
Imperial College London

Department of Computing

Real-Time Visual SLAM

with an Event Camera

Hanme Kim

September 2017

Supervised by Prof. Andrew J. Davison

Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in

Computing of Imperial College London and the Diploma of Imperial College London. This

thesis is entirely my own work and describes my own research except where indicated.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they do not

use it for commercial purposes and that they do not alter, transform or build upon it. For

any reuse or redistribution, researchers must make clear to others the licence terms of this

work.

Abstract

Simultaneous localisation and mapping (SLAM) based on computer vision has remark-

ably matured over the past few years, and is now rapidly transitioning into practical

applications such as autonomous vehicles, drones, augmented reality (AR) / virtual real-

ity (VR) devices, and service robots to name a few. These real-time, real-world SLAM

applications require instantaneous reaction to dynamic, real-world environments, the

ability to operate in scenes which contain extreme lighting variation, and high power

efficiency. The standard video cameras on which they rely, however, run into problems

when trying to supply these, due to either huge bandwidth requirements and power

consumption at high frame-rates, or diminishing image quality with blur, noise or sat-

uration.

The core work of this research concerns these constraints imposed by standard cam-

eras, and was motivated by silicon retinas in neuromorphic engineering mimicking some

of the superior properties of human vision. One such bio-inspired imaging sensor called

an event camera offers a breakthrough new paradigm for real-time vision, with its high

measurement rate, low latency, high dynamic range, and low data rate properties. The

event camera outputs not a sequence of video frames like a standard camera, but a

stream of asynchronous events at microsecond resolution, indicating when individual

pixels record log intensity changes of a pre-set threshold size. But it has proven very

challenging to use this novel sensor in most computer vision problems, because it is

not possible to apply standard computer vision techniques, which require synchronous

intensity information, to its fundamentally different visual measurements.

In this thesis, we show for the first time that an event stream, with no additional

sensing, can be used to track accurate camera rotation while building a persistent and

high quality mosaic of an unstructured scene which is super-resolution accurate and has

high dynamic range. We also present the first algorithm provably able to track a general

6D motion along with reconstruction of arbitrary structure including its intensity and the

reconstruction of grayscale video that exclusively relies on event camera data. All of the

methods operate on an event-by-event basis in real-time and are based on probabilistic

filtering to maximise update rates with low latency. Through experimental results, we

show that extremely rapid motion tracking and high dynamic range scene reconstruction

without motion blur can be achievable by harnessing the superior properties of the event

camera, and the potential for consuming far less power based on the low data rate

property. We hope that this work opens up the door to practical solutions to the current

limitations of real-world visual SLAM applications.

I dedicate this thesis to my parents, my wife and my sons.

Acknowledgements

About 10 years ago in October 2007 in South Korea, I made a plan to move to

the United Kingdom to work at first and then do my PhD once I secure a scholarship

somehow. It was nothing but a dream at that time, but while I was writing this thesis, I

realised how lucky I was to make the dream come true. Surely, it would not have been

possible without the help and encouragement of a number of people around me during

my time at Imperial College London and in the UK in general.

First and foremost, I would like to express my sincere gratitude and appreciation to

my supervisor Prof. Andrew Davison for his enduring support, guidance and inspira-

tion. He is truly the best supervisor any student could ever ask for, and I know I will

miss working with him terribly. I am also deeply grateful to Dr. Stefan Leutenegger for

his generous offering of ideas and expertise, and to my examiners, Dr. Aldo Faisal and

Dr. Margarita Chli, for their valuable comments during the viva voce examination.

I would also like to thank Dr. Ryad Benosman who introduced us to event cameras,

and all the past and current members and visitors of the Robot Vision Group and the

Dyson Robotics Laboratory for their support and friendship throughout all ups and

downs of my PhD. My thanks also go to all my friends and colleagues at Imperial

College London who made my study more enjoyable. I also truly appreciate that I am

very fortunate for the EPSRC DTA scholarship, the Qualcomm Innovation Fellowship

2014, the Best Industry Paper award at the British Machine Vision Conference (BMVC)

2014 and the Best Paper Award at the European Conference on Computer Vision (ECCV)

2016 I received for my PhD study.

Last but not least, I would like to thank my dad Kwanhong Kim, my mum Meja

Chuen, my wife Soyeon Kim, my sons Eeru and Haru, and all my family in South Korea

and USA whose love, support and patience carried me through this journey. I will

always keep going for them, they are the reason I take each breath. Love you all.

Contents

Contents

1 Introduction 9

1.1 Visual SLAM . 10

1.2 Limitations . 19

1.3 Contributions . 22

1.4 Publications . 23

1.5 Thesis Structure . 24

2 Event Cameras 27

2.1 Neuromorphic Silicon Retina . 28

2.2 Event-Based Vision Sensors . 29

2.3 Related Work . 36

2.4 Discussion and Summary . 47

3 Preliminaries 49

3.1 Notation . 50

3.2 Frames of Reference . 50

3.3 Rigid Body Transformations . 51

3.4 Projection . 52

3.5 Event Camera Interface . 54

3.6 Event Camera Calibration . 58

3.7 Event Camera Simulator . 61

3.8 Software . 62

3.9 Summary . 63

4 Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera 65

4.1 Introduction . 65

4.2 Preliminaries . 66

7

Contents

4.3 Event Camera Pure Rotation Tracking . 71

4.4 Spherical Mosaic Reconstruction . 74

4.5 Evaluation and Results . 79

4.6 Discussion and Summary . 84

5 Real-Time Mosaicing and 3-DoF Tracking with an Event Camera 85

5.1 Introduction . 85

5.2 Real-Time Processing Requirements for Event Cameras 86

5.3 Real-Time Mosaicing and 3-DoF Tracking with an Event Camera 92

5.4 Evaluation and Results . 97

5.5 Discussion and Summary . 104

6 Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera 109

6.1 Introduction . 110

6.2 Event Camera 6-DoF Tracking . 111

6.3 Gradient Estimation and Log Intensity Reconstruction 120

6.4 Inverse Depth Estimation and Regularisation 124

6.5 Evaluation and Results . 132

6.6 Discussion and Summary . 138

7 Conclusions 143

7.1 Contributions . 143

7.2 Discussion and Future Research . 145

A Video Material 149

List of Figures 151

List of Tables 153

Bibliography 155

8

Chapter1

Introduction

Contents

1.1 Visual SLAM . 10

1.2 Limitations . 19

1.3 Contributions . 22

1.4 Publications . 23

1.5 Thesis Structure . 24

Simultaneous localisation and mapping (SLAM) based on computer vision has remarkably

matured over the past few years, and this technology is now rapidly transitioning into a

range of real products in robotics such as autonomous vehicles, drones and service robots,

wearable devices for augmented reality (AR)/virtual reality (VR) and smartphones to name

a few. These real-time, real-world applications require instantaneous reaction to dynamic

in real-world environments, the ability to operate in scenes which contain extreme lighting

variation, and high power efficiency especially when operating on battery-powered plat-

forms.

However, the standard vision cameras on which they heavily rely run into problems when

trying to supply these, either of huge bandwidth requirements and power consumption at

high frame-rates, or diminishing image quality with blur, noise or saturation. Although

a number of sophisticated visual SLAM methods have been recently developed which are

more efficient in terms of computation and resource usage, and more resilient to difficult

scene conditions, their heavy reliance on conventional imaging sensors still prevents them

from becoming mass market products.

The core work of this research concerns these constraints imposed by standard cameras,

9

1. Introduction

and was motivated by silicon retinas in neuromorphic engineering mimicking some of the

superior properties of human vision. One such bio-inspired imaging sensor called an event

camera offers a breakthrough new paradigm for real-time vision, with its high measurement

rate, low latency, high dynamic range, and low data rate properties. The event camera

outputs not a sequence of video frames like a standard camera, but a stream of asynchron-

ous events at microsecond resolution, indicating when individual pixels record log intensity

changes of a pre-set threshold size. But it has proven very challenging to use this novel

sensor in most computer vision problems, because it is not possible to apply standard com-

puter vision techniques, which require synchronous intensity information, to its fundament-

ally different visual measurements.

In this thesis, we show for the first time that an event stream, with no additional sensing,

can be used to track accurate camera rotation while building a persistent and high quality

mosaic of an unstructured scene which is super-resolution accurate and has high dynamic

range. We also present the first algorithm provably able to track a general 6D motion along

with reconstruction of arbitrary structure including its intensity and the reconstruction of

grayscale video that exclusively relies on event camera data. All of the methods operate

on an event-by-event basis in real-time and are based on probabilistic filtering to maximise

update rates with low latency. Through experimental results, we show that extremely rapid

motion tracking and high dynamic range scene reconstruction without motion blur can be

achievable by harnessing the superior properties of the event camera, and the potential

for consuming far less power based on the low data rate property. We hope that this work

opens up the door to practical solutions to the current limitations of real-world visual SLAM

applications.

1.1 Visual SLAM

In this section, we will give a brief introduction to the history of visual SLAM and the current

state-of-the-art methods before we discuss the remaining challenges which still restrict their

applicability in many real-world situations in Section 1.2.

We face the SLAM problem whenever we have a moving robot or any other device with

various on-board sensors which is dropped into an unknown space where it must local-

ise, navigate and understand in order to achieve a given task. Such a SLAM system takes

input in the form of a stream of data from one or more sensors, and estimates its continu-

ously changing position and orientation (pose) while building and expanding a model of

10

1.1. Visual SLAM

the environment surrounding the device. SLAM research originated in the robotics com-

munity where achieving real-time processing is essential to be useful, and was mainly

about 2D mapping. Most early SLAM systems therefore relied on sensors which could

directly measure both bearing angle and depth such as sonar sensors or laser range finders

as well as wheel odometry information based on strong assumptions about planar robot

motion [91, 129].

In visual SLAM, the main sensors are some type of vision sensors such as charge-coupled

device (CCD) or complementary metal-oxide-semiconductor (CMOS) cameras, depth cameras, or

event cameras in our case. Visual SLAM has received a great deal of attention from the com-

puter vision and robotics communities over the last 20 years, mainly because these vision

sensors have become relatively cheap and small size, and ubiquitously found in portable

devices such as mobile phones and tablets. Cameras are also the natural sensor of choice for

high level scene understanding capability which can infer meaningful semantic information

such as the identities of objects.

While structure from motion (SfM) estimates the positions of a set of cameras and the

structure of the scene given a collection of images focussing on off-line applications such as

movie post production [60, 133], visual SLAM incrementally estimates cameras’ motion and

the scene structure as images are received in real-time.

