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Abstract

Scene understanding is a crucial component for intelligent computer vision systems, which

are an integral part of most robotic devices, including augmented reality glasses, autonomous

cars and future household robots. With the tremendous progress computer vision methods have

experienced since the introduction of machine learning and in particular, deep learning techniques

to the field, intelligent vision systems seem to be within reach. Some successful applications such

as face detection and augmentation have already found their way into our smartphones. However,

many challenges remain unsolved, especially in the 3D domain. This thesis addresses three areas

of 3D scene understanding with a focus on scenes composed of multiple small objects, which can

pose particular challenges and are overall less explored. Labelling In a first study, two common

deep learning based methods to add semantic labels to a 3D reconstruction in real-time SLAM

are compared and evaluated, providing valuable insights on the settings which favour one or the

other approach. The experiments are conducted for a table-top setting of small objects and under

the assumption, that a mobile device can extensively scan the scene. Reasoning However, such

an ideal setting is not always possible and the second challenge addressed in this thesis, is that

of estimating the content of multi-object scenes when only one or few views are available. To

this end, a novel, generative neural network architecture is proposed which can generate the full

3D shape and instance segmentation of a scene from a single depth image. Decomposing The

method proposed in the second study encodes all features jointly, which leaves no room for scene

manipulation within the representation itself. The last experiments explore the question on how

to best represent 3D scenes in a compositional way. Compositional, object-level encodings have

several advantages including the control over individual features and objects within a scene, the

ability to produce novel compositions, as well as a suitable structure to model interactions between

scene components. To this end, a novel method to generate a factorised latent representation is

proposed, which encodes a scene into a set of per-object latent codes. The proposed method is

able to decompose a scene of convex shapes into its components, even from a single viewpoint.

We hope that the research results of this thesis can provide insights for solving some of the open

problems of 3D scene understanding and that the proposed solutions are relevant for future work

and applications.
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1. Introduction

CHAPTER 1

Introduction

Contents
1.1 Intelligent systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 The current use of AI . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.2 Understanding and adapting . . . . . . . . . . . . . . . . . . . . . 9

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Thesis structure and contributions . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Intelligent systems

The last years have brought about technological changes which are said to be driving a fourth

industrial revolution: increasing automation, fusion between the digital and real worlds, rapid sci-

entific progress across countries and disciplines, and the merging of technologies within domains

such as medicine, genetics, quantum computing, and a newly emerging field: artificial intelligence

(AI). This progress also appears to be advancing at unprecedented speed and breadth; compared

to previous industrial revolutions which progressed at a linear rate, the current one is evolving at

exponential rate [Schwab, 2016]. Connectivity and accessibility may be the driving factors here.

People around the world are increasingly connected to one another, through the internet and mo-

bile devices that are slowly becoming a tool for everything: from booking cultural events or flights

over transferring money, buying food or goods online, to holding meetings with remote business

partners. Most aspects of life have moved online and daily life has become easier and is moving

at a faster pace.

Eventually, this revolution will completely transform the way we live. In day-to-day life, one of

the most visible aspects of this change will be brought about by robotics and automation, but in
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1.1. Intelligent systems

particular, by artificial intelligence. Simple forms of intelligent systems are already present in

various aspects of our daily lives, online and in the physical world.

Figure 1.1: Current technological progress has been attributed to a fourth industrial revolution which will
be characterised by connectivity, merging technologies and intelligent systems [Rose, 2018].

1.1.1 The current use of AI

Online Most automation visible to the general public, takes place online. Smart algorithms parse

our e-mails and clear them from spam and phishing content; we get new movie, music and news

article suggestions which are tailored to our taste. Most purchases and venue reservations can now

be made fast and efficiently, without any human intermediary, through online websites. Overall,

we are provided with increasingly automated services which make our lives easier. However, while

very effective at data crunching tasks, the realms of the digital world constrain the possibilities of

what AI algorithms can achieve. To develop its full potential, AI requires the ability to move and

interact.

Embodied Algorithms that operate in the digital world have to understand and process digitised

signals — sequences of bits. When embedded into a machine, these algorithms have to under-

stand and process information coming from their surroundings such as light, sound, pressure or

thermal measurements. They are connected to the physical world through sensors recording these

external signals: cameras, laser scanners, ultrasound sensors, etc. Once processed, the extracted

information from the data can be used to navigate within and interact with the environment — the

machine becomes a robot.
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1. Introduction

Figure 1.2: Examples of some of the most advanced robots with human- and animal-like agility and
advanced sensing capabilities. Left to right: Spot, a Boston Dynamics robot with self-charging and ad-
vanced sensing capabilities, ideal to live on remote industrial sites and perform maintenance and safety
checks [Porter, 2021]. Ameca, a humanoid robot by Engineered Arts showing human-like face dynam-
ics [Engineered Arts, 2022]. Velox, an amphibian-looking ice and water rescue robot with fins whose
agility is inspired from various locomotions in the animal kingdom [Pliant Energy Systems, 2022].

Some simple robots are already present in our everyday lives. Surgeries are increasingly supported

by robots which enable more precision and minimally invasive surgeries. Although most of these

robots are still manually controlled, some already act autonomously [Svoboda, 2019]. A certain

degree of autonomy is also present inside modern cars, where assistance systems provide addi-

tional safety and comfort features. Through processing signals from our physical world through

sensors including cameras and laser scanners, these systems provide features such as lane-keeping

assistants, drowsiness detection and in some cases, auto-pilot settings. Another domain where

robots are already widely in use is industry: robots are gradually taking over repetitive tasks

such as part assembly and conveyer belt operations [Conveyer Concepts Inc, 2020], but also

more advanced tasks such as inspection and surveillance by air and on land [Boston Dynamics

Team, 2021b] (see Figure 1.2, left). Inside our households, automatic vacuum cleaners such as

Roomba [iRobot, 2022], and the Dyson 360 line [Dyson UK, 2022] provide autonomous floor

cleaning. Their systems are equipped with sensors and software that allow the robot to build a

map of the environment it is cleaning using visual SLAM (Simultaneous Localisation and Map-

ping). This map helps reason about things such as where to clean next and how to reach a charging

station. However, these vacuum cleaners don’t have the ability to detect and differentiate objects,

nor can they interact with their environment or make complex decisions based on their surround-

ings (e.g stop cleaning when guests enter the apartment or to clean more thoroughly under the

dinner table after dinner). On the engineering side, incredible progress has been made on the

mobility and capabilities of robotic systems. With their research platform, the humanoid robot

Atlas, Boston Dynamics has demonstrated human agility and control, performing parkour walks

and even backflips [Boston Dynamics Team, 2021a]. In the domain of human-robot interaction,

incredibly realistic facial models have been demonstrated on the humanoid robot Ameca by En-

gineering Arts (see Figure 1.2, centre). Robots also increasingly support rescue missions. Velox,

an amphibian-bodied water and ice rescue robot by Pliant Energy Systems has fins that mimic
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1.1. Intelligent systems

various locomotions from the animal kingdom (see Figure 1.2, right).

Despite these incredible technical advances, most of the automated software of currently deployed

robots is still limited to specific environments and specific sets of instructions. For instance, one of

the leading industrial robotic companies, KUKA, offers separate robots and task-specific software

for part assembly, food and pharmaceutical manipulation, welding, and laser cutting [KUKA AG,

2022]. What are the missing features to create more versatile and adaptive robots which can

become more general assistants?

1.1.2 Understanding and adapting

Currently, most intelligent systems follow instructions and operate in the specific environments

they were programmed for. Some, such as autonomous vacuum cleaners or surveillance robots

and drones already have a certain degree of autonomy. More advanced systems will be expected

to support us in our everyday lives, such as household robots or personalised Augmented Reality

(AR) devices that can help locate lost items, perform tasks online and augment the reality around

you (e.g provide information about the building you see or translate the traffic signs when you

travel to a foreign country). As these systems accompany us in daily life, they will have to be able

to understand the world around us and adapt to it.

Understanding our physical world involves acquiring knowledge about the geometry of space,

but also its semantics (labels of material things such as chair, human, tree, sky) and a concept of

objectness - the physical space belonging to one single entity, often referred to as an instance.

Beyond definitions and spatial awareness, knowledge about object properties and their relations

will also be crucial for advanced interaction. For instance, to estimate whether or not to lift or

push an item to move it, a robot will have to be able to estimate its weight. To tidy a room, a

household robot will have to understand that books usually belong into shelves and chairs beneath

tables. Adapting to novel environments will require general and versatile state representations, the

ability to differentiate novel from previously seen states and to transfer and relate these represent-

ations. Furthermore, a robust system will also need the ability to deal with uncertainty and handle

unknown situations. The authors of [Davison and Ortiz, 2019] provide an outlook on the overall

requirements of future autonomous systems, termed Spatial AI systems.

The understanding of the physical world around us is usually referred to as scene understanding

and, when obtained through visual sensing, visual scene understanding. It is an integral part of the

algorithmic requirements for intelligent systems and will be the main topic of this body of work.
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1. Introduction

1.2 Motivation

How to design an intelligent system which can understand its surroundings in a versatile and

ad-hoc way remains an open question and is among the most active research areas within com-

puter vision and machine learning. The difficulties are manifold, arising from the complexity of

designing robust perception in varying lighting conditions, highly complex and dynamic scenes,

dynamically growing state representations or defining the correct way of handling uncertainty.

Many problems remain unsolved. While much research focuses on large-scale outdoor and indoor

scenes, a particularly challenging setting are scenes with collections of small objects, typical of a

table-top scene. Such scenes can be challenging to analyse, because a collection of small objects

is more difficult to segment and differentiate due to their size and the partial or full occlusions

arising in cluttered scenarios. Developing algorithms that improve 3D scene understanding for

small object collections naturally complements the reasoning abilities for larger-scale scenes and

is particularly useful for interactive tasks, which require the segmentation and reconstruction of

individual (graspable) objects and will, in many cases, address settings with smaller, household-

sized objects.

This thesis addresses several aspects of scene understanding, with a focus on scenes with collec-

tions of small objects (see Figure 1.3 for a summary). It starts by exploring the question of how

to semantically annotate a scene of small objects from a stream of 2D images, a common form of

data collected by a moving robot. Despite the progress in semantic segmentation of images using

deep learning methods, several questions on how to best propagate semantic segmentation to the

3D domain remain open, in particular, in a real-time setting. Through a principled comparison

and analysis of two commonly used methods for semantic scene annotation, Chapter 4 provides

some answers for a table-top setting where a scene of small objects is exhaustively scanned.

However, in many scenarios only few views of a scene are available, from which a scene model

with annotations should be obtained. This becomes particularly difficult for cluttered scenes,

where objects in close proximity generate many occlusions. Chapter 5 is concerned with reasoning

about occluded space and how deep generative methods can provide plausible estimates in such

scenarios.

Finally, an efficient and descriptive representation of a scene will likely contain a factorised lower

dimensional form of all scene components (i.e., an object-centric representation). Understanding

a scene through its components will likely facilitate a deeper understanding about object interac-

tions and the ability to independently compose novel scenes. This will be particularly relevant
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1.3. Thesis structure and contributions

for cluttered scenes of small objects where object interactions have to be modelled and object

segmentation and reconstruction is challenging. In the last part of this thesis we explore how to

obtain such a representation using deep learning.

Figure 1.3: Visual summary of the questions addressed in this thesis.

1.3 Thesis structure and contributions

The rest of this thesis is structured in the following way. Chapter 2 provides some background

about the technical field, including visual perception and deep learning. Chapter 3 provides the

theoretical and technical preliminaries necessary to understand the main content (Chapters 4 – 6).

Chapter 7 concludes with a discussion and summary.

The research produced in Chapters 4 and 5 has been published as follows:

Zoe Landgraf, Fabian Falck, Michael Bloesch, Stefan Leutenegger, Andrew Davison. Comparing

View-based and Map-based semantic labelling in real-time SLAM, International Conference on

Robotics and Automation (ICRA), 2020.

Zoe Landgraf, Raluca Scona, Tristan Laidlow, Stefan Leutenegger, Andrew Davison. SIMstack:

A Generative Shape and Instance Model for unordered object stacks, International Conference on

11



1. Introduction

Computer Vision (ICCV), 2021.
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CHAPTER 2

Background

Contents
2.1 Visual scene understanding . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Image and scene segmentation . . . . . . . . . . . . . . . . . . . . 14

2.1.2 SfM and SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 AI, machine learning and deep learning . . . . . . . . . . . . . . . . . . . . 18

2.3 Deep learning for computer vision . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Visual scene understanding

To understand a scene, systems can leverage multiple data modalities, including sound and touch;

however, one of the most immediate and expressive ways to understand a scene is through images.

As humans, we can look around us and quickly understand where we are, which objects are around

us and how these objects relate to ourselves and to each other. We can also estimate physical

properties such as weight, speed, stability, all from a single glance. Although our understanding

will be augmented by sounds and smells, our main source of information comes through our

sight [Hutmacher, 2019]. Being able to replicate our ability of visual scene understanding in

computer systems will greatly increase their ability to understand, interact and adapt.

Scene understanding through visual data — visual scene understanding — involves collecting

data through sensors such as cameras, depth sensors or laser scanners and processing the recor-

ded data to extract information about the geometry and the content of the observed scene. Ex-

tracting scene geometry from images is one of the main goals for algorithms such as Structure

from Motion (SfM) or Simultaneous Localisation and Mapping (SLAM), that generate a 3D map

from a sequence of recorded images or laser scans (a crucial component in applications such as
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2. Background

autonomous driving or augmented reality applications). Understanding the content of the scene

(e.g. detecting objects and assigning semantic labels) is crucial to enable automatic detection of

pedestrians in the vision systems of an autonomous car, but also in other domains, such as detect-

ing tumours when processing medical images. Figure 2.1 illustrates some examples of tasks in

visual scene understanding.

Figure 2.1: Examples of scene understanding tasks. Right to left: scene classification, semantic segment-
ation, object detection and pose estimation [Naseer et al., 2019]

Visual scene understanding is not a new field and decades of research have produced impressive

and robust solutions for some of the problems involved. In the following, the areas of visual scene

understanding most relevant to this thesis will be introduced.

2.1.1 Image and scene segmentation

The goal of segmentation is to partition an image or a scene into different regions for the pur-

pose of better understanding the properties and the content of the captured information. Among

the most common goals of segmentation are semantic segmentation — assigning a label to every

pixel — and object segmentation — segmenting the region belonging to one object. This is com-

monly referred to as instance segmentation. Early image segmentation methods relied on simple

thresholding methods (dividing an image into regions based on pixel intensity) such as Otsus’

algorithm and extensions [Otsu, 1979, Cheriet et al., 1998], edge detection methods that find dis-

continuities in the image using edge detectors such as the Canny algorithm [Canny, 1986]) and

region-based methods (e.g. region growing – segmentation seed points are grown into neighbour-

ing regions following a set of rules). After the 2000s, techniques were increasingly based on graph

theory and clustering [mei Zhou et al., 2008, Cigla and Alatan, 2008]. In the last decade, the in-

troduction of deep learning based methods, in particular Convolutional Neural Networks (CNNs),

revolutionised the field. One of the first methods to use a CNN for per-pixel semanic labelling was

the work of Farabet et al. [Farabet et al., 2013] and one year later, R-CNN became one of the first

methods to surpass hand-engineered semantic segmentation methods [Girshick et al., 2014]. The

real breakthrough however, was brought about by the introduction of the Fully Convolutional Net-
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2.1. Visual scene understanding

work (FCN) [Long et al., 2015], an elegant architecture that allowed for per-pixel prediction, ideal

for semantic segmentation and instance segmentation tasks. State of the art semantic segmentation

methods such as DeepLabv3 [Chen et al., 2017] or PSPNet [Zhao et al., 2017a] all derive from this

architecture and achieve over 80% by the Intersection over Union metric on public datasets. For

instance segmentation, state of the art architectures either employ single stage methods (based on

the FCN architecture) such as BlendMask [Chen et al., 2020a] and SOLOv2 [Wang et al., 2020b],

or two-stage approaches that build on R-CNN, such as Mask-RCNN [He et al., 2017]. Recently,

combining semantic and instance segmentation in one task — panoptic segmentation [Kirillov

et al., 2019] — has gained increasing attention in the community.

With the advancement of segmentation in images, a variety of works started looking into adding

segmentation results to 3D reconstructions [McCormac et al., 2016, Nie et al., 2020a], as well as

directly segmenting 3D scenes [Dai et al., 2018]. Compared to 2D segmentation, 3D segmentation

Figure 2.2: Examples of state of the art semantic and instance segmentation methods for images. Left:
outdoor scene segmentation by PSPNet [Zhao et al., 2017a]. Right: instance segmentation of two images
by Tensormask [Chen et al., 2019] and SOLOv2 [Wang et al., 2020b]

is a lot more difficult and despite great progress achieved in the last few years, for segmentation

and annotation in 3D, several challenges remain unsolved and results lack accuracy and complete-

ness (see Figure 2.3). Some of the currently unsolved problems in segmenting 3D scenes will be

explored in this thesis.

Figure 2.3: Examples of segmenting 3D scenes. Left: semantics predicted by the ScanComplete system
[Dai et al., 2018]. Right: instance segmentation output of Total3D [Nie et al., 2020a]. Both systems are
state of the art, however, segmentation in 3D still lacks accuracy.

2.1.2 SfM and SLAM

Estimating 3D structure from 2D images is a long-studied problem in computer vision and an

integral part of scene understanding. The difficulty of the problem lies in the image formation
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2. Background

process being inherently uninvertible: from its projected position in the image plane, a scene

point can only be recovered as an infinite line - scale information is lost. The geometrical theory

of SfM allows to simultaneously estimate the 3D structure from two image views and their camera

positions. The prerequisite is having solved the ’correspondence problem’ - establishing sparse or

dense pixel correspondences between the viewpoints. For multiple views, images can be processed

in batches or sequentially, to obtain the full reconstruction. A final optimisation step is usually

performed using bundle adjustment [Pritchett and Zisserman, 1998]. SLAM extends the concept

of SfM to a real-time and dynamic algorithm which is essential for autonomous robot motion. The

goal of a system running SLAM is to localise itself in the environment in real time while building

a map and navigating through it. The built map improves localisation, provides information about

geometry and can be augmented with information such as semantics. SLAM can in principle be

run with a variety of sensors; when using cameras, it is usually referred to as Visual SLAM.

Origins and early work The earliest methods to estimate structure from a set of images were

already applied in photogrammetry in the early 1800s to estimate the shape of terrain from aerial

images [Micheletti et al., 2015]. Among the first approaches in the computer vision community is

the seminal work of Longuit-Higgins et al. [Longuet-Higgins, 1981] in 1981, proposing the eight

point algorithm. Based on projective geometry, this algorithm allows to estimate the fundamental

matrix – which can be used to recover the scene – from two images with unknown correlation

and a set of eight or more point matches. Much work was then put into extending these initial

ideas for more images and making the algorithms robuster and faster. Some important works

include the factorisation algorithm proposed by Tomasi & Kanade, a fast and elegant solution to

the SfM problem based on Singular Value Decomposition (SVD) [TomasiCarlo and KanadeTakeo,

1992], as well as several iterative solutions based on Levenberg-Marquardt non-linear optimisation

[Raja Kumar et al., 1989, Szeliski and Kang, 1994, Weng et al., 1989]. Nowadays, most multi-

view SfM methods use bundle adjustment techniques which optimise pose and structure estimates

based on the reprojection error [Özyesil et al., 2017]. Addressing the correspondence problem,

several approaches were proposed to improve edge and corner detection [Canny, 1986], [Harris

and Stephens, 1988] and later, more advanced feature-based detectors of which the most famous

include SIFT [LoweDavid, 2004], its faster version SURF [Bay et al., 2008], and, optimised for

real-time performance: ORB [Rublee et al., 2011].

Research in SLAM developed around the same time. Early work explored the statistical relation-

ships between observed landmarks and established the problem as a joint estimation of landmarks

and vehicle positions [Smith et al., 1986, Smith et al., 1988]. The acronym ’SLAM’ was first intro-

duced in 1995 along with the structure of the problem [Durrant-Whyte and Bailey, 2006]. Early
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2.1. Visual scene understanding

SLAM algorithms used Extended Kalman Filter (EKF) based methods and Rao-Blackwellised

Particle Filter methods, introduced by Montemerlo et al. [Montemerlo et al., 2002]. Most mod-

ern SLAM systems derive from methods based on maximum likelihood estimation introduced by

Thrun et al. [Thrun et al., 1998]) that were further improved upon by several works including

iSAM [Kaess et al., 2008] and GraphSLAM [ThrunSebastian and MontemerloMichael, 2006].

Other nominal works include MonoSLAM [Davison et al., 2007], the first system to move SLAM

to a pure visual domain, PTAM [Klein and Murray, 2007] a system particularly designed for ef-

ficient reconstruction and tracking using a hand held camera and ORB-SLAM [Mur-Artal et al.,

2015a], which extends PTAM to include loop-closures and uses ORB-features for efficient feature

matching. As the field matured and more compute power became available, direct SLAM meth-

ods, also called dense methods were proposed, which directly optimise the map and robot position

from image intensity values [Pizzoli et al., 2014, Newcombe et al., 2011b, Izadi et al., 2011, Engel

et al., 2014b]. Using dense mapping not only allows for pleasing visual renderings (see Figure

2.4) and useful properties for augmented reality applications, but also improves the robustness of

real-time tracking during fast motion [Newcombe et al., 2011b].

Figure 2.4: Dense vs. Sparse SLAM. Left: dense reconstruction of KinectFusion [Newcombe et al.,
2011a]. Right: sparse landmarks and trajectory of ORB-SLAM [Mur-Artal et al., 2015a]

Semantics in SLAM As the field of geometric SLAM matured, research started looking into

annotating the reconstructions with informative labels and concepts. Many early methods that add

semantics to the map, apply offline segmentation: first the scene is reconstructed geometrically,

then segmented into semantic concepts [Herbst et al., 2011, Pillai and Leonard, 2015, Koppula

et al., 2011, Pham et al., 2015]. Other methods semantically label in an online fashion [Pronobis

and Jensfelt, 2012, Cadena et al., 2015]. Many approaches that pre-dated the wide adaptation

of deep learning, such as [Pham et al., 2015, Valentin et al., 2013], use Conditional Random

Fields to infer labels for the reconstructed map. [Vineet et al., 2015] use a dense reconstruction

system where semantic labels are inferred using a densely connected CRF. [Häne et al., 2013]

leverage the complementary nature of 3D geometry and image-based segmentation and jointly
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predict per-voxel semantics and occupancy using a CRF. Other approaches still, choose an object-

level representation [Castle et al., 2007, Salas-Moreno et al., 2013].

Deep Learning in SLAM With the recent success of deep learning methods for a variety of

computer vision problems, several approaches have replaced individual components of the SLAM

algorithms with learning based methods [Bloesch et al., 2018, Czarnowski et al., 2020, Mohanty

et al., 2016] or even attempt to learn end-to-end SLAM with a deep neural network [Bruno and

Colombini, 2021]. Other applications leverage deep learning to augment the geometric map with

additional information such as semantic labels or object level segmentation [McCormac et al.,

2017a, McCormac et al., 2018, Sünderhauf et al., 2017].

However, many questions on how to robustly add semantic and instance labels to 3D reconstruc-

tions, as well as how to deal with uncertainty remain unsolved and are among the questions being

addressed in this thesis.

2.2 AI, machine learning and deep learning

The field of computer vision has advanced rapidly in the last few years and a large part of this

success can be attributed to breakthroughs in domains such as image classification and semantic

segmentation achieved by machine learning and in particular by deep learning methods.

AI is generally considered the umbrella term for everything ranging from logic-based reasoning,

over computer vision to natural language processing. It also includes machine learning and deep

learning within its sub-fields (see Figure 2.5). While AI includes systems which are more biolo-

gically inspired, such as spiking neural networks, machine learning is rooted in statistical theory

and predominantly used in computer science for algorithms that are optimised with respect to a set

of rules, or data. It includes classical machine learning models such as support vector machines

and kernel methods, decision forests and clustering methods, as well as neural networks. Deep

learning is usually linked to neural network models with more than one hidden layer (deep neural

networks).

Whether based on classical architectures or neural networks, the ways in which machine learn-

ing algorithms learn depends on how they experience the data they see or the environment they

are placed into. Learning methods can be loosely divided into Supervised Learning, where the

algorithm learns from correct examples, Unsupervised Learning, where the algorithm has to dis-

cover patterns in the data and Reinforcement Learning, where the algorithm learns a policy (per-
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Figure 2.5: Definitions of AI, machine learning and deep learning and how they are related [Ceron, 2019]

forming a set of instructions or behaviour) based on feedback they obtain from an environment

(such as a game). See Figure 2.6 for an illustration.

A brief history The origins of machine learning and AI can be traced back to a few key events in

the 1940s and 1950s. The first mathematical model of a neural network was proposed by McCul-

loch and Pitts [McCulloch and Pitts, 1943]. A decade later, Arthur Samuel, often considered the

first one to have popularised the term machine learning, wrote the first championship level check-

ers computer. It used the minimax algorithm to find the best move, alpha-beta pruning to avoid

searching all possible paths and remembered previous moves to improve its strategy — it learned

from experience [History Computer, 2021]. Often considered the birthplace of AI, another key

event was the Dartmouth College workshop in 1956, where scientists of engineering, maths and

cognitive sciences gathered and discussed the fields of AI and machine learning. Not long after, the

first multi-layer perceptron [Rosenblatt, 1958] was proposed and in 1969, Fukushima published

the neocognitron, a hierarchical neural network which inspired today’s convolutional neural net-

works [Fukushima, 1969]. In 1979, the Stanford Car becomes the first autonomous vehicle to

navigate a room full of chairs without human help [Stanford University, 1979]. 1986 sparked new

interest in neural networks thanks to the backpropagation algorithm proposed by Rumelhard et

al. [Rumelhart et al., 1986], which is at the basis of modern deep learning methods. However, it

wasn’t until the last decade, when the required computing power and hardware became available,

that neural networks became the powerful tool they are today. Current breakthroughs achieved

with methods based on deep learning span a variety of domains such as game playing (AlphaGo

beats the world’s Go playing champion [Deep Mind, 2015]), biology (AlphaFold solved the 50

year grand challenge of the protein folding problem [Deep Mind, 2021]), and nuclear physics (A

deep reinforcement learning method controls nuclear fusion plasma [Deep Mind, 2022]).
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Figure 2.6: Types of learning: supervised, where correct examples are shown during training; unsuper-
vised, where the machine learning model discovers patters independently; reinforcement learning, where
the machine learning model operates within a simulated environment (such as a game) and learns a policy
through receiving rewards for correct actions or reaching goals. Image references [Arora, 2020, Lee, 2019].

2.3 Deep learning for computer vision

The modern age of deep learning in vision is usually said to have begun with AlexNet, a CNN

which achieved impressive accuracy in the ImageNet Large Scale Visual Recognition Challenge

in 2012 [Krizhevsky et al., 2012]. Since then, CNN’s have surpassed human performance in image

classification [He et al., 2015] and have been extended for various other scene understanding tasks

(e.g. semantic segmentation, instance segmentation, pose estimation). Popular descendent archi-

tectures include the fully convolutional network (FCN) [Long et al., 2015], an elegant solution

for per-pixel prediction, the residual network [He et al., 2016] which enabled very deep networks

and U-Net [Ronneberger et al., 2015], which introduced the concept of skip-connections, that

can transfer fine detail for per-pixel predictions. Several adaptations for 3D modalities such as

voxels [Maturana and Scherer, 2015], pointclouds [Qi et al., 2017]and meshes [Hanocka et al.,

2019] have been proposed. On the content generation side, variational autoencoders (VAEs) and

generative adversarial networks (GANs) have become popular training methods. GANs in par-

ticular, have revolutionised image generation, with current state of the art models [Park et al.,

2019b, Karras et al., 2019] being able to generate highly realistic natural images and even transfer

styles between images (see Figure 2.7). Note that VAE and GAN models usually have a CNN

backbone and can also be extended to different model architectures; their difference lies in the

training method and loss function.

Current frontiers Although CNN’s remain the main architecture for vision tasks, they are cur-

rently being challenged by a new architecture, the transformer. Originally introduced for nat-

ural language processing [Vaswani et al., 2017], this architecture was recently adapted for vision
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Figure 2.7: Left: realistic faces generated by StyleGAN [Karras et al., 2019]. Right: Sketch to image
translation by GauGAN [Park et al., 2019b].

tasks [Dosovitskiy et al., 2020]. Transformers are based on a mechanism called attention, which

establishes and learns correlations between different components of an encoded signal. As super-

vised learning is reaching maturity as a field and the inherent problems of learning from labelled

data or examples (expensive labelling, covariate shift, etc.) persist, the community is starting to

embrace the challenges of semi-supervised, self-supervised, unsupervised and few-shot learning.

