020). Form2fit:

Learning shape priors for generalizable assembly from disassembly. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA). 94

[Zender et al., 2008] Zender, H., Mozos, O. M., Jensfelt, P., Kruijff, G.-J., and Bur-

gard, W. (2008). Conceptual spatial representations for indoor mobile robots.

Robotics and Autonomous Systems, 56(6):493–502. 21

[Zeng et al., 2020a] Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., At-

tarian, M., Armstrong, T., Krasin, I., Duong, D., Sindhwani, V., et al. (2020a).

Transporter networks: Rearranging the visual world for robotic manipulation. In

Conference on Robot Learning (CoRL). 130

163

Bibliography

[Zeng et al., 2020b] Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser, T.

(2020b). Tossingbot: Learning to throw arbitrary objects with residual physics.

IEEE Transactions on Robotics (T-RO). 98

[Zeng et al., 2018a] Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., and Funk-

houser, T. (2018a). Learning synergies between pushing and grasping with self-

supervised deep reinforcement learning. In Proceedings of the IEEE/RSJ Confer-

ence on Intelligent Robots and Systems (IROS), pages 4238–4245. 98

[Zeng et al., 2018b] Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza,

M., Ma, D., Taylor, O., Liu, M., Romo, E., et al. (2018b). Robotic pick-and-place

of novel objects in clutter with multi-affordance grasping and cross-domain image

matching. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 98, 119

[Zeng et al., 2017] Zeng, A., Yu, K.-T., Song, S., Suo, D., Walker, E., Rodriguez, A.,

and Xiao, J. (2017). Multi-view self-supervised deep learning for 6d pose estim-

ation in the amazon picking challenge. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). 22, 94, 119

[Zhao et al., 2017] Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid

scene parsing network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 60, 77

164

	Introduction
	Robotic Manipulation and Visual Perception
	Semantic Scene Understanding for Manipulation
	Learning and End-to-End Manipulation
	Publications
	Thesis Structure

	Preliminaries
	Notation
	Transformations
	Cameras
	Geometry
	Robots
	Physics Simulation
	Deep Learning

	Object-Level Semantic Mapping for Manipulation
	Introduction
	Related Work
	Method
	Experiments
	Conclusion

	Fine-Grained Manipulation with a Semantic Map
	Introduction
	Related Work
	Object-level Semantic Mapping
	Learning Object Extraction
	Experiments
	Conclusion

	Long-Horizon Manipulation with a Semantic Map
	Introduction
	Related Work
	Method
	Experiments
	Conclusion

	Conclusions and Future Work
	Bibliography