Initially, localisation and mapping were tackled separately due to the closely correlated

nature of both problems — an accurate map representation is required to perform localisa-

tion, and precise localisation information is needed to create a consistent map. The theor-

etical foundation of SLAM was established by the pioneering work of Smith et al. [153] and

Moutarlier and Chatila [121] using a sequential probabilistic filter whose job is to maintain

joint probabilistic estimates for both the shape of a space around a device and the device’s

own motion through that space which are refined over time as new sensor measurements

arrive. They proposed the use of the extended Kalman filter (EKF) [79], and this became the

mainstream framework of many early successful SLAM systems [92, 14, 25, 129].

One of the first full joint EKF-based real-time SLAM system using computer vision was

developed by Davison et al. [40] which utilised an active stereo head on a wheeled robot to

fixate and track selective sparse landmark features, and navigated in previously unknown

environments over extended periods of time as shown in Figure 1.1. Its hardware complexity

(i.e. the active stereo camera and wheel odometry) and hard constraint (i.e. the planar robot

motion assumption) however limited its applicability in many real-world scenarios similar to

11

1. Introduction

Figure 1.1: One of the first full joint EKF-based real-time visual SLAM system which
navigates in unknown environments by tracking selective sparse landmark features with
an active stereo camera on a wheeled robot, showing a highly constrained and hardware-
dependent setup in the early period of the visual SLAM research. Figures courtesy of
Davison et al. [40].

most early SLAM systems, and therefore more general visual SLAM algorithms which could

operate in a much less constrained and hardware-dependent setup were highly demanded.

The most general and simplest setup in visual SLAM is using a single camera with no

additional sensing to track 6 degree-of-freedom (DoF) motion and build a map of unknown and

unstructured scenes. This configuration is known as monocular SLAM, which is much more

challenging. Chiuso et al. [29, 30] tackled this monocular camera motion estimation and

mapping problem based on a sequential probabilistic filtering approach, but the presented

results were limited to tracking small camera motions with small groups of objects.

A breakthrough real-time monocular SLAM system called MonoSLAM was developed by

Davison et al. [41, 42] — its implementation is available open-source1,2. As shown in Fig-

ure 1.2, MonoSLAM was able to track the position and orientation of a hand-held camera

and estimate the 3D locations of a sparse set of feature points represented by small image

patches using an EKF maintaining full covariance over the stacked state vector composed of

the camera and feature position estimates. It was however able to handle only around 100

features in the state vector in order to maintain real-time operation because of the computa-

tional complexity of the EKF which is, in the worst case, proportional to the cube of the size

of the state vector, severely limiting its scalability. In addition, repeatedly linearising non-

1SceneLib 1.0: https://www.doc.ic.ac.uk/~ajd/Scene/index.html (accessed September 2017)
2SceneLib 2.0: https://github.com/hanmekim/SceneLib2 (accessed September 2017)

12

https://www.doc.ic.ac.uk/~ajd/Scene/index.html
https://github.com/hanmekim/SceneLib2

1.1. Visual SLAM

Figure 1.2: MonoSLAM was one of the first real-time monocular SLAM methods which
tracked 6-DoF hand-held camera motion while building a sparse set of features based on a
sequential probabilistic filter showing the most general and simplest setup in visual SLAM.
Figures courtesy of Davison et al. [42].

linear sensor and motion models in the sequential probabilistic filtering framework propag-

ates linearisation errors and eventually tends to cause inconsistencies over longer trajector-

ies. To mitigate both problems and improve the scalability of EKF-based SLAM methods,

submapping strategies were introduced which generally decompose a large map into small

local maps of bounded complexity such as Bosse et al. [18] and Clemente et al. [35]. Also,

Eade and Drummond [54] took a different approach to submapping to improve scalability

by adapting the FastSLAM algorithm [118] for a monocular SLAM system which was able

to handle hundreds of features in real-time.

A more general way to address the SLAM problem over probabilistic filtering formula-

tions, especially for large scale maps, is the graph-based method which constructs a graph

whose nodes represent poses or landmarks and edges correspond to constrains between

connected nodes based on sensor measurements, and then finds the best configuration of

the graph consistent with the constraints via graph optimisation such as the TORO [67] or

g2o [86]3 libraries. This graph-based formulation was first proposed by Lu and Milios [102]

in 1997, but it took several years to gain popularity over EKF-based methods due to the high

computational complexity of the error minimisation. The first monocular SLAM system

based on such a graph-based formulation was proposed by Eade and Drummond [55]. The

system operates in real-time with several hundred landmark features producing accurate

estimation considerably better than probabilistic filtering-based methods and comparable to

off-line bundle adjustment in SfM by performing global graph optimisation. Another inter-

esting and closely related method to tackle large scale SLAM was RatSLAM developed by

3g2o: https://github.com/RainerKuemmerle/g2o (accessed September 2017)

13

https://github.com/RainerKuemmerle/g2o

1. Introduction

Milford and Wyeth [114] which is a lightweight vision system that provides rough trajectory

of a ground-based platform (e.g. car) based on a very simple visual odometry algorithm and

then produces a very large coherent map by closing many loops based on a simple visual

place recognition method.

In 2007, a groundbreaking real-time visual SLAM system called parallel tracking and map-

ping (PTAM) was presented by Klein and Murray [84] which unarguably outperformed

MonoSLAM and other existing methods in terms of accuracy and robustness — its imple-

mentation is also available open-source4. They proposed to split the visual SLAM prob-

lem into two separate tracking and mapping components processed in parallel on different

threads of a multi-core computer, based on the assumption that the current estimate from

one component is accurate enough to lock for the purposes of estimating the other. While

its tracking operates in real-time on every single frame against a 3D scene model from the

mapping part consisting of thousands of feature points, its mapping component produces

the 3D map from carefully selected previous frames (keyframes) based on a computationally

expensive batch optimisation technique but running at lower frequency than frame rate. As

shown in Figure 1.3, it was able to enable more realistic AR experiences by recovering more

detailed 3D geometric information of a scene, but limited to small AR workspaces bounded

by the maximum number of keyframes the bundle adjustment back-end can handle in real-

time.

Since the impact PTAM has made on the visual SLAM research was significant, a thorough

investigation was conducted into the question of which one is more beneficial to maximise

accuracy and robustness of a real-time visual SLAM system between increasing the num-

ber of frames and increasing the number of features given available processing resources.

And, it has proven that keyframe-based batch optimisation is the method of choice for real-

time visual SLAM over iterative probabilistic filtering [157, 160]. Later, Strasdat et al. [159]

proposed a two-level optimisation approach to improve scalability to much larger work-

spaces which operates like PTAM in the primary region of interest but has a second coarse

level which is similar to pose-graph optimisation. Most recently, Mur-Artal et al. [125]5,6

extended this type of approach much further by redesigning a new monocular SLAM sys-

tem called ORB-SLAM incorporating other well-developed components for feature detec-

tion [142], loop detection [65], a loop closing and optimisation strategy [158, 159], and

optimisation framework [86], and demonstrated its high accuracy and reliability in many

4PTAM: http://www.robots.ox.ac.uk/~gk/PTAM/ (accessed September 2017)
5ORB-SLAM: https://github.com/raulmur/ORB_SLAM (accessed September 2017)
6ORB-SLAM2: https://github.com/raulmur/ORB_SLAM2 (accessed September 2017)

14

http://www.robots.ox.ac.uk/~gk/PTAM/
https://github.com/raulmur/ORB_SLAM
https://github.com/raulmur/ORB_SLAM2

1.1. Visual SLAM

Figure 1.3: PTAM separates tracking and mapping into two parallel tasks running on dif-
ferent threads of a multi-core computer. The tracking component operates on every single
frame while the mapping part performs at lower frequency to use a computationally ex-
pensive batch optimisation method. The system runs in real-time with thousands of feature
points enabling realistic AR experiences. Figures courtesy of Klein and Murray [84].

different scenarios.

Although the increased number of feature points that visual SLAM systems can handle

in real-time enabled more robust camera pose tracking and more realistic AR experiences,

they are still not sufficient for many robotic and AR applications. For instance, a robot needs

to know the geometry of blank walls to avoid collisions or the complete surface model of

objects in the world is required in order for AR virtual characters to interact with them.

Therefore, great research attention turned from feature-based to direct or dense visual SLAM

which makes use of all of the pixels in an image, not only extracted features such as the

work of Comport et al. [37].

Initially, researchers tried to tackle reconstructing dense surface models in real-time while

tracking still relied on a feature-based method such as Newcombe and Davison [126] and

Stuehmer et al. [161]. The first fully dense tracking and mapping method working with

a hand-held camera, called dense tracking and mapping (DTAM), was developed by New-

combe et al. [128]. The system was able to produce a dense surface model with millions of

vertices by fusing detailed textured depth maps estimated at selected keyframe positions

while robustly tracking the 6-DoF camera motion by whole image alignment against the

dense model at frame rate. They achieved real-time performance of their computationally

intensive but highly parallelisable algorithms using a graphics processing unit (GPU) enabled

computer, and demonstrated the usefulness of the dense representation for robust tracking

15

1. Introduction

Figure 1.4: DTAM demonstrated the usefulness of its dense surface model (left) for robust
tracking and real-time scene interaction in AR applications over the sparse feature-based
representation (right). Figures courtesy of Newcombe et al. [128].

even under rapid motion and physics-enhanced AR applications over the sparse feature-

based representation as shown in Figure 1.4.

In addition to the parallel processing power of GPU processors which massively con-

tributed to realising real-time dense monocular SLAM methods, the arrival of commodity

depth sensors like Microsoft Kinect in 2010 made possible high quality dense surface recon-

struction and beyond using depth sensor readings measured in hardware, at no computa-

tional cost. One of the most influential pieces of work in RGB-D camera-based dense visual

SLAM, called KinectFusion, was introduced by Newcombe et al. [127]. While a low-cost

depth sensor browses a complex and arbitrary indoor scene, tracked using iterative closest

point (ICP) alignment between the predicted and actual depth measurement, the system was

able to produce a highly accurate dense map of the scene in real-time by fusing all of the

incomplete, noisy depth data from the sensor into a volumetric, truncated signed distance

function (TSDF) representation as shown in Figure 1.5 (a).

However, KinectFusion came with a few limitations such as its restricted scalability to

a fixed small workspace, mainly caused by the predefined TSDF voxel model. Also there

were potential tracking failures in scenes with poor 3D structure because of its sole reliance

on geometric information. Newer related developments such as Kintinuous [171, 174, 172]7

and ElasticFusion [173]8 tackled these limitations by introducing more scalable volumetric

7Kintinuous: https://github.com/mp3guy/Kintinuous (accessed September 2017)
8ElasticFusion: https://github.com/mp3guy/ElasticFusion (accessed September 2017)

16

https://github.com/mp3guy/Kintinuous
https://github.com/mp3guy/ElasticFusion

1.1. Visual SLAM

(a) (b)

Figure 1.5: (a) KinectFusion produces high quality dense surface reconstruction (right) of
complex and arbitrary objects or indoor scenes in real-time by fusing all of the incomplete,
noisy depth data (left) from a Kinect sensor. Figure courtesy of Newcombe et al. [127]; (b)
high quality globally consistent large scale reconstruction of ElasticFusion. Figure courtesy
of Whelan et al. [173].

representations (e.g. sliding volume), robust tracking (e.g. based on both geometric and

photometric constraints), and loop closure optimisations, and they managed to produce high

quality globally consistent large scale reconstructions such as the result from ElasticFusion

shown in Figure 1.5 (b).