While being algorithmically more difficult and complex to design, these methods hold a lot of

promise for domain adaptation and generalisation of machine learning algorithms. Other frontiers

include neural scene representation, Graph neural networks and modelling causality.

For the research of this thesis, the backbone architecture of all developed models are based on

CNNs. For the task of single-view 3D shape and instance generation, the model is trained as a 3D

VAE. All tasks are learnt in a supervised setting. The architectures and training concepts will be

introduced in more detail in section 3.
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This chapter introduces the technical and mathematical details which are used in the research

of this thesis. We review the algorithms of Simultaneous Localisation and Mapping (SLAM)

and different methods to represent 3D space, as such a map is built. Then, the fundamentals
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of machine learning and deep learning, as well as the relevant neural network architectures are

introduced. This is followed by a description of visual perception methods with deep learning and

the relevant rendering techniques. Finally, software and implementation details are provided.

3.1 SLAM

SLAM is the process of concurrently estimating the state of a robot with on-board sensors and

building a representation of the environment the robot is moving in — mapping. The robot state

is usually described by quantities such as position and orientation, but can also include velocity

and sensor information. The map can be represented using sparse landmarks or using a geometric

representation (see Section 3.2 for an overview of different 3D geometric representations). The

need for a map arises from the problem of drift in dead-reckoning, which inevitably happens as

errors accumulate without external re-localisation. Furthermore, a map can provide information

for other applications such as path planning, interactions such as grasping, or visualisations. Gen-

erally, SLAM finds application in all situations where a map cannot be obtained a priori (in cases

where a map infrastructure is present, such as factory floors, SLAM might not be necessary) and

has become particularly popular with the development of indoor robotics where the localisation

error cannot be bound using GPS signals [Cadena et al., 2016b]. The structure of a SLAM sys-

tem can be broadly separated into a front-end, which collects and processes sensor-data and a

back-end, which solves the bulk of the optimisation problem (see Figure 3.1 for a visualisation

by [Cadena et al., 2016b]).

In the following, we will provide more details on the structure of the SLAM optimisation problem

and data association methods, such as keypoint feature detection and matching.

Figure 3.1: Diagram illustrating the overall structure of a SLAM system pipeline. The front-end collects
and processes sensory data while the backend solves the optimisation problem (in modern SLAM systems
usually a maximum a posteriori estimation (MAP)). The backend can provide feedback to the front end for
refinement processes such as loop-closure [Cadena et al., 2016b].
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3.1.1 Odometry and visual odometry

An initial estimate of a robot’s location can be obtained from odometry, e.g. using the data from

motion sensors on the robot such as wheel encoders. By counting the relative number of rotations

with respect to a timepoint, displacement can be estimated. The errors on such measurements

quickly accumulate and need correction through external measurements. In visual SLAM, motion

is usually estimated using images only — visual odometry. Here, the collected measurements

consist of image data from which the camera poses can be estimated. The first steps in this process

are keypoint feature detection and feature matching across frames (a form of data association)

and subsequently, refinement and outlier detection using Random Sample Consensus (RANSAC)

[Fischler and Bolles, 1981]. Once feature matches have been established, the transformation T

between consecutive frames can be estimated.

3.1.2 Keypoint features

Data association can take multiple forms depending on the sensor modality; for visual SLAM it

involves keypoint feature detection and matching across consecutive frames.

In order to find correspondences between two images for visual odometry, characteristic keypoint

features such as corners and edges are detected and transformed into feature descriptors that are

then matched across views with feature matching algorithms. Feature descriptors are a collection

of characteristic points, usually high contrast points or edges, which will remain similar under dif-

ferent viewpoints and lighting conditions. This allows for robust matching with the same points in

another view of the same region. Apart from SIFT [Lowe, 1999] and BRISK [Leutenegger et al.,

2011], one of the most popular such methods is Oriented FAST and rotated BRIEF (ORB) [Rublee

et al., 2011]. As the name suggests, ORB builds on the FAST keypoint detector and the BRIEF

feature descriptor, adding several improvements such multi-scale features and the addition of rota-

tion invariance. The main concept of FAST, is to find pixels which are surrounded by neighbours

that have a strong difference in intensity — i.e. represent corners, edges. BRIEF descriptors are

then created with patches surrounding selected keypoints. After applying a Gaussian blur for ro-

bustness, a number of pixel pairs are sampled from the patch. These pixel pairs are used to create a

feature descriptor based on a binary selection function t: Depending on whether the first or second

sampled pixel is brighter, a 0 or 1 is saved in a binary vector, from which the feature descriptor is

generated as: f = Â2i�1t(pi) [Viswanathan, 2011]. ORB adds an orientation to the descriptor, by

computing the intensity centroid of the patch and computing the vector between the patch center
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Figure 3.2: Left: FAST feature detection. The highlighted pixels are those used in corner detection
and the pixel at p is the candidate pixel of the corner detection. If a set number of contiguous
pixels in the arc (dashed line) are brighter than p by a set threshold, p is selected as keypoint
[Viswanathan, 2011]. Right: ORB feature matches [Rublee et al., 2011]

and its intensity centroid. This information is then included into the descriptor, effectively making

it rotation invariant. An example of detected ORB features is given in Figure 3.2, right. To match

feature descriptors across images, ORB uses Locality Sensitivity Hashing (LSH) [Rublee et al.,

2011].

3.1.3 The SLAM backend

Once the sensor data has been collected and processed during the data-association step, the pre-

processed data can be passed to the SLAM backend for optimisation.

The setup the SLAM backend has to solve, can be visualised as a graph, such as the one displayed

in Figure 3.3. The nodes ut represent the location estimates provided by odometry and zt are the

external measurements of the environment, based on the robot locations. xt and m are the true

robot locations and landmark positions in the environment; the latent variables to be estimated.

The edges which connect the individual measurements are characterised by measurement models

such as motion estimation through wheel encoders and camera projection models. The SLAM

problem can be solved offline as a full estimation of the posterior over all poses and external

measurements: P(Xt ,m|Zt ,Ut), or online, estimating the current pose xt based on all previous

measurements: P(xt ,m|Zt ,Ut). There are different methods to estimate this posterior, of which

most derive either from Extended Kalman Filter (EKF) methods, Particle Filter approaches or

Expectation Maximisation [Stachniss et al., 2016, Aulinas et al., 2008].

MAP estimation and factor graphs Although there exist state of the art methods based on

EKF [Mourikis and Roumeliotis, 2007, Kottas et al., 2012, Hesch et al., 2014], MAP estimation

has proven to be more accurate and efficient in most cases and has become the standard modern

formulation of SLAM [Cadena et al., 2016b]. To formulate SLAM as a MAP estimation, one
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Figure 3.3: Diagram illustrating the observed (shaded) and estimated (white) variables in SLAM. xt are
the true robot locations and m is a true landmark location. ut and zt are the estimated robot locations and
landmark positions, respectively [Stachniss et al., 2016].

considers a set of variables Xk, which include the trajectory of the robot and a set of discrete

landmarks in the scene. The set of measurements Z = {zk : k = 1, . . . ,m} can then be expressed

as a function of X : zk = hk(Xk)+ ek, where hk(·) is the measurement or observation function and

ek is random measurement noise [Cadena et al., 2016b]. Note that following the conventions in

literature, we use x for latents and z for measurements here, while these definitions are swapped

once we describe Neural Networks in the following chapters, where latent variables are commonly

referred to by z. During MAP estimation, the assignment X
⇤ to the variables X is found, which

maximises the posterior p(X |Z):

X
⇤ = argmax

X

p(Z|X)p(X), (3.1)

where p(Z|X) is the likelihood of the measurements Z given X and p(X) represents any prior

knowledge about X . Equation 3.1 can be rewritten as a negative log-likelihood minimsation prob-

lem:

X
⇤ = argmin

X

�log(p(Z|X)p(X)) (3.2)

MAP estimation is usually solved using iterative linearisation techniques such as the Gauss-

Newton or Levenberg-Marquardt methods.

Recently, combining MAP estimation with a factor graph representation has become a popular

SLAM formulation. Factor graphs are a class of graphical models where a set of variables (the

unknown quantities to be estimated) are connected through factors which represent functions on

a subset of the variables. The interdependency between factors and variables is modelled through

edge connections. An illustration of a factor graph representation applied to the SLAM problem

can be seen in Figure 3.4.
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Under the assumption that the measurements Z are independent, Equation 3.1 can be factorised:

X
⇤ = argmax

X

p(X)Pm

k=1 p(zk|Xk), (3.3)

where every measurement zk only depends on a subset of the variables Xk. This can be interpreted

in terms of inference over a factor graph [Cadena et al., 2016b]. In fact, factor graphs a very

suitable representation to leverage the sparsity and locality in the structure of the SLAM graph

[Dellaert, 2021].

Figure 3.4: The SLAM problem modelled as a factor graph. Blue nodes represent robot poses at in-
cremental time steps, green nodes denote landmarks and the red node is the variables associated with the
intrinsic camera parameters. Black squares denote factors; un are factors representing odometry constraints,
vn model camera measurements and cn are loop closure constraints and p models the prior knowledge [Ca-
dena et al., 2016b].

3.1.4 Loop closure

Even when obtaining position and motion estimates using external measurements and using a

robust back-end optimisation algorithm, a robot’s trajectory will eventually drift. For large-scale

SLAM systems it is therefore important to perform regular loop-closures, whereby the system

attempts to detect whether or not a place has already been visited before (place recognition) and

if so, adds an additional constraint (e.g. a factor) to the graph (this is where the SLAM back-

end communicates with the front-end). Robust place recognition is a particularly challenging and

long-studied problem. It lies outside the scope of this thesis and we refer the reader to [Lowry

et al., 2016] for an excellent overview.

3.2 3D representations of space

In sparse SLAM systems, the environment is represented through sparse 3D feature points, that are

mainly useful for relocalisation of the autonomous agent. For other applications such as path plan-
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Figure 3.5: Left to right: Examples of point cloud, occupancy grid, polygon mesh and signed distance
function (SDF) representations. To obtain the smooth surface representation, the SDF is processed using
Marching Cubes.

ning or more advanced interactive tasks, a more complete model of the environment is required.

A number of different approaches exist for modelling the 3D world around us.

One of the simplest representations are topological maps, which model different points of interest

relative to each other using a graph representation. An example of such a map can be a set of road

segments and intersections to represent the environment for autonomous cars. Topological repres-

entation are particularly memory efficient, however, they are limited in descriptiveness since they

don’t contain much information about the geometric structure of the environment. Alternatively,

a few representations exist, which more explicitly model detailed geometry.

Point clouds Popular for their memory efficiency, point clouds are an unordered, sparse collection

of points, each holding a position (x,y,z) in 3D space (see Figure 3.5, left). Usually generated by

LIDAR sensors, point clouds have the advantage of inherently encoding the concept of free and

occupied space. However, there is no differentiation between free and unknown space and the

unstructured nature of point clouds makes it difficult to process them for visual perception tasks

such as segmentation.

Polygonal meshes are another common representation of 3D space and a standard representation

in computer graphics. A polygon mesh consists of a set of triangles composed by vertices which

are connected through edges (see Figure 3.5, third bunny from the left). Their irregular nature

makes them an ideal representation for complex shapes with very detailed as well as smooth

regions. However, this irregular structure also makes them complicated to process and mainly

suitable for graph-based algorithms.

Volumetric representations using voxel-grids provide regularity and allow for precise estimation

of free and occupied space, which is necessary for some tasks within SLAM and computer vision

such as path planning. They can be used to model binary occupancy (usually 0 for unoccupied and

29



3. Preliminaries

1 for occupied space) or signed distance functions (SDF). SDFs model surfaces as the levelset of

a continuous function f : f (x) = 0. At any given point x in space the function outputs the distance

to the closest surface. The sign of the function determines whether x is inside or outside of the

surface. In practice, SDFs are stored as discrete voxelgrids whereby each voxel center stores the

distance to the closest surface. Intermediate values can be estimated through interpolation. When

processed using Marching Cubes, SDFs representations yield very smooth surface representations,

compared to the blocky representation obtained from binary occupancy grids (see Figure 3.5). In

practice, SDF representations are often truncated to a TSDF, i.e. set to a constant value after a

certain distance.

Height maps Volumetric representations can be costly in terms of memory and processing time,

as they scale cubically in size. Therefore, in some cases, 2.5 representations are used instead:

height maps. Height maps (also called height fields) are modelled as a 2D grid with an elevation

parameter along the third dimension (see Figure 3.6). They are an efficient representation for

surfaces that don’t require the modelling of overhanging structures. In many cases, the height map

is transformed into a mesh using algorithms such as the one proposed by Garland et al. [Garland,

1998].

Figure 3.6: Left: Illustration of a height map. Right: Example of terrain modelled using a height map
with mesh overlay [Foegleman, 2014].

When overlaying a heightmap with a mesh structure, a principled way to perform calculations (e.g

interpolations) on the surface is by using barycentric coordinates. Given a point P that lies within

the area of a triangle defined by vertices A, B and C, the position of P can be defined in terms of

the subtriangle area ratios w, v and u formed by P and the sides of the triangle: P = wA+uB+ vC

(see Figure 3.7). w, u and v are called the barycentric or areal coordinates and since they are

defined as the ratios of the subtriangle and the main triangle areas, they are normalised, such that

u+w+ v = 1.
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Figure 3.7: Illustration of Barycentric coordinates.

3.3 Machine learning and deep learning

With the explosion of interest and progess in AI in the past decade, many computer vision al-

gorithms are increasingly combined with or even replaced by machine learning and in particular,

deep learning methods. Below we provide a technical overview of the methods relevant to the

research in this thesis.

Machine learning is the process of automatically adapting the parameters of a model based on an

external signal, usually provided through evaluating the error a model is making with respect to

an expected output. This process is usually referred to as training or learning and the final goal is

to have a model which is able to predict correct outcomes for previously unseen datapoints. The

main ingredients of ML algorithms are 1) the model to process the data by mapping an input value

x to an output value y through a set of (usually non-linear) functions y = f (x), 2) training data to

train the network, 3) a cost function (often called loss function) to evaluate the performance of the

model during training, 4) a training scheme which contains the details of the training procedure

and 5) an evaluation metric to evaluate the model at deployment.

Machine learning models include a wide range of different methods, from clustering (K-Means,

spectral clustering, DBSCAN), over kernel methods (radial basis functions, support vector ma-

chines) to graphical models which include decision trees, random forests, bayesian networks and

neural networks. However, these are only coarse categories and many sub-categories exist, as well

as combinations.

Although there is no one official definition, deep learning is commonly used to describe the ma-
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chine learning algorithms designed for deep neural networks — neural networks with multiple

hidden layers.

3.3.1 Neural networks

Since the machine learning work in this thesis is based on neural networks, this section will in-

troduce the basic theory and the specific neural network models that are trained. For a detailed

explanation of other machine learning models, [Bishop and Nasrabadi, 2007] and [Murphy, 2012]

are excellent references.

Figure 3.8: Neural network architecture model diagrams. Left: feed forward neural network model with
one hidden layer and one output neuron. Centre: recurrent neural network model with one hidden layer
with memory unit. Right: graph neural network model.

Neural networks are one of the most versatile machine learning models and have gained particular

popularity in recent years in the context of deep learning research. Their structure is loosely

inspired from the neural connections inside our brains and generally, they consist of a collection of

neurons and their interconnections, which have learnable weights. One can broadly separate neural

networks into the categories of feed-forward, recurrent and graph neural networks (see Figure

3.8), which each process the data in a different way. Feed-forward networks process the input data

sequentially to produce an output, while recurrent networks repeatedly pass data through the same

neurons, making use of memory units and combine stored information with new input data. Graph

neural networks on the other hand, can process data in parallel and using more complicated rules

based on message passing mechanism and local neighbourhoods. For the research of this thesis,

feed-forward models were used (in particular CNNs and VAEs) which will be introduced in more

detail below.
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Convolutional neural networks (CNN)

CNNs are feed forward networks which are designed to process image data through a set of dis-

crete 2D convolution operations by a 2D kernel K of dimension m⇥n on the input image I defined

as:

S(i, j) = (I ⇤K)(i, j) = Â
m

Â
n

I(m,n)K(i�m, j�n), (3.4)

for a specific pixel location (i, j) [Goodfellow et al., 2016]. In practice, this operation computes

a weighted average of the neighbourhood of a pixel and the pixel itself, based on the weights of

the kernel K. During a forward pass through the network, multiple kernels slide over the input

and repeatedly compute this convolution. The training process optimises the kernel weights that

become sensitive to features such as colours, corners and edges in earlier layers, while deeper

layers learn higher level, more abstract and visibly less interpretable features. The design of CNNs

allows for location invariance; because the kernel weights are repeatedly applied to all image

regions, patterns can be detected independent of their location. This has made the architecture

particularly suitable for visual perception tasks.

Relevant architecture details Most CNN architectures use additional features such as pooling

operations which downsample the input image based on computing the maximum or the average

value in an image patch. Pooling effectively widens the receptive field of the network — the area

it can use to extract features — and allows for more context integration. Alternatively, strided or

dilated convolutions [Yu and Koltun, 2016] can be applied. Other common architecture extensions

include residual connections [He et al., 2016], which allow for identity mappings between layers

li+1 = IT
li and address the vanishing gradient problem in very deep networks (see Figure 3.9 for

more details).

All operations of 2D CNNs can be extended to 3D, by adding an additional dimension. While

mathematically trivial, the extension to 3D incurs a high memory cost, since the input size and the

respective computations grow cubically.

The original CNN architectures were designed for tasks such as image classification, where image

features are extracted and processed to predict the type of flower or animal present in an image.

The general CNN architecture for classification consists of successive convolutional layers with

downsampling components such as pooling operations or strided convolutions and a final fully

connected layer that maps the extracted features to a vector of class probabilities. To date, a

large number of varieties have been developed from this original architecture, including fully

convolutional networks (FCN), designed for the per-pixel prediction that is necessary for semantic
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and instance segmentation tasks. The original FCN architecture [Long et al., 2015] proposed a

modified CNN architecture where the extracted and downsampled features are brought back to the

original resolution through deconvolutional or upsampling (interpolation) layers (see Figure 3.10)

for more details). To date, FCN’s exist in different variants, including 3D versions that predict

semantic voxels [Song et al., 2017]. A crucial component for the prediction quality of most FCN

architectures is the addition of skip-connections, first proposed by [Ronneberger et al., 2015].

Skip connections connect the early encoding layers with the late decoding layers, by skipping

the downsampling layers which generate informative but coarse features, that lack representation

detail.

Figure 3.9: Left: A standard CNN architecture (the VGG-16 [Simonyan and Zisserman, 2015] network)
[Gebrehiwot et al., 2019]. Top right: A convolutional operation on an input layer of a CNN. Bottom right:
The architecture of a residual connection.

Variational autoencoders

Variational Autoencoders (VAE) are part of the class of generative models, which aim to learn the

underlying distribution of a dataset in order to generate new examples from the distribution. ’A

generative model simulates how the data is generated in the real world’ [Kingma and Welling,

2019]. Generative models are not necessarily different in architecture, but in the task they learn

and in their training algorithm. While the goal of discriminative models is to learn a function map-

ping f : x ! y and to be able to predict the correct result given previously unseen input data, the

goal of generative models is to be able to generate new results, by sampling from the distribution

that was learnt from the training data: f : y ⇠ Nq (µ, s2). This form of learning is also called

(unsupervised) representation learning, for which variational autoencoders provide a principled

framework [Kingma and Welling, 2019]. VAEs are so-called likelihood-based generative models

and are considered the fusion of graphical models and deep learning [Kingma and Welling, 2019].

34



3.3. Machine learning and deep learning

Figure 3.10: The architecture of a fully convolutional network for semantic segmentation with a mirrored
encoder and deconder structure [Noh et al., 2015].

They are also considered a special type of deep latent variable model. Their theoretical framework

is introduced in more detail below.

Autoencoders are a special type of deep neural network that learn how to compress data in the

most informative (least lossy way) in order to then restore it as accurately as possible. Their ar-

chitecture has a characteristic bottleneck through which the data has to pass during compression,

usually referred to as latent code or latents. Compared to classical dimensionality reduction meth-

ods such as principal component analysis, autoencoders provide non-linear compression functions

and instead of using eigendecomposition, the most important and descriptive features are learnt

from data. They can be used for a variety of applications such as feature extraction for other

downstream applications, image denoising, sequence to sequence prediction for NLP applications

and, when combined with variational inference, they can be trained as generative models, e.g. for

natural image generation.

Variational inference is a method for approximate inference in latent variable models with x

observed variables and z unobserved (latent) variables. The goal is to find the posterior p(z|x),

i.e. estimating the latent variables from the observed ones. p(z|x) could be computed with Bayes’

rule:

p(z|x) = p(x|z)p(z)

p(x)
, (3.5)

but the marginal density p(x), also called evidence, is usually intractable. Hence, one uses ap-

proximate inference techniques such as sampling based methods or variational methods.

Sampling based methods, such as such as MCMC, can be slow to converge, it is difficult to tell

when they converge and they require carefully chosen sampling techniques. Variational methods

on the other hand, scale better and provide an exact bound on the accuracy of the approxima-

tion. They cast inference on an intractable distribution p(z|x) as an optimisation problem over

a family of tractable distributions over the latent variables Q. The goal is to find a distribution
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within the family q(z) 2 Q which is similar to the true distribution p. To measure the similarity

between the target posterior p(z|x) and the variational approximation q(z), the Kullback-Leibler

(KL) divergence is used. It finds the ”distance” between two probability distributions by measur-

ing the difference in information contained in both distributions. The KL divergence between two

distributions p and q with discrete support is defined as:

KL(q||p) = Â
x

q(x) log(
q(x)

p(x)
). (3.6)

However, how can KL(q||p) be evaluated if p is unknown? Variational inference uses the vari-

ational lower bound, also called the evidence lower bound (ELBO). The ELBO is a bound on the

probability of the data and can be derived either using Jensen’s inequality or from the KL diver-

gence itself (Equation 3.6). Starting from the KL divergence between q(z) and p(z|x), one can use

Bayes’ rule, to obtain:

KL(q(z)||p(z|x)) =�(Eq[log(p(z,x))]�Eq[log(q(z))])+ log(p(x)), (3.7)

where log(p(x)) is the log marginal likelihood (also called log evidence) of the observed variables

x. This can in turn be rewritten as:

log(p(x)) =�(Eq[log(p(z,x))]�Eq[log(q(z))])+KL(q(z)||p(z|x)) (3.8)

Since it holds that KL(q(z)||p(z|x))� 0, �(Eqlog(p(z,x))�Eqlog(q(z))) is essentially the lower

bound L for log(p(x)). It follows that by maximising �L , one indirectly minimises the KL

divergence between the true posterior pq (z|x) and the estimated posterior p(z|x). At the same

time, the marginal likelihood p(x) of the data is maximised. The optimisation to approximate

distribution q with variational parameters f can be written as:

qf (z) = argmax
q(z)2Q

(Eq[log(p(z))]�Eq[log(q(x,z))]) (3.9)

Variational autoencoders (VAE) provide a framework to do variational inference on the distri-

bution which generated a particular target dataset using deep neural networks. They consist of

an encoder-decoder structure which compresses the input into a latent code. The encoder net-

work (also called recognition network) models a conditional bayesian network of the form p(z|x),

while the generative decoder models another Bayesian network as p(z)p(x|z). Both condition-

als are parameterised through the neural network weights, which are optimised during training.

The learning algorithm of VAEs is a combination of variational expectation maximisation and

stochastic gradient descent (SGD) — it does stochastic gradient-based optimisation of the ELBO.

To this end, gradients of the ELBO with respect to both the encoder parameters f and the decoder
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parameters q have to be computed. This is achieved with the help of the reparameterisation

trick (the interested reader can refer to [Kingma and Welling, 2019] for a detailed derivation),

which allows for the gradients to be computed with a simple Monte-Carlo estimator. In practice,

the encoder maps the input data samples to a latent space, the conditional distribution pf (z|x),

parameterised with variational parameters f . The generative decoder samples from the estimated

distribution p(z) and generates new datapoints x from that distribution.

Training In order to train the VAE, the ELBO optimisation is reformulated in terms of a recon-

struction loss and a KL divergence component. Equation 3.9 can be rewritten as:

qf (z) = argmin
q(z)2Q

(Eqf [log(pq (x|z))]�Eqq [
pf (z|x)
pq (z)

]) (3.10)

where Eqf (log(pq (x|z)) is the reconstruction error and Eqq (
pf (z|x)
pq (z)

) is the KL divergence between

the estimated posterior and the prior over the latent variables z [Kingma and Welling, 2019].

In practice, training data examples are encoded into a mean µ and variance s2, parameterising the

distribution p(z|x). Both mean and variance are modelled with a set of continuous values, a latent

code. The next step is then to sample from that encoded distribution: z ⇠ N (µ,s2. The resulting

sampled latent code is decoded using the generative decoder to yield a reconstruction example.

The reconstruction is evaluated with a reconstruction loss whose error is backpropagated as in

discriminative learning methods. The second component of the loss is the KL divergence term

which ensures that the estimated posterior p(z,x) remains close to the latent prior p(z).

3.3.2 Cost functions and evaluation metrics

Although cost functions can be different for every task, for supervised learning a few commonly

used cost functions exist. These include the mean squared error (MSE) loss and the cross entropy

loss (CE). The MSE loss, defined as 1
m

Âm ||ym � ŷm||2 simply calculates the euclidean distance

between predicted value ŷ and true value y and is commonly used for regression tasks. Classifica-

tion tasks on the other hand, are usually trained using cross entropy, which computes the distance

between two probability distributions (the probabilities of the predicted and ground truth classes).

In information theoretical terms, cross entropy computes the amount of additional bits required

to encode a signal when using the predicted probability distribution ŝ over the true distribution

s . If the task is to differentiate between 2 classes only, binary cross entropy is used, defined as

�(y log(p)+(1�y) log(1� p)), where p and y are the predicted and true probabilities of the first

class being present and (1� p) and (1� y) are the predicted and true probabilities of the second

class being present. For multi-class problems, this is generalised to: �Âc yc log pc.
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Similarly to cost functions, suitable model evaluation metrics depend on the prediction task. For

semantic and instance segmentation, a common evaluation metric is the intersection over union,

also called the jaccard index defined as J(A,B) = |A\B|
|A[B| , where A and B are the quantities between

which the amount of overlap is to be found. In practice, for pixel-wise class predictions in image

segmentation tasks, one computes the intersection over union between all predicted class pixels

and all true class pixels for one specific class (see Figure 3.14 for a visual example).

In 3D, some representations such as voxelgrids lend themselves to cost and evaluation metrics such

as MSE or CE. For some representations such as pointclouds and meshes however, which have

less structure, different metrics are used. One commonly used metric is the Chamfer Distance,

which calculates the distance between two sets of 3D points P1 and P2. For every x 2 P1 the

nearest neighbour is found in P2. This is done in both directions, P1 ! P2 and P2 ! P1:

dCD(P1,P2) =
1
P1

P1

Â
xi=0

min
x jeP1

(xi �xj)+
1
P2

P2

Â
x j=0

min
xieP2

(xj �xi) . (3.11)

[Wu et al., 2021]. Although defined for 3D points, the Chamfer Distance can be used to approx-

imate the distance between meshes, by sampling sets P1 and P2 from the mesh surface.

Figure 3.11: An illustration of intersection over union for semantic segmentation. [Jordan, 2018]

3.3.3 Training (optimisation) of neural networks

The way ML algorithms learn depends on how they experience data. Many different approaches

exist, but they can be loosely grouped into supervised, unsupervised and reinforcement learning

methods. The research in this thesis uses supervised learning methods, which are introduced in

more detail below.

Supervised learning

Supervised learning consists in optimising the model parameters based on external supervision -

provided through data. This supervision requires labelled training data - for a specific input x, the

predicted output ŷ is compared to the true value y using a cost function. The discrepancy between
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predicted and true result, the error, is used to optimise the model’s parameters in such a way that

the next prediction will be better (Section 3.3.3 gives a more detailed explanation on this process).

In supervised learning one differentiates between training data, which is used top optimise the

model, validation data used to assess when the model has generalised - is able to generate good

predictions for previously unseen data points - and test data, used to evaluate the fully trained

model.

Stochastic gradient descent

To train a network, its parameters have to be optimised with respect to a calculated cost. Second

order optimisation methods are computationally expensive to apply to neural networks [Bishop,

2006] and therefore, first order optimisation is used — gradient descent. Gradient descent min-

imises a given objective Jq (x) by computing the first-order gradient and stepping in the negative

direction of this gradient: q = q �aq E[Jq (x)], where the expectation E[Jq (x)] is approximated

by evaluating cost and gradient over the full training set [Maas, 2013] and the learning rate a

determines how far the algorithm steps into the gradient direction. In practice it is not feasible to

evaluate the full training set at once and neural networks are usually optimised using stochastic

gradient descent (SGD). SGD computes the gradient with respect to the parameters using only a

few training example pairs (xi,yi) at a time:

q = q �aq (Jq (xi,yi)) (3.12)

The back-propagation algorithm

All training schemes which optimise neural networks, rely on back-propagation, an automatic

differentiation algorithm which calculates the gradients for the weights in a neural network graph

structure. It is used to perform stochastic gradient descent to minimise the error of the network

output with respect to some defined loss function. Specifically, using partial differentiation, the

contribution of each model parameter to the model prediction error is determined.