The real-time dense monocular SLAM methods either using a standard camera or RGB-D

sensor described so far have become very practical technologies and have great potential

for serious commercial products. However, their high computational requirements which

can be processed in real-time only with powerful hardware (e.g. GPUs) mean that use on

mass market, low-cost, low-power platforms is difficult. Therefore recently, a number of

sophisticated visual SLAM methods which try to benefit from both the efficiency of feature-

based approaches and the accuracy and robustness of dense methods have been introduced.

Engel et al. developed a large-scale direct monocular SLAM (LSD-SLAM) system [57]9 built

on top of their previous semi-dense visual odometry method [56] which can build large-scale,

globally consistent maps as shown in Figure 1.6 along with highly accurate camera pose es-

timation based on direct (i.e. featureless) image alignment. The key idea is to continuously

estimate pixel-wise depth values in a probabilistic filtering framework but only for the pixels

with non-negligible intensity gradients (i.e. semi-dense). They managed to run this method

in real-time on a CPU. A similar idea but using more abstract information (edges) was pro-

9LSD-SLAM: https://github.com/tum-vision/lsd_slam (accessed September 2017)

17

https://github.com/tum-vision/lsd_slam

1. Introduction

Figure 1.6: LSD-SLAM can build a large-scale, globally consistent map (shown as 3D point
clouds on the top) consisting of keyframes with associated semi-dense depth maps (shown
in the bottom two rows). This method can run in real-time on a CPU. Figure courtesy of
Engel et al. [57].

posed by Tarrio and Pedre called real-time edge based visual odometry (REBVO) [164]10 which

can run in real-time on embedded platforms with limited processing resources. Once edge

information is extracted in a highly parallelisable manner, the system tracks 6-DoF camera

pose by fitting the current edges into the previous ones in an energy minimisation form, and

estimates the depth value per edge pixel using a pixel-wise EKF based on edge point corres-

pondences between the latest two frames. Lastly, Forster et al. proposed a hybrid approach

called semi-direct visual odometry (SVO) [61]11 which explicitly combines the feature-based

approaches and direct methods. SVO produces a sparse map consists of feature points, but

performs feature extraction and matching only when a keyframe needs to be created while

estimating the camera pose directly based on pixel values at every frame. By reducing

the number of feature correspondence steps required, they managed to increase processing

speed, and at the same time increase the accuracy and robustness of the method through

sub-pixel alignments.

10REBVO: https://github.com/JuanTarrio/rebvo (accessed September 2017)
11SVO: https://github.com/uzh-rpg/rpg_svo (accessed September 2017)

18

https://github.com/JuanTarrio/rebvo
https://github.com/uzh-rpg/rpg_svo

1.2. Limitations

One very interesting approach enabled by high quality dense surface reconstruction is to

use high-level scene understanding in the loop to improve real-time visual SLAM systems

with robust camera localisation, more efficient and compressed scene representation, and

perception capabilities. For instance, SLAM++ [145] used online 3D object recognition of

domain-specific objects such as chairs or tables, and Salas-Moreno et al. [146] took advantage

of prior knowledge that many man-made environments consist of repeated planar structures

in their RGB-D camera-based SLAM system. We believe that visual SLAM will continue to

evolve towards semantic SLAM integrating real-time geometry and semantic understanding

of scenes, and this is a current research frontier such as the work of McCormac et al. [110].

In this section, we gave a brief introduction to the history of visual SLAM and current

state-of-the-art methods, but for a deeper understanding of the SLAM research, we refer to

the relevant literature such as textbooks [74, 165, 33], through historical reviews [53, 6, 5,

50, 147, 62], more recent survey papers [176, 77, 21], graph-based SLAM [68], visual place

recognition [101], and multiple robot SLAM [144].

1.2 Limitations

As introduced in the previous section, real-time visual SLAM has progressed rapidly and

continuously in the past 20 years. While early visual SLAM methods made rather sparse

maps of the world in the form of point clouds, recent approaches show that it is now

evolving into a general scene understanding capability which can reconstruct detailed sur-

face geometry and meaningful semantic information such as the identities of objects. And

we are now witnessing a rapid transition of this technology into a range of real products

such as autonomous vehicles, drones, smartphones, AR/VR and services robots (see Fig-

ure 1.7). Most of these use additional complementary sensors like an IMU. However, des-

pite a number of sophisticated visual SLAM methods recently developed which are more

efficient and robust, we believe that such mass market products will not be possible until

further breakthrough improvements in several challenges to current visual SLAM techno-

logy are achieved: especially the response to rapid motion with low latency, handling of

extreme lighting variation, and high power consumption.

Standard frame-rates cannot cope with rapid motion.

Many real-world, real-time vision applications require much faster control feedback than

standard frame rates (i.e. 25-60Hz) to cope with dynamics in the world. Normal frame rates

run into problems when trying to supply this, either of vast motion displacement between

19

1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.7: Visual SLAM is a key enabler for a number of applications such as (a) autonom-
ous vehicles, (b) drones, (c) smartphones, (d) augmented reality, (e) virtual reality, and
(f) service robots. Figures courtesy of Google, Amazon, Niantic, Microsoft, Facebook and
Dyson.

20

1.2. Limitations

(a) (b)

Figure 1.8: Computer vision methods relying on standard cameras suffer from: (a) severe
motion blur with rapid camera motion washing out all the detailed texture in the scene;
(b) low dynamic range under extreme lighting variation, causing low contrast in the areas
around bright or dark regions.

frames or diminishing image quality with motion blur (e.g. Figure 1.8 (a)), which degrade

the performance of any kind of computer vision algorithm significantly.

Alternatively, higher frame-rates give us the opportunity to track rapid motion by provid-

ing smaller motion displacement between frames. However, without a dedicated special

hardware architecture such as that of [78], the amount of data to be transmitted, processed

and saved would be too great, and the nature of high shutter timing increases noise levels

and makes output too dark. Handa et al. [70] showed that the overall computational cost

of high frame-rate vision-based tracking applications is mitigated by reduced inter-frame

processing complexity which takes the advantage of motion prediction, but frame-rate can-

not be arbitrarily increased because of the limitation of available computational budget and

image degradation with noise.

Standard cameras suffer from low dynamic range.

A standard CCD/CMOS camera generates video by regularly and synchronously opening

its shutter to expose all pixels (or a line of pixels in the rolling shutter case) and capture

frames, and has relatively low dynamic range around 60dB. It is therefore unable to sense

over a high dynamic range in scenes which contain large intensity differences as shown

in Figure 1.8 (b) — we lose visibility in an area around the bright sun and in the dark

regions. Of course, this can be improved by sophisticated post-processing algorithms based

21

1. Introduction

on multiple images with different shutter speeds in hardware or software, but there is still

a significant gap between the enhanced results and natural high dynamic scenes. Like

motion blurred images, degraded low dynamic range frames make most computer vision

algorithms difficult to perform correctly.

Powerful hardware requirements and high power consumption.

The accurate, robust tracking and high quality reconstruction capabilities of current visual

SLAM systems in general require dedicated powerful hardware such as multi-core CPUs

and GPUs, and their high computational requirements consume a lot of power which also

leads to significant heat. LiKamWa et al. [97] in their case study of the power and thermal

characteristics of Google Glass12 showed that even a simple OpenCV face detection applica-

tion brings the device to a full 100% CPU utilisation and shortens battery lifetime to only 38

minutes. These are serious limiting factors for such systems to be deployed in mass market,

low-cost, always-on, low-power platforms such as the ones shown in Figure 1.7 to reach

their full potential.

1.3 Contributions

We strongly believe that next generation image sensor and processor technologies have great

potential to solve all of the limitations of real-time visual SLAM imposed by the conven-

tional hardware architecture and design principles of the standard cameras and processors

when integrated with a new class of computer vision algorithms, and this strong belief has

inspired the direction of this work.

In this thesis, we present the first high performance real-time visual SLAM algorithms

based on a single event camera, a paradigm shift in visual sensing. Event sensors gener-

ate low bit-rate, information-rich data streams which are free of the redundancy of video

while providing high dynamic range and high time resolution by reporting asynchronous

intensity changes rather than full frames. Event sensors have no shutter or global exposure

settings, which leads to a very high dynamic range (e.g. 130dB), and report events with al-

most continuous micro second timestamps, allowing detailed observation of even spinning

fan blades.

In Chapter 4, we show for the first time that an event stream, with no additional sensing,

can be used to track accurate camera rotation while building a persistent and high qual-

12Google Glass: https://en.wikipedia.org/wiki/Google_Glass (accessed September 2017)

22

https://en.wikipedia.org/wiki/Google_Glass

1.4. Publications

ity mosaic of a scene which is super-resolution accurate and has high dynamic range. The

method involves parallel camera rotation tracking and template reconstruction from estim-

ated gradients, both operating on an event-by-event basis and based on probabilistic filtering

to maximise update rates with low latency. We then present its real-time implementation

whose overall structure and functionalities are the same, but a substantial speed up has been

achieved by adapting a computationally efficient estimation method for tracking as well as a

parallelisable log intensity reconstruction running on a GPU in Chapter 5. The experimental

results also show that this speed-up increases the quality of estimation and reconstruction

as it guarantees a higher fidelity of the independence assumption.

Then, to move towards 3D visual SLAM, we propose a method which can perform real-

time 3D reconstruction from a single hand-held event camera with no additional sensing,

and works in unstructured scenes of which it has no prior knowledge in Chapter 6. It is

based on three decoupled probabilistic filters, each estimating 6-DoF camera motion, scene

logarithmic (log) intensity gradient and scene inverse depth relative to a virtual keyframe,

and we build a real-time graph of these to track and model over an extended local work-

space. We also upgrade the gradient estimate for each keyframe into an intensity image,

allowing us to recover a real-time video-like intensity sequence with spatial and temporal

super-resolution from the low bit-rate input event stream. To the best of our knowledge, this

is the first algorithm provably able to track a general 6D motion along with reconstruction

of arbitrary structure including its intensity and the reconstruction of grayscale video that

exclusively relies on event camera data.