For a feed-forward network architecture, each unit computes a weighted sum of its inputs: a j =

Âi wi, jzi, whereby zi is the activation of the previous unit (or the input). Biases can be included in

this sum [Bishop, 2006]. For the error En, the gradient with respect to a weight w ji can be written

as dE

dwi j

= dE

da j

da j

dwi j

, which can in turn be rewritten as dE

dwi j

= d jzi. d j =
dE

da j

is defined as the error

of unit j. To obtain the derivative at a particular weight, the error d j has to be computed for all

hidden and output units and be multiplied with their respective input z j. The d ’s at hidden units
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can be obtained through applying the chain rule: d j =
dE

da j

= dE

dak0
. . . dakn

da j

for any n layers between

j and the output. Expanding with some further manipulation [Bishop, 2006], the general rule for

back-propagation can be written as:

d j = z j Â
k

wk ja j (3.13)

3.4 Visual perception with deep learning

This section introduces the visual perception components relevant for this thesis from a deep

learning perspective. In particular, we describe how each task is defined and solved using deep

neural networks.

3.4.1 Object detection

Object Detection consists in locating objects in an observed region of the scene. This includes

estimating the volumetric extents of the object as well as its position and orientation with the help

of bounding boxes. In deep learning, object detection consists in predicting a set of continuous

values describing these bounding boxes from an input image or a 3D scene. These values are

usually the object class and the width, height and center point of the bounding box, as well as

its orientation when predicting in 3D. Deep learning approaches either employ single-stage or

two-stage detection algorithms to produce these object descriptors. Two-stage detection methods

such as the R-CNN family (Fast R-CNN [Girshick, 2015], Faster R-CNN [Ren et al., 2015] and

Mask-R-CNN [He et al., 2017]) first generate a set of region proposals. For a set of extracted (and

downsampled) feature maps of the input scene, and a predefined set of anchors (a set of bounding

box candidates centered around every pixel of the feature map), a region proposal network (RPN)

predicts which candidate holds an object. In a second step, the bounding box parameters and

class label for every extracted region are refined. One-stage methods such as YOLO [Redmon

et al., 2015] predict a fixed number of object descriptors for every pixel of the downsampled

image and use an object existence probability pob j to determine whether or not this pixel actually

contains an object (see Figure 3.12). Both two-stage and one-stage methods employ non-maximum

suppression to suppress multiple predictions per object. Non-maximum suppression selects highly

overlapping bounding boxes and removes all those except for the one with the highest pob j.
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Figure 3.12: Left: an object detection example in 2D from the DETR model [Carion et al., 2020]. Centre:
an object detection example in 3D from Objectron MediaPipe. Right: illustration of the YOLO single-stage
object detection pipeline [Redmon et al., 2015].

3.4.2 Semantic and instance segmentation

Semantic and instance segmentation are pixel-level prediction tasks or, when labelling in 3D, each

representation component (e.g. a voxel or a point) has to be annotated. While semantic segment-

ation does not differentiate between individual objects in a segmentation (multiple objects can

have the same label if they belong to the same class), instance segmentation assigns a semantic

label and instance label to every pixel or scene entity. In deep learning, semantic and instance

segmentation are predicted using FCN-style architectures where the encoder extracts descriptive

features from an image or scene and the decoder generates a class prediction per pixel. Specific-

ally, for image segmentation, the network predicts an output vector per pixel p, which is passed

through a softmax layer to generate a per-pixel or scene element class probability distribution of

which the maximum is taken as the predicted class: cpixel = argmax(So f tmax(p)). For instance

segmentation, in addition to the semantic class, the output needs to differentiate between different

objects. State of the art methods achieve this by either building on two-stage object detection

methods (e.g adding a pixel-wise binary mask delimiting the object for every extracted region

of interest [Kaiming et al., 2017]) or, by predicting per-pixel instance masks on a downsampled

feature image [Wang et al., 2020b].

Figure 3.13: Left: semantic segmentation [Carion et al., 2020]. Centre: an object detection example
in 3D from Objectron MediaPipe. Right: illustration of the YOLO single-stage object detection pipeline
[Redmon et al., 2015].
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3.5 Rendering

To obtain a 2D projection of 3D scenes, one has to use rendering techniques. In this thesis render-

ing is used for all projects and we introduce the theoretical basics on rendering methods and some

relevant technical details below.

Rendering is the process of generating a 2D projection of a 3D scene that is represented in sim-

ulation. It essentially simulates the process of taking a photograph of that scene and usually, the

goal of rendering is to generate a photorealistic image. It is a crucial component of the computer

graphics pipeline, but also very present in computer vision in general - any 2D visualisation of 3D

content requires the process of rendering. There are two main methods to render: raytracing and

rasterisation. In raytracing, for each image pixel, a ray is sent out from the center of the simulated

camera lens through the center of the pixel and traced along the direction of travel until it is found

to intersect with a surface. At the point of intersection, information about the surface properties

such as colour and brightness can be computed and used to fill the value of the corresponding

pixel. Rasterisation methods on the other hand project triangular surface elements onto the image

plane by first projecting the triangle vertices and then filling all pixels enclosed by the projected

vertices with the values contained within the 3D triangle.

Figure 3.14: Left: an illustration of the raytracing operation. For every pixel, a ray is simulated from the
camera origin into the scene and stepped along until a surface is encountered or the ray is found to exit
the scene. Right: an illustration of Rasterisation. From a mesh representation of the object, vertices are
backprojected onto their respective pixel locations.

42



3.5. Rendering

3.5.1 Raytracing signed distance functions

The implementation of raytracing depends on the way the 3D scene is represented. For voxel-grid

representations, one usually steps along each ray in pre-defined step sizes until the ray either exits

the scene or intersects with a surface. In the former case, one registers a default value for the

corresponding pixel and in the latter, the surface properties such as colour or the distance (in the

case of depth rendering) is recorded at the respective pixel location. Given the discrete nature

of voxelgrids, to obtain information about surface intersection at a particular point px,y,z along

the ray, the grid has to be interpolated. Then, intersection can be found according to some pre-

defined thresholds. For occupancy grids, surface intersection occurs once the grid value is close

to 1. For signed distance functions, the intersection occurs once the scene value changes sign. A

particularly fast way of ray tracing for signed distance fields is sphere tracing [Hart, 1996]. Sphere

tracing leverages the underlying structure of the SDF to find the surface intersection point faster.

It is based on the insight, that for euclidean SDFs, at any point in space, one can trace a circle

whose radius is given by the current value of the SDF, and there will be no surface intersection

within that circle. Hence, at any point in space, one can safely step along the direction of the ray

for at most the current value of the SDF (see Figure 3.15). Sphere tracing solves the problem of

choosing the right step-size to reach the closest surface in the fastest possible way.

Figure 3.15: Left: simple raytracing. Right: sphere tracing [Hart, 1996].
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3.5.2 Differentiable rendering

With the introduction of Machine Learning techniques to Computer Vision, it can often be useful

to make the rendering process differentiable. This allows for the rendering function to be integ-

rated into the overall optimisation and enables models which generate 3D scene representations to

be trained based on image data. Differentiable rendering allows to compute the gradient d pi, j

dq of a

rendered image pixel pi, j with respect to 3D scene parameters q , which can be used in the optim-

isation process to adapt q so that the rendered image matches a given target image. The parameters

q can be explicitly defining the scene, or, be encoded in the weights or latent representation of a

neural network.

3.6 Software and technical details

To support the research presented in this thesis, experiments were implemented in Python, C++ as

well as Cuda for parallelizing code. The deep neural networks were developed and trained using

the open sourced machine learning frameworks Tensorflow and Pytorch, which will be introduced

in more detail below. Some additional details on how the differentiable renderer used in Chapter

4 was implemented using Pytorch’s autograd function are also provided.

3.6.1 ML frameworks

Tensorflow was first made publicly available in 2015 by developers at Google and became one of

the first widely used open-source frameworks for development and end-to-end training of neural

network models. In particular, it provides building blocks such as pre-implemented network layers

which enable to build networks in a modular fashion. Furthermore, the forward and backward

passes through a network model, including the backpropagation step are implemented as part of

the framework itself and can be initiated with a simple function call. The data is packaged into

tensors, a datastructure that extends matrices to an arbitrary number of dimensions. When building

a network model, Tensorflow first creates the computation graph, which defines all variables,

constants and computations which will be used - a series of Tensorflow operations arranged as a

graph. Once the graph is defined, it is launched into a session which runs all operations as they

were defined. This particular structure of the Tensorflow pipeline allows for parallelism and makes

training particularly efficient. For more details, please refer to the official research paper [Abadi

et al., 2016].
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Pytorch was developed at Facebook (now Meta) and was first released in 2017. Similarly to

Tensorflow, it provides an end-to-end framework for building and training neural network models.

However, compared to Tensorflow, it’s computation graph is dynamic, i.e. it is created on the fly

and variables inside the graph can be easily accessed. This makes code that was built with this

framework easier to debug. Furthermore, Pytorch integrates direct support for the popular python

library numpy, which provides accelerated functionalities for array and matrix operations and is

widely used in the machine learning community. Another advantage of Pytorch is it’s integrated

data parallelism, making it very easy to implement distributed training.

3.6.2 Differentiable rendering with Pytorch

Automatic differentiation Pytorch’s framework uses autograd, an automatic differentiation sys-

tem, which builds a directed acyclic graph of all computations (registered to autograd) within a

network and produces the gradients according to the chain rule. Essentially, it is a module ded-

icated to computing the jacobian matrices between tensors that are registered as variables inside

the graph. For operations which are non-differentiable, but should be integrated into the system’s

gradient flow (i.e should be part of the optimisation), one can extend autograd through module

inheritance and manually define the forward and backward passes through the operation using

the forward() and backward() functions respectively. Autograd functions save the variables for

which gradients are computed inside a context manager ctx, which allows for them to be accessed

during the backward pass. Please refer to the official Pytorch documentation for a more detailed

explanation.

To implement the differentiable renderer used in Chapter 5, and train it together with the deep

neural network (see Chapter 5), Pytorch’s autograd system was leveraged and extended by manu-

ally defining the backward pass of the rendering method. To this end, the rendering functionality

was writtted inside a Pytorch module that inherits from pytorch.autograd.Function. The forward

method performs TSDF raytracing (see Section 5.3.3), which is parallelised on the GPU. In the

backward pass, the gradients of the rendered image with respect to the scene parameters have to

be computed. For our particular method, the scene parameters q are defined by the latents l of

a deep neural network that generates the discrete SDF voxelgrid from which depth images are

rendered. To make the rendering process differentiable, the error on the rendered images has to be

backpropagated to the voxel centers of the generated SDF. The remaining backward propagation

has to go through the network, which is taken care of by Pytorch’s integrated autograd function.

In the implementation of the backward pass through the rendering function, the computed ren-
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dering error (see Section 5.3.3 for details on the error function) is accumulated at each voxel

centre. As surface intersections of the rays don’t usually coincide with the SDF voxel centers,

the error at every intersection is propagated to the neighbouring voxel centers using the respective

weights obtained from trilinear interpolation wi=0,...i=8. Similarly to the rendering process itself,

we parallelise this process on the GPU for every ray and use CUDA’s atomic functions to ensure

sequential reading and writing for individual voxel centers. An illustration of our implementation

can be found in Figure 3.16.

Figure 3.16: Illustration of how the differentiable renderer is implemented within Pytorch’s autograd
framework, by manually specifying the forward() and backward() functions.
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Comparing view-based and
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multi-view scenes
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4.1 Introduction

As the cameras carried by robots or other smart devices move through scenes, their ability to

operate and interact intelligently and persistently with their environments, will depend on the

quality of scene representation which they can build and maintain [Davison, 2018, Cadena et al.,

2016a]. But what defines a high quality scene representation? A scene can be built with several

levels of information, each adding a different layer of abstraction. The most basic representa-

tion differentiates occupied from free space with an occupancy map. This allows for navigation

and path planning of autonomous agents, but holds no semantic information about which areas

of occupied space constitute objects, floor or ceiling. This requires semantic labels, which allow

for more sophisticated navigation and planning algorithms. For instance, semantics can inform

an autonomous driving system about regions which are road and pavement to detect navigable

surfaces. While semantics describe the type a scene element has, it doesn’t inform about ”object-

ness”. Recognising ”objectness” (in form of bounding boxes or instance segmentation) introduces

a further level of understanding that is necessary for interactive tasks such as grasping and manip-

ulation. Such tasks will form the basis of autonomous systems designed to support humans with

tasks at home or in industrial settings, that go beyond spatial navigation. Finally, understanding

and representing object relationships and affordances, as well as dynamic scenes in real-time, will

allow autonomous systems to operate independently in most indoor and outdoor settings.
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4.1.1 Motivation

Although some research has advanced in the direction of dynamic scene understanding [Rünz

and de Agapito, 2017, Xu et al., 2019a] and instance segmentation of 3D scenes [Grinvald et al.,

2019, Li et al., 2020], reliable and efficient semantic annotation of 3D space remains challenging,

even when a large amount of views of the scene are available and with state of the art real-time

mapping systems [McCormac et al., 2016]. Moreover, no guidelines for how to add semantic

labels to 3D reconstructions exists and state-of-the art methods use a variety of approaches, which

can loosely be classified into view-based semantic labelling, map-based semantic labelling and

hybrid approaches (defined below). To our knowledge, the choice of approach is rarely based on

quantitatively determined advantages for the particular use-case. This chapter is concerned with

the question of how to best add semantic segmentation labels to a 3D reconstruction, when we

have access to a real-time SLAM system and an arbitrary number of views. We aim to establish

a baseline for comparison of view-based and map-based approaches to open up systematic and

quantitative research on their use within real-time SLAM.

In particular, we aim to provide a principled study in which we compare a view-based and a

map-based approach to add semantic labels to a scene reconstruction. In the context of our se-

lected experimental setting (see below), we compare the advantages and disadvantages of both

methods to provide insights into which approach can be more suitable depending on the system-

requirements (e.g. are ad-hoc labels required for early semantic understanding?) and components

(e.g., the semantic labelling accuracy of the neural network).

4.1.2 Semantically annotating 3D space

View-based In most state of the art methods, semantic labels are generated in image space to be

then re-projected into the 3D map during SFM or SLAM as an overlay of the geometric represent-

ation, whereby each quantum of the 3D scene representation (a voxel of the voxelgrid or a point

in the pointcloud) is augmented with a label vector. As each scene element is seen from multiple

varying viewpoints, the independent image labels are combined using incremental fusion methods.

Considering label correlations during fusion is computationally expensive and individual pixel la-

bels are thus generally assumed to be independent. Independent pixel-wise label fusion of every

frame or keyframe during reconstruction offers a scalable solution and these incremental updates

contribute to robust estimates and the incremental correction of errors. The labelling CNN runs on

raw data obtained directly from the camera, and can run at the sensor’s natural resolution. On the
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downside, frame-wise label-fusion can incur unnecessary computation in areas which are easily

segmented from one view. View-based approaches are generally based on well known image seg-

mentation methods such as random forest classifiers [Hermans et al., 2014, Stückler and Behnke,

2014], or depth segmentation based on normal angles [Tateno et al., 2015] to generate semantic

maps. McCormac et al. [McCormac et al., 2017b] introduced CNNs to incremental semantic

fusion, obtaining semantic labels from RGB frames with a 2D CNN. Taking a slightly different

direction, Ma et al. [Ma et al., 2017a] propose a self-supervised multi-view prediction method

and Xiang et al. [Xiang and Fox, 2017] use a recurrent neural network to perform frame-wise

segmentation of a sequence of RGB-D frames obtained from KinectFusion [Newcombe et al.,

2011a]. Recently, approaches such as PanopticFusion [Narita et al., 2019] and [Grinvald et al.,

2019] extend incremental semantic fusion to object discovery and instance-aware maps.

Map-based An alternative approach to annotating 3D space with semantic labels is to directly

process the 3D representation: a single labelling network is applied to the whole reconstruction

produced by a SLAM system, which contains both geometry and appearance information such

as colour. This approach avoids the redundant work of labelling many overlapping input frames,

and can be maximally efficient by operating on each scene element only once. Map-based meth-

ods can furthermore take advantage of global context over the whole scene when labelling each

part and avoid the need for element-wise label fusion approaches which generally neglect label

correlations. Finally, a network which learns and labels in canonical map space has much less

scene variation to deal with due to rotation and scale changes. However, its power will be limited

by the quality of the map reconstruction. Labelling the 3D representation of a scene generally

involves label inference from dense 3D representations such as SDFs or voxel grids, which are

known to be expensive to process. Hence, approaches for semantic, per-element labelling 3D rep-

resentations have mainly been put forward for single objects [Maturana and Scherer, 2015, Wu

et al., 2015]. Recently, several have focused on representing and processing 3D data more effi-

ciently [Wurm et al., 2011, Riegler et al., 2017, Wang et al., 2017, Yu and Koltun, 2016]. Although

most approaches focus on voxel grids, some approaches for classification of point clouds have

been explored [Qi et al., 2017]. Efficient 3D labelling at large scale, however, remains unsolved

and only few have ventured into labelling a variably-sized reconstructed 3D scene. Landrieu et

al. [Landrieu and Simonovsky, 2018] extended the idea of superpixels to 3D point clouds and

proposed a superpoint method to label large scale LIDAR scans. Dai et al. [Dai et al., 2018]

proposed a fully convolutional, autoregressive, hierarchical coarse-to-fine 3D network to produce

semantic labels together with geometry completion for a large 3D voxel grid scene. However,

due to the expensive 3D nature of their input, the different levels of hierarchy in their network
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have to be trained separately. Roddick et al. [Roddick et al., 2018] project image features into

an orthographic 3D space using a learned transformation, which removes the scale inconsistency,

and creates a feature map with meaningful distances and without projective distortions of object

appearance. They improve the efficiency of object detection from the orthographic map by col-

lapsing voxel features along the vertical axis and then process the entire map of 80m⇥ 80m at a

grid resolution of 0.5m at once. However, they do not address scalability in their method.

A few hybrid approaches also exist, which use semantics from multi-view image information

and combine it with 3D geometric features for increased detail [Dai and Nießner, 2018, Hou et al.,

2019].

4.1.3 Machine learning methods for processing 3D representations

Compared to 2D images whose representation is usually fixed (a regular pixel grid), 3D space

can be represented in a variety of ways (see Section 3.2). For each representation, the scene

labelling network required to process and extract information can vary in architecture, scalability

and capacity.

When we capture and represent the world around us, the predominant format are images, option-

ally with a temporal dimension for videos. The variety of representing these 2D projections of

space is limited - the projected information is captured on a regular grid in form of pixels compos-

ing the image. Most commonly, this image contains colour or depth information, although some

alternatives exist such as events (which encode changes in the scene) captured by event cameras.

The precision of the representation is determined by the image resolution and the memory require-

ments of image data scale quadratically with resolution. Machine learning methods to process

information held in this representation have developed rapidly and in some areas such as image

classification, are surpassing human level performance [He et al., 2015]. The most adept archi-

tecture to process image data is the convolutional neural network (CNN), owing to the powerful

inductive bias of spatial equivariance provided by convolutional layers [Tuli et al., 2021]. Altern-

ative architectures are being explored, such as the Transformer architecture [Sharir et al., 2021],

but have not become the standard yet.

In 3D, representations can take multiple, often quite different forms (see Section 3.2), each of

them requiring different neural network architectures for processing and extracting information.

For occupancy grids and signed distance functions, the CNN architectures for image processing

tasks can be extended to 3D (3D convolutions). Since memory requirements scale cubically in
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3D, 3D CNNs can only operate at limited grid resolutions and do not scale well to large scenes.

Pointclouds offer a much more space-efficient representation, but lack structure. To address this,

Qi et al.introduced PointNet [Qi et al., 2017], proposing a spatial transformer layer, projecting

irregular pointclouds into canonical space before processing them with an MLP. Follow-up works

further proposed architectures which allow pointclouds to be processed by convolutions [Li et al.,

2018, Wu et al., 2018a]. While poinclouds offer a memory efficient space representation, they

don’t provide watertight surfaces. To represent surfaces explicitly, 3D meshes are the most com-

mon representation. In addition to watertight surfaces, meshes allow for non-uniform detail —

complex structures are represented with many nodes and edges to capture curvatures in high detail,

while flat areas can be represented using a few triangles only. Similarly to pointclouds, meshes are

unstructured and unordered and require specifically designed architecture to be processed. Some

approaches have been proposed (e.g. [Hanocka et al., 2019]) which use graph neural networks to

process meshes and extract features using convolutional operations on the mesh. Given the differ-

ent 3D representations and network architectures to process them, the quality of direct semantic

annotation of 3D reconstructions, depends on a variety of variables and settings.

4.1.4 Chapter overview

The following sections will start by introducing the experimental setup and define the task we are

trying to solve. Then, the SLAM system and its scene representation which are used for the com-

parison setting are introduced. Section 4.4 describes our fusion algorithm for adding 2D semantic

labels into a height map, one of the main components of the view-based method. In Section 4.5

a few preliminary experiments are presented for building this view-based method. Section 4.6.1

describes the synthetic dataset generation process for training the semantic segmentation network,

followed by a presentation of the semantic labelling network architecture. In the final section

the evaluation and comparison of both view-based and map-based approaches are presented. The

chapter is concluded with a summary and an outlook on future work.

4.2 Experimental setup

Operating in a full 3D setting, we would have to choose one representation and its corresponding

network architecture for the map-based approach, or, compare against all representations. The first

option would bias the comparison towards one representation, whereas the second option would
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mean a very large amount of evaluations. Furthermore, the different nature of processing by the

representation-specific neural network architectures, could make a direct comparison difficult.

Instead, we choose a height map representation (see Section 3.2) of the 3D world. Fused height

maps can be labelled using a standard 2D CNN, enabling the use of a network with the same

architecture for both view-based and map-based labelling. This ensures fairness in comparison

and allows the results to be transferable in their interpretation beyond the choices of a specific

system. Our goal is to compare both approaches in a principled manner, removing any influence

and bias incurred by a 3D representation-specific architecture choice for the map-based approach.

In particular, we want to provide insights into the methodical advantages and disadvantages of both

approaches in the context of a real-time SLAM system and give guidance as to which settings and

circumstances would be more suitable to one or the other.

Using a height map representation of 3D space constrains our application space to scenes with

content that can be represented with a height field. The experimental domain is therefore set to

table-top scenes with objects free of or with limited curvature along the edges. Such objects in-

clude flat rectangular objects such as books and box-shaped objects, keyboards and pencils. This

setting doesn’t only provide a principled environment for the comparison, but also addresses an

interesting problem which has not been looked at for semantic segmentation previously: requiring

reconstruction at extremely high resolution for small objects such as pens, coins and paperclips,

with potentially high levels of occlusion and overlap. An example is given in Figure 4.1. Further-

more, being able to reconstruct and annotate small as well as large objects is a crucial ingredient

for home-robotic applications which will need to manipulate household objects that range from

chairs, over plates to cables and paperclips.

To this end we design a frame-wise labelling system with incremental label fusion (a view-based

method) and a one-off reconstruction labelling system (a map-based method) to augment a height

map reconstruction with semantic labels. The frameworks and the comparison are presented in

the remainder of this chapter.

4.3 Height map fusion

Given the task, the comparison setting requires a real-time SLAM system with a height map

mapping backend. Given the limited representational power of height fields for general real world

settings, most real-time SLAM systems reconstruct 3D scenes using voxelgrids [Newcombe et al.,
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Figure 4.1: Example of a cluttered tabletop setting which represents the experimental domain of comparing
view-based and map-based semantic labelling

2011a], or directly reconstruct meshes from projections [Amenta et al., 2001]. However, in some

settings a 2.5D height field representation can have advantages: aiming for efficiency and extreme

detail at very small scales, Zienkiewicz et al.propose a real-time, multi-scale height map fusion

system [Zienkiewicz et al., 2016], as one of the only approaches using a height field mapping

component in a real-time SLAM system. Despite the 2.5D nature of the representation, their

system can reconstruct a variety of objects (see Figure 4.2) and achieve a level of detail other

SLAM systems are not capable of. The height map is modelled using a triangular mesh whose

vertices have horizontal coordinates on a regular grid and associated variable heights which are

estimated from incremental fusion. This system uses ORB-SLAM [Mur-Artal et al., 2015b] as a

camera tracker, and geometry measurements can come from either a depth camera or incremental

motion stereo in the pure monocular case. The mapping component produces a fused height field

as well as a fused colour map.

4.3.1 Scene reconstruction in 2.5 D

To generate a surface representation from multiple views, Zienkiewicz et al. [Zienkiewicz et al.,

2016] start from a fixed topology mesh (see Figure 4.3), which is fit to data during reconstruction.

Each vertex in the mesh only has one degree of freedom (along the z axis), which results in a

height map reconstruction. To add increasing detail to the reconstruction the system uses 6 levels
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Figure 4.2: Real-time, monocular, multi-scale, height map fusion [Zienkiewicz et al., 2016]. Very small
objects can be reconstructed in high detail using a 2.5D height map.

of detail within the triangular mesh, whereby for each level, triangles are subdivided using a

regular tesselation factor as depicted in the bottom left of Figure 4.3. Each level of detail l chosen

at each measurement depends on the depth or the on-screen area dB and a pre-set constant a for

the tesselation factor: l = round(log2(dB/a). When a depth measurement is back-projected onto

the height field, it falls onto one of the meshes’ triangles. To associate them with neighbouring

vertices h1, h2 and h3, barycentric coordinates are used:

zi = aih1 +bih2 + gih3, (4.1)

whereby zi is the projected height in the global frame of reference. For a set of k height meas-

urements, all equations formed by the N measurements i...N can be summarized into a system of

normal equations, given by

J
T

Jh = J
T

z, (4.2)

where each row of the matrix J is given by equation 4.1 and represents the barycentric interpolation

for one measurement. Solving equation 4.2 corresponds to solving the optimization problem for

the surface reconstruction and this multiple equation system is solved iteratively with the Gauss-

Seidel algorithm. The optimization is implemented in parallel for every triangle on the GPU.
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Figure 4.3: Left: Regular mesh structure used as a fixed topology for surface reconstruction [Zienkiewicz
et al., 2016]. Right: The deformed topology after fitting the height map to images of a 3D scene.

4.4 Semantic height map fusion

To extend the existing real-time system to integrate semantics, the scene representation has to

be extended with the ability to hold and update semantic information from multiple viewpoints.

Currently, the height map consists of vertices that know about their own height, which is up-

dated during the barycentric fusion and optimisation method of [Zienkiewicz et al., 2016]. To

add semantic information to every height measurement, it has to be integrated into the barycentric

fusion update. Given the semantic prediction output of a standard segmentation neural network is

a probability vector over all possible classes, fusing multiple predictions is not trivial and inspir-

ation of how to formulate this update was taken from SemanticFusion [McCormac et al., 2017b].

SemanticFusion integrates semantics into ElasticFusion [Whelan et al., 2015], leveraging their

dense 3D surfel representation which they augment with semantic annotations. Each keyframe

selected by ElasticFusion is run through a previously trained CNN and the resulting semantic seg-

mentation is fused into the 3D map using the image correspondences of SLAM and a Bayesian

update scheme. Based on the VGG-16 architecture [Simonyan and Zisserman, 2015], the CNN

was extended into a FCN architecture for a pixelwise semantic class prediction and adapted to ac-

cept depth input. The recursive Bayesian update is formulated using the assumptions in [Hermans

et al., 2014], resulting in a simple multiplicative update of each surfel probability using the current

estimate of a surfel’s semantic class P(li|Il,....,k�1) and the new prediction obtained from the CNN
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semantic labelling output P(Ou(s,k) = li|Ik):

p(li|Il,...,k) =
1
Z
⇤P(li|Il,....,k�1)⇤P(Ou(s,k) = li|Ik), (4.3)

where li 2 L is a specific class label of L classes, Ik is the data obtained from image k and Ou(s,k)

is the network prediction for a pixel coordinate u associated with image k and surfel s.