All of the methods described in this thesis are able to harness the superior properties of

the event camera such as high speed measurement, low latency, high dynamic range, and

low data rate, and we hope our work opens up the door to practical solutions to the current

limitations of real-world SLAM applications.

1.4 Publications

The work described in this thesis resulted in the following publications:

Simultaneous Mosaicing and Tracking with an Event Camera [82]

Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoı̈ Ieng and Andrew J. Davison

Proceedings of the British Machine Vision Conference (BMVC), 2014

(Best Industry Paper)

23

1. Introduction

Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera [83]

Hanme Kim, Stefan Leutenegger and Andrew J. Davison

Proceedings of the European Conference on Computer Vision (ECCV), 2016

(Best Paper Award)

and other papers produced during the course of my PhD are as follows:

Place Recognition with Event-based Cameras and a Neural Implementation of Se-

qSLAM [113]

Michael Milford, Hanme Kim, Michael Mangan, Tom Stone, Stefan Leutenegger, Barbara

Webb and Andrew Davison

The Innovative Sensing for Robotics: Focus on Neuromorphic Sensors workshop at the IEEE

International Conference on Robotics and Automation (ICRA), 2015

Towards Visual SLAM with Event-based Cameras [112]

Michael Milford, Hanme Kim, Stefan Leutenegger and Andrew Davison

The Problem of Mobile Sensors: Setting future goals and indicators of progress for SLAM Workshop

in conjunction with Robotics: Science and Systems (RSS), 2015

1.5 Thesis Structure

The structure of the rest of this thesis is as follows. In Chapter 2, we introduce the event

camera which senses scene changes in the form of asynchronous events rather than syn-

chronous frames, and some related work. Chapter 3 first presents the notational convention

and some important mathematical foundations, and then gives a brief overview of some of

the prerequisites required to work with an event camera and a number software libraries

and APIs used in our implementations. After these introductory chapters, we move on to

the core work of this thesis. In Chapter 4, we present the first method demonstrating high

quality HDR and super-resolution intensity panorama reconstruction and motion estimation

from a purely rotating event-based camera followed by its real-time version whose overall

structure and functionalities are the same, but a substantial speed up is achieved by adapt-

ing a computationally efficient tracking method as well as a parallelisable reconstruction

running on a GPU in Chapter 5. In Chapter 6, we present the first method demonstrating

joint estimation of general 6-DoF camera motion, scene intensity and scene 3D depth from

pure event data running on a standard PC in real-time. Finally, we conclude in Chapter 7

24

1.5. Thesis Structure

with a summary of the work and the contributions made throughout this thesis along with

some thoughts on potential future work.

25

1. Introduction

26

Chapter2

Event Cameras

Contents

2.1 Neuromorphic Silicon Retina . 28

2.2 Event-Based Vision Sensors . 29

2.2.1 Event Camera vs Standard Camera 29

2.2.2 The DVS Sensor . 31

2.2.3 The ATIS Sensor . 32

2.2.4 The DAVIS Sensor . 34

2.2.5 Other Advanced Event Cameras . 34

2.2.6 Limitations . 35

2.2.7 Summary . 36

2.3 Related Work . 36

2.3.1 Estimating Visual Motion and Structure 39

2.3.2 Tracking . 41

2.3.3 Reconstruction . 43

2.3.4 Localisation and Mapping . 45

2.3.5 Dataset . 47

2.4 Discussion and Summary . 47

In this chapter, we introduce novel image sensors called event cameras which have strong

potential, when integrated with new event-driven computer vision algorithms as proposed

in this thesis, to solve most of the problems caused by the design principles of conven-

tional cameras as described in Section 1.2. In contrast to standard frame-based cameras,

event vision sensors capture scenes in a totally different way. They generate low bit-rate,

27

2. Event Cameras

information-rich data streams which are free of the redundancy of video while provid-

ing additional advantages such as high dynamic range, high temporal resolution and low

latency by reporting asynchronous intensity changes over time or space rather than syn-

chronous full image frames. They originate from the bio-inspired silicon retina research in

neuromorphic engineering whose goal is to emulate some superior properties of biological

vision [105, 104, 17].

2.1 Neuromorphic Silicon Retina

Despite AlphaGo’s historic victory in the Go match between Sedol Lee, 18-time world cham-

pion, and AlphaGo, a computer program developed by Google DeepMind [150], in March

2016, biological creatures outperform their artificial counterparts still in many areas. Hu-

mans, for instance, are able to recognise heavily occluded objects with which state-of-the-art

machine learning methods are still struggling. More importantly, if we take into account

operational efficiency, there is no competition at all. In the historic Go match, AlphaGo

consumed approximately 1MW of power to operate its cloud computer consisting of 1,920

CPUs and 280 GPUs1 while its opponent used only about 20W [73, 20] to make his moves.

Therefore, understanding how biology functions in such an efficient way will undoubtedly

provide profound insights into new paradigms of sensing and processing. With this aim,

researchers in neuromorphic engineering have been trying to copy neural architecture and

function to create electronics systems with the same efficient style of sensing and computa-

tion.

Within this research branch, neuromorphic vision systems specifically aim to mimic the

biological retina and subsequent vision processing. In biology, the vertebrate retina, which

is a thin sheet of tissue lining the inner surface of the eye, converts raw light into electrical

pulses (known as spikes) in proportion to the relative change in light intensity over time or

space. The spike signals are transmitted to the brain along the optic nerve to be interpreted

as visual images and to stimulate high level perception and reaction. Even though indi-

vidual neurons in the retina react much slowly and less precisely than electronic devices

(e.g. transistors), biological vision systems outperform any artificial counterparts, extract-

ing all the essential features of visual scenes rapidly and reliably even under very dynamic

lighting conditions, and are extremely efficient, consuming far less power.

Motivated by this deep understanding of how visual information is encoded by the bio-
1AlphaGo versus Lee Sedol: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol (accessed

September 2017)

28

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

2.2. Event-Based Vision Sensors

logical input sensor, transmitted to the brain, and processed to perform high level tasks

rapidly, reliably, and much more efficiently, researchers in neuromorphic engineering have

developed a new type of visual sensors. They are generally called as neuromorphic silicon

retinas, and aiming at emulating some of the properties of the biological counterpart. In

1991, Mahowald and Mead [105] successfully reproduced the first three of the biological

retina’s five layers in silicon, and demonstrated the same output signals observed in real

retinas in real-time. Since the pioneering work, a variety of neuromorphic vision devices

have been developed such as Visio1 developed by Zaghloul and Boahen which reproduced

all five layers of the retina in 2001 [178].

2.2 Event-Based Vision Sensors

Up to the early 2000s, neuromorphic vision research was mostly aimed at creating com-

plete neuromorphic systems mimicking their biological counterparts as precisely as pos-

sible. Since then, many different types of silicon retina have been developed which can

cooperate with conventional processors and be used in practical applications as alternat-

ive vision devices. Inspired by biological vision, they abstract information from scenes in

various forms to reduce redundancy and latency and increase dynamic range. Through

historical reviews of the event-based vision sensors research in general can be found

in [48, 45, 134, 135, 43].

Broadly speaking, any imaging sensor could be classified as a bio-inspired event camera

as long as the core aspect of its architecture is to emulate the use of biology’s sparse and

data-driven signalling. A number of different sensing modalities have been proposed [116],

such as spatial difference or contrast sensors which reduce spatial redundancy based on in-

tensity differences [81] or ratios [89] over space, and temporal difference or contrast sensors

which reduce temporal redundancy based on absolute [28] or relative [96] intensity changes

over time. More high-level abstraction sensors include gradient [166] and optical flow [156]

cameras. In this thesis, however, we only focus on temporal contrast type event cameras as

they are easily accessible via commercial products or research collaboration, and therefore

when we say an event camera we mean a temporal contrast type sensor which responds to

relative intensity changes over time.

2.2.1 Event Camera vs Standard Camera

In order to understand how event cameras work and appreciate how they could be beneficial

for real-time computer vision applications, it is inspiring to look at the differences between

29

2. Event Cameras

event cameras and standard cameras as illustrated in Figure 2.1. We recommend readers

to view our animation video2 which illustrates the comparison between event cameras and

standard cameras in a form better than a still figure (also see Appendix A).

Standard cameras record scenes at fixed time intervals (i.e. global or rolling shutter) and

output a sequence of image frames. For instance, as shown in Figure 2.1, if a fixed standard

camera looks at the spinning disc with a black dot shown on the left, we get a sequence

of snapshots as illustrated in the upper spatial-temporal graph on the right. The graph

visualises some of the main properties of the standard video frames: there are blind time

intervals between frames, the sensor keeps sending redundant data even when the disc stays

still (no new information produced), and we suffer from motion blur (illustrated by the grey

tails along the trajectory of the block dot) if the disc spins too fast.

In contrast, event cameras output not a sequence of video frames like a standard camera,

but a stream of asynchronous events (also called spikes), each with a pixel location, polarity

and microsecond-precise timestamp, indicating when individual pixels record log intensity

changes of a pre-set threshold size. Positive and negative changes produce positive and

negative events respectively. By encoding only image changes, the bandwidth needed to

transmit, process and store a stream of events is much lower than that for standard video,

removing the redundancy in continually repeated image values; but this stream should in

principle contain all of the information of standard video, at least up to scale, and without

the usual bounds on frame-rate and dynamic range. For instance, if we observe the same

spinning disc with a fixed event camera, we get the stream of events illustrated in the lower

spatial-temporal graph on the right of Figure 2.1 — red and blue dots represent positive

and negative events respectively. This graph also visualises some of the main properties of

the event stream; in particular the almost continuous response to very rapid motion and the

way that the output data-rate depends on scene motion, though in practice is almost always

dramatically lower than that of standard video. These properties offer the potential to

overcome the limitations of real-world computer vision applications, relying on conventional

imaging sensors, such as low frame rate, high latency, low dynamic range, and high power

consumption.

We now introduce some of the event cameras available, including the one we used in this

thesis. They are still research prototypes, but most of them are accessible via commercial

products or research collaboration.

2Event Camera vs Standard Camera: https://youtu.be/kPCZESVfHoQ (accessed September 2017)

30

https://youtu.be/kPCZESVfHoQ

2.2. Event-Based Vision Sensors

typical motion no motion rapid motion

Figure 2.1: Event camera vs standard camera: in contrast to a sequence of video frames
from a standard camera shown in the upper graph, a stream of events from an event camera,
plotted in the lower graph, offers no redundant data output (only informative pixels or no
events at all), no motion blur and high dynamic range. Red and blue dots represent positive
and negative events respectively, and this figure was recreated inspired by the associated
animation of [122]: https://youtu.be/LauQ6LWTkxM?t=35s.

2.2.2 The DVS Sensor

In this thesis, we use the first commercialised event camera from iniLabs3, the Dynamic

Vision Sensor (DVS), based on the research paper of Lichtsteiner et al. [96] as shown in

Figure 2.2 (a). It has 128×128 resolution, 120 dB dynamic range and 15 microsecond latency,

and communicates with a host computer using USB 2.0. It outputs a stream of events, each

consisting of a pixel location u and v, a polarity bit p indicating either a positive or negative

change in log intensity, and a timestamp t in microseconds as illustrated in Figure 2.2 (b).

We can visualise its output as shown in Figure 2.2 (c) by accumulating events within a

time interval; in this figure, white and black pixels represent positive and negative events

respectively.

Specifically, each pixel of the event camera consists of three hardware components as

shown as an abstracted pixel schematic in Figure 2.3 (a): a logarithmic photoreceptor, a dif-

ferencing circuit, and two comparators. The photoreceptor continuously outputs a voltage

3iniLabs Ltd: www.inilabs.com (accessed September 2017)

31

https://youtu.be/LauQ6LWTkxM?t=35s
www.inilabs.com

2. Event Cameras

t

(a) (b) (c)

Figure 2.2: The first commercial event camera, which we have used in this thesis: (a)
DVS128 from iniLabs; (b) a stream of events illustrated as upward and downward spikes for
positive and negative events respectively. Each event is a tuple 〈u, v, p, t〉 where u and v are
the pixel coordinates of the event, p is the polarity of the event, and t is the timestamp of the
event in microseconds; (c) an image-like visualisation of accumulated events within a time
interval — here white and black pixels represent positive and negative events respectively.

signal which encodes the incoming intensity logarithmically as plotted in the upper graph

in Figure 2.3 (b), and the signal is then monitored by the differencing circuit and the two

comparators for changes compared to a log intensity value recorded when the last event

was emitted by the pixel. Once a change in log intensity which exceeds either a pre-set ON

or OFF event threshold is detected, one of the comparators generates an ON or OFF event

accordingly, and the newly generated event then resets and causes the pixel to memorise a

new log intensity value as plotted in the lower graph in Figure 2.3 (b). The event threshold

is typically set to 10% contrast, and can be adjusted by the sensor’s bias settings — for a

more thorough description of the bias settings, refer to the technical reference manual from

the manufacturer4. Each DVS pixel repeats this process continuously and independently,

yielding a stream of asynchronous events which encode relative changes in pixel illumina-

tion.

2.2.3 The ATIS Sensor

Posch et al. [136] developed the Asynchronous Time-based Image Sensor (ATIS) camera which

provides absolute intensity values along with events. This was realised by combining the

DVS temporal contrast pixel with a new time-based intensity measurement pixel. Each

pre-set sized scene intensity change now causes three consecutive events: the first event

4User Guide: Biasing Dynamic Sensors: www.inilabs.com/support/hardware/biasing (accessed Septem-
ber 2017)

32

www.inilabs.com/support/hardware/biasing

2.2. Event-Based Vision Sensors

(a) abstracted DVS pixel schematic (b) principle of operation

Figure 2.3: DVS pixel architecture and the principle of operation: (a) each pixel of the DVS
sensor consists of three parts: a logarithmic photoreceptor, a differencing circuit, and two
comparators; (b) the output signal from the photoreceptor and the principle of operation
governed by the differencing circuit and comparators are plotted in the upper and lower
graphs respectively. Figures courtesy of Lichtsteiner et al. [96].

(a) (b) (c)

Figure 2.4: ATIS output: (a) an image-like visualisation of collected events within a time
interval; (b) an image-like visualisation of decoded intensity measurements within a time
interval; (c) a reference video frame of a typical surveillance scene. Figures courtesy of
Posch et al. [136].

is the same as the one from a DVS pixel, and the other two encode an absolute greyscale

value in the inter-event time interval. Figure 2.4 (a) and (b) show an image-like visualisation

of accumulated events and decoded intensity measurements within a time interval while

looking at a typical surveillance scene like (c). The main advantages compared to the DVS

sensors are its higher resolution (304×240), higher dynamic range (143 dB) and lower latency

(3 µs); and more importantly, the event-triggered wide dynamic range intensity readout. The

superior properties however come at the cost of a larger pixel size and smaller fill factor as

well as a higher power consumption.

33

2. Event Cameras

(a) (b)

Figure 2.5: DAVIS output: (a) an image-like visualisation of collected events within a
time interval; (b) an intensity frame from the DAVIS camera. Figures courtesy of Brandli
et al. [19].

2.2.4 The DAVIS Sensor

To address some of the drawbacks of the ATIS camera, Brandli et al. [19] designed the

dynamic and active pixel vision sensor (DAVIS) which interleaves event data with conventional

intensity frames rather than per-event intensity measurements. The main advantage of the

DAVIS pixel design is sharing the same photocurrent between the asynchronous detection

of brightness changes and the synchronous readout of intensities, and as a consequence it

requires only five additional transistors per pixel to add a global and rolling shutter readout

yielding a smaller pixel size. The DAVIS240C camera from iniLabs has 240×180 resolution

and 130 dB dynamic range (55dB for greyscale frames), and communicates with a host

computer using USB 2.0. It also has a time-synchronised inertial measurement unit (IMU) on

board that provides gyro, accelerometer and magnetometer data enabling to design event-

based visual-inertial methods. Figure 2.5 shows output data from the DAVIS camera — an

image-like visualisation of accumulated events within a time interval (a) and a greyscale

frame (b).

2.2.5 Other Advanced Event Cameras

Leñero-Bardallo et al. presented a 128×128 dynamic vision sensor which managed to im-

prove the minimum detectable contrast to 10% and the latency to 3.6µs while reducing

the pixel size compared to previous temporal contrast event cameras at the time of the

publication [90]. Two years later, Serrano-Gotarredona and Linares-Barranco introduced

34

2.2. Event-Based Vision Sensors

an improved version of their previous design which has better contrast sensitivity (1.5%),

lower power consumption (4mW), and lower fixed pattern noise level while maintaining

the shortest reported latency (3µs), good dynamic range (120dB), and small pixel size

(30×31µm2) [149]. Recently, the minimum temporal contrast sensitivity has been further

improved to 1% by Yang et al. [175]. More remarkably, we have now witnessed a colour dy-

namic and active-pixel vision sensor which outputs rolling and global shutter RGBW coded

VGA resolution frames along with asynchronous monochrome QVGA resolution temporal

contrast events (C-DAVIS by Li et al. [95]), and a 640×480 VGA resolution DVS camera with

the smallest reported pixel size (9×9µm2) by Son et al. [154].

2.2.6 Limitations

Despite their different design principles compared to standard vision sensors, event cameras

are also in practice subject to noise and limited in what they can perceive. Noises arise from

two primary factors. First, all the electronic components such as photodiodes and transistors

contribute some electronic noise. For instance, even in complete darkness, there is still

a small electric current across photodiodes which could produce noise events especially

noticeable in low-light conditions or in darker areas of scenes. Second, even in well-lit

conditions with little electronic noise, all existing event cameras have undesired background

events which are not correlated to scene changes [175]. They are all positive events regularly

produced at a certain rate which could be for instance once every 10 seconds depending on

the positive event threshold.

Also, what event cameras can perceive is limited by the minimum timestamp resolution

which is mostly 1µs, and two major bandwidth limitations. First, the chip bandwidth limits

the maximum number of events that can be transmitted from event cameras which is about

1M events-per-second (eps) for the DVS128 sensor [96] and about 10Meps for the DAVIS

sensor [19]. Second, the pixel bandwidth defines the maximum frequency at which an event

pixel can reliably produce events in response to rapid illumination changes, and that is

in the order of kHz in most event cameras. Therefore, it is very important to accordingly

configure event cameras, for instance via the DVS biases described in Section 3.5.3, to achieve

desirable characteristics (i.e. the noise level, sensitivity and sparsity of events) considering

these limitations.

35

2. Event Cameras

2.2.7 Summary

We summarise and compare the characteristics of the notable event cameras described in

this chapter in Table 2.1. As shown, over a decade, the event camera technology has been

improved significantly especially in terms of spatial resolution, pixel size, sensitivity, latency

and power consumption, and we can expect much more innovation in this area in the near

future. Each pixel of these event cameras is more complex at the hardware level than that of

standard cameras, paying the price in terms of fill factor and pixel size. Therefore, it requires

huge investment by industry to bring event cameras to mass production, and it may take

longer to reach the point where current CCD or CMOS sensors are. But, we believe that this

technology has a bright future by looking at the development history of standard imaging

sensors, and the latest event camera from a giant company like Samsung [154].

Event cameras can be seen as the logical conclusion of devices such as rolling shutter

cameras which have some degree of non-global capture; but are a much more powerful

proposition since their output is purely data-driven and they do a lot of the hard things

we are used to doing in computer vision to determine which pixels are useful in hardware,

at no computational cost. It is also worth restating the comparison between the data rate of

an event camera — typically on the order of 100-400kB/s — and for instance a standard

monochrome VGA video feed at 30Hz: 10MB/s. The event camera generates low bit-rate,

information-rich data streams which are free of the redundancy of video while removing

the problems of motion blur, low dynamic range and high latency which standard cameras

have.

2.3 Related Work

As introduced in the previous section, event cameras offer a breakthrough new paradigm

of sensing and processing for real-time computer vision applications, with high potential in

robotics, wearable devices and autonomous vehicles, but it has proven very challenging to

use them in most standard computer vision problems. The clear difficulty is that most well

defined computer vision methods over decades of research require synchronous full image

frames to work on, and therefore they cannot be directly applied to the fundamentally dif-

ferent asynchronous stream of events from such an event camera. A paradigm shift from

traditional frame-based methods to novel event-based approaches is required. In this sec-

tion, we introduce some of the notable related work in different computer vision application

areas, emphasising SLAM-like work especially, since the DVS camera became available in

36

2.3. Related Work

Ta
bl

e
2.

1:
Su

m
m

ar
y

an
d

co
m

pa
ri

so
n

of
th

e
ev

en
t

ca
m

er
as

de
sc

ri
be

d
in

Se
ct

io
n

2.
2.

D
V

S
[9

6]
A

TI
S

[1
36

]
Le

ñe
ro

-
Ba

rd
al

lo
et

al
.[

90
]

Se
rr

an
o-

G
ot

ar
re

do
na

an
d

Li
na

re
s-

Ba
rr

an
co

[1
49

]

D
A

V
IS

[1
9]

Ya
ng

et
al

.[
17

5]
So

n
et

al
.[

15
4]

Ye
ar

20
08

20
11

20
11

20
13

20
14

20
15

20
17

R
es

ol
ut

io
n

12
8×

12
8

30
4×

24
0

12
8×

12
8

12
8×

12
8

24
0×

18
0

60
×

30
64

0×
48

0

La
te

nc
y

(µ
s)

15
3

3.
6

3
3

N
/A

N
/A

D
yn

am
ic

ra
ng

e
(d

B)
12

0
14

3
10

0
12

0
13

0
13

0
N

/A

M
in

.s
en

si
ti

vi
ty

(%
)

17
13

10
1.