4.4.1 Incremental label fusion

To add a semantic label fusion capability to the height map reconstruction back end, we associate a

discrete distribution of semantic classes with every vertex of the mesh, and refine this distribution

iteratively by projecting view-based semantic predictions onto the mesh in a per-surface-element-

independent manner as in [McCormac et al., 2017b]. For every vertex, only the pixels projected

onto the adjacent faces contribute to the Bayesian update. We seek to compute the posterior

distribution P(v|Mt) over semantic classes v for a certain vertex, given projected measurements

on adjacent faces M
t = {m

1,m2, . . . ,mt} for all timesteps 1, . . . , t. We define the measurement m
t

u

as the network’s prediction for a single pixel u given the image. We apply Bayes’ rule to P(v|Mt)

as follows:

P(v|Mt) µ P(mt |Mt�1,v)P(v|Mt�1) . (4.4)

We assume conditional independence of the measurements given the vertex class, i.e. P(mt |Mt�1,v)=

P(mt |v), and can thus rewrite the above as:

P(v|Mt) µ P(mt |v)P(v|Mt�1) , (4.5)

describing the relation between posterior P(v|Mt), measurement likelihood P(mt |v), and a-priori

distribution P(v|Mt�1). Note that we dropped the normalisation constant during the derivation and

thus must normalise the posterior after evaluation.

For computational reasons, we also assume spatial independence of the measurements and thus

factorise the measurement likelihood into:

P(mt |v) = ’
u2U

P(mt

u
|v) , (4.6)

where U denotes the set of pixels whose rays intersect with the surfaces adjacent to the given

vertex and P(mt

u
|v) is the measurement likelihood at pixel u and time t given the vertex class v.

Since the projected measurement locations do not coincide with the location of the vertex, we
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model the measurement likelihood using a distance based decay g(·):

P(mt

u
|v) = g(mt

u
,v,d) (4.7)

=

8
><

>:

exp(�ad)a+b if m
t

u
= v

1�exp(�ad)a�b

C�1 if m
t

u
6= v

, (4.8)

where d is the Euclidean distance between the vertex and the projected pixel, a is a tuning para-

meter defining the decay rate and a and b are scaling factors based on the total number of semantic

classes C which ensure that P(mt

u
|v) models a uniform distribution as d ! •:

a =
C�1

C
, b =

1
C

. (4.9)

Note that we have dropped the class index c for readability. Intuitively, the closer the projected

pixel is to the vertex, the more likely the pixel class is to coincide with the vertex class. The like-

lihood of a measurement being of any class other than the observed one is distributed uniformly.

Finally, the output of our network is not directly a measured class, but rather a distribution m
t

u
(c)

over possible classes c. This can be dealt with according to Bayes by evaluating a weighted

average over classes, which acts as an expectation over the projected per-pixel predictions:

ḡ(mt

u
,v,d) = Â

c

g(c,v,d)mt

u
(c) . (4.10)

where ḡ(·) replaces the measurement function for evaluating P(mt

u
|v) in Equation (4.6)

Note that in order to weight the measurements, their distribution is divided by the barycentric

coefficient ai, modeling the idea that the closer the point falls to the vertex, the stronger the

distribution should contribute. As the barycentric coefficients sum to 1, it is guaranteed that the

information of the projected distribution is not duplicated (see Figure 4.4).

The semantic labelling accuracy can be affected by the viewing angle of the camera with respect

to the observed scene. A point observed from a flat viewing angle is more difficult to label (e.g.,

likely to be more affected by lighting conditions and occlusions) than a point observed from a

frontal, orthogonal view. Although we do not take the viewing angle into account in our algorithm

for label fusion, we see it as an interesting addition to the method for future work.

Semantic probability interpolation in image space (2D) As an alternative approach, semantic

predictions could also be interpolated in image space. In this approach, the interpolation would

take place in the 2D image plane and the semantic label distribution of a projected vertex of the 3D

height map would be updated with the probability distributions of the adjacent pixels (see Figure
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4.5). The weightings of the individual per-pixel contributions would be obtained from simple

bilinear interpolation and the resulting interpolated distribution would be used with the class prior

to obtain the likelihood for Equation 4.5 similarly to the method in height map space.

Figure 4.4: Diagram illustrating how the distribution of a projected measurement will overall only be
added once to the triangular mesh.

Figure 4.5: Diagram illustrating how the semantic label distribution of one vertex of the height map
would be updated with a new measurement, in image space. The new semantic predictions of neighbouring
pixel values are weighted according to bilinear interpolation and used to update the posterior semantic
distribution of the projected vertex.

In principle, interpolation in image space is conceptually easier and probabilistically more sound,

as it uses bilinear interpolation instead of a weighted addition of distributions using barycentric

coefficients. Furthermore the interpolation would not be affected by the scale of the height map,

whereas the interpolation in height map space could be unequally scaled given the non-uniform

resolution of the triangular mesh around a vertex. However, to be consistent with the system’s

implementation of depth fusion and given that the first prototype implementation yielded good

performance, we decided to interpolate in height map space.
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4.5 Preliminary experiments

4.5.1 Integrating an off-the-shelf neural network with height map fusion

For an initial prototype, the implementation of U-Net [Ronneberger et al., 2015] used in Se-

manticFusion [McCormac et al., 2017b] was adapted and integrated into the height map fusion

framework. The pipeline was tested by feeding the network the RGB images captured by the

moving camera used for height map reconstruction and displaying the semantic segmentation of

this frame in parallel to the system visualisation. The off-the-shelf semantic segmentation network

was trained on a dataset of larger indoor scenes, where all smaller sized objects are represented by

one class. Although the network produces reasonable segmentation for cluttered table-top scenes

(see top center of Figure 4.6), for our table-top scenario, we would like to be able to differentiate

between different object classes (e.g. book, pen, scissors).

Figure 4.6: Example of the semantic height map pipeline prototype running in real-time (screenshot).

GPU bottleneck for real-time monocular semantic fusion One hardware limitation encountered

during this experiment was caused by GPU memory: both the depth reconstruction part of height

map fusion and the network forward pass require a significant amount of memory. Thus, the

semantic prediction cannot be run real-time if height map fusion is using a monocular camera for

reconstruction with its expensive depth estimation algorithm. We therefore use an RGB-D camera

(The Microsoft Kinect camera).
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4.5.2 Implementing and testing semantic height map fusion

As a next step, we implemented and tested our semantically augmented height map fusion system

using the same off-the-shelf semantic segmentation network. Semantic interpolation in height map

space was implemented according to the formulation in section 4.4, running in parallel to height

fusion, on the GPU (see Figure 4.7). An example of the results of fused semantics into a height

map reconstruction can be seen in Figure 4.8. This initial prototype verifies the functionality of

the implementation, but given the poor prediction quality by the network, it is difficult to prop-

erly evaluate the performance of the fusion algorithm. Therefore, as a next step the off-the-shelf

network was replaced with a network trained on a more appropriate dataset.

Figure 4.7: Augmenting height map fusion with semantic bayesian fusion. Semantic class probabilities
are saved and processed in parallel to height and colour.

4.5.3 Creating a real-world dataset of small objects

In a first instance, we decided to use an off-the shelf network and fine-tune it on a real-world

dataset of scenes with small objects. To avoid the impossible task to label over a thousand images

in order to train a network for semantic segmentation on small objects, the reconstructed height

map was leveraged to generate training data. First, an extension to height map fusion was imple-

mented to allow for saving and reloading of both the fused height map and the fused colour map.
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Figure 4.8: Example of a first implementation of the fusion algorithm running real-time within height map
fusion (screenshot).

Additionally, the framework was modified to allow for two run-time modes:

• Height map reconstruction (with colour fusion) and saving.

• Loading of the annotated colour map and generation of synthetic views with semantic labels.

Note that for memory efficiency, only the intensity values of the fused colour map are saved.

After generating and saving a height map and its respective intensity map, a large number of

camera poses and corresponding keyframes are collected. All values are saved and the colour map

is converted from binary data into an image. This image is subsequently coloured for a selected

number of semantic labels using a simple drawing software. To generate a 2.5D labelled height

map, the annotated image is loaded back into the Height Map Fusion system together with its

respective height map. An example can be seen in Figure 4.9.

From this representation and using the saved camera poses, a large number of 2D projections

can be generated, each containing the semantic labels added to the 3D reconstruction (see Figure

4.10 for two training data examples). This, together with the keyframes and saved camera poses

constitutes a dataset for training a semantic segmentation network. An illustration of the pipeline

can be seen in Figure 4.11. In total, 12 height maps were manually annotated from which a total

of 1500 projected training images were generated.
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Figure 4.9: Left: reconstructed height map of a table top scene. Centre: the corresponding intensity
image, with label annotations. Right: A screenshot of the 2.5D Semantic ground truth height map after
loading the annotated height map back into height map fusion.

Figure 4.10: Two examples of projected intensity and semantic labels from a manually annotated height
map.

Figure 4.11: The dataset generation pipeline to produce a set of labelled projections from a manually
annotated height map reconstruction.
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As a consequence of the colour-interpolation performed by OpenGL to generate the 2.5D repres-

entation of the coloured intensity map in 2D, object boundaries were found to contain interpolated

colour gradients and could therefore not be easily assigned to one class or another when convert-

ing the colours into training labels. These areas were therefore chosen to be set to contain ignore

labels excluded during training (see Figure 4.12).

Figure 4.12: Examples of training data; ground truth annotation includes ignore labels in object border
regions. Left: 6 classes. Right: 2 classes (foreground and background).

4.5.4 Training on the augmented real dataset

Two off-the-shelf networks were fine-tuned to the generated dataset. First, an implementation

of RefineNet [Lin et al., 2017] (among the state of the art in image segmentation at the time of

experiments) with pretrained weights on the ImageNet dataset [Russakovsky et al., 2015] was

trained using the Tensorflow python API. The network was trained on two dataset versions, one

with 2 classes only, foreground and background, and one with 6 classes (background, coin, cable,

pen, brick, paperclip). For training, an image size of 640⇥ 480 was used and a batch size of

2. The learning rate was set to 1e
�3 and we used the Adam optimiser [Kingma and Ba, 2015a].

Given the ignore labels in the training data, a binary label mask was applied to the loss function,

weighting every pixel loss at by 0 if its ground truth is set to the ignore class.

As can be seen from the results on the dataset of 2 classes, the network learns to predict foreground

and background (see Figure 4.13, left), but does not generalise well for unseen and different look-

ing surfaces (Figure 4.13, right). Similarly, the network did not generalise well on the dataset of 6

classes (Figure 4.15, left). It was therefore decided to add more variety to the data in order to avoid

overfitting. To this end, a number of pre-generated textures with randomized colour overlays were

added to the images (see Figure 4.14). Despite the additional data augmentation, segmentation

results did not improve and to rule out the large network size of RefineNet as a cause of over-

fitting, we trained on a smaller network, implemented after the U-Net architecture [Ronneberger

et al., 2015]. Despite the reduced network size, results did not improve significantly (see Figure

4.15, right). It was concluded that despite producing a large number of labelled projections from
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Figure 4.13: RefineNet results for 2 class prediction. Left: Input scene with the same table surface as used
in training scenes. Right: Input image with a different table surface

Figure 4.14: Examples of varying backgrounds with random textures and colour overays in training images
for the purpose of data augmentation

one hand-annotated fused reconstruction, the dataset variety remained limited since a majority of

datapoints are produced from the same set up, containing the same objects with a fixed arrange-

ment. For better results, more variety in the scene has to be introduced, which is best achieved

through synthetic data.

Figure 4.15: Qualitative results for RefineNet (left) and U-Net (right) on a test dataset example

4.5.5 Discussion and conclusion of the preliminary experiments

From the preceeding experiments it could be concluded that 1) a neural network for semantic

segmentation can be integrated and run in parallel with the height map fusion system proposed

by [Zienkiewicz et al., 2016], 2) the semantic fusion algorithm proposed in section 4.4 can integ-

rate semantic labels into the height map representation from multiple segmented viewpoints. Our

experiments on fine-tuning off-the-shelf networks on a hand-labelled real-world dataset demon-

strated that despite our data augmentation methods, the generated data lacks variety and does

not enable good generalisation. In conclusion, it was decided to generate fully synthetic data to
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train the semantic segmentation network. The dataset generation method will be introduced in the

following section.

4.6 Tabletop scene data generation

To generate synthetic scenes of small objects, both 3D object models and a scene generation and

rendering environment are needed.

Models Several 3D object model datasets exist, but the largest database for 3D objects at the time

of experiments was ShapeNet [Chang et al., 2015] with over 3 million models and 4000 categor-

ies. Among those models, several are suitable for height map representation, including computer

keyboard, keypad, remote control, remote and airplane, aeroplane, plane, as they typically have

little overhang. For each category, 66 instances are selected, split into training, validation and test

data with fractions 75%,10% and 15%, respectively.

Scenes Synthetic scenes are generated by randomly placing instances from each object category,

sampling from a uniform distribution for object ID, (x,y) position and orientation. To load models

and generate scenes, the python library Trimesh [Dawson-Haggerty, 2019] is used. An example

of a generated scene can be seen in Figure 4.18, left.

4.6.1 Dataset generation

For the comparison, synthetic data has to be generated for both the view-based and the map-based

approach.

For the view-based approach, the training data are pairs of input RGB and depth with the cor-

responding pixel-wise semantic annotation. To render RGB images, we chose SceneNet RGB-

D [McCormac et al., 2017c] for its photorealistic rendering. After a scene is generated, it is

loaded into SceneNet RGB-D to render RGB, depth and semantic label maps. To generate the

data, scene views are extracted at random camera locations and at a resolution of 240⇥320 (see

Figure 4.16 for a dataset example).

For the map-based approach, training data consists of the full height map reconstruction and its

semantic annotation. To generate the reconstruction, we use height map fusion with ground truth

camera poses to reconstruct height maps of dimension 1025⇥ 1025 of the training scenes. To

obtain semantic labels, the same scene is loaded into SceneNet RGB-D, from which semantic label
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Figure 4.16: Dataset example from the view-based dataset. Left to right: RGB, depth and pixel-wise
semantic annotation.

Figure 4.17: Dataset example from the map-based dataset. Left to right: RGB, height (inverse depth) and
pixel-wise semantic annotation. The presented images are cropped sub-samples from a larger height map
reconstruction.

projections can be rendered. To adapt its rendering engine to render height maps, an orthogonal

camera is simulated using the OptiX engine. To evade the memory bottleneck of labelling the

entire scene in one forward pass, map crops of resolution (240⇥320) are taken at random locations

(see Figure 4.17 for a dataset example for the map-based approach). Note that while we vary the

camera height between 0.18m and 0.4m and extract views with large angle variance (0� � 40�),

the rendered height maps exhibit canonical scale and orientation.

Overall, 647 scenes are generated, of which 500 are training, 120 validation and 27 are test scenes.

From each scene, both views and height map crops are extracted to train the view-based and map-

based networks respectively. An illustration of the synthetic dataset pipeline is shown in Figure

4.18.

Figure 4.18: Dataset generation. A random synthetic scene (left) from which a height map, height
map-crops and views are extracted (centre), yielding our datasets of views (RGB, depth, semantic
segmentation) and height map crops (RGB, height, semantic segmentation) (right).
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4.7 View-based and map-based labelling

With the access to a large number of synthetic table top scenes with small objects, we were able

to train a semantic labelling network for the comparison. To ensure fairness, the same network

architecture (introduced in section 4.7.1) is used for both approaches. This is possible, since

the 3D reconstruction is a height map – the height values can be fed as a depth channel to an

RGB-D network. While the network for the view-based method is trained on random RGB-D

views, the labelling network for the map-based method is trained on crops taken from the height

maps reconstructed with the height map fusion system. For the comparison, the trained networks

are deployed in their respective systems (view-based and map-based) to add semantic labels to

the scene reconstruction. The following sections describe each step of the methodology in more

detail.

4.7.1 Network architecture and training

We use a fully convolutional network based on the FuseNet architecture [Hazirbas et al., 2016],

which uses two parallel encoder branches (one for RGB, one for depth), to predict semantic labels

for every pixel (see Figure 4.19). Similarly to the FuseNet implementation, the features extracted

from the depth encoder are added to their RGB counterpart. Note that we do not experiment with

RGB input only, since in the setting of the comparison of both methods, each network requires

a height or depth component in the input. We experiment with different network architectures to

obtain the best performing network with a minimum number of parameters. The best performing

model (8 convolutional layers and skip layers at every downsampling step) was trained with a

batch size of 8, a drop-out rate of 0.1 and a learning rate of 1e
�3 with exponential decay of base

0.96 every 1e
5 steps. All our models were trained using the Adam optimizer [Kingma and Ba,

2015a] and developed in Tensorflow. Using the same architecture, two networks were trained, one

for the view-based method using the dataset of random views of synthetic scenes and one for the

map-based method using the dataset of random crops generated from a set of height map recon-

structions and semantic annotations of simulated scenes (see Section 4.6.1). Both networks were

trained until convergence which we observed after 250 epochs. Note that we did not average per-

formance over multiple random seeds in these trainings, since the final goal was not an evaluation

of the generalisation on the test set, but to use the best network for each task in our comparative

study of view-based and map-based semantic labelling. For both networks, the checkpoint with

the best prediction performance on the validation set was selected (see Table 4.1 for quantitative
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Figure 4.19: Illustration of the fully convolutional architecture of the networks we use for view-based and
map-based labelling. Depth (view-based) or height (map-based) and RGB encodings are fused at every
encoding layer. Both encoders consist of 8 convolutional modules. Deconvolutional modules consist of
one upsampling and two convolutional layers.

prediction results of each model on our test set).

4.7.2 View-based labelling

The view-based method is implemented based on the semantic height map fusion system presented

in Section 4.4. As a labelling network, the semantic segmentation network trained on table-top

scene views is used. The method takes in a stream of RGB-D images of a scene which are fed to

the height map fusion system for height map reconstruction and in parallel, sent through the CNN,

producing pixel-wise semantic segmentation labels for every frame. The frame-wise semantic

labels are then fused into the height map following the bayesian fusion algorithm presented in

4.4.1.

4.7.3 Map-based labelling

The map-based labelling method is implemented as a one-off segmentation of the entire height

map reconstruction produced by height map fusion. In principle, labelling the scene directly could

be implemented via a single pass through a very large CNN, but here, we propose to sequentially

crop and segment parts of the map using a sliding window approach. Our choice makes our method

scalable, as the sliding window can be applied to an arbitrarily sized height map without memory

restrictions. While a naive sliding window approach of tiling the map and processing each sub-

height-map would result in a loss of context in the border regions of each crop, we ensure correct
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4. Comparing view-based and map-based semantic labelling in multi-view scenes

Figure 4.20: Left: the map-based labelling uses a sliding window approach, with the offset determined
according to the receptive field of the network. Right: example of the sliding window method on a test
scene.

segmentation by choosing the sliding window offset o based on the theoretical receptive field r of

the network:

o = d �2r , (4.11)

where d is the dimension of the network input in the sliding direction (width or height). We use

the following equations to compute the theoretical receptive field recursively through all layers:

s = sl�1sl, (4.12)

rl = rl�1 +(k�1)s , (4.13)

with s as the stride of the network convolutions, l as the layer index, k as the kernel size and rl as

the receptive field for features at layer index l. Note that the sliding window offset is conservatively

chosen and could practically be increased by considering the network’s effective receptive field

[Luo et al., 2016]. With this method (see Figure 4.20), we ensure the same context for every pixel

as would be obtained during a single forward pass of the entire map through our network, while

avoiding GPU memory limitations.

Figure 4.21: Left: semantic labelling quality based on map coverage (number of frames seen) for the
view-based and the map-based method. Centre: A sub-sample of the map showing RGB and height
reconstruction at different coverage. Right: corresponding semantic segmentation and error maps for the
view-based and map-based methods.

70



4.8. Evaluation and comparison

4.8 Evaluation and comparison

Our final goal is a principled comparison of both methods in terms of labelling accuracy and

efficiency. To this end, we evaluate and compare our methods on our test set of simulated scenes,

which allow for a set of controlled experiments. We leave the evaluation on real data for future

work. In the following we present our experiments and results.

4.8.1 Evaluation procedure

We generate test sequences from our test scenes which have camera locations relative to the scene,

randomly sampled from a range which stochastically achieves full scene coverage. For each test

sequence, we deploy the view-based network during the reconstruction of a synthetic scene and

use our bayesian fusion update scheme to obtain a semantically labelled height map. We save the

reconstruction at regular intervals where it is labelled by the map-based network. The semantic

scene segmentation obtained by each approach is compared against the scene’s ground truth us-

ing the mean Intersection over Union (IoU) over all classes. The alternative per-pixel accuracy

measure is not very useful in our scenario due to the dominant number of pixels in the background

class.

4.8.2 Training results

The best models achieved a mean IoU of 0.95 and 0.93 for the view-based and map-based tasks

respectively (see Table 4.1). We suggest that this small discrepancy in accuracy, occurring despite

identical architecture and training sample number, could be due to the different characteristics of

the data seen by the networks, arising from the nature of their tasks and the distributions of their

views. Compared to the view-based task, the map-based task is easier to learn since all map crops

are taken from a canonical top-down orientation of the camera. The lower variability can possibly

also lead to stronger overfitting on the training data and could explain the lower performance of

our map-based method on the test data. Qualitative results for both networks can be seen in Figure

4.22.

71



4. Comparing view-based and map-based semantic labelling in multi-view scenes

Figure 4.22: qualitative results from the view-based network (a) and the map-based network (b). Left to

right: Input RGB, input depth (view-based) or input height (map-based), network output, and ground truth.
The image dimensions are 320⇥240.

mIoU surface remote control keyboard model plane
View-based 0.95 0.99 0.89 0.74 0.51
Map-based 0.93 0.99 0.68 0.91 0.78

Table 4.1: Performance of our view-based and map-based networks on the test dataset of single views and
map crops, respectively. Evaluated using mean Intersection over Union (mIoU).

4.8.3 Evaluation of the view-based method

We evaluate our view-based method on our test scenes by generating a semantic height map us-

ing our semantic fusion algorithm as described in 4.8. We evaluate at every 100 frames, to track

the increasing semantic accuracy of the reconstructed scene. On average, our view-based method

reaches a value of 0.889 mean IoU after 1000 frames, with 95% confidence bounds of (0.86,0.90).

Figure 4.23 (left) displays our results for all test scenes, together with the average performance.

As illustrated by the semantic reconstruction example at different coverage levels (number of seen

frames) in Figure 4.21, the rapid early improvement in label accuracy is obtained from increasing

coverage of the map, though the IoU continues to improve slowly due to fusion once full coverage

has been achieved at around 400 frames. This is not surprising given the high labelling perform-

ance of the network on single images. With a more poorly performing network we would expect

an even higher increase in accuracy from incremental fusion. We tested the influence of the al-

pha parameter in Equation 4.8 on our semantic reconstruction. It did not affect the reconstruction

strongly in this setting and we chose a value of 1.0 for our experiments. We further performed an

analysis of computational time for our view-based method, presented in Table 4.2.
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Module Run time
Data loading 6.13 ms
Reconstruction 1.78 ms
Semantic segmentation (1 forward pass) 77.00 ms
Semantic fusion 31.05 ms

Table 4.2: Computational analysis (per frame average) of our view based method for 27 synthetic test
scenes reconstructed from 1000 frames.

Figure 4.23: Incremental fusion results (left) and map-based results (right). For both approaches
the semantic labelling accuracy is measured as the mean IoU over all classes for 27 scenes. The
red line shows the average over all test scenes which reaches a maximum of 0.889± 0.0020 and
0.922±0.0014 at 1000 seen frames for the view-based and the map-based, respectively. For our
given sample size, the 95% confidence bounds are (0.86,0.90) and (0.91,0.93) for the view-based
and map-based methods respectively.

4.8.4 Evaluation of the map-based method

The map-based method is evaluated using the same test sequences. The scene geometry is re-

constructed using variable number of frames (up to 1000) and the reconstructed height maps are

segmented using the sliding window method with a shift set by the theoretical receptive field of

(91,91) of our network. Unlike the view-based method, we start the map-based evaluation once

full coverage of the scene has been reached, to avoid segmenting incomplete image patches which

lie outside of the network’s learned distribution. Figure 4.23 (right) shows our results over all

scenes. Our map-based method achieves an average mean IoU of 0.922 with 95% confidence

bounds of (0.91,0.93). We measure the average time to segment one reconstructed map on a

single GPU as 8.3s.

4.8.5 Both approaches in comparison

To compare both methods, the mean IoU achieved on test scenes during reconstruction is eval-

uated, segmenting at every 20 and 40 frames for the view-based and for the map-based method

respectively. This demonstrates each method’s improvement with respect to the reconstruction

state. Both methods are also compared with regards to processing time to evaluate their effi-
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Figure 4.24: Semantic labelling accuracy achieved by the view-based method and the map-based method
in comparison. Left: The average of the mean IoU over all classes for 27 test scenes, plotted against the
number of frames used in the reconstruction. Right: The same results plotted against processing time. For
the view-based method, we measure the time for reconstruction, the network forward pass at every keyframe
and semantic fusion. For the map-based method, we combine the processing time for reconstruction without
semantic fusion with the processing time required to segment the map.

Figure 4.25: Semantic labelling accuracy over 3 randomly selected test scenes with increasing
noise (left: pose noise, right: depth noise) We apply normally distributed pose and (per pixel)
depth disturbances.

ciency. The results are shown in Figure 4.24. For the view-based method, the computation time

of the reconstruction, frame-based semantic segmentation and semantic fusion is measured; for

the map-based approach, we measure the computation time for the reconstruction and the one-off

scene labelling. Note that the overall processing time of our map-based method could be reduced

further, if we had only segmented the map once after reconstructing the full scene.

Our results show that on average, with overall much less computation time, the map-based method

achieves a segmentation accuracy superior to the view-based method. However, after full coverage

has been reached, we observe a region in which the view-based method achieves higher labelling

accuracy compared to the map-based method (see Figure 4.24 on the right). This demonstrates

that for the map-based method to work well, a certain level of reconstruction accuracy has to be

reached. We further observe that the map based method performs better at the contours of objects

than the view-based method. This is visualised in the error maps of the reconstruction example in

Figure 4.21).
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Figure 4.26: Map-based (left) and view-based (right) mean IoU as a function of pose and depth noise.
Darker regions indicate higher labelling performance for each method.

4.8.6 Comparison with reduced map reconstruction quality

We experiment with degrading the map quality to evaluate the decrease in labelling quality with

respect to noise, on the compared methods. In a first study, we apply normally distributed pose

disturbances during reconstruction. Our results (Figure 4.25) show that the map-based method

is much less robust to pose noise than the view-based method, which can be attributed to the

bayesian filtering of multiple views. We then apply depth noise drawn from a normal distribution,

which has a stronger negative effect on the view-based method, most likely because the latter now

has to deal with reduced quality in 2D labels as well as projection errors. Plotting both methods

against pose and depth noise (Figure 4.26) shows that while the view-based method is robust to

pose noise, it quickly degrades to < 0.2 mean IoU with increasing depth noise. On the other hand,

the map-based method is sensitive to both noise types, but to a lesser degree, degrading to only

0.2 mean IoU in the tested noise range.

4.9 Discussion

The obtained results show that for a setting which assumes perfect poses and depth, the map-

based approach achieves higher labelling accuracy, and can be achieved with less computation.

We argue that although the view-based network achieves a high labelling accuracy on individual

frames, its deployment during the early reconstruction phase results in more errors, especially in

border regions of objects, from which it cannot always recover easily. The overhead of repeated

forward passes and multi-view fusion is a further disadvantage of this approach. Our experiments

on pose and depth noise show that for the studied noise range, the map-based approach, although

more equally affected by both types of noise, stays overall more robust than the view-based method
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(Figure 4.26). We argue that its advantage results from operating on fused data. The view-based

method on the other hand is less affected by pose noise, due to its in-view labelling and the benefits

of bayesian label fusion. However, it strongly degrades in the presence of depth noise. We argue

that this is caused by the fact that it has to operate directly on the noisy depth data, resulting in

not only projection errors, but also 2D segmentation errors. Finally, since the map-based method

requires a certain state of completion in reconstruction, it cannot yield ad-hoc labels in early

stages of the reconstruction as would be possible with the view-based method. In summary, the

advantages of one or the other method depend on the stage at which semantic annotations are

required, the accuracy of camera tracking and the quality of the depth camera, and the accuracy

of the labelling network itself.

Limitations and future work However, the presented results should be carefully considered

within the context of our experiments. Firstly, the 2.5D geometry of the height map alleviates

the map-based method from the memory limitations of 3D segmentation tasks. While using a

height map allows for a principled comparison in terms of labelling accuracy and performance,

real-world settings will often use a 3D representation and its respective network architecture for

the map-based approach. When deciding on the labelling approach based on the specific system

requirements, the additional overhead of using a full 3D labelling network will have to be taken

into account. Secondly, the appearance features of our selection of scattered objects with little

overhang are well visible from a top-down perspective, while for other objects (e.g. cups, bowls,

chairs) with more ambiguous features it would be more difficult to train a map-based network

to achieve good segmentation quality. Thirdly, in settings with less well performing networks,

one-off labelling of the map segments would likely yield more errors which would in turn be

better recovered with the view-based method due to multi-view bayesian fusion of labels. While

we don’t cover the cases of differently well performing networks in this study, we would like to

leave it for future work. We see a further point of continuation in combining both view-based and

map-based methods, leveraging the respective advantages in the correct setting. For instance, a

real-time SLAM system would benefit from incremental fusion in the initial mapping phase and a

regular map-based label refinement step in well-reconstructed regions of the map.

4.10 Conclusion

This chapter presented a study on how to best add semantic labels to a 3D reconstruction built by

a real-time SLAM system, which has access to an arbitrary number of views — i.e. can achieve
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good scene coverage during reconstruction. In particular, two commonly used approaches based

on deep learning are compared: view-based semantic labelling, whereby 2D semantic labels from

keyframes are back-projected and fused into the reconstruction and map-based semantic labelling,

whereby the reconstruction is directly labelled by a scene-network. The experimental setting

focuses on table-top scenes which are 1) less explored than general large-scale indoor and outdoor

scenes and 2) facilitate a principled comparison.

Our comparison shows that in the absence of noisy data, the map-based approach shows higher

labelling accuracy and object-border details. In the presence of pose noise, only affecting the

reconstruction, the view-based method shows a significant advantage, but it deteriorates more

strongly in the presence of depth noise. In terms of computational cost, the map-based approach

is in principle more efficient, given that every map element is processed only once, compared to

the frame-wise segmentation and fusion required by the view-based method. In a three dimen-

sional setting, this advantage will likely be reduced due to expensive 3D data processing such

as volumetric labelling, but we leave this analysis for future work, as it requires the comparison

between different representations of 3D data and their different methods of 3D labelling.
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5.1 Introduction

The last chapter discussed the task of semantically annotating 3D scenes and provided a com-

parative analysis of frame-wise incremental semantic segmentation of projected labels and direct

annotation of the reconstructed scene. The experiments were conducted under the assumption that

an unlimited amount of viewpoints is available, and that a scene can be reconstructed to a high

degree of precision. In many settings however, those assumptions don’t hold. Large scenes can

be expensive to scan and in cluttered regions it may not be possible to reach all the viewpoints

required to reconstruct a full model. In such scenarios it would be desirable to obtain a 3D model

of a scene from only one or few views. This chapter is concerned with reconstructing cluttered

3D multi-object scenes with one or few views by reasoning about missing data. While the last

chapter focused on semantic annotations, for this research problem we aim to obtain instance

segmentation of the objects in the scene.

5.1.1 Reasoning in the presence of missing data and uncertainty

Humans are able to make estimates and take decisions without knowing every detail of the state

of the world around them. For instance, we can cross the street without knowing the location

of every car in the neighbourhood — we simply estimate that since we currently can’t see any

car approaching, it will be unlikely a car will reach us by the time we make it to the other side

of the road. We deduce an estimate from contextual information, as well as our experience of

previous street crossings. In fact, as humans we reason about missing data every time we open

our eyes to scan our surroundings — we build a 3D map using stereo-vision, combining the two

images created on the retinas at the back of our eyes. Apart from reconstructing a 3D scene

by leveraging stereo information, we use our intelligence to reason about additional features of

our surroundings, for instance, the shape and composition of 3D space currently invisible to us.

We know that, depending on the context, larger objects can occlude smaller, partly occluded or

completely hidden objects. Smaller objects occlude parts of larger objects. The likelihood of what

shape space takes in invisible areas is constrained through our knowledge of physics — where

and how objects can be physically placed and that they cannot intersect. In fact, there is a spot in
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the centre of our vision field that we are completely blind to, but which we don’t notice since our

brain fills it in using the context.

To be robust and versatile, autonomous systems will have to be able to reason and make de-

cisions in the presence of unknowns and uncertainties in a similar fashion. Among areas such

path planning and decision making, reasoning under partial information also applies to scene un-

derstanding, whereby an autonomous system needs to estimate the shape, type and the number of

objects in its surroundings. Obtaining a full reconstruction of a systems’ surroundings with use-

ful annotation such as semantic and instance labels requires comprehensive and time-consuming

scanning. On the other hand, autonomous systems which can operate in novel, partially observed

territories and incrementally grow and leverage knowledge about their surroundings, will be more

readily deployable. To achieve this, these systems will have to be able to reason about the state of

the world around them, augmenting scene understanding of the directly observable with reasoning

about the unobservable. Such reasoning includes estimating occupied space, object presence as

well as relative distances and stability. Since autonomous systems mainly operate with cameras

or laser sensors, the additional information about unobserved space has to be inferred from a laser

scan or from image data.

5.1.2 Reconstructing 3D space from images

While humans are intuitively able to interpret partially observed scenes using geometric reasoning

and prior experience, estimating 3D shape from RGB or depth images is challenging in computer

vision due to ambiguity — many 3D shapes can explain a 2D observation. The classical approach

to generate 3D shapes from depth images involves taking images from all sides of an object and

fusing the re-projected points into a common 3D representation such as a truncated signed dis-

tance function (TSDF) [Newcombe et al., 2011a]. However, apart from the exhaustive nature of

the task, it is often impossible to reach all required viewpoints to generate a watertight surface

reconstruction [Dai et al., 2018]. This drawback has led researchers to explore learning based

approaches to reconstruct 3D shapes, such as learning to complete partial reconstructions [Dai

et al., 2018, Dai and Nießner, 2019, Stutz and Geiger, 2018] and predicting scenes [Song et al.,

2017] or objects [Yang et al., 2017, Yang et al., 2019] from a single depth image. In parallel, re-

searchers explore 3D shape prediction for scenes [Nicastro et al., 2019, Firman et al., 2016, Shin

et al., 2019] and objects [Choy et al., 2016, Xie et al., 2019, Yao et al., 2020] from single or multi-

view RGB data. While most of these approaches work with pointclouds, voxel occupancy grids

or TSDF representations, some have explored alternative representations such as parametric sur-
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face elements [Groueix et al., 2018], 2D sketches [Wu et al., 2017], graph neural networks [Dai

et al., 2017b], and the increasingly popular implicit neural surface representations [Park et al.,

2019a, Mildenhall et al., 2020, Chabra et al., 2020].

5.1.3 3D instance segmentation and object decomposition

2D instance segmentation has progressed significantly with state-of-the-art methods such as Mask

R-CNN [He et al., 2017] and DETR [Carion et al., 2020], but segmenting objects in 3D remains

challenging. Hou et al. [Hou et al., 2019] extend the idea of region proposals to 3D, combining

backprojected 2D features with 3D partial scans. Another method for segmenting 3D pointclouds

into objects is center voting [Qi et al., 2019b, Qi et al., 2020, Han et al., 2020]. The approach

of Xie et al. [Xie et al., 2020] uses Hough centre voting to segment a cluttered table top into

instances. However, their final output is a 2D instance segmentation whereas we aim at 3D out-

put. Related to instance segmentation, object decomposition focuses on breaking objects down

into their primitive components. Most work on decomposing compound objects into parts has

focused on rigid objects such as furniture with significant structure and symmetry. Decomposing

such objects into parts can help to leverage symmetry for shape completion [Sung et al., 2015] or

discover structure in unseen data [Tulsiani et al., 2017]. Most approaches decompose into geo-

metric primitives [Deng et al., 2020a, Tulsiani et al., 2017] using a library of shapes. Recently,

Paschalidou et al.proposed soft, genus-zero shapes, learnt by an invertible neural network which

learns homeomorphic mappings between a sphere and the input shape. [Paschalidou et al., 2021a].

Others use hierarchical representations and graph neural networks [Mo et al., 2019]. Paschalidou

et al. [Paschalidou et al., 2019] showed that using superquadrics over shape primitives improves

reconstruction quality, since their continuous parametrisation allows for more shape variety. Apart

from providing structural information, part-decomposition has also been shown to improve recon-

struction overall [Paschalidou et al., 2020].

5.1.4 Motivation

In most real-time applications it is desirable to obtain a quick estimate of the surroundings, for

navigation and planning, but also to obtain a more complete understanding of the observed scene.

This requires reasoning about 3D from a single view without comprehensive scanning and multi-

view fusion. While estimating 3D shape is crucial for navigation and planning, for a more versatile

robotic system that can interact with its environment, a notion of objects through object detection
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or instance segmentation is needed. Single-view 3D shape estimation for single and multiple

objects has been addressed in previous works [Yang et al., 2017, Yang et al., 2019, Nicastro

et al., 2019, Firman et al., 2016, Shin et al., 2019] and single-view object detection and instance

segmentation for cluttered scenes has been solved in 2D using multiple approaches [Carion et al.,

2020, Xie et al., 2020]. However, solving both tasks jointly for composite scenes in 3D (such

as object stacks) has not been solved at the time of this project. It is a particularly challenging

task: occluded areas are not only ambiguous in shape but also in instance segmentation; multiple

decompositions could be valid. The task is particularly relevant for scenes containing small objects

in close proximity generating occlusions which make object detection and segmentation difficult.

Indoor scenes and in particular table-top scenes are common settings of such clutter (see Figure

5.1).

To address this task, we make the following observations and hypothesis: single-view object com-

pletion is challenging and has previously been solved leveraging priors and symmetry assumptions

about the object shape [Yao et al., 2020, Wu et al., 2018b]. Reconstructing and segmenting multi-

object scenes using a simple supervised training scheme will likely fail especially in occluded

regions, due to the complexity and ambiguity of the solution. While stacks of unordered clut-

ter don’t have inherent symmetry, physics constrains the space of valid compositions of cluttered

scenes. Can this constraint be learnt as a prior and leveraged to improve reconstruction and in-

stance segmentation in occluded regions? The subsequent experiments explore this hypothesis,

show that learning such a prior from data using a generative model indeed improves reconstruc-

tion compared to baselines and provide a solution to reconstruct and provide instance segmentation

for a multi-object cluttered table-top setting, which we test on real data.

Figure 5.1: Problem setting: unordered stacks of small to medium objects in close proximity.

Task definition

Given a single depth image of objects stacked on a tabletop, our goal is to estimate the complete 3D

shape of the group and segment the objects into instances. The developed method should be able

to generate the full reconstruction and instance segmentation, in particular, be able to plausibly
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estimate shape and instances in occluded regions. To be able to work in a realistic setting, the

method has to be viewpoint agnostic and work for a variable number of objects. Our goal is to

work in settings where the object class is unknown and therefore the instance segmentation has to

be class-agnostic.

5.2 Single-view reconstruction of multi-object cluttered scenes

5.2.1 Dataset and experimental setup

For the main experiments of this project, several design choices were made, which are described

in this section. To start with, the object representation and the synthetic scene setup are described,

which are used to generate the dataset. Then, the rendering method is explained, with which

synthetic depth images are obtained from a given scene. Next, the architecture is introduced and

the training setup is explained. Finally, the pre- and postprocessing methods are described with

which the data is processed before training and after prediction.

Object representation

Although methods which work with specific CAD-model fitting are widely used and researched

[Shotton et al., 2013] [Brachmann et al., 2014] [Wada et al., 2020], ultimately, relying on CAD

models for object representation is a limitation, given that building an up-to-date database of all

objects in the world is not feasible. As an alternative, approaches leveraging geometric primit-

ives have received increasing attention by the deep learning community, especially in the con-

text of shape decomposition. [Niu et al., 2018], [Tulsiani et al., 2017] and [Zou et al., 2017]

decompose 3D shapes into a collection of cuboids. Improving on the the limited precision of

cuboids, [Paschalidou et al., 2019] decompose shapes into Superquadrics and address the repres-

entational limitation of primitives. The trade off between reconstruction accuracy and the number

of reconstructing primitives is further addressed by [Paschalidou et al., 2021b]. Other works have

explored neural shape parsers [Sharma et al., 2018] and shape programs [Tian et al., 2019] to

learn programmatic ways to decompose shapes into underlying primitives. Beyond single shape

decomposition, primitives are also good models for data abstraction [Sommer et al., 2020] —

representing scenes as a collection of primitives instead of raw pointcloud data brings advantages

for space, optimisation and higher level reasoning, as well as structure understanding and shape

editing [Li et al., 2019].
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5.2. Single-view reconstruction of multi-object cluttered scenes

Superquadrics for shape approximation Superquadrics offer a general shape description, ex-

tending quadrics to multiple exponents. They define a family of shapes which includes Super-

ellipsoids, Superhyperbolloids and Supertoroids (see Figure 5.2) and are defined by the implicit

equation:
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The term Superquadrics is commonly used to refer to Superellipsoids in the computer vision com-

munity. To be precise, we will refer to Superellipsoids in this section when introducing equations,

but will refer to them as Superquadrics in subsequent sections for simplicity and in accordance

with the literature.

Figure 5.2: The Superquadric family

Superellipsoids can be derived from their analogous two dimensional entities: superellipses. In

their explicit form, superellipses are defined by three parameters, a,b,e , which define their extent

along the x and y axes and their shape, respectively:
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Using 5.2, points defining a superellipse can be generated by sampling values of a . Figure 5.3

shows examples of sampling points from 4 superellipses with shape parameters e = 0.1,0.5,1 and

2. Taking the spherical product of two 2D superellipses yields a superellipsoid Sp [Jakli et al.,

2000]:

Sp(µ,w) =
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where parameters a1,a2 and a3 scale the primitive along the 3 coordinate axes and e1 and e2

determine the shape of the superellipsoid cross-section perpendicular and parallel to the x,y plane,

respectively. The implicit equation can be derived from Equation 5.3, using the trigonometric

equality cos2(a)+ sin2(a) = 1:
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Figure 5.3: Superellipses [Katsoulas, 2004]

All points which correspond to Equation 5.4 lie by definition on the superquadric surface. Equa-

tion 5.4 is also called the inside-outside function since it determines whether a point (x,y,z) lies

inside or outside of the surface. A correspondence between the general superquadric equation 5.1

and the implicit function for ellipsoids 5.4 can be found by setting:

r = s =
2e1 + e2

2
e1e2

k =
2
e1

(5.5)

For exponents r, s, t >= 1 equation 5.1 generates a continuous range of convex superellipsoids

(see Figure 5.4 for some examples). Note that in addition to the shapes generated by keeping two

exponents at the same value, we add one additional shape with k 6= s 6= r, which is technically not

part of the superellipsoid family as it could not be represented by equation 5.4. Varying the scale

parameters a1, a2, a3 generates very flat, small, or bulky shapes, ideal for approximating many

everyday household objects.

A dataset of superquadric object stacks

To train a learning-based method which can reconstruct multi-object scenes, a large dataset is

required. Several datasets such as ShapeNet [Chang et al., 2015] or ModelNet [Wu et al., 2015]

offer a large variety of different shapes widely used to train 3D reconstruction models. However,

learning a general shape representation for multi-object scenes from categories with very specific
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Figure 5.4: Examples from the superquadric shape library generated for the synthetic dataset.

shapes (chairs, planes, lamps) is very challenging, and as an initial step towards solving the task

of multi-object reconstruction with instance segmentation, we decide to limit the scope to convex

objects. To this end, superquadrics offer an attractive alternative for learning a more general shape

representation for convex objects. Furthermore they offer an infinite variety of shapes given their

continuous parametrisation, the latter also rendering them attractive in optimisation settings. To

build a large dataset of composite scenes made of superquadrics, a large library of shapes has to

be generated and combined into realistic stacks as will be described below.

Superquadric meshes To create superquadric meshes, equation 5.1 can be used to generate a

voxelised signed distance function representation. The SDF can then be processed by Marching

Cubes [Lorensen and Cline, 1987] to yield a mesh. Leveraging the continuous parametrisation

of superquadrics, a large variety of shapes can be sampled. We generate 3500 individual shapes

with exponents ranging between 2 to 100 and scales between 5 cm and 30 cm that yield our

superquadric repertoire.

Figure 5.5: Generating a superquadric mesh
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Figure 5.6: Examples from the superquadric (SQ) stacks dataset. All scenes are generated by random
placement under physics simulation with Pybullet.

Superquadric stacks To generate realistic object stacks, a physics engine is required, which can

simulate the dynamics between multiple objects. PyBullet [Coumans and Bai, 2019] offers a

simple user interface to load object meshes into a simulation environment. We generate 10,000

realistic object stacks by placing between 3 and 4 superquadrics randomly in each scene (see Fig-

ure 5.6 for dataset examples). For each object, the algorithm randomly samples a centre position

within a specified scene volume as well as a random rotation, places the object into the scene and

runs the physics simulator. If the chosen location and rotation does not result in any intersections

with other objects or the floor and the object falls within the defined range after undergoing phys-

ics simulation, the object is kept inside the scene. The method is described in detail in algorithm

1.

88



5.2. Single-view reconstruction of multi-object cluttered scenes

Algorithm 1: Algorithm to generate one Superquadric stack

1 S: 10 000 // Number of scenes

2 N: 4 // Maximum number of objects in the scene

3 T : 10 // Number of placement trials per object

4 m: 3 // Minimum number of objects per scene

5 SQlibrary: 3500 // Library of superquadrics

6 (Xmin,Ymin,Zmin): �25cm, �25cm, 0cm // Scene limits

7 (Xmax,Ymax,Zmax) : 25cm, 25cm, 60cm // Scene limits

8 for s in S do

9 for n in N do

10 for t in T do

11 sq ⇠ SQlibrary (x,y,z)⇠ (Xmin : Xmax,Ymin : Ymax,Zmin : Zmax)

rx,ry,rz ⇠ (0 : 2p) if sq \ SQscene == /0 then

12 run 1000 simulation steps

13 if Xmin  x  Xmax & Ymin  y  Ymax &

Zmin  z  Zmax then

14 SQscene = sq [ SQscene

15 break

16 if SQscene � m then

17 save scene

The dataset statistics The generated dataset consists of 9852 scenes which are split to 70%,

15% and 15% into training, validation and test sets. Every scene contains 3 or 4 objects, but

scenes with 3 objects are more common (see Figure 5.7 left and centre).

Representing scene geometry

The superquadric parameterisation offers a very concise shape description, with which expli-

cit geometry could be completely omitted. A shape would thereby be defined by its position

(x,y,z), its orientation (w, i, j,k for quaternion representation) and its superquadric parameters

(e1,e2,a1,a2,a3). However, despite being concise, representing shapes and composite scenes us-

ing this compressed representation has several drawbacks. First, predicting the orientation of

objects is notoriously difficult and the symmetrical properties of superquadrics pose an additional
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Figure 5.7: Dataset statistics. Left: train, val and test split in number of scenes. Right: number of scenes
per number of objects (note: Only training data is shown since validation and test splits have the same
proportion).

hurdle, as multiple object appearances correspond to the same orientation. Secondly, an already

compressed shape representation of a number of floating point numbers is not very suitable for

feature learning. It would require a well adapted architecture and training procedure. On the

other hand, very expressive features can be learnt from 2D images and 3D explicit geometry using

standard architectures such as CNNs.

To represent 3D geometry one has a few options, each with their advantages and disadvantages.

Pointclouds are memory efficient but lack structure; meshes are dense, but difficult to process

with CNNs. Voxels don’t scale well, but are the most straightforward to process using 3D CNNs.

When using voxel occupancy as a representation, resolution greatly affects the reconstruction due

to precision. However, by using a (truncated) signed distance function, the shape can be sampled

at infinite resolution and the voxelgrid can be processed using Marching Cubes to obtain smooth

meshes.

Implementation details One option to generate a full TSDF scene from individual superquadrics

is to overlay each superquadric TSDF grid and take the minimum value of each voxel. However,

since each superquadric TSDF grid is in its canonical orientation and position, before creating the

overlay, every superquadric grid would have to be rotated and placed within the final (larger) scene

grid. This would require interpolation to transfer the TSDF values to the embedding scene grid. A

simpler solution is to leverage the position and orientation of each mesh from the scene generated

by the physics simulator together with the individual mesh models to create a joint scene mesh.

This joint scene mesh can then be processed by an off-the-shelf python library mesh-to-sdf to

create a scene SDF, which can hereafter be truncated to a TSDF.
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Figure 5.8: Generating a scene TSDF representation from the joint scene mesh using the mesh processing
library mesh-to-sdf

Representing instances

Instance segmentation is the task of delineating each object of interest in a particular scene. Going

further than semantic segmentation, it captures ”objectness” as well as class, understanding which

parts of a scene belong to one individual object instance. Compared to object detection, which

provides the centre coordinates and extents of a detected object in the scene — usually in the

form of a bounding box — instance segmentation provides labels per scene element and therefore

offers a more precise object representation. This also makes it a more complex task than object

detection [Bolya et al., 2019].

At the time of writing, the go-to off-the-shelf model for instance segmentation and object detection

is Mask RCNN [Kaiming et al., 2017], which extends the object detector Faster RCNN [Ren et al.,

2015] with an instance mask prediction branch. Other state of the art instance detection methods

include PANet [Liu et al., 2018], TensorMask [Chen et al., 2019] and YOLACT [Bolya et al.,

2019]. Although these methods generate impressive results on very cluttered 2D images and can

handle many overlapping instances, they are coupled with semantic segmentation — they can only

predict instances which belong to a certain semantic class. Recently, some works have explored

unknown object segmentation in 2D [Durner et al., 2021] [Xie et al., 2020], whereby [Xie et al.,

2020] use a Hough Voting scheme in which each pixel votes for its object centre. Compared to

approaches which produce a fixed number of predictions coupled with objects existence [Carion

et al., 2020], voting-based methods do not rely on a pre-defined maximum number of instances in

the scene.
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Figure 5.9: Representing instances as centre voting vector fields. Left: The scene mesh generated
from the TSDF using Marching Cubes. Right: The centre voting fields for the respective scene
meshes on the left.

Several approaches have extended instance segmentation to 3D scenes. [Hou et al., 2019] backpro-

ject 2D features from RGB-D scans into a 3D voxelgrid and generate per-voxel mask predictions.

Similarly to [Yang et al., 2019], they rely on semantic classes for instance mask predictions and

do not work with unknown objects. [Engelmann et al., 2020] adopt the object-centric approach by

aggregative object centre votes within a pointcloud, but nevertheless couple their prediction with

semantic classes.

For improved generality, being able to detect entities as objects without knowing their class is

preferable. In this work, the aim is to provide instance segmentation which is class-agnostic and

independent of the number of objects present in the scene.

Representing instances using a voting vector field Voting based algorithms are inherently

independent of class and also don’t limit the number of objects in a particular scene. A suitable

representation for this goal is therefore a vector field of centre votes, whereby each voxel in our

scene grid contains a unit vector, starting from the voxel centre and pointing in the direction of

the object’s centre. Voxels which don’t belong to objects are defined with a vector of (0,0,0).

Choosing this representation for ”no object”, we have to assume that the centre of an object will

never exactly coincide with the centre of a specific voxel. Using unit vectors alleviates the network

from having to predict the object size in addition to its centre location and the vector direction is

enough to extract the object centres during post processing. Based on this representation, we
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design the network output to be a grid of voxels which ”vote” for the location of the centre they

belong to.

Class-agnostic instance segmentation with 3D Hough Voting

Extracting the object centres based on the network prediction can be achieved by leveraging Hough

Voting and adapting it to a voxelgrid representation.

Hough Voting Initially introduced in 1959 [Hough, 1959] as the Hough Transform, Hough Voting

is a feature detection algorithm, isolating particular shapes within an image. It translates the

problem of pattern detection in point samples to detecting peaks in feature space. In its classical

form it is applicable to simple shape features such as lines or curves. In the example of detecting

lines, the Hough Transform transforms all point samples into the parameter space of lines, defined

by a and b, given the line equation y = ax+ b. In this parameter space, all points which lie on

a line defined by specific values of a and b, will intersect and can be collected. The idea behind

the algorithm is, that each measurement provides a contribution to a globally consistent solution.

Hough Voting was later extended to its general form, allowing for arbitrary shapes [Ballard, 1981],

in particular applying it to image patches as indicators for the existence of a complex object.

Before the wide adaptation of deep learning models, voting was used by several methods for

object detection [Leibe et al., 2007, Knopp et al., 2010, Velizhev et al., 2012, Lehmann et al.,

2010] and its performance was improved for 3D shapes by [Woodford et al., 2013] by introducing

the minimum-entropy and intrinsic Hough Transforms. With their method Vote3D, [Wang and

Posner, 2015] demonstrated how voting is effectively equivalent to sparse convolutions with a

linear classifier and use their method to efficiently apply a sliding window approach on a full

3D voxelgrid structure for object detection in point clouds. More recently, Hough Voting has

been combined with deep learning methods for object detection in point clouds [Qi et al., 2019a].

Inspired by previous applications, we formulate instance segmentation as a Hough Voting task,

described below.

Instance segmentation We assume a network prediction of a vector field in which each voxel

”votes” for the object it belongs to by predicting a 3D unit vector ĉ from its own centroid to the

object’s centroid. (see Figure 5.10). At a 10-fold higher resolution than our voxel grid (640⇥640)

, we count the number of rays that traverse each voxel by marching each ray through the grid. We

use the object bounds obtained from the TSDF prediction to limit raycasting to the inside of

objects. A higher resolution allows for more detailed prediction of centers which don’t coincide
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with voxel centers at the original resolution. Those voxels with a number of traversals larger than

µ are selected as object center votes and passed to MeanShift to obtain the final center locations.

To allocate voxels to their corresponding centers, we compute:

min
c1,...cN

|arccos(ĉ · ĉn)|+ g ⇤kĉnk (5.6)

whereby ĉn is the distance from the voxel’s centre to cluster centre n. Setting hyperparameters

µ = 10 and g = 0.1 gave the best performance. While we observe limited sensitivity to g , very

large (� 25) and small ( 4) values of µ increase under- and over-segmentation, respectively.

Paralellized on the GPU our method takes on average 19ms for a scene resolution of 643.

Figure 5.10: Our Hough Voting method illustrated for a single object center. Left: The network output —
unit vectors pointing towards the center of the object. Center: Raycasting and extracting those voxels with
a high number of traversal at a 10-fold voxelgrid resolution. Right: Voxels with a high ray-traversal rate
are likely close to the object center and are selected as ’votes’ for this object center. To obtain final object
centers, selected votes are further processed using Mean shift clustering.

Scene setup

To capture enough detail, we choose to represent each scene with a voxelgrid of 1m at a resolution

of 643 compared to many approaches that use a resolution of 323 (e.g. [Maturana and Scherer,

2015]). For training, a consistent scene setup has to be chosen. Placing the object collection in the

centre of the voxelgrid is the most straightforward choice, but removes a constant from the dataset

— the floor location — which could make the task easier for the network. We therefore choose

to place all scenes at the x,y centre of the voxelgrid and at a fixed floor position of z = 9.6cm (15

voxel rows). Given that our scene representation is a TSDF, placing the object stack at z= 0 would

result in some partially defined surfaces, since a TSDF defines surfaces by the values surrounding

it. The camera that renders synthetic depth images is placed relative to the scene centre at x =

20.5cm,y = 20.5cm,z = 9.6cm). We visualise an example of our scene setup in Figure 5.11.

94



5.2. Single-view reconstruction of multi-object cluttered scenes

Figure 5.11: Our scene setup using a discrete TSDF representation of stacks of superquadric
shapes.

Rendering depth using TSDF raytracing

In order to obtain 2D data from our 3D scene to train on, the scene has to be projected onto a 2D

image plane through rendering. Rendering can be implemented using rasterization or raytracing

(see Section 3.5). Although rasterization is faster, it is less precise compared to raytracing. Since

our rendering method does not have to run in real-time, we choose raytracing and implement it on

the GPU to maximise efficiency.

Raytracing implementation details Raytracing is inspired by how we perceive things in the real

world — photons travel through space, interact with objects, get reflected and carry information

about the material they interacted with, with them. In ray tracing, we follow imaginary rays sent

out from the camera lens — one ray per image pixel — and traverse space until we encounter

objects. In a TSDF voxel grid this means stepping along each ray in step sizes s and probing the

content of the voxelgrid until hitting a surface, i.e. encountering a zero crossing. Implemented

on the GPU, our algorithm can step in parallel for every ray, logging the distance travelled and

reporting it back as a depth value, once a surface has been reached. For camera positions outside

of the scene grid, the intersection with the closest scene border is found by line-plane intersection

from which point onward we raytrace the voxel volume. Those rays that exit the scene grid without

having intersected an object surface or the floor, are set to the default maximum depth value of

1000. To accelerate our algorithm we use sphere tracing [Hart, 1996], which steps along the ray
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Figure 5.12: Left: illustration of the raytracer in 3D. Ray-surface intersections are highlighted in red and
the number of rays is subsampled for visibility. Right: the rendered depth image.

direction using the current value of the TSDF.

The raytracing module is parallelised on the GPU using the cupy library, which allows for smooth

integration of CUDA kernels with python code. With a kernel for every ray, we launch w⇥ h

kernels for every rendering call, according to the camera resolution. For a resolution of 640⇥480,

our implementation renders a depth image in 0.2ms.

We visualise the raytracing process and an example of a rendered depth image in Figure 5.12.

Training setup

To be useful in real-world settings, the method has to be able to function for any reasonable

viewpoint and be independent of the relative position of the camera with respect to the object

stack. To this end, the method has to be trained on random viewpoints.