5
11

1
9

Po
w

er
(m

W
)

24
17

5
14

5
4

14
0.

72
27

-5
0

G
re

ys
ca

le
ou

tp
ut

×
◦

×
×

◦
×

×

C
hi

p
si

ze
(m

m
2)

6.
3×

6
9.

9×
8.

2
5.

6×
5.

5
4.

9×
4.

9
5×

5
3.

2×
1.

6
8×

5.
8

Pi
xe

ls
iz

e
(µ

m
2)

40
×

40
30
×

30
35
×

35
31
×

30
18

.5
×

18
.5

31
.2
×

31
.2

9×
9

Fi
ll

fa
ct

or
(%

)
8.

1
10

8.
7

10
.5

22
10

.3
N

/A

Su
pp

ly
vo

lt
ag

e
(V

)
3.

3
1.

8/
3.

3
3.

3
3.

3
1.

8/
3.

3
1.

8
1.

2/
2.

8

Te
ch

no
lo

gy
0.

35
µ

m
M

M
/R

F
2P

4M

0.
18

µ
m

M
M

/R
F

1P
6M

0.
35

µ
m

M
M

/R
F

2P
4M

0.
35

µ
m

IS
2P

4M
0.

18
µ

m
IS

1P
6M

0.
18

µ
m

M
M

/R
F

1P
6M

90
nm

1P
5M

BS
I

37

2. Event Cameras

2008.

Since the emergence of event-based cameras, most computer vision work using them

has focused on tracking and recognising moving targets from a fixed point of view, where

almost all events are generated by the dynamic object motion. In this scenario, tasks become

much easier by having additional information to spot target objects and eliminating the

need to extract them from backgrounds even under difficult lighting conditions. Also, the

high measurement rate and low latency properties of the event camera enable rapid motion

tracking and very fast feedback control in a very efficient way, compared to the use of a

high frame rate camera with its associated high computational cost and diminishing image

quality with blur, noise or saturation [70].

For instance, a robotic goalkeeper system which controls its robot arm to block rapidly

moving balls using a DVS camera was successfully demonstrated by [47, 46] as shown in

Figure 2.6 (a) — we recommend readers to view their demo video5. By harnessing a simple

event-driven cluster tracking algorithm, the robot system achieves high update rates around

550Hz with 3ms reaction time at a peak CPU load of less than 4%. A similar application

which requires very fast feedback control with latencies on the order of milliseconds was

also presented by Conradt et al. [38] as shown in Figure 2.6 (b). This pencil balancing robot

utilises a pair of DVS cameras to estimate the 3D position and angle of a pencil (or any

small and thin object) by fitting incoming events to a vertical shape model, and maintains

the pencil balanced on its tip by controlling an actuated table underneath accordingly. We

also recommend viewing their demo video which shows its real-time performance6.

Artificial silicon retinas have also been used in conjunction with biologically inspired

learning approaches to solve high level scene understanding and perception problems.

Bichler et al. [15] presented a feed-forward spiking neural network which can learn tem-

porally correlated patterns from an event camera in a fully unsupervised scheme, and they

showed that the proposed neural network is able to extract car trajectories on a motorway

after only 10 minutes of traffic learning, and is extremely robust to noise. An event-driven

convolutional neural network (ConvNet) was also developed by Pérez-Carrasco et al. [132] to

recognise the orientation of human walking silhouettes and more remarkably high speed

poker card symbols when flickering through a whole card deck in about 1 second in front

of a DVS camera. The weights of the convolutional kernel are however trained based on

a frame-based ConvNet, and then mapped to an event-driven one at a later stage. More

5DVS robo goalie: https://youtu.be/IC5x7ftJ96w (accessed September 2017)
6Pencil Balancer using Vision Input (DVS) only: https://youtu.be/XVR5wEYkEGk (accessed September 2017)

38

https://youtu.be/IC5x7ftJ96w
https://youtu.be/XVR5wEYkEGk

2.3. Related Work

(a) (b)

Figure 2.6: (a) A goalie robot controls its robot arm to block rapidly moving balls using
a DVS camera. Figure courtesy of Delbruck and Lang [46]; (b) A pencil balancing robot
maintains a pencil balanced on its tip by controlling an actuated table underneath using two
DVS cameras. Figure courtesy of Conradt et al. [38].

recently, Lee et al. [88] proposed a real-time hand gesture recognition system based on a

spiking neural network which processes events from a pair of DVS cameras as they arrive,

and showed that their architecture has the potential to be implemented in a dedicated neur-

omorphic processor such as IBM’s TrueNorth [111] or SpiNNaker [63] from the University

of Manchester which will make the system more energy efficient and faster.

Work on tracking, reconstruction and understanding of more general, previously un-

known scenes with a freely moving event camera, which we believe is the best place to take

full advantage of the remarkable properties of event cameras, is still at an early stage. In

recent years, however, the computer vision and robotics communities have made significant

progress, and in the following sub-sections, we introduce some of the notable SLAM related

work.

2.3.1 Estimating Visual Motion and Structure

Cook et al. [39] proposed a loosely coupled interacting network which interprets a stream

of events to recover different visual estimate maps of scenes such as light intensity, spatial

gradient and optical flow while estimating global rotating camera motion as shown in Fig-

ure 2.7. As their network involves only local computations, it is highly parallelisable and can

be performed asynchronously, and has the high potential to be implemented in dedicated

neuromorphic or graph processors placed directly behind and connected in parallel to the

pixels of event cameras. In this concept, incoming events could wake up and activate local

39

2. Event Cameras

(a)

(b)

Figure 2.7: Interacting visual maps: (a) the proposed interacting network architecture which
estimates different visual quantities (shown as solid ellipses) from a stream of events based
on their loosely coupled relationships (shown as solid rectangles); (b) the network input and
output — accumulated input events (V), light intensity output (I), spatial gradient output
(G) and optical flow output (F). Figures courtesy of Cook et al. [39].

computation and message passing, while the majority of the processor remains in a sleep

state to conserve power. As a result of their ongoing research, they have recently imple-

mented an extended version in the Cellular Processor Array (CPA) [9, 23, 98] simulator and

hardware as well as general purpose GPUs demonstrating its potential to be a high speed

and low power computer vision chip [108, 107].

Benosman et al. [13] proposed a dense optical flow estimation algorithm using an event

camera which precisely estimates visual flow orientation and amplitude based on a local

differential approach. Events are clustered in the spatio-temporal domain with microsecond

40

2.3. Related Work

accuracy and at very low computational cost. It however only works well with a fixed event

camera setup and for low textured scenes with sharp edges. Recently, Bardow et al. [8] pro-

posed a new event-based optical flow estimation method which supports generic camera

motion as well as dynamic scenes. The method estimates optical flow and intensity sim-

ultaneously purely based on a stream of events from a single DVS camera by minimising

a cost function consisting of the asynchronous event data term and spatial and temporal

regularisation terms within a sliding time window.

Miyatani et al. [115] adapted a patch-based dictionary learning approach to infer image

spatial gradients from sparse, accumulated events. These are then upgraded to log intens-

ities via Poisson reconstruction. They also demonstrated direct face detection from event

streams without needing reconstructed intensity frames. Their framework does not require

recovery of camera movement to estimate intensity information, and can produce high-

speed video reconstruction at 2,000 fps even with significant noise within the captured event

streams. Reinbacher et al. [141] also showed that intensities can be recovered from events

in real-time without explicitly estimating optical flow or relying on a learning approach

which reduces its complexity substantially. They formulated the intensity reconstruction

problem in a variational denoising framework which accurately models the characteristics

of event cameras, and defined the optimisation problem on the event manifold induced by

the relative timestamps of events. Real-time performance is achieved by implementing the

energy minimisation on a GPU, and their current per-event-basis implementation7 is able to

reconstruct at about 500 fps.

2.3.2 Tracking

Initially, event-based SLAM research focused on event camera motion tracking with arti-

ficially created or previously known scenes since this simplifies the problem dramatically.

For instance, Weikersdorfer and Conradt [168] presented a particle filter based tracking

algorithm which tracks relatively slow 3-DoF planar robot motion while an embedded up-

ward looking event-based sensor observes planar scenes parallel to the plane of motion such

as a ceiling covered with artificial line patterns as shown in Figure 2.8 (a). Later, Mueggler

et al. [122] proposed an onboard 6-DoF localisation flying robot system equipped with a DVS

camera which is able to track very rapid motion such as flips of a quadrotor. The system

requires a black and white line-based known target such as the black square shown in Fig-

ure 2.8 (b), and updates the current 3D position and orientation estimates by minimising the

7VLOGroup/dvs-reconstruction: https://github.com/VLOGroup/dvs-reconstruction (accessed Septem-
ber 2017)

41

https://github.com/VLOGroup/dvs-reconstruction

2. Event Cameras

(a) (b)

Figure 2.8: Early event-based tracking or visual odometry methods tried to simplify the
problem for instance by (a) restricting to planar motion with artificially created scenes or
(b) previously known scenes. Figure (a) courtesy of Weikersdorfer and Conradt [168] and
Figure (b) courtesy of Mueggler et al. [122].

point-to-line reprojection error. Recently, a more general 6-DoF motion tracking algorithm

was proposed by Gallego et al. [64] which can handle arbitrarily fast motions in realistic and

natural scenes with a single event camera. It is however still quite limited by the nearly

planar scene assumption and the reference photometric map requirement, for which they

currently use image frames from a standard camera.

Because of the absence of synchronous reference information (i.e. reference image frames

or 2D/3D maps) in this event-based tracking problem with a single event camera, Censi

and Scaramuzza [26] tried to combine a DVS camera with a standard greyscale camera to

estimate the small relative motion from the previous frame of a standard camera for every

incoming event. The method still requires planar motion and an artificial black and white

striped background to work, and, more importantly, it is subject to high latency, motion blur

and low dynamic range because of their reliance on a standard camera. This is, of course,

a possible practical way of using an event camera for solving SLAM problems. However,

we believe that resorting to standard sensors discards many of the advantages of processing

the efficient and data-rich pure event stream, as well as introducing extra complications

including synchronisation and calibration problems to be solved.