Random viewpoint generation To achieve the highest variability in viewpoints and to avoid further

increasing the size of the dataset, the viewpoints are generated online — during training. For

every new viewpoint, a camera-centre position is sampled uniformly from a region around the

scene centre x,y,z, whereby x and y are sampled from �1m to 1m and the camera height z is

sampled between 10cm and 1m. To ensure the camera is not placed too close or inside an object,

positions with a distance below 78cm from the scene centre are discarded. This results in less

samples drawn from positions close to the scene centre and a distribution of poses as displayed in

Figure 5.13.

Data augmentation To avoid any bias in appearance along the x or y axis, we augment our dataset

with random rotations for each individual scene. To make the final method more robust to mis-

alignment between the camera and the scene centre, we additionally add small scene perturbations
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5.2. Single-view reconstruction of multi-object cluttered scenes

Figure 5.13: Distribution of poses after 10000 samples along the x, y and z axes. Samples are taken
uniformly, however samples whose overall pose results in a distance below 50 from the scene centre at
(0,0,0) are discarded, leading to the dip around zero for x and y and the drop in lower positions for z.

of a few centimetres around the centre.

Data pre- and postprocessing

Network input Our task is to generate a 3D scene with shape and instance segmentation from a

depth view, which is used to condition a 3D scene-prior VAE. Conditioning a 3D CNN on 2D

depth image features would require the network to implicitly learn a reprojection task. To let

it focus on the main task, we convert the input depth image into a partial TSDF by reprojecting

depth into the scene. We use inverse raytracing for this and sample along each ray to fill the voxels

in the camera view frustrum with the closest distance to a surface. The algorithm is parallelized

on the GPU and steps along each ray asynchronously. For each ray, steps of 25 mm are taken

until 1cm behind the surface, which is defined by the depth value at the current pixel. At each

step, the current distance to the surface is propagated to the neighbouring voxels using trilinear

interpolation: after obtaining the relative weights from trilinear interpolation between the current

sample position ds and all neighbouring voxel centres vn for n = 0, . . . ,4, every voxel centre vn is

updated with the weighted distance from the surface

vn = wtriln
⇤ds, (5.7)

where wtrilinearn
is the weight for vn obtained from trilinear interpolation. Parallelized, our al-

gorithm generates a partial TSDF in under 0.8 seconds and can be used in online training.

Shape refinement using superquadric fitting Our system outputs a TSDF and voxelised instance

segmentation of the compound object; if needed, additional post-processing can be applied (e.g.

primitive shape fitting, CAD-model fitting). To generate a compact representation, we propose the

following refinement procedure, which extracts a set of superquadrics with their poses from the

raw network output:
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Figure 5.14: Left: illustration of the inverse ray tracing algorithm generating the partial TSDF. Right:
example of a partial TSDF generated from a depth image.

First, we run marching cubes on the TSDF and sample from the resulting mesh to get a point

cloud. We segment this point cloud according to the voxelised instance predictions. We then

independently fit a superquadric to the Ni points belonging to the ith segment by minimising the

“mean distortion” [Chevalier et al., 2003], Ldist,i, given by:

Ldist,i =
1
Ni

Ni

Â
k=1

p
ai1 ai2 ai3 ·di(xi,k,yi,k,zi,k)

2, (5.8)

where

di(xi,k,yi,k,zi,k) = k��!OiPkk
fi(xi,k,yi,k,zi,k)�1

fi(xi,k,yi,k,zi,k)
, (5.9)

ai1, ai2, ai3 are the scale parameters and fi(xi,k,yi,k,zi,k) is the implicit equation from Eq. 5.1,

di(xi,k,yi,k,zi,k) is the approximate Euclidean distance to the surface [Bardinet et al., 1995], and

k��!OiPkk is the distance from the point to the superquadric center.

We then optimise for the parameters of all Q superquadrics together while adding in additional

cost terms to penalise collisions between superquadrics and intersection with the floor plane:

L =
Q

Â
i

2

4ldistLdist,i +lcoll

Q

Â
j=1
i6= j

Lcoll,i j +lfloorLfloor,i

3

5 . (5.10)
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The cost of sample points from superquadric j colliding with superquadric i, Lcoll,i j, is given by:

Lcoll,i j =
1

Nj

Nj

Â
k=1

1di(x j,k,y j,k,z j,k)<0 ·di(x j,k,y j,k,z j,k)
2 (5.11)

where 1 is the indicator function, and the cost of sample points from superquadric i colliding with

the floor plane, Lfloor,i, is given by:

Lfloor,i = 1zi,k<0 · z2
i,k. (5.12)

Experimentally, we found ldist = 100, lcoll = 10, and lfloor = 1 to work well. For both stages, we

minimised the cost function using the dogleg algorithm with rectangular trust regions, bounding

the superquadric parameters to enforce convex shapes.

5.2.2 Baseline experiments: 2D ) 3D shape & instances

Before learning a realistic scene prior, we evaluate how well a simple feed-forward learning-based

approach can predict the 3D shape and instance segmentation of a stack of synthetic superquadrics.

At the time of this work, there is no directly comparable work on 3D instance segmentation for

object groups and therefore the following two baselines are selected:

SSCNet Baseline The closest existing method is SSCNet [Song et al., 2017], which predicts a 3D

occupancy grid with semantic labels for multi-object rooms from a single depth image. As this

method does not predict instances, we use it as a baseline only for geometric reconstruction and

adapt it as follows: (1) we change the last layer to predict a TSDF; (2) we remove downsampling

(required only in large-scale scenes) from layers by adding padding as well as one upsampling

layer. We refer to this modified version as SSCNet
⇤⇤. A detailed overview of this adapted version

of SSCNet can be seen in Figure 5.15.

Fully Convolutional (FC) baseline As a second baseline, we use a fully convolutional network

predicting a TSDF and instance vector field from a single depth image. The input is encoded

using a partial TSDF encoder branch that includes residual blocks [He et al., 2016] with Squeeze

and Excitation (SE) [Hu et al., 2018], to be consistent with the main architecture (see Section

5.2.3). The decoder splits into two task specific decoder branches. This serves both as a baseline

for instance segmentation and an ablation study, showing the advantage of a learned prior over

direct prediction. We used no feature space compression, as we found it reduced convergence. A

detailed illustration of the FC Baseline can be found in Figure 5.16

Note that as an additional baseline, a simple model-based fitting approach could be considered.

However, although such an approach would be able to model object-specific occlusions, i.e. the
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objects which appear in the partial view will be completed using shape-symmetry, a model-based

fitting approach is by design unable to model any fully hidden objects; it would therefore only

provide a relevant baseline for scenarios where every objects is at least partially visible.

Loss function

When predicting a TSDF, areas close to the surface with lower values will incur a smaller penalty

than more distant positions. Other methods [Xu et al., 2019b] have proposed masking the loss by

applying a different weight near the surface. We observe that this approach adds a discontinuity

to the loss as well as an additional hyperparameter d for the mask area. Instead we propose a loss

which adds the inverse of the TSDF itself as a weighting factor:

LTSDF =
X

Â
x=0

Y

Â
y=0

Z

Â
z=0

1
|vx,y,z|+ e

||vx,y,z � v̂x,y,z||2, (5.13)

where vx,y,z and v̂x,y,z are the ground truth and predicted TSDF values at voxelgrid index (x,y,z), e

prevents division by 0 (set to 1e
�9) and ||.||2 is the L2-norm. We use the same loss for the partial

TSDF prediction and refer to it as Lp T SDF . For the instance vector voting task, we use the L2-norm

between predicted and ground truth center vectors ˆ̄c and c̄:

Lcenter votes =
X

Â
x=0

Y

Â
y=0

Z

Â
z=0

||c̄x,y,z � ˆ̄cx,y,z||2. (5.14)

We found that this led to better convergence for the instance segmentation task than using cosine

similarity.

Training details

We train both baseline models until convergence on the validation set, which we observed after 80

and 92 epochs respectively. We use the Adam optimiser [Kingma and Ba, 2015b] with a learning

rate of 1�3, decreasing every 8 epochs by a factor of 0.99.

Results

The results on the synthetic datasets show that both methods learn to reconstruct the visible region

well from random viewpoints, but struggle to reconstruct occluded regions, as demonstrated in

the qualitative results in Figures 5.17 and 5.18 and our quantitative results in Table 5.1. In the

following sections, we propose our method, which generates realistic 3D shape and instances in

visible as well as occluded regions.

100



5.2. Single-view reconstruction of multi-object cluttered scenes

Figure 5.15: Baseline model based on the SSCNet
⇤⇤ architecture adapted from the original model presen-

ted in [Song et al., 2017]. Our adaptation outputs a TSDF instead of an occupancy grid and removes
downsampling steps only required for large-scale scenes.

Figure 5.16: Fully convolutional (FC) baseline model architecture. Full TSDF and instance segmentation
(modeled as a vector voting field) are predicted from a partial TSDF obtained from a single view of the
scene. Please refer to Figure 5.19 for the SE Residual Module.

5.2.3 A conditional VAE for 3D shape and instance prediction

Learning a 3D scene prior for object stacks

As introduced at the beginning of this chapter, previous works have addressed reasoning for unob-

served 3D space in two predominant ways: leveraging a-priori knowledge about object symmet-

ries, or leveraging learnt shape priors. Unordered object stacks do not have inherent symmetry;

however, we observe that physics constrains decomposition as well as shape in occluded regions

and hypothesise that a latent space learnt from scenes built under physics simulation can serve as

a prior to better predict shape and instances in occluded regions. We propose to learn this prior

101



5. Reasoning about shape and instance of scenes with limited viewpoints

Figure 5.17: Qualitative reconstruction results of the SSCNet
⇤ baseline. Quantitative results can be found

in Table 5.1.

Figure 5.18: Qualitative reconstruction results of the fully convolutional baseline. Quantitative results can
be found in Table 5.1.

distribution using a deep generative model. Within deep learning, generative models are common

methods to approximate distributions from data and for our prediction task we select variational

autoencoders (VAE), a generative method that leverages variational approximation of the target

distribution. For the given task, the architecture of the VAE has to encode and decode two mod-

alities: the TSDF and the instance vector field. To this end, a 3D CNN with two encoding and

decoding branches is suggested, joined in a common bottleneck. We choose Residual blocks [He

et al., 2016] with Squeeze and Excitation (SE) [Hu et al., 2018] over conventional convolutional
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layers in the joint encoder and decoder of the VAE to avoid gradient underflow and favour context

integration. To learn a joint latent representation of the geometry and instance segmentation of a

scene, both TSDF and instance segmentation are compressed into one latent code of size 96. The

architecture is illustrated in Figure 5.19.

Figure 5.19: Shape and instance VAE architecture. A shape prior is learnt, by encoding geometry and
instance segmentation (modeled as a voting field) into one joint latent code.

As a first experiment, we verified that the common bottleneck produces a joint and consistent latent

representation of both shape and instance segmentation. To this end, we train our VAE architecture

on the dataset and inspected the sample space. Formally, our aim is to train a generative model

which learns the joint distribution over the data x and the latents z: p(x,z) = p(x|z)p(z) [Kingma

and Welling, 2019]. Within our Variational Autoencoder framework, p(z) is a zero-mean multi-

variate gaussian prior describing realistic pile configurations and the stochastic encoder p(z|x)

approximates the true posterior. p(x|z) is a stochastic decoder which, given a sample from the

learnt latent space, produces a realistic pile composition. In this initial experiment, we find that

the learnt latent space produces realistic pile compositions when sampled and that interpolation

between two random scenes shows realistic intermediate scenes as well as smooth transitioning,

keeping shape and instance consistent.

To enable 3D shape and instance prediction from 2D depth at test time, depth information has

to be integrated in the training process, This is achieved in form of a depth-conditioned VAE

architecture, described in the following section.

A depth-conditioned VAE

Ultimately, the goal is to predict 3D shape and instances from a single depth image. In the initial

experiments, we found that a lower dimensional latent space can be learnt, which jointly encodes

3D shape and instances of multiple objects in randomly composed stacks. To leverage this latent
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space as a prior in a depth to 3D prediction task, depth information has to be integrated into

training. In accordance with the baselines, these views should be randomly sampled around the

scene for view-independent performance of the model. A straightforward solution is to condition

the scene-prior VAE on extracted depth features during training. This also allows the latents to

focus on learning the occluded regions, while the reconstruction of the visible scene is guided

by the depth information. The training task can now be reformulated as p(x|g,z) = p(z|x,g)p(z)

where p(z|x,g) now also depends on the depth encoding g .

Network architecture details

The main VAE network architecture consists of the 3D scene prior VAE which learns a latent

space for realistic pile configurations, and a conditioning network whose encoding layers feed

their learned feature maps to the VAE, conditioning it on partial observations.

Conditioning autoencoder To learn descriptive depth features, the conditioning network is trained

as an autoencoder, encoding and decoding the partial TSDF generated from the input depth view.

Encoder and decoder each have 5 convolutional layers with 2 linear layers compressing the feature

maps into a 1D bottleneck of 96. The encoder feature maps are used to condition the encoder and

decoder of the shape and instance VAE.

Shape and instance VAE Our VAE’s encoder maps input TSDF and instances to a common feature

space using two convolutional layers for each modality. The resulting feature maps are concaten-

ated and further compressed using 5 joint encoding layers. One linear layer maps our 3D feature

space to our 1D latent code of size 96 while 2 linear layers map it back to 3D. Our VAE 3D de-

coder mirrors our encoder. We use batch normalisation (BN) and PRelu activations in all of our

hidden layers. Our architecture can be seen in Figure 5.20.

Inference At inference time, the encoder of the shape and instance VAE is dropped and only the

generative decoder is leveraged to probabilistically complete the occluded regions, based on the

features obtained from an input depth image, by sampling from the learnt scene prior. Figure 5.21

illustrates the architecture at test time.

Loss function

For TSDF reconstruction and instance segmentation we use the loss functions LT SDF and Lcenter votes

introduced for our baseline experiments in Section 5.2.2. To approximate our prior, we empiric-
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ally found that training using the Maximum-Mean Discrepancy DMMD [Zhao et al., 2017b] led to

better convergence than using the standard KL-divergence [Kingma and Welling, 2014]. Our final

loss is composed of 4 components:

Ltotal = aLT SDF +bLp T SDF+

gLcenter votes +dDMMD.
(5.15)

We set a = b = g = 1 and d to 1e
5.

Figure 5.20: Depth-conditioned shape and instance VAE architecture. The Shape and Instance VAE is
trained jointly with the depth feature encoding network. Input depth is transformed into a partial TSDF to
simplify the training task.

Figure 5.21: Depth-conditioned shape and instance VAE architecture at inference time. 3D shape and
instance VAE encoder is dropped and samples are drawn from the learnt prior. Given a randomly drawn
sample and conditioning features extracted from a single depth view of the scene, full scene reconstruction
is generated. While the visible reconstruction remains constant, the occluded regions are probabilistically
reconstructed based on different samples drawn from the prior.
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Training details

We train both models (shape and instance VAE, depth-conditioning autoencoder) jointly, until

convergence on the validation set, which we observed after 130 epochs. We use the Adam optim-

iser [Kingma and Ba, 2015b] with a learning rate of 1�3, decreasing every 5 epochs by a factor

of 0.99. By using the Maximum Mean Discrepancy instead of the KL distance, we do not need

to follow the warm-up scheme suggested by [Higgins et al., 2017] and keep the weighting d of

DMMD at 1e
5 throughout the entire training. At training time, the model input consists of both a

randomly sampled viewpoint (see Section 5.2.1) and the full 3D model of the scene (TSDF and

3D vector field).

5.2.4 Experiments and evaluation

In the following, we present the experiments with which the proposed method is tested and eval-

uated. The first experiments are performed on synthetic data to verify that our method works for

unseen object stacks and outperforms the baselines. To ensure that the method can be employed

for real scenarios, its performance is also tested on real data. Overall we aim for a method which

1) accurately reconstructs the visible 3D shape of a scene of multiple stacked objects, 2) generates

an estimate of the occluded regions of the scene, consistent with the visible region, 3) segments the

objects in the scene into instances, 4) generalises to real data. To this end, the following sections

present our experiments for quantitatively evaluating reconstruction accuracy, instance segment-

ation (scene decomposition) as well as qualitative examples demonstrating realistic proposals for

occluded regions and good performance on real data.

Test datasets

The proposed method is evaluated quantitatively and qualitatively on two synthetic datasets as

well as a number of real data examples. For the evaluation on synthetic data, we use our own test

dataset of superquadrics stacks (1419 scenes) as well as a dataset composed of YCB objects (256

scenes) to demonstrate generalisation to very different objects. The latter contains YCB objects

with IDs: 2, 3, 4, 5, 7, 8, 9, 10, 36, 61 which can be approximated by a single superquadric.

To generate object stacks, the same procedure is used as for the synthetic superquadric scenes

(Section 5.2.1). Examples of the YCB test dataset are displayed in Figure 5.22.
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Figure 5.22: YCB dataset examples. All scenes are generated by random placement under physics simu-
lation with Pybullet.

Figure 5.23: Left: Ground truth with the visible part of the mesh highlighted in red. Right: 3 random
latent code samples generated by our network. Note how every sample has different reconstructions in the
occluded areas, which are plausible but would yield high reconstruction error with respect to the ground
truth TSDF.

Reconstruction accuracy

Evaluation procedure Comparing the full reconstruction to the ground truth scene will unfairly

penalise the network in occluded regions for reconstructions which are plausible, but differ from

the ground truth (see Figure 5.23). We therefore evaluate our method on the visible surface area

and the full reconstruction separately. To show how performance differs depending on how much

of the object stack is visible from a given viewpoint, we report results by surface visibility. Note

that given a single view, the maximum surface visibility of a pile is around 50%, since the back

will always be occluded. Since our method is viewpoint agnostic, we evaluate every test scene

from 3 random viewpoints uniformly sampled from the same ranges used during training (see

Section 17). We ensure the distance between camera and scene centres is at least 70cm. For every

viewpoint, we generate a 3D scene and compute the average reconstruction accuracy for 3 latent

code samples to account for variability.

Visible surface evaluation To evaluate surface reconstruction accuracy, we extract a mesh from

the generated and ground truth TSDFs using marching cubes. We obtain the visible surface by
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extracting all visible faces using ray-triangle intersection with the generated mesh. For every ray

we find all faces it intersects and extract the closest one. We produce 1000 uniform samples from

the extracted surface and evaluate the bidirectional chamfer distance between ground truth and

predicted point sets, Pm and Pk:

CD =
1

Nm

Nm

Â
xi=0

min
x jePk

(xi �xj)+
1

Nk

Nk

Â
xi=0

min
xiePm

(xj �xi) , (5.16)

where xi and xj are the 3D coordinates of sampled points from Pm and Pk respectively.

Full reconstruction evaluation We evaluate the full reconstruction in terms of surface reconstruc-

tion accuracy and predicted voxel occupancy. For the former we compute the chamfer distance

between 1000 samples from the full predicted and ground truth mesh surfaces. For the latter we

compute the binary cross entropy (BCE):

� 1
N

Â
W

yi log(
1
S

j=S

Â
j=0

ŷ j)+(1� yi) log(1� 1
S

j=S

Â
j=0

ŷ j) , (5.17)

where N is the voxelgrid resolution 643, S is the number of latent code samples taken per view-

point, which we set to 3 and ŷ and y are the predicted and ground truth occupancy value respect-

ively, computed as follows:

Occupancyx,y,z =

8
><

>:

1 if T SDFx,y,z > 0

0 if T SDFx,y,z <= 0
(5.18)

Scene decomposition (instance segmentation)

Similarly to the reconstruction accuracy, it is impossible to make an exact quantitative evaluation

of our method’s instance segmentation since decomposition estimates in occluded regions can

be plausible even when very different from the ground truth. In Figure 5.30, for example, our

method hypothesises plausible hidden objects, although the ground truth does not contain one.

We therefore decided to evaluate instance segmentation as a valid scene decomposition which

generates stable piles in physics simulation.

Stability evaluation under physics simulation We evaluate stability by loading our generated 3D

meshes into the PyBullet physics engine and simulating 10000 steps with a gravity setting of

of 10 m

s2 along �z, a friction coefficient of 1 and assuming uniform density. We compare our

method against our FC baseline (which provides instance segmentation) in terms of object center

displacement after simulation and report results in Table 5.1. Our method outperforms the fully
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convolutional baseline by over 50cm on both our test datasets indicating that the collections gener-

ated by our method are generally more stable and hence plausible. Note that in the case of rolling

objects as well as intersecting objects (causing objects to be pushed apart due to contact force),

average object displacement can become large.

Comparison to baselines We evaluate our baselines using the same procedure and display our

quantitative results in Figures 5.24, 5.25 , 5.26 and Table 5.1. Note that we set S to 1 in 5.17 for

our baselines and just use the prediction ŷ.

Evaluation of instance segmentation using a measure of stabiliy In addition to the main evalu-

ation, a more intuitive evaluation of stability is proposed: in the case of bad predictions (unstable

decompositions), rolling objects as well as intersecting objects, pushed apart by contact force can

cause large object centre displacements. To dampen the effect of outliers, the percentage of stable

piles according to a stability threshold, is estimated, determined through observation. To allow

some shuffling of objects, but exclude falling objects, the following threshold is set: a stack is

defined to be stable if none of its composing objects’ centres move by more than 20cm and all

objects’ orientation change stays within 30�. The percentage of stable stacks by surface visibility

on test data is displayed in Figure 5.27.

Qualitative results on synthetic data The qualitative results on synthetic displayed in Figures 5.28

demonstrate that our method generates realistic shape and instance segmentation, consistent with

the visible regions, compared to the baselines which produce unrealistic reconstructions — they

often miss objects or produce non-supported, flying objects.

Figure 5.24: Chamfer distance for 1000 samples on our test dataset of superquadric shapes (left) and our
test dataset of object stacks composed of YCB objects (right). We plot results for different surface mesh
visibility ratios. VS: Visible surface. FS: Full surface
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ours FC SSCNet**
avg. Chamfer Distance (m) #

(µ) (s ) (µ) (s ) (µ) (s )
visible surface (SQ dataset) 0.016 0.0002 0.044 0.002 0.036 0.002

full surface (SQ dataset) 0.028 0.0003 0.062 0.107 0.03 0.002
visible surface (YCB dataset) 0.036 0.002 0.076 0.006 0.065 0.008

full surface (YCB dataset) 0.062 0.007 0.098 0.011 0.116 0.009
BCE of the expected occupancy #

SQ dataset 0.089 0.003 0.175 0.005 0.247 0.008
YCB dataset 0.112 0.006 0.236 0.029 0.242 0.015

avg. object centre displacement (m) #
SQ dataset 0.593 1.28 1.112 5.441 – –

YCB dataset 1.216 4.734 1.756 6.494 – –

Table 5.1: Comparing our C-VAE to the two baselines in terms of chamfer distance, BCE of expected
occupancy and stability under physics simulation. We report the average results for 3 viewpoints per scene
for our SQ test dataset and our YCB object test dataset.

Figure 5.25: We compare our conditional VAE against SSCNet
⇤⇤ and our fully convolutional (FC) baseline

for predicted (expected) voxel occupancy. Left: test dataset of superquadric shapes Right: our YCB object
test dataset.

Real data experiments

To qualitatively evaluate the proposed method on real data, we collect RGB-D images of col-

lections of small to medium sized household objects (leveraging ORB-SLAM [Mur-Artal and

Tardós, 2017] to obtain camera poses) and post-process them by 1) segmenting the floor plane

using RANSAC [Rusu and Cousins, 2011] and 2) rectifying the roll and pitch of the camera pose

by aligning the floor plane normal with the vertical axis. Examples can be found in our qualitative

results (e.g., Figures 5.31 and 5.29).

Our results (Figure 5.31, 5.29 and 5.30) show that our method generates correct 3D reconstruction,

realistic occlusion proposals and instance segmentation for a number of real world examples. Our

example in Figure 5.30 shows that our method realistically fills in the occluded area below the box
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Figure 5.26: We compare SIMstack and our fully convolutional (FC) baseline in terms of stability under
physics simulation (10000 steps) by computing the average object displacement per object stack (m). Left:
test dataset of SuperQuadric shapes Right: our YCB object test dataset.

Figure 5.27: Percentage of stable piles generated according to our stability threshold (all objects center
displacement stays within 20cm and all objects orientation change stays within 30�). Left: test dataset of
SuperQuadric shapes Right: our YCB object test dataset.

by extending its shape to the floor. When sampling from the latent space, it is able to hypothesise

different occluded objects. In particular, our example in Figure 5.29 (3rd row) shows that our

network is capable to hypothetise a supporting object which is completely occluded, but required

to support a leaning box. We also evaluate our method on YCB video sequences (Figure 5.29).

5.2.5 Discussion

Our method outperforms both baselines for full reconstruction and visible surface reconstruction,

showing its overall advantage for reconstructing and decomposing a 3D scene. Note that the

gap between visible and full surface reconstruction is largest for SSCNet
⇤⇤, but more comparable

between the FC baseline and our method. As expected for all methods, with lower visibility, full

surface reconstruction accuracy drops faster than visible surface accuracy. The drop is however
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5. Reasoning about shape and instance of scenes with limited viewpoints

Figure 5.28: Qualitative comparison of our method against our fully convolutional baseline (FC) and our
SSCNet baseline SSCNet

⇤⇤ on examples from our SQ test dataset and our YCB test dataset.

most pronounced for SSCNet
⇤⇤. These observations suggest that while using a prior improves

overall performance, a large improvement in predicting occluded space is achieved by jointly

predicting shape and instances. Perhaps, this is not surprising since our own reasoning about how

space is shaped and how shapes can be completed in occluded regions is highly correlated with
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Figure 5.29: Top to bottom: SIMstack outputs object shapes and instances from a single depth view on
two YCB sequences and two real data examples, one with a fully occluded object supporting a leaning box
(3rd row), for which our model predicts a plausible proposition. Right: Grasping demo setup (green: target
object).

Figure 5.30: Sampling from the latent space for a real data example. We see multiple pile samples which
all look similar from the point of view of the input depth observation (top) but significantly different though
all plausible from the back (bottom).
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5. Reasoning about shape and instance of scenes with limited viewpoints

Figure 5.31: Qualitative results on real data examples. Our method generates 3D shape and instances from
single depth views.

our knowledge about the decomposition of the scene into objects.

Our method is able to generalise to real-world data, even though it was only trained on synthetic

scenes. Note that this sim-to-real transfer is largely due to the fact that we use depth inputs

instead of RGB images. The difference between simulated and real depth is much smaller than

that between simulated and real RGB images, which are highly susceptible to lighting variations

and the properties of materials such as brilliance and specularity. Note however, that the system

still requires the depth maps to be of a certain quality and that the observed objects are of similar

scale compared to the objects seen at training time.
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5.3. Integrating multiple views

5.3 Integrating multiple views

Providing a shape and instance decomposition estimate for a scene from a single view is useful,

but not very scalable in real-world settings if the initial estimate cannot be optimised from ad-

ditional observations: Single-view predictions from different viewpoints would produce different

estimates in their respective occluded regions and stand-alone, these estimates would have to be

fused into a final reconstruction. To this end, the above method is extended to integrate multi-view

reconstruction in two different ways: multi-view conditioning and multi-view optimisation.

5.3.1 Multi-view conditioning

The generative decoder can be conditioned on a partial TSDF generated from fusing multiple

depth images. To implement multi-view conditioning, multiple depth views are backprojected

into the scene using the inverse raytracing method described in Section 5.2.1. We update every

voxel with the minimum distance as follows:

vn = min(wtriln
⇤di,dn) (5.19)

where dn is current depth at the voxel vn and di is the depth obtained from the new measurement.

The TSDF voxel grid is initialised to the truncation value before backprojecting.

Figure 5.32: Left: 2 arbitrary depth images rendered from a test SQ scene. Right: the fused multi-view
partial TSDF.
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5.3.2 Multi-view optimisation

Our method encodes a 3D multi-object scene into a lower dimensional representation in form of

a latent code. Given variational training, this latent code is actually a distribution over the entire

dataset, with an approximately gaussian shape. This means it is smooth, as demonstrated in the

interpolation experiments in Section 5.3.5. This property allows for optimization with respect

to external information, e.g., novel views as previously demonstrated in [Sucar et al., 2020]. At

test time, the model extracts features from one partial observation, which condition the generative

decoder of the shape and instance VAE. A random latent code sample from the learnt prior then

produces a full 3D shape and instance decomposition, given the conditioning depth view. While

the conditioned decoder features are kept constant, locking the representation of the first depth

view, the latent code can be optimized against additional views. To achieve this, we have to use

differentiable rendering, which allows backpropagation of an error from the rendered view to the

latent code (see Figure 5.33).

Figure 5.33: Illustration of differentiable rendering to optimise the learnt scene prior w.r.t a novel view.

5.3.3 A differentiable renderer for raytracing a SDF

Our differentiable depth renderer is based on SDF raytracing. Similarly to [Jiang et al., 2020],

we use sphere tracing to render depth. While stepping along each ray, we compute the exact

SDF value using trilinear interpolation. [Jiang et al., 2020] only backpropagate the gradients into

the immediate neighbourhood of each ray-surface intersection, which is correct when using a
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depth-image based loss. Since we use a more precise SDF based loss (Equation 5.20), we need

gradients in the entire field of view of the camera. Although there has been recent work on fully

differentiable sphere tracing [Liu et al., 2020], we choose a simpler approximation, sampling SDF

values at regular intervals along every ray outside the surface to backpropagate gradients within

the entire camera frustrum. We estimate our gradients using the binary loss described by Equation

(5.21). Parallelised, our method can render the full cost image at an average runtime of 0.192s at a

resolution of 640⇥480. In comparison, [Liu et al., 2020] render an image of 512⇥512 in 0.99s.

Cost function

Although related approaches use a depth loss to optimise their latents [Jiang et al., 2020, Su-

car et al., 2016], we observe that for a TSDF representation, using a depth-based loss can lead

to discontinuities at occlusion boundaries. To this end, we design an SDF-based cost function

composed of two parts: one describing the loss at the visible surface and one for the visible,

unoccupied region of the scene.

Let p�1 be the function which backprojects a pixel ui of the depth image into the 3D scene and I

is the trilinear interpolation function which obtains the TSDF value at that point. The surface loss

is:

Lsurface = Â
W

I(p�1(ui)). (5.20)

The current TSDF is optimised towards alignment with this surface data, but this loss doesn’t

constrain on visible regions of empty space. We therefore define an empty space loss which

penalises the code if it produces a negative TSDF value in observed empty space. We sample at

regular intervals along rays in all regions of observed empty space and define the empty space

loss, which has a ‘space carving’ effect: Lempty space = Âs Lempty space,s, where:

Lempty space,s =

8
><

>:

|I(s)| if I(s)< 0

0 if I(s)> 0
. (5.21)

Here, s is a sampled TSDF value. Our final cost function is the simple sum of both losses:

L = Lsurface +Lempty space. (5.22)

Figure 5.34 shows the cost volume for surface intersection areas as well as the cost volume after

the additional sampling in the visible camera frustrum.

Optimisation (implementation details) We use first-order optimisation to optimise our latent

code against additional depth images. Given the initial, conditioning view, additional views for
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5. Reasoning about shape and instance of scenes with limited viewpoints

Figure 5.34: Visualisation of the cost volume generated by Equation 5.22. Left: the cost volume generated
by considering the surface intersection areas of the backprojected depth. Right: the full cost volume
obtained after sampling the visible area and applying equation 5.21

latent code optimisation can be selected from any new viewpoint. Once the loss L is computed, we

backpropagate the gradients into the voxel-grid using inverse raytracing and trilinear interpolation,

parallelised on the GPU. For multiple depth images, we accumulate the gradients of all views. We

then leverage PyTorch autograd to backpropagate the gradients through the generative decoder of

our conditional VAE and use the Adam optimiser to generate gradient updates.

Runtime Our multi-view conditioning method’s runtime only depends on the time to generate a

partial TSDF (5.2s for 6 views using our TSDF fusion method) from multiple views as the forward

pass time stays constant. It clearly outperforms our multi-view optimisation method which takes

21s and 75s to optimise against 1 and 6 views respectively, for 30 iterations.

5.3.4 Multi-view experiments and evaluation

We evaluate the performance of our method using multi-view conditioning and multi-view op-

timisation. We use simple TSDF Fusion as a baseline which we implement using the method

described in 5.2.1. For a fixed sequence of 6 viewpoints that are selected manually (see Figure

5.35 for examples), we compare the reconstruction quality for the superquadric test dataset. For

multi-view conditioning, we average reconstruction accuracy over 2 latent code samples. Note

that the first view covers on average 30% of the test scenes. For multi-view optimization, we con-

dition on the first view and optimise the latent code against the additional views. Our experiments
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show that multi-view conditioning generates the best reconstruction and that both our multi-view

methods outperform TSDF fusion, even at very high visibility. We attribute this to the fact that

our generative method also reconstructs the bottom of objects, which will always be occluded and

therefore cannot be reconstructed by simple TSDF fusion. Our example in Figure 5.36 shows how

a scene reconstruction is updated with additional views.

Figure 5.35: Multi-view estimation. Left: the 6 viewpoints for which we evaluate. Right: Chamfer
Distance (1000 points) for increasing views of TSDF Fusion, multi-view conditioning (MV Conditioning)
and multi-view optimisation (MV Optimisation).

Figure 5.36: Visual example comparing the result of the multi-view Conditioning and multi-view optim-
isation methods with the output of simple TSDF fusion using the same viewpoints. Rows 1-3 reconstruction
(and instance segmentation) after 1 to 3 views respectively. Both multi-view conditioning and optimisation
methods generate plausible shape reconstruction and instance segmentation in occluded regions.
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5.3.5 Latent code analysis

In the following experiments, the learnt latent space (shape and instance prior) is analysed for

sample quality and variety as well as smoothness and consistency.

Sampling from the latent space Given the design of our C-VAE, sampling from its latent space

generates different proposals for occluded regions, while reconstruction of the visible surface

stays constant. We show example of this on our Superquadrics test dataset in Figure 5.37. We

show the mean scene (zero code scene) along with random latent code samples for a random

viewpoint.

Sampling with multi-view information We condition our VAE on depth information to improve

reconstruction in visible regions and to allow the latents to focus on occluded regions; sampling

from those latents generates a variety of propositions for shape and instance segmentation of those

hidden regions. Adding additional views increases the information about 3D space and should

show a decreasing variety in latent space samples. We demonstrate this on an example from our

Superquadrics test dataset in Figure 5.38.

Figure 5.37: Sampling from the latent code of our conditional VAE. Given a single depth image of the
superquadric test dataset (left), we generate the zero code scene and three latent code samples from the
network.

Latent code interpolation We qualitatively evaluate the smoothness of our latent code by interpol-
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Figure 5.38: How sampling variety changes as views are added. Left: Ground truth and visible mesh area
overlay (red). Right: 3 random latent space samples (without SQ fitting) for each view; as data is added
the samples are increasingly constrained.

Figure 5.39: Latent code interpolations between two random latent code samples, conditioned on one
view. We show three examples of interpolating between scenes with the same number of instances .

ating between random latent code samples of a depth-conditioned 3D reconstruction. Given a test

scene and one viewpoint, we interpolate between two latent code samples to generate intermediary

scenes. Our interpolations show a visibly smooth transition between scenes with the same number

of instances (see Figure 5.39) as well as realistic intermediary scenes for interpolations between

scenes of varying numbers of instances (see Figure 5.40): in the first example, the small object

on the top left present in sample 1 becomes smaller, then merges into a long object which then

shortens as interpolation approaches sample 2.
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Figure 5.40: Latent code interpolations between two random latent code samples, conditioned on one
view. We show four examples of interpolating between scenes of varying numbers of instances.

5.4 The pipeline: SIMstack

An overview of the full training pipeline of the SIMstack method can be seen in Figure 5.41. At

test time our method can take as input one or more depth images and generates both the complete

TSDF of the object stack and a center-voting vector field, which, processed by our 3D Hough

Voting algorithm, provides instance segmentation. The output is then further refined by fitting a

superquadric to each predicted mesh (overview in Figure 5.42). In practice, depth images obtained

from a real camera have to be aligned to the floor plane, rectifying roll and pitch as was described

in more detail in section 5.2.4.

Figure 5.41: Overview of our method at train time. Networks are trained jointly. Pre-processing steps
(grey) are not optimised.
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Figure 5.42: Overview of our method at test time for a single depth view input. Note that it is also possible
to combine multiple depth images into a joint partial TSDF for multi-views scene prediction.

5.5 Application: precise robot manipulation

Figure 5.43: Two examples from our grasping system. Target objects are highlighted in green. The first
example shows the robot sliding the target object sideways, leaving the other objects undisturbed. The
second example grasps the object from the side and pulls it out such that the top resting object slides onto
a lower supporting object, causing minimum disruption to the stack.

Robotic grasping is a well studied problem [Bohg et al., 2014] and an active area of research [Pinto

and Gupta, 2016, Mahler et al., 2017, James et al., 2019b]. However, many state-of-the-art grasp-

ing systems perform indiscriminate grasping, with no regard of how the grasp might effect sur-

rounding objects. However, multi-object reasoning is essential when grasping in cluttered scenes;

grasping in an imprecise manner may topple a stack and cause damage to fragile objects. In this

section, we show how SIMstack can be used to perform precise 6D grasping of a target object

while minimising disruption to surrounding objects.

Our grasping demo consists of a real stack of (unknown) objects, a Franka Panda robot arm, and a

suction gripper. An image of the scene is fed to SIMstack which outputs meshes and poses. These,

along with a target object, are loaded into CoppeliaSim/PyRep [Rohmer et al., 2013, James et al.,

2019a] where 5 virtual cameras are used to create a pointcloud of the visible surface of the stack.

The target object’s pointcloud is extracted, and grasping locations are sampled based on surface

normals. We exhaustively simulate each valid grasp and measure the mean displacement of all
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objects (excluding the target object) after the grasp has been made. The grasp which produces

the lowest mean displacement is chosen to run on the real platform. Note that due to COVID

restrictions, we were unable to show the grasps running on the real robot. Two examples of

successful grasps in simulations based on SIMstack reconstructions of real object piles are shown

in Figure 5.43.

5.6 Performance on more complex scenes

Although only trained on 3-4 objects, SIMstack generalises well to scenes with up to 7 objects (see

Figures 5.44 and 5.44). We attribute this to the fact that our formulation of instance segmentation

is independent of the number of objects in the scene and that our model learns from scenes with

varying number of objects. Our method also shows some ability to generalise to non-convex

objects (see Figure 5.46).

Figure 5.44: Qualitative results on scenes with 7 objects, demonstrating the ability of our method to
generalise to more objects.

5.7 Conclusion

This chapter proposed a novel method to generate 3D shape and class-agnostic instance segment-

ation for multiple stacked objects from a single depth image. The method is based on the idea that

a learnt scene-prior which encodes both the shape and instance segmentation of scenes can act as

an intuitive physics prior for realistic object stacks, improving reconstruction and segmentation in

occluded regions. We propose to learn the scene-prior using a VAE which is conditioned on depth

features obtained from a random viewpoint. To test our hypothesis, we learn such a scene prior
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Figure 5.45: Qualitative results on scenes with 7 objects, demonstrating the ability of our method to
generalise to more objects.

for a dataset of parametric shapes, randomly assembled under physics simulation and validate its

performance on real data examples. The final system, termed SIMstack, is further tested on an ap-

plication of non-disruptive grasping. Finally, we propose two methods for integrating additional

view into the system to make it a candidate for incremental mapping systems.

SIMstack can generate a 3D shape and instance decomposition of a collection of (convex) objects

from a single depth view. This output allows for a quick estimate of shape and instance decom-

position, which could be used for downstream applications (e.g to initialise a multi-view scanning

system to capture more detail [Wada et al., 2020]) and allows for fast multi-object reasoning, use-

ful for interactive tasks such as the precise (non-disruptive) grasping we demonstrate. We believe

our approach can play an important role in rapid scene understanding to help embodied AI systems

make physically intuitive interpretations of ambiguous scenes.

One of the limitations of the system is over- and under-segmentation of objects which are in

close proximity to one another and cannot easily be distinguished from a depth image alone.

Leveraging the texture from RGB images will likely allow the system to more accurately segment

ambiguous data. However, using raw RGB input makes the generalisation task harder, due to

lighting variations and the properties of materials such as brilliance and specularity. Instead,

one could leverage intrinsic image decomposition [Ma et al., 2017b] to obtain the reflectance

image, which is free of any lighting dependent features. We believe this would be an interesting

extension of our work. Another limitation of SIMstack is that it cannot represent non-convex

shapes. Extending this work to non-convex objects would be another promising future research

direction.

125



5. Reasoning about shape and instance of scenes with limited viewpoints

Figure 5.46: Qualitative results on real scenes with non-convex objects. The raw mesh segmentation of
SIMstack is able to estimate shape and decomposition of scenes with non-convex objects.
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CHAPTER 6

Decomposing multi-object scenes

into factorised latent spaces

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.1.1 Explicit, implicit and latent scene representations . . . . . . . . . . 128

6.1.2 Methods to generate factorised scene representations . . . . . . . . 130

6.1.3 Motivation and approach . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Decomposing a scene into object-specific latent codes . . . . . . . . . . . . 133

6.2.1 Set prediction from a 3D scene . . . . . . . . . . . . . . . . . . . . 134

6.2.2 Scene decomposition from a single view . . . . . . . . . . . . . . . 140

6.2.3 A depth-conditioned VAE for single-view scene decomposition in

latent space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.1 Introduction

The last chapters addressed the task of semantically annotating 3D scenes when a large amount

of views is available and how to reason about missing data in terms of shape and instance seg-

mentation when only one or few views are available. Both projects assume a global scene rep-

resentation, explicitly, as a height field and implicitly, as a joint scene latent code. For the height

map representation (Chapter 4), the segmentation is added externally to every scene element and

one difficulty lies in accurately labelling the geometry, in particular, in border regions. Further-

more, explicitly representing geometry and annotations can become expensive for large scenes.
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The global scene code of SIMstack (Chapter 5) offers a more compact representation and both the

shape and instance segmentation of a full scene are jointly encoded. However, it is not possible

to extract the encoded representation of an individual scene component and generate a separate

reconstruction of it. For this, the scene encoding would have to be compositional, i.e. factorised.

This chapter is concerned with creating such a factorised representation of a scene - which we refer

to as object-centric scene representation, a representation that consists of a collection of individual

scene components, each separately encoded into their respective lower dimensional latent code.

We focus on the particular setting of SIMstack (see Chapter 5), where a compositional scene rep-

resentation will alleviate the pipeline of some of the post-processing methods and will likely make

the system more scalable to larger collections of objects. Furthermore, a seperate latent repres-

entation per object could facilitate segmentation and reconstruction of non-convex object shapes,

since object features would be disentangled and object-specific. Extending SIMstack to a system

which can handle very large collections of non-convex objects would make it a powerful depth to

3D reconstruction and segmentation system that can be applied in many real-world settings with

arbitrary shape types. Understanding how to generate an object-centric scene representation will

also be of value for scene representations in general, making them more interpretable and facilit-

ating scene manipulation and interactions such as object removal or addition for the composition

of novel scenes.

6.1.1 Explicit, implicit and latent scene representations

How a scene is represented and stored in memory is a crucial aspect of scene understanding, as it

governs both the memory requirements for the system using that representation, as well as the way

downstream applications (e.g. path-planning or grasping algorithms) will interact with it. Most

current state of the art SLAM systems use global scene representations such as a voxelgrid [Huang

et al., 2021], surfel-based representations [Whelan et al., 2015] or global scene mesh represent-

ations [Bloesch et al., 2019]. In some cases, these representations are augmented with semantic

or instance labels, and these external annotations can be used to segment respective areas of the

global scene representation into its individual components. While a global representation has the

advantage of simplicity and geometric consistency, having to decompose the full representation

based on external annotations can have several drawbacks. First, both semantic and instance seg-

mentation methods are far from accurate and labelling is often inconsistent and bleeds over object

borders; this can lead to very noisy and inaccurate decompositions. Secondly, a top-down ap-

proach always needs to start from the full 3D representation to segment, which can be inefficient.
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With the goal to obtain more compact and expressive scene representations, much research has

been focussing on lower-dimensional representations of 2D and 3D space with deep latent vari-

able models (e.g. autoencoders, variational autoencoders (VAE), generative adversarial networks

(GAN)). In addition to providing a compact scene encoding, latent models are very effective

feature extractors and are important for representation learning. Finding a lower dimensional

encoding of a scene means being able to extract descriptive features which in turn is an import-

ant prerequisite for a model to make useful predictions. While some deep latent variable models

such as autoencoders use their representations as a deterministic encoding, generative models such

as VAEs and GANs learn a latent space which represents the underlying data distribution. The

powerful latent representations learnt by such models have been used for advanced applications

such as natural image generation [Karras et al., 2019, Park et al., 2019b, Wang et al., 2020a],

image inpainting [Greff et al., 2019] or even lip motion transfer [K R et al., 2019]. Most works

still focus on images and single object representations [Park et al., 2019a], however, some have

attempted to learn latent representations for scenes [Kosiorek et al., 2021] and SLAM system

components [Bloesch et al., 2018]. A recently emerged scene encoding method which is gaining

popularity are neural scene representations, whereby an entire object or scene is encoded inside

neural network weights [Mescheder et al., 2019, Park et al., 2019a]. These methods are often

referred to as implicit representations and have proven effective for several applications such as

novel-view synthesis and shape generation [Mildenhall et al., 2020, Chen and Zhang, 2019].

While encoded scene representations offer compactness, they generate highly correlated repres-

entations of all contents of a scene, a characteristic often referred to as entanglement. Entangle-

ment reduces interpretability and accessibility of a representation, since individual features can’t

be easily viewed, extracted or manipulated. Furthermore, in many cases, detail is lost because

all elements of a large scene are encoded into a very compressed representation. A whole line of

work has been dedicated to the generation of disentangled latent representations [Watters et al.,

2019, Higgins et al., 2017], whereby the encoding is generated in such a way that individual parts

of the latent space are disentangled from others and are individually responsible for different fea-

tures of an object or a scene. Such an disentangled representations can then be leveraged to change

individual features of the scene such as colour, rotation or shape [Higgins et al., 2017].

The factorised, object-centric scene encoding we are aiming for is essentially a fully disentangled

latent representation, whereby the features are clustered per object or scene component. A few

approaches have attempted to obtain such compositional latent spaces using different methods; an

overview is provided below.
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6.1.2 Methods to generate factorised scene representations

2D image decomposition

The first methods that address object-based image decomposition with deep learning methods,

approach the problem from a patch composition angle, decomposing into a set of bounding boxes,

one for every object, and the background: [Eslami et al., 2016] propose a deep latent variable

model Attend, Infer, Repeat (AIR) for unsupervised object discovery. They use an RNN as the

encoder model, which at each step predicts and encoding of the shape and pose of one object. The

final structure is a composition of per-object latent codes z
i, which are then decoded into patches

which compose the original image. Interestingly, they find that using this structural bias of scene

factorisation in their representation improves the generalisation capabilities of their model. [Craw-

ford and Pineau, 2019] combine ideas from the AIR system [Eslami et al., 2016] and one-stage

object detection methods such as YOLO [Redmon et al., 2015] into a more scalable unsupervised

object detector. They replace the recurrent encoder network of AIR with a CNN that predicts

a global feature volume. This feature volume is interpreted as object feature vectors in a grid

(similarly to the YOLO detection pipeline - see Figure 3.12). Object representing feature vec-

tors are filtered by predicted existence probability and are further refined into object descriptors

through a joint MLP. Finally, they are individually decoded into their RGB appearance and used

with a decoder to compose the final image. To reduce duplicate object latents, for every object

descriptor prediction, neighbouring object descriptors are sampled and concatenated before re-

fined by the MLP (a hand-crafted equivalent to attention-based mechanisms used in some current

state of the art object detectors). Although these patch-based decomposition approaches show

promising results, their bounding box representation of individual components lacks descriptive-

ness of the actual object shape.

Approaching the problem from a different angle, several researchers have developed pixel-wise

gaussian mixture models of scenes, whereby every gaussian component k represents an image-

sized scene component xk 2 IRNxM. [Greff et al., 2017] propose Neural Expectation Maximisation

(NEM), a scene representation modelled as a spatial mixture model, parameterised by a collec-

tion of neural networks which each learn a function that describes one individual object in the

scene. [van Steenkiste et al., 2018] build on the work of [Greff et al., 2017] and extend their

spatial mixture model with the ability to infer object interactions. They are motivated by the

goal of physical modelling and argue that to be able to reason about objects and their interac-

tions, a compositional representation of the world is necessary. With their Multi-Object Network
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(MONet), [Burgess et al., 2019] are among the first to introduce the concept of slots, latent codes

dedicated to represent an individual object in a scene of interest. Their method models scene de-

composition using a recurrent attention-based neural network, which produces a set of masks that

decompose the image into its components. Together with the original image, each mask is passed

to a representation VAE, which learns a distribution over the masked image region and the mask

itself and reconstructs a scene component (partial reconstruction of the image). The final output is

modelled as a composition of all scene components. Intuitively, they argue that the task of image

reconstruction will become easier when different parts of the learnt representation can be reused

(e.g. one representation to model backgrounds) which motivates a compositional representation.

(see [Burgess et al., 2019] for details). Instead of using auto-regressive inference, [Greff et al.,

2019] propose IODINE, which uses an iterative variational inference scheme based on [Marino

et al., 2018] to predict the posterior of a set of object-specific representations. Additionally, they

use spatial broadcasting [Watters et al., 2019] in their generative decoder to further encourage

disentanglement of each encoded entity z
i. With their GENESIS model, [Engelcke et al., 2020]

add explicit modelling of object interactions using a graphical model to the object discovery task,

which allows for the decomposition of scenes trained in an unsupervised manner as well as the

generation of novel scene compositions. While their architecture is similar to that of MONet, the

graph-based structure allows for sequential generation of scene elements, since individual com-

ponents know about the existence of each other. Furthermore, GENESIS’ encoders and decoders

are run in parallel, which makes the model more scalable to scenes with many scene compon-

ents. [Locatello et al., 2020] propose slot-attention, a modular component for scene decompos-

ition, based on iterative attention. Their neural network module maps a feature representation

obtained from a pre-processing step such as a CNN encoding to a set of slots, each representing

the location and appearance of an object (similarly to the slot representation used in MONet and

IODINE). While their results on unsupervised object discovery show similar reconstruction and

segmentation accuracy to MONet, IODINE and GENESIS, they demonstrate advantages in com-

putational and memory efficiency, due to their architecture, which uses iterations in latent space

instead of iterative encoding steps.

Current methods have shown successful decompositions for simple 2D scenes with a few objects

(see Figure 6.1). However, how to scale these methods for more complex scenes and in particular,

for the 3D domain, is the topic of ongoing research.
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Figure 6.1: Visual decomposition results of state of the art methods on simple 2D scenes. Left: 2D scene
decomposition results of MONet [Burgess et al., 2019] on scenes of the CLEVR dataset. Centre: de-
composition results on intensity images of the CLEVR dataset by [Locatello et al., 2020]. Right: Iterative,
sequential scene composition. The graph based model of GENESIS [Engelcke et al., 2020] allows for better
sequential scene component generation.

3D scene decomposition

While several approaches address the problem of part-decomposition of 3D shapes using expli-

cit representations such as polygon collections [Deng et al., 2020b, Chen et al., 2020b] or local

implicit functions [Genova et al., 2020], fewer have attempted to generate a fully factorised 3D

scene representation. The majority of these approaches leverage neural scene representations: [Ost

et al., 2021] learn an object-centric graph-based scene representation where each object is encoded

using a neural radiance field and the final image is generated using a composition of individual

object representations. However, their method requires ground truth tracking information includ-

ing object positions. With their work GIRAFFE, [Niemeyer and Geiger, 2021] present a method

that achieves unsupervised scene decomposition into objects and background using a set of neural

radiance fields. Each radiance field is conditioned on individual latent codes that, when com-

bined, compose the final scene. However, their focus is image synthesis instead of inference.

ObSuRF [Stelzner et al., 2021] combines attention-based set prediction [Locatello et al., 2020]

with compositional NeRFs as in [Ost et al., 2021] and [Niemeyer and Geiger, 2021] and infer a

3D object-centric scene representation from a single image. The obtained NeRF-based represent-

ation can be leveraged to render novel views by composing the output of every individual NeRF,

conditioned on one of the latent codes generated by the slot-attention encoder. They achieve im-

pressive results, however, their experiments are limited to scenes with a maximum of 6 objects.

6.1.3 Motivation and approach

Although a few methods have explored compositional scene representations for 2D images and

simple 3D scenes, the question of how to best generate such a representation remains unsolved.
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In this chapter, we explore a novel method to generate an object-specific latent representation of

a 3D scene. We focus on scenes with a set of small, cluttered objects and in particular, the goal is

to augment the previously proposed method SIMstack with an object-centric scene representation

to remove some of the post-pocessing steps. Although SIMstack produces consistent and stable

reconstructions from a single view, the raw network output has to be processed using a Hough

Voting algorithm that requires careful parameter tuning. With a factorised representation in latent

space, the scene would be directly composed into its components and simplify the overall pipeline.

Furthermore, a representation composed of a set of per-object latent codes will likely be able to

better reconstruct more complex scenes, with more and potentially non-convex objects.

The majority of related approaches employ iterative or attention-based encoders to solve the set-

prediction of the decomposition task at hand. We follow a simpler approach, similar to the work

of [Crawford and Pineau, 2019], which selects a set of object codes within an extracted feature grid

representation. Compared to [Crawford and Pineau, 2019], we don’t use an existence variable, but

extract latent codes from the feature volume, based on their average value (see Section 6.2.1 for

the method). Similarly to [Marino et al., 2018], we use spatial broadcasting during the decoding

of the latents to further promote disentaglement of the representation.

Most current methods approach the problem from the angle of unsupervised decomposition, which

is motivated by the difficulty of obtaining labels for real-world data. However, unsupervised

methods are usually difficult to design and train. As an alternative, supervised models can be

trained in simulation and the learnt representation can later be transferred to the real data domain.

While transfer learning is usually difficult for RGB data due to the high variety in appearance

caused by lighting conditions and material properties, it is significantly easier for depth data, since

the gap between simulated and real-world depth is not as large. Furthermore, our experiments in

Chapter 5 showed that with the right setup and training, a depth-to-3D reconstruction method can

generalise to real-world data after training on a large number of synthetic examples. We therefore

explore how to obtain a scene decomposition in a supervised setting using synthetic data with the

aim to be able to transfer the learnt representation to real-world settings.

6.2 Decomposing a scene into object-specific latent codes

Our goal is to explore a new method to obtain a 3D scene encoding which is factorised into

its object components from a single depth view. Specifically, we want to extend the SIMstack

architecture into a system which encodes a scene into multiple latent codes instead of one joint
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shape and instance latent code. In the following, we present a novel architecture to achieve such a

decomposition.

6.2.1 Set prediction from a 3D scene

Extending SIMstack’s architecture to encode a scene in a compositional way means integrating

scene decomposition into the depth-conditioned VAE architecture. While the conditioning task

remains the same, the main scene representation has to be modified to be a set of object specific

latent codes instead of a joint shape and instance encoding. Specifically, the prior should encode a

distribution over sets of object-specific latent codes. Each code holds the information necessary to

represent one of the objects in the scene and is reconstructed back into the 3D shape of that object

using the decoder. In the following section, a novel architecture is proposed to achieve this task.

Predicting a set of object codes has been attempted by previous methods, usually for a 2D view of

that scene. Most previous approaches use recurrent, iterative or attention-based encoders [Eslami

et al., 2016, Burgess et al., 2019, Marino et al., 2018] to generate a set of encodings from an

image. We observe that set prediction has been solved using simple CNN encoders before [Wang

et al., 2020b, Crawford and Pineau, 2019], albeit in the form of object locations and bounding box

features. We suggest that with a carefully designed architecture, it should be possible to extract

a set of factorised embeddings which each describe the entire shape of one object in 3D. To this

end, we propose a novel architecture for set prediction from 3D scenes introduced below.

Experimental setup

Our experimental setup is similar to the one presented in the SIMstack pipeline, Chapter 5: a

large amount of synthetic scene with collections of superquadric shapes is generated under phys-

ics simulation in the physics engine Pybullet. Compared to the setup in Chapter 5 we use an

occupancy grid instead of an SDF scene representation. This choice is based on the observation

that scene composition of a set of voxelgrids {v0, . . .vn} as S = v0 + v2 + v3 is well defined, while

the equivalent composition using individual SDF representations is less trivial.

Our synthetic dataset is a set of scenes, each composed of a number of superquadrics and we

experiment with scenes of a fixed number of 6 objects and scenes with varying number of objects

(4-7 objects per scene) - see dataset examples in Figure 6.2.
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Figure 6.2: Top: dataset examples of scenes with a fixed number of 6 superquadrics. Bottom: dataset
examples of scenes with a variable number of superquadrics (4�8) objects.

An autoencoder for set prediction in 3D

Before attempting to generate a factorised latent space of a scene using the full depth-conditioned

VAE architecture of SIMstack, we validate our proposed architecture as an autoencoder solving

the set prediction in 3D and decomposing a global occupancy grid s into its individual object occu-

pancy grids on: f : s2 IR3 ! {o1,o2, . . .oN |on 2 IR3}. We propose the following novel architecture

to decompose a 3D occupancy grid into its components.