One very interesting approach if the application permits is to combine an event camera

with an IMU which has a high potential for the complementary nature of event and inertial

data. Yuan and Ramalingam [177] used the embedded IMU of the DAVIS camera to keep

the camera upright in order to support their vertical line-based tracking. More recently,

Zhu et al. [180] presented the first algorithm to fuse a purely event-based tracking algorithm

42

2.3. Related Work

with an IMU, to provide accurate metric tracking of a camera’s full 6-DoF pose. Rebecq

et al. [140] also proposed an accurate keyframe-based, tightly-coupled visual-inertial odo-

metry algorithm based on nonlinear optimisation, and showed their system works well even

in challenging conditions by utilising the event camera’s outstanding properties.

2.3.3 Reconstruction

3D reconstruction purely based on a sequence of events is a hard problem, and initially,

researchers used multiple event cameras or special hardware to tackle the problem. For

instance, Carneiro et al. [24] presented a N-camera 3D reconstruction algorithm applied

to multi-cameras systems of event-based sensors. The method achieved highly accurate

reconstructions despite the low spatial resolution of the DVS sensor by processing incoming

events as they arrive and using only geometrical and temporal constraints. If an application

permits two or more event cameras to be combined in a stereo setup (which introduces

extra complication including synchronisation and calibration), the nicest part of this method

is the way that stereo matching of events can be achieved based on coherent timestamps.

In a much more constrained and hardware-dependent setup, a special event-based HDR

depth camera was developed by [12, 148] that consists of a pair of bio-inspired dynamic

vision line sensors (each with 1×1,024 pixels) which creates real-time 3D 360◦ panoramas

aided by its high-speed rotating mechanical device and stereo event streams as shown in

Figure 2.9. The key advantage compared to conventional active 3D sensors is its real-time 3D

panoramic reconstruction of natural scenes with dense vertical resolution and high dynamic

range properties. The system also potentially has a low processing cost and low power

consumption. Matsuda et al. [109] also developed a new structured light scanning system

called the Motion Contrast 3D Laser Scanner (MC3D) which combines a DVS camera with an

active projector, and showed that high quality 3D object reconstruction can be achievable

which is better than that of laser scanners or RGB-D cameras in some specific situations as

shown in Figure 2.10. By replacing a standard camera with a DVS camera, they managed

to avoid performance trade-offs in acquisition speed, resolution, and light efficiency with

which traditional structured light sensors struggle.

Recently, a much more lightweight event-based 3D reconstruction method was proposed

by Rebecq et al. [138], which only requires a single moving event camera if its trajectory is

provided by an external pose estimator. In contrast to traditional multi-view stereo (MVS)

which estimates dense 3D structure from a set of known viewpoints by solving the data

association problem, they introduced the concept of event-based multi-view stereo (EMVS)

43

2. Event Cameras

(a) (b)

Figure 2.9: A special event-based HDR depth camera consists of a pair of dynamic vision
line sensors which creates real-time 3D 360◦ panoramic scenes aided by its high-speed ro-
tating mechanical device and stereo event streams. Figure (a) courtesy of Belbachir et al. [12]
and Figure (b) courtesy of Schraml et al. [148].

(a) (b)

Figure 2.10: MC3D: Motion Contrast 3D Laser Scanner which consists of an event camera
with an active projector. It is able to produce high quality 3D object reconstruction which is
better than laser scanners or RGB-D cameras in some specific situations. Figure (a) courtesy
of the Computational Photography Lab at Northwestern University and Figure (b) courtesy
of Matsuda et al. [109].

44

2.3. Related Work

which estimates semi-dense 3D structure without the need for explicit data association or

pixel intensity values. Similar to the space-sweep approach [36] in traditional MVS, the

proposed EMVS method accumulates the number of rays from an event pixel through a

voxel in a discretised 3D volume for every incoming event, and then finds 3D structure

information from it.

2.3.4 Localisation and Mapping

When it comes to the SLAM problem (i.e. performing localisation and mapping simultan-

eously), most researchers have assumed that this problem is too difficult, especially estim-

ating 3D depth purely based on a stream of events, and attempted to simplify the problem

by imposing restrictions on motion and scenes, or by combining an event camera with other

sensors.

For instance, an early 2D SLAM method was proposed by Weikersdorfer et al. [169] which

tracks a ground robot’s pose while reconstructing a planar ceiling map with an upward

looking DVS camera as shown in Figure 2.11 (a). This is an extended version of their previ-

ous work [168] to generate a map automatically during self-localisation, but it is still quite

limited to planar scenes parallel to the plane of relatively slow motion. To overcome the

limitations of their previous methods, they also proposed an event-based 3D SLAM method

with a DVS camera combined with a RGB-D sensor [170] as shown in Figure 2.11 (b). By

finding pixel correspondences between two sensors through a special off-line calibration

procedure, the multi-camera system produces a stream of sparse events with depth inform-

ation which enables the estimation of semi-dense 3D structure of the scene. Similarly, Kueng

et al. [85] developed an event-based low latency visual odometry algorithm which combines

the benefits of event cameras and that of conventional cameras. They utilised the DAVIS

camera which has an event-based sensor and a conventional frame-based sensor built into

the same pixel array. They achieved low latency pose updates by tracking visual features ex-

tracted from image frames whenever a new event arrives, and tracked features were used to

infer 3D quantities using probabilistic depth filters for mapping. These are again, of course,

possible practical ways of using an event camera for solving SLAM problems. However,

we would like to again emphasise that resorting to standard sensors discards many of the

advantages of processing a pure event stream.

The first event-based 2D SLAM method demonstrating high quality HDR and super-

resolution intensity panorama reconstruction and motion estimation from a purely rotating

event-based camera [82], and the first event-based real-time 3D SLAM method demonstrat-

45

2. Event Cameras

(a) (b)

Figure 2.11: Early event-based SLAM methods have tried to simplify the problem for
instance by (a) restricting to planar motions and scenes, or (b) combining an event camera
with an additional sensor. Figure (a) courtesy of Weikersdorfer et al. [169] and Figure (b)
courtesy of Weikersdorfer et al. [170].

ing joint estimation of general 6-DoF camera motion, scene intensity and scene 3D depth

from pure event data [83] were proposed as part of the work in this thesis, and will be

described in more detail in the following chapters. Also, to investigate whether current

techniques can be applied to a large scale visual SLAM problem, Milford et al. [112] presen-

ted a simple visual odometry system using a DVS camera with loop closure built on top of

the SeqSLAM algorithm using events accumulated into frames [113].

Most recently, Rebecq et al. [139] presented a real-time event-based 6-DoF tracking and

mapping method with an event camera by combining a new event-based tracking approach

based on event frame to model alignment with their recent EMVS method [138] for semi-

dense 3D reconstruction. In contrast to our method [83] which requires a GPU to operate in

real-time, their tracking component does not require intensity information which means the

whole system can run in real-time only on a CPU up to moderate motions.

We however believe that relying on artificial event frames created by accumulating events

within a time interval introduces unnecessary bounds on the update rate and latency.

Therefore, all of the methods described in this thesis operate on an event-by-event basis

in real-time and based on probabilistic filtering to maximise update rates with low latency.

Moreover, we have taken this event-based approach with our long-term research in mind

that moving towards a future where event-based SLAM algorithms are implemented on ap-

propriate neuromorphic or graph-based processing architectures sitting directly behind and

connected in parallel to the pixels of future event sensors. Incoming events will wake up

local computation and message passing, while the majority of the processor sleeps to con-

serve power taking full advantage of the low data rate. We also believe that reconstructed

46

2.4. Discussion and Summary

intensity information will undoubtedly be useful for loop closure or high level perception

in such an event-based SLAM system.

2.3.5 Dataset

Since established benchmarks in the computer vision field have greatly contributed to the

advance of algorithms in many areas, an important piece of future work is to design and

release suitable comparative benchmarks for event camera-based SLAM research. Recently,

a few useful datasets have become available for optical flow estimation [143]8, for visual

navigation [10]9, and for pose estimation, visual odometry, and SLAM in general [124]10,

and we expect many more event camera-based benchmarks will be designed and released

in the near future.

2.4 Discussion and Summary

As shown in this chapter, the properties of event cameras offer the potential to overcome

the limitations of real-time, real-world computer vision applications. The event camera is

gradually becoming more widely known by researchers in computer vision, robotics and

related fields, in particular since the release as commercial products of the DVS and DAVIS

cameras. Over a decade, event camera technology has been improved significantly in terms

of spatial resolution, pixel size, sensitivity, latency and power consumption, and we can

expect many more innovations in this area in the near future.

The uses demonstrated of using event cameras to date however have been limited. We

are interested in tracking and reconstruction of general, previously unknown scenes with

a freely moving event camera, which we believe is the best place to take full advantage,

and there have been little work on building coherent scene models from event data in this

case. The clear difficulty is that most of the methods and abstractions normally used in

reconstruction and tracking, such as feature detection and matching (e.g. [100, 11, 93]) or

iterative image alignment (e.g. [103, 106, 7]) cannot be directly applied to its fundamentally

different visual measurement stream. To keep up to date with research and development in

this field, we refer to the Event-based Vision Resources11.
8DAVIS Optical Flow Dataset: http://sensors.ini.uzh.ch/databases.html (accessed September 2017)
9Dataset for Visual Navigation with Neuromorphic Methods: https://github.com/fbarranco/

eventVision-evbench (accessed September 2017)
10The Event-Camera Dataset and Simulator: http://rpg.ifi.uzh.ch/davis_data.html (accessed Septem-

ber 2017)
11Event-based Vision Resources: https://github.com/uzh-rpg/event-based_vision_resources (accessed

September 2017)

47

http://sensors.ini.uzh.ch/databases.html
https://github.com/fbarranco/eventVision-evbench
https://github.com/fbarranco/eventVision-evbench
http://rpg.ifi.uzh.ch/davis_data.html
https://github.com/uzh-rpg/event-based_vision_resources

2. Event Cameras

In the following chapters, we will introduce the first event-based 2D SLAM method

demonstrating high quality HDR and super-resolution intensity panorama reconstruction

and motion estimation from a purely rotating event-based camera [82], its real-time im-

plementation, and the first event-based real-time 3D SLAM method demonstrating joint

estimation of general 6-DoF camera motion, scene intensity and scene 3D depth from pure

event data [83] in more detail.

48

Chapter3

Preliminaries

Contents

3.1 Notation . 50

3.2 Frames of Reference . 50

3.3 Rigid Body Transformations . 51

3.4 Projection . 52

3.4.1 Pinhole Camera Model . 52

3.5 Event Camera Interface . 54

3.5.1 Address Event Representation . 54

3.5.2 DVS USB Interface . 56

3.5.3 DVS Biases . 56

3.6 Event Camera Calibration . 58

3.7 Event Camera Simulator . 61

3.8 Software . 62

3.9 Summary . 63

In this chapter, we first clarify the notational conventions used in equations throughout

this thesis and review some important mathematical foundations of geometry-based 3D

visual SLAM methods. And, as event cameras have not been well established as common

computer vision devices just yet, we will give a brief overview of some of the prerequisites

required to work with an event camera; in particular how to communicate with the DVS128

camera through its USB interface. In addition, we will list a number of software libraries

and APIs which have helped us to implement our methods more easily and rapidly.