Encoder A 3D CNN encodes a full 3D occupancy grid into a downsampled feature volume which

is passed through a latent code extraction module to yield a number of N latent codes. These N

latent codes are extracted as follows.

Inspired by object detection methods such as [Wang et al., 2020b], we encourage the network

to predict object features at a set of locations in the downsampled grid: The feature volume is

averaged along all channel dimensions and the set I of the indices of the N largest values are

extracted:

I = argmax
A
0⇢V,A0=N

Â
a2A

0
a, (6.1)

where V is the per-channel averaged feature volume and A
0 is any subset of size N of features in

F.

Then, the set I of indices is used to extract the corresponding set f of feature vectors (extracting

along the channel dimension of the original feature volume F). The resulting set f of feature vec-

tors is the factorised scene encoding. Intuitively, this architecture design encourages the encoder

to cluster all relevant information about individual objects at N locations, whereby each vector has

the size of the channel dimension C of the feature volume F.
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Spatial Broadcasting To generate per-object feature volumes, we broadcast each extracted ob-

ject feature vector into a feature volume, whereby f is duplicated along each dimension to yield

and object-specific feature volume Fo: f : f 2 IRC ! Fo 2 IRC,3. Broadcasting was first proposed

by [Watters et al., 2019] as a method to disentangle latent spaces in VAEs. In the original imple-

mentation, the joint scene latent code obtained by the encoding is broadcasted along the spatial

dimensions and concatenated with coordinate channels - one channel per dimension containing

a coordinate grid (see Figure 6.3). This provides information about locality. The method was

tested on 2D images and was shown to improve reconstruction quality and disentanglement of the

latents, in particular for scenes with small objects. In our implementation, we follow the original

Figure 6.3: Spatial broadcast decoder architecture proposed by [Watters et al., 2019]

design but extend it to a third dimension. Compared to [Watters et al., 2019], we broadcast every

object-latent code into a separate object-specific feature volume which is decoded using a shared

deconvolutional decoder.

Decoder Each object-specific feature volume Fo is decoded using a deconvolutional decoder,

which brings Fo back to the original input size. The decoder weights are shared across object

feature volumes. Intuitively, this design forces the network to encode all necessary information

about the object appearance and location into Fo, while the decoder is optimised to map from that

representation to the original resolution. Furthermore, given that the number and appearance of

objects is variable and unordered, a network design with object-specific decoders would not be

able to generalise.

An illustration of our architecture can be found in Figure 6.4.
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Figure 6.4: The architecture of the scene factorising network. An input scene represented as a TSDF is
encoded into a feature volume from which the N vectors with the largest mean value across the channel
dimension are selected. Each vector is broadcasted into it’s own feature volume and decoded into it’s
individual TSDF representation. Each reconstructed TSDF represents an individual object in the scene.

A loss function for set prediction

Any loss function applied to set prediction has to be invariant to permutations in the output, i.e.

the loss should not enforce a particular order on the predicted set. In our case this means that the

network output can’t be compared to a pre-set list of individual ground truth objects, as this would

force the network to use a particular latent code for each object, which would make generalisation

impossible. Similarly to other approaches to set prediction with deep learning in literature [Carion

et al., 2020], we decide to solve this by using Hungarian Matching, also called the Kuhn-Munkres

algorithm [Kuhn, 1955], which finds maximum-weight matches in bipartite graphs (see Figure

6.5). This is sometimes referred to as solving the assignment problem. Matches are found based

on a specific metric and in the case of our prediction task this metric is the similarity between

predicted shape and ground truth shape for any particular object. Given that we are predicting

occupancy grids, we decide to measure this similarity using the Binary Cross Entropy. After

matching, the reconstruction loss is computed between each element. Intuitively, the Hungarian

Algorithm will find those object assignments which maximise the Binary Cross Entropy between

all prediction and ground truth object pairs.

Implementation details To use Hungarian Matching as a loss function the computed gradients

have to bypass the matching operation, as it is non-differentiable. In Pytorch, this can be achieved

by computing the matching inside a function decorated with a nograd keyword, which tells the

framework to remove the involved variables from the gradient computation graph. Specifically, the

output vector of individual object reconstructions is rearranged according to indices computed by

the Hungarian Matching algorithm (matching prediction with ground truth) before it is compared

to the ground truth objects yet again in a normal loss computation.
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Figure 6.5: Hungarian matching applied to our loss function. The raw network outputs are matching
with the ground truth objects and re-ordered according to highest overlap. Then, the loss is computed and
backpropagated to update the network weights.

Experiments

We validate our proposed architecture by learning to decompose the two synthetic datasets of

scenes with a fixed number of 6 objects and a varying number of 4� 8 objects. In these initial

experiments, the input to the Autoencoder is the full 3D occupancy grid and the network is trained

to predict the individual per-object occupancy grids as depicted in Figure 6.4.

Dataset and training details For the task of decomposing a scene of 6 objects, we train on a

synthetic dataset of 8062 scenes; to learn how to decompose variably-sized scenes of 4-8 objects

we train on 10765 scenes. Both tasks are optimised with an initial learning rate of 5e
�4, which is

adjusted using step-wise learning rate decay (step size of 10 and g = 0.999). We use the Adam

optimiser [Kingma and Ba, 2015b] for all experiments.

Architecture details For this task we set the latent code size to 128 and downsample the 3D input

scene of resolution 64 to a global feature volume of resolution 4. The overall network has just

over 2m trainable parameters.

Results As can be seen from Figures 6.6 and 6.7, the network is able to learn to decompose scenes

of fixed and variable number of objects well. In the failure cases, object borders are badly segmen-

ted or in some cases, two objects are merged or split. This is not surprising, in particular in cases

where objects are in contact and not easily distinguishable. Our quantitative results presented in

Table 6.1 show that for both datasets only few scenes are predicted with missing or joined objects.

However, for the dataset with varying number of objects, over 30% of scenes are decomposed into

more objects. In these cases, either one object is split into multiple objects or the latent space is

decomposed into duplicate representations — two or more latent vectors reconstruct into the same
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object. We comment more on this result in the discussion in Section 6.3.

Figure 6.6: Results on predicting scene decomposition for occupancy grids with 6 objects. On the right
are examples of failure cases

Figure 6.7: Results on predicting scene decomposition for occupancy grids with 4� 8 objects. The ex-
amples on the left show successful scene decomposition; on the right are examples of failure cases: one
with bad object segmentation in border regions and one with a set of joined objects.

Latent space structure We verify that our object feature extraction method works, by visualising

the feature volume and the extracted per-object latent codes. Figure 6.8 plots a subset of non-

object codes against object codes. While object code values stay close to zero, non-object code

values vary largely between positive and negative values, overall resulting in lower average values

compared to object codes (Figure 6.8, right). However, a surprising result is that the gap between

object and non-object codes is not very large, which suggests that mistakes such as missing objects

could be a likely scenario. Although we do not often observe missing objects in our results, we

expect that motivating greater separation between object and non-object codes in latent space will

likely improve prediction quality.

We notice that instead of using the centre location of each object as a latent code location, the

model learns to pick N random, but fixed locations within the feature volume into which it places

the feature vectors of the detected objects. These locations appear to be independent of the input
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scene (see Figure 6.9). This shows that the network does not implicitly learn object location as

part of the decomposition task. An open question remains whether external supervision of object

centres would improve the decomposition. We leave this exploration for future work.

Figure 6.8: Left: Object-latent features (red) and a randomly sampled subset of empty latent features
(blue). Empty latent features vary largely over all 128 values and predominantly into the negative region,
while object representing latent features stay in the positive region and show much less variation. Right:
The feature vector mean (over all 128 values) for a subset of empty latent vectors (blue) and the object
representing latent vectors (red).

Figure 6.9: Object representations producing different scene decompositions (right) are generated in the
same locations (visualised in black) in the extracted feature grid (centre) of the input scene (left).

6.2.2 Scene decomposition from a single view

Having validated the proposed decomposition architecture using a full 3D input, we test how well

a network can learn to complete the scene while decomposing into its individual objects from a
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Dataset Dataset size Avg. BCE Loss Missing/joined objects Duplicated/split objects
6 objects 82 0.0014 2.4 % –

4-8 objects 95 0.0021 5.2 % 34.5 %

Table 6.1: Quantitative results for the 3D set prediction task. Average Binary Cross Entropy is reported,
as well as the percentage of scenes with missing or joined objects and those with duplicate or split objects.

single depth view. We follow the reasoning previously elaborated in Section 5.2.1, and transform

the depth input into a partial TSDF to alleviate the network from having to learn a re-projection

task.

Experimental setup We choose a similar experimental setup to that presented in Chapter 5. For

every training scene, a random view is generated from a range of �1m to 1m in the x and y

dimensions, and a height range of 33cm to 83cm. All views are selected with a minimum distance

of 50cm from the scene centre. The depth image is generated using TSDF raytracing as described

in Section 5.2.1; after rendering the depth, a partial TSDF is generated using the inverse rendering

method presented in Section 5.2.1. An example of a partial TSDF generated from a training scene

is displayed in Figure 6.10.

Network Architecture Since the depth view is transformed into a partial TSDF, the network archi-

tecture remains unchanged, the only difference being, that it now has to learn a function mapping

from a partial TSDF to a set of per-object occupancy grids.

Figure 6.10: Illustration of the experimental setup for the depth to 3D decomposition task.

Results Qualitative results in Figure 6.11 demonstrate that our proposed architecture to predict an

object-centric latent space can be used in a depth to 3D scene decomposition task. The network

can successfully generate a per-object latent representation of a novel scene observed from a ran-

dom viewpoint. Interestingly, our quantitative results (Table 6.2) show that training the network

from random viewpoints, produces an overall better decomposition, with a marginally better av-

erage BCE Loss and a lower percentage of wrongly segmented scenes, compared to producing
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Dataset Dataset size Avg. BCE Loss Missing/joined objects Duplicated/split objects
4-8 objects 95 0.0020 10.8 % 17.8 %

Table 6.2: Quantitative results for the depth to 3D decomposition task. Average Binary Cross Entropy is
reported, as well as the percentage of scenes with missing or joined objects as well as those with duplicate
or split objects.

the decomposition from a 3D occupancy grid. It is likely that the additional input-output variety

provided by the random input viewpoints, allows for a better representation to be learnt. Note how,

compared to the task of predicting the scene decomposition from the entire 3D occupancy grid,

fewer scenes with duplicate representations or split objects are generated, while in more cases,

objects are joined or missed.

Figure 6.11: Qualitative results of the depth to 3D decomposition task.

6.2.3 A depth-conditioned VAE for single-view scene decomposition in latent

space

Finally, we embed the proposed module to generate a factorised scene representation into a depth

conditioned VAE, which learns a scene prior as in the SIMstack architecture in Chapter 5, but

with an object-centric latent representation. This factorised latent space can then be reconstructed

into individual objects, alleviating the model from post-processing the output with Hough-Voting

to produce instance segmentation. Furthermore, the VAE encoder and decoder architectures are

simplified, since they don’t need task-specific heads for geometry and instance vector-voting fields

(see Section 5).

Experimental setup Similarly to the previous experiment, the task is to predict a 3D scene decom-
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position from a random viewpoint; however, in this setting we also aim to learn a scene prior at

the same time and use the full 3D occupancy grid as an input to the network as well. We train on

the dataset of varying objects (4�8 objects per scene) with 10765 training examples. To generate

random viewpoints, we follow the same procedure as before (Section 6.2.2).

Architecture details The architecture of the depth-conditioned VAE largely resembles the one used

in SIMstack, except for the VAE latent embedding and the 3D scene decoder. The conditioning

autoencoder network is unchanged and learns how to encode and decode a partial TSDF while

providing expressive, view-specific features maps from its encoder to the 3D scene VAE. Similarly

to the SIMstack model, during training, the network is also provided with the encoding from a full

3D scene. However, in this experiment, a scene occupancy grid is encoded instead of a TSDF.

This choice is mainly made for consistency, since we model the scene output as a composition of

per-object occupancy grids (see Section 6.2.1). The 3D scene encoder, conditioned on the view-

features (through concatenation of output features), predicts a distribution over scenes in form of

a global feature volume, from which a scene is then sampled. From this scene, N object codes

are extracted using our proposed module and individually reconstructed into per-object occupancy

grids using a shared decoder. Similarly to the 3D scene encoder, the feature maps of the shared

decoder are concatenated with the input view features - the decoder is also conditioned on the

random viewpoint features. An overview of the architecture is presented in Figure 6.12. For

the experiments we use 64 latent channels for the partial TSDF encoding and the scene feature

volume, which is downsampled from a resolution of 64 to a resolution of 4. The full depth-

conditioned VAE has just over 2.1m parameters. Similarly to the SIMstack model, we use Squeeze

and Excitation units [Hu et al., 2018] and residual connections [He et al., 2016] in both 3D encoder

and decoders.

Figure 6.12: An illustration of the depth-conditioned scene decomposition VAE architecture.
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Loss function While we train the auxiliary task of the partial TSDF reconstruction with a simple

L1 loss as |ŷpartialT SDF
� ypartialT SDF

|, the main decomposition task is optimised using Hungarian

Matching M(·) and a Binary Cross Entropy Loss BCE between the occupancy grid prediction

ŷoccupancy and ground truth yoccupancy, as in previous experiments. At the same time, we add a

variational optimisation component, to assure that the global feature grid encoding stays true to

a multinomial gaussian distribution G that can be sampled from. We follow the method used in

Chapter 5 and use the Maximum-Mean Discrepancy DMMD [Zhao et al., 2017b] instead of a stand-

ard KL-divergence [Kingma and Welling, 2014] to compute the distance between the predicted

distribution p(z|x) and the multinomial gaussian G; our final loss is set as:

L = a |ŷpartialT SDF
� ypartialT SDF

|+

b DMMD(p(z|x),G) +

g BCE(M({ŷoccupancy},{yoccupancy})), 1(6.2)

where the respective weightings a,b and g are set to 1,1 and 200, which we find empirically.

Training details Similarly to previous experiments, we train our model with the Adam optimizer

[Kingma and Ba, 2015b] and an initial learning rate of 5e
�4, which is adjusted using step-wise

learning rate decay (step size of 10 and g = 0.999).

Results We evaluate the depth-conditioned scene decomposition network in terms of its recon-

struction accuracy, as well as the quality of its sample space. We find that the network is able

to reconstruct unseen scenes well when given both 3D and 2D input modalities (see Figure 6.13,

top row). However, with the current architecture and training settings, the model fails to learn a

representative prior over the factorised latent space � sampling the learnt distribution while con-

ditioning on a depth view results in incomplete reconstructions (see Figure 6.13, bottom row). We

attribute this failure to the current architecture design, which does not enforce any structure in the

generated distribution, which is expected to generate sparse feature volumes with neatly clustered

object features. It is likely that more structure and guidance during training is needed. One pos-

sible architecture adjustment which could improve learning would be to sample the number of

objects and their features separately.

6.3 Discussion and future work

In the presented experiments, we validate our proposed architecture to predict an object-centric,

factorised latent representation on synthetic data, both from a full 3D occupancy grid, as well as
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Figure 6.13: Initial results of the depth to 3D scene decomposition VAE architecture, trained on our
synthetic dataset with 4�8 objects. Top row: the reconstruction of a validation scene when providing the
model with all input modalities. Bottom row: reconstruction of a random latent space sample, conditioned
on a depth view.

from a random depth view. We find that from both input modalities, our method is able to predict

the decomposition and reconstruction of previously unseen scenes with varying numbers of Super-

quadric shapes, randomly placed under physics simulation. We display visual results in Figures

6.11, 6.6 and 6.7, as well as quantitative results in Tables 6.1 and 6.2. Our final experiments on

training the scene factorisation module within a full depth-conditioned VAE model did not yield

convincing results and we were at this stage not able to extend the full SIMstack pipeline with an

object-centric scene representation. However, our initial results provide a promising direction and

in the following, we discuss some of the open questions and possible points of continuation for

future work.

Improving the latent representation Firstly, a more in-depth analysis of the latent space repres-

entation learnt by our model might give insights into how to improve the architecture. We provide

an initial analysis of the latent space in Figure 6.8, which shows that the difference between the

mean-value of object vectors and those representing empty space is small. This may lead to se-

lecting a latent that represents empty space during the N-max operation in the object separation

module and could explain the missing objects in some of our results. However, a more in-depth

analysis of the latent space using e.g. t-distributed Stochastic Neighbour Embedding (t-SNE)

could lead to a better understanding of how the network reasons about and separates different

object shapes, sizes and locations.
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Secondly, we find that the network stores the object feature vectors in a fixed set of N locations

within the feature volume (see Figure 6.9). This is sub-optimal since the feature vectors have

to encode position as well as appearance. It would be better if the network learned to use each

object’s centre location for it’s respective feature vector. This could be achieved by training with

external object-centre supervision or by explicitly separating the prediction of object feature and

object spatial transform.

Our method does not yet explicitly handle duplicated object latent codes, which are generated in

some of the cases. Approaches in literature that handle similar set prediction tasks, either use post-

processing methods such as non-maximum suppression of bounding boxes [Ren et al., 2015] or

object centre predictions [Wang et al., 2020b], or, use attention-based methods such as the Trans-

former model for end-to-end object detection proposed by [Carion et al., 2020]. Others still, use

iterative encoding methods [Burgess et al., 2019], which implicitly propagate knowledge about

respective existence between the individual scene component encodings and avoids duplication.

Our method specifically avoids iterative encoding methods for simplicity, but could potentially

benefit from attention-based layers being introduced before or after the per-object latent repres-

entation is extracted. Another option would be to use post-processing methods in the flavour of

non-maximum suppression on scenes which contain duplicate object encodings. Even if such du-

plications which currently lie below 18% (or even lower, since in some cases the wrongly predicted

number of objects is due to over-segmentation) can’t be further reduced, the method will remain

in principle more efficient than the shape and instance prediction model proposed in Chapter 5

which requires post-processing for object extraction in every scene. As already mentioned in

Section 6.2.1, further improvements could be obtained through external supervision on placing

each detected object’s encoding in the object’s centre, as well as numerically encouraging a larger

separation between objects and free space representation in the lower dimensional manifold.

Testing on real data To be fully validated, the proposed approach will have to be tested on real

data examples, similarly to those presented in Chapter 5. As demonstrated in Chapter 5, we expect

the transfer to real data to be possible without additional transfer learning methods, since simulated

and real depth maps are sufficiently similar given good calibration and the further smoothing

introduced by the transformation of depth views to partial TSDF grids (see the method section of

Chapter 5).

Adding RGB cues Texture and color-based cues obtained from the integration of RGB informa-

tion in the view-conditioning may reduce over-segmentation of objects. However, such additional

features may also hinder the generalisation capabilities to real data, since the disparities between
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simulated and real RGB images are often very large.

Output representation Lastly, although formulating the scene factorisation as a decomposition

into individual occupancy grids presents a principled representation, it is limiting, in particular,

for objects of more complex shape. A natural extension of the approach will therefore be to train

for a reconstruction of either SDF grids or more memory efficient representations such as neural

implicit functions or neural radiance fields.

6.4 Conclusion

In this chapter, we present and test a novel method to generate a factorised latent representation of

a 3D scene. The proposed architecture generates a global feature volume with a simple CNN en-

coder, from which N object embeddings are extracted and broadcasted into object-specific feature

volumes using our object extraction module. Each object feature volume is then decoded into an

object specific occupancy grid; together all reconstructed occupancy grids compose the full scene.

Our method is simple compared to many other approaches, which use iterative or recurrent en-

coding methods, and is able to decompose synthetic scenes of up to 8 Superquadric shapes, both

from a full 3D occupancy scene representation and a single depth view.

A factorised latent representation of a scene offers a compact, disentangled and versatile rep-

resentation and is interpretable compared to one joint scene encoding. Adopting such a repres-

entation within the shape and instance generation model SIMstack presented in Chapter 5, will

remove post-processing steps and simplify the pipeline as well as the architecture. Although the

proposed scene decomposition module fails to learn a factorised prior when integrated within a

depth-conditioned VAE, our preliminary results on decomposing a scene from 3D occupancy and

a single depth view present a promising direction to be further explored by future work.
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CHAPTER 7

Discussion and Conclusion

The research presented in this thesis addresses several aspects of visual scene understanding, with

a focus on 3D scenes that contain a collection of small objects. In particular, research questions

involving the labelling, reasoning about, and the decomposition of such scenes were explored. In

this final chapter, each project is briefly revisited, discussed and put into context with the latest

state of the art. Finally, some directions for future work are suggested.

Visual scene understanding is a crucial component for intelligent and autonomous systems and

despite the substantial progress the field of computer vision has seen, since the introduction of

deep learning, many problems remain unsolved. Applying deep learning methods to the field of

2D image classification and segmentation has pushed these algorithms to human level performance

and in some cases, even surpassed it. However, the transfer of these tasks to 3D scenes remains

difficult, as does the understanding, modelling and efficient representation of the 3D domain.

While current systems are able to reconstruct the geometry of a scene to a high degree of accuracy,

while navigating through it (using state of the art SLAM algorithms) [Engel et al., 2014a, Whelan

et al., 2015], many questions remain open on how to best annotate these reconstructions with

semantics and detect objects within them. Although many systems have proposed solutions

(e.g. [McCormac et al., 2017a, Nie et al., 2020b]), some even handling dynamic scenes [Rünz

and Agapito, 2017], final results in 3D segmentation and object detection/instance segmentation

often lack precision and consistency. Systems also still struggle to generalise and often fail once

presented with different lighting conditions or previously unseen object categories. In addition, it

is still unclear if 3D annotation is best achieved through label reprojection from 2D segmentation

results or obtained through directly labelling the reconstruction itself.

In the first chapter of this thesis, a study on this question is presented. For the setting of a table-top

scene which is extensively scanned using a real-time SLAM system, methods for view-based and
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map-based semantic labelling are designed and compared. To allow for a principled comparison,

a height map representation was chosen for the mapping component; this enabled the use of the

same CNN architecture for obtaining 2D semantic labels through the view-based method and 3D

semantic labels from directly labelling the reconstruction. The results demonstrated that as long

as the semantic segmentation network for map-based labelling provides reliable segmentation,

directly labelling the reconstruction (once the scene has been fully reconstructed) results in cleaner

segmentation borders and is in principle more efficient, since every scene element is only labelled

once. In contrast, view-based labelling with re-projection of the labels and subsequent label-fusion

into the map results in more errors in object border regions and is principally less efficient, since

during extensive scanning every scene element is seen and labelled multiple times. However, in

the case where only labelling networks with reduced accuracy are available, more labelling errors

will be recovered during the view-based method thanks to the Bayesian label fusion.

The results from this study provide a principled comparison within our confined setting of a height

map representation; for applications with different 3D representations (e.g. pointclouds, voxel-

grids), they would have to be considered in combination with additional factors such as the cost

of directly labelling the 3D map using representation-specific network architectures such as a 3D

CNN or PointNet. A direct point of continuation of this project would therefore be a more extens-

ive study including the common 3D representations for real-time SLAM. A particularly interesting

and challenging aspect of moving to full 3D representations will be studying the trade-off between

view-based and map-based labelling for larger and complex objects whose shape doesn’t fit into

one viewpoint and makes it difficult to reach all viewpoints necessary to obtain a full reconstruc-

tion.

As already mentioned in the discussion of Chapter 4, most applications would in fact benefit from

a joint application of view-based and map-based labelling, where the view-based method provides

labels early on with a higher tolerance to mislabelling and the map-based method provides regular

refinements which benefit from larger context integration due to processing a full 3D representa-

tion. In addition it would be interesting to integrate semantic labels into the overall optimisation

pipeline of SLAM. This has recently been explored by [Hempel and Al-Hamadi, 2022], whose

system leverages obtained labels to improve tracking accuracy. Other approaches such as [Zhi

et al., 2019] have focused on jointly optimising geometry and semantics, removing the independ-

ence assumption between individual labels usually adopted in view-based methods.

Finally, with the recent emergence of neural scene representation networks [Park et al., 2019a,

Mildenhall et al., 2020] and their application to real-time SLAM [Sucar et al., 2021], the question
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arises of whether it will remain relevant to label an explicit 3D representation or if future research

should focus on how to robustly add labels to neural scene representations. Some research such

as [Zhi et al., 2021] already exists in this direction.

In current reconstruction systems, the target scene has to be scanned extensively to obtain a full

3D model. These scanning trajectories can be time-consuming and in many cases, not every view-

point can be reached to obtain a full reconstruction without missing parts [Dai et al., 2017a]. As

humans we are able to estimate shape in areas invisible to us and generate a 3D model from a par-

tial view (in our minds). We can even reason about object interactions — i.e. given a partial view,

we can generate a full reconstruction and simulate into the future; if something looks unstable, we

can guess where and how far objects will fall or roll and we can make a guess about how many ob-

jects lie underneath and behind an object that is visible to us. Many consider this ability a crucial

feature for fully intelligent systems. Not only does the ability to reason and complete the unseen

bring autonomous systems closer to human-level reasoning, but it also presumes a consistent and

meaningful representation of the world, which will be helpful for many other tasks. In addition,

being able to reconstruct and simulate from a partial view will alleviate systems from the need of

comprehensively scanning a scene, as was the setting in the study of Chapter 4.

Chapter 5 of this thesis addresses this topic and proposes a novel method, SIMstack, to estimate

shape and instances in occluded regions from a single depth image. Compared to related work,

which either completes the 3D shape of single or multiple objects from a single observation or

predicts instance segmentation for a 2D image, the proposed method combines both tasks in a

generative formulation for a 3D scene. The dataset is selected as a set of Superquadrics, which

provide a large variety of convex shapes. An additional extension of the model for integrating mul-

tiple views through either multi-view conditioning or multi-view optimisation with differentiable

rendering is also presented.

The proposed method is able to provide instance segmentation in visible regions while completing

shape and generating plausible decompositions in occluded areas. While the model can complete

scenes with up to 7 objects and generalises to real data, it was not tested on much larger scenes,

which would be one of the direct points of continuation. Another open question is how well it

extends to non-convex shapes. Although some experiments were provided in Section 5.6, it would

be interesting to see how well SIMstack can perform when trained on non-convex shapes and

using an appropriate post-processing method. Finally, the method could benefit from more struc-

tured representations of the objects themselves, using per-object latent codes (which is explored

in Chapter 6) or from more explicitly modelling object relations. The latter could be achieved by
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using a graph representation instead of a joint latent code.

Finally, while SIMstack learns to imitate physical intuition by learning a distribution over real-

istic and stable (under physics simulation) piles, it would be interesting to integrate more explicit

knowledge about physical properties into the system; one could take inspiration from approaches

on stability prediction [Groth et al., 2018], approaches which learn and model interactions [En-

gelcke et al., 2020, Ehrhardt et al., 2020] and recently proposed fully differentiable physics en-

gines [Freeman et al., 2021, de Avila Belbute-Peres et al., 2018].

The ability to reason about 3D scenes will be highly correlated with the way those scenes are

represented. Most current methods either use full-scale 3D geometry to represent scenes or com-

pressed encodings in latent spaces, in which all features are highly correlated. One possible option

to introduce disentangled features and scene components, while retaining the memory efficiency

of encoded latent representations are factorised latent spaces. Some approaches have already

explored such representations, mainly for 2D images [Burgess et al., 2019, Greff et al., 2017, Loc-

atello et al., 2020].

Chapter 6 explores how to obtain such a factorised latent representation in 3D, with a focus on

extending SIMstack to encode a scene as a composition of object-specific latent codes, all from a

single depth image. A novel object-extraction module is proposed and tested on synthetic scenes

of Superquadric collections, similar to those of the training dataset of SIMstack. While the mod-

ule is able to predict factorised latent spaces from full 3D scenes as well as partial views in a

discriminatory task, embedding it into the full generative pipeline of SIMstack did not yield good

results. One likely cause is the lack of structural adaptation of the latent space to the generative

task. Finding a more appropriate formulation for this structure would be the first point of continu-

ation of this project. Several other improvements and extensions are possible including a more

compact encoding of the objects as individual neural scene representations. Inspirations for such

compositional neural representations include [Niemeyer and Geiger, 2021] and [Ost et al., 2021].

In conclusion, with the goal to improve the visual scene understanding of autonomous vision sys-

tems, the research presented in this thesis has provided insights in 3D real-time semantic labelling

and proposed novel solutions for reasoning about shape and instances and the decomposition of 3D

scenes. Future developments will likely move from explicit 3D geometry to scene representations

which are encoded inside neural network weights (neural scene representations) or compact latent

code structures. To be able to reason about 3D space, scene encodings will likely benefit from

being modular and representing a scene as a composition of objects and regions. Other aspects

which will be defining the perceptual intelligence of AI systems are the ability to simulate the
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environment with its possible future outcomes, understanding causality and complex relationships

between entities and scenarios. Self-learning through exploration and self-analysis to understand

its own limitations will be important components as well.

While we are progressing at high speed and approaching a new era where artificial intelligence

and robotics are present in everyday life, many interesting problems on the way are still waiting

to be solved.
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