49

3. Preliminaries

3.1 Notation

We denote m-dimensional vectors by boldfaced lowercase letters such as:

v =


v1

v2
...

vm

 , (3.1)

or v = (v1, v2, · · · , vm)
>, and m×n matrices by uppercase letters such as:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 . (3.2)

Also, to facilitate a great range of transformations using linear algebra, we use homogeneous

coordinates which increase the size of a vector by one, and are represented using the dot

notation such as:

v̇ =

(
v

1

)
. (3.3)

The reverse operation is called homogeneous projection denoted by π, and it simply divides

all the elements by the last one which is then truncated such as:

π


x

y

z

 =

(
x
z
y
z

)
, (3.4)

for a 3-dimensional vector for instance.

3.2 Frames of Reference

We call the global coordinate system the world frame of reference w, and even though the

event camera does not have the frame concept of standard cameras, we still use frames of

50

3.3. Rigid Body Transformations

Figure 3.1: Frames of reference: the world frame of reference w represents the global
coordinate system, and the camera frames of reference k and c represent local coordinate
systems. All of them follow the right-hand rule, and the camera’s optic centre is located at
(0, 0, 0)>, its up vector is aligned with the negative y-axis, and its principle point is aligned
with the positive z-axis in its local coordinate system. Interacting these coordinates is rep-
resented by a rigid body transformation matrix such as Twk, Tkw, Twc, and Tck.

reference when we refer to local coordinate systems such as k or c in Figure 3.1. By default,

we use a right-handed coordinate system, and for a camera frame of reference, its optic

centre is located at (0, 0, 0)> while its up vector is aligned with the negative y-axis and its

principal point is aligned with the positive z-axis. A position vector p in the world frame of

reference w and in a local coordinate system c are denoted as pw and pc respectively with

appropriate subscripts.

3.3 Rigid Body Transformations

Transforming between coordinate systems is represented by a 4×4 rigid body transforma-

tion matrix such as Twk, Tkw, Twc, and Tck in Figure 3.1 — the first and second subscripts of

these matrices represent the target and source frames of reference respectively. For example,

Twk transfers a homogeneous point ṗk in the frame of reference k to an equivalent homo-

geneous point ṗw in the world frame of reference w via matrix-vector multiplication such

51

3. Preliminaries

that:

ṗw = Twkṗk . (3.5)

The transformation matrix Twk is decomposed as:

Twk =

(
Rwk kw

0> 1

)
=

(
Rwk −Rwkwk

0> 1

)
, (3.6)

where Rwk is a 3×3 orthonormal rotation matrix satisfying Rwk
−1 = Rwk

>, and kw represents

the position of the optic centre of the frame of reference k in the world frame of reference.

These rigid body transformation matrices also satisfy:

Tck = TcwTwk , (3.7)

Tkw = Twk
−1 =

(
Rwk
> −Rwk

>kw

0> 1

)
. (3.8)

3.4 Projection

In the field of geometry-based SLAM and multi-view stereo, we are interested in projecting

3D points from the world into a camera frame of reference to find their corresponding 2D

image coordinates. If we know the position and orientation of the camera as well as its

intrinsic parameters from a calibration procedure (as described in Section 3.6 for instance),

they can be calculated based on the pinhole camera model [74].

3.4.1 Pinhole Camera Model

As illustrated in Figure 3.2, a 3D point pc in the camera frame of reference c can be projected

to a 2D image position u = (u, v)> as:

u = π (Kpc) , (3.9)

52

3.4. Projection

Figure 3.2: A 3D point pc in the local coordinate system c can be projected to a 2D point
u = (u, v)> in image space using the pinhole camera model. Here f is the focal length and
(u0, v0) is the principal point of the camera.

where K is the intrinsic or calibration matrix:

K =


fu 0 u0

0 fv v0

0 0 1

 . (3.10)

Here (u0, v0) is the principal point which is the intersection between the optical axis (i.e. the

positive z-axis) and the image plane, and fu and fv are:

fu =
f

wpixel
, fv =

f
hpixel

, (3.11)

where f is the focal length which is the distance between the optic centre and the prin-

cipal point, and wpixel and hpixel are the width and height of the camera’s pixels and are

often treated as the same (i.e. square pixels). The inverse intrinsic matrix which transfers a

53

3. Preliminaries

projected point in image space into the camera frame of reference is defined as:

K−1 =


1
fu

0 − u0
fu

0 1
fv
− v0

fv

0 0 1

 . (3.12)

3.5 Event Camera Interface

Although event cameras are gradually becoming more widely known by researchers in the

computer vision, robotics and related fields, they have not been well established as common

computer vision devices just yet. Therefore, in this section, we introduce some of the pre-

requisites required to work with an event camera, and especially how to communicate with

the DVS128 camera used in this thesis through its USB interface.

3.5.1 Address Event Representation

The sparse and asynchronous nature of spikes (or events) in the neuromorphic design

principle has called for new communication protocols which can easily distinguish which

neuron (or event camera pixel) has fired a specific spike or event. One such new communic-

ation strategy is the Address Event Representation (AER) [152, 104, 87], which is now the de

facto standard protocol used in much neuromorphic hardware including most current event

cameras.

As shown in Figure 3.3 (a), simple AER protocol-based neuromorphic systems use two

control signals req and ack to synchronise the data transfer through the data bus between

the sender and the receiver based on a four-phase handshake. Specifically, as illustrated in

Figure 3.3 (b), the sender asserts a req signal once it has written data onto the multiline data

bus to notify the receiver, and at this point, the data on the bus can be considered valid.

The receiver then reads the data and confirms that by asserting an ack signal which yields

the subsequent sequential deassertions of the req and ack signals by the sender and receiver

respectively, and goes back to wait for the next transaction. The actual AER data bus width

and protocol vary depending on specific hardware — for instance, the DVS128 camera used

in our work has the 15-bit width AER bus and its data is encoded in a packet as shown in

Figure 3.3 (c), where p is the polarity, and u and v are the pixel address of an event.

For a deeper understanding of the AER protocol, which is only required for the interface

between an event camera and a microcontroller or another neuromorphic hardware, we refer

54

3.5. Event Camera Interface

(a)

(b)

(c)

Figure 3.3: The AER protocol: (a) the sender and the receiver of a simple AER system
communicate each other through two control signals (req and ack) and a data bus; (b) a
simple AER communication sequence logic diagram based on a four-phase handshake; (c)
the AER data packet of the DVS128 camera where p is the polarity, and u and v are the pixel
address of an event.

55

3. Preliminaries

the reader to the relevant literature [152, 104, 87] or the technical reference manual from the

manufacturer1. All of our implementations described in this thesis run on a standard PC

and communicate with an event camera (i.e. the DVS128 camera) via its USB interface which

is described in the next subsection.

3.5.2 DVS USB Interface

To communicate with the DVS camera connected to a standard PC through its USB cable, we

initially used the open source jAER software project [44]2 written mostly in Java, but quickly

realised that we needed a more lightweight software interface which can be easily integrated

with our implementations of the methods described in this thesis written in C/C++. We

therefore developed our own USB driver using the libusb library3 which provides generic

access to USB devices. Recently, the manufacturer also released its minimal C library called

libcaer to access, configure and communicate with their event cameras4.

The DVS event camera, like a standard USB device, can be identified by its vendor ID (VID)

and product ID (PID), and communicated with using an application running on a standard

PC using its predefined commands — we list all the identifiers and commands of the DVS

camera in Table 3.1. In contrast to the native AER event packet, each event transferred

through the DVS USB interface is augmented with a microsecond resolution timestamp and

encoded in a 4-byte long data packet as shown in Figure 3.4, where p is the polarity, u and

v are the pixel address, and t is the timestamp of an event. The maximum bandwidth of the

DVS128 camera is 1Meps, and for a more thorough description of the libusb API we refer

the reader to the technical reference manual on the library website.

3.5.3 DVS Biases

The biases are the on-chip parameters which define the operating characteristics of the

event camera — they represent voltages and currents which stay stable during operation

and are applied to the analog electronic circuits of the event camera’s pixels. For instance,

the DVS128 camera used in our work has 12 biases as listed in Table 3.2 which can be dy-

namically adjusted via its USB interface — we need to send the SEND BIAS BYTES command

followed by all 12 3-byte long biases.

1Address-Event Representation (AER) protocol: https://inilabs.com/support/hardware/aer/ (accessed
September 2017)

2jAER: https://sourceforge.net/projects/jaer/ (accessed September 2017)
3libusb: https://github.com/libusb/libusb (accessed September 2017)
4libcaer: https://github.com/inilabs/libcaer (accessed September 2017)

56

https://inilabs.com/support/hardware/aer/
https://sourceforge.net/projects/jaer/
https://github.com/libusb/libusb
https://github.com/inilabs/libcaer

3.5. Event Camera Interface

Table 3.1: DVS128 USB Identifiers and Commands

Identifiers / Commands Value Description

VID 0x152A Vendor ID
PID 0x8400 Product ID

START TRANSFER 0xB3 start sending events from FIFO endpoint
STOP TRANSFER 0xB4 stop sending events from FIFO endpoint
EARLY TRANSFER 0xB7 transfer whatever you have now
SEND BIAS BYTES 0xB8 send bias bytes out on SPI interface

POWERDOWN 0xB9 stop working
FLASH BIASES 0xBA flash the bias values to EEPROM

RESET TIMESTAMP 0xBB reset timestamp
SET ARRAY RESET 0xBC set array reset of retina
DO ARRAY RESET 0xBD do an array reset (toggle arrayReset for a fixed

time)
SET LED 0xBF set the board’s LED
FIRMWARE 0xA0 download/upload firmware
VR EEPROM 0xA2 load (upload) EEPROM
VR RAM 0xA3 load (upload) external RAM

VR RESET FIFO 0xC4 reset FIFO

Figure 3.4: The 4-byte long USB event packet of the DVS128 camera, where p is the polarity,
u and v are the pixel address, and t is the timestamp of an event.

57

3. Preliminaries

Table 3.2: DVS128 Biases

Bias
Value

Description
Dec Hex

pr 3 0x000003 photoreceptor: controls the reponse speed to
changes in light

cas 54 0x000034 first stage (photoreceptor) cascode: controls the
speed and stability of the circuit — need to be
higher than the pr bias

foll 51 0x000033 source follower: separates the first and second
(differential) stages

diff 30153 0x0075C9 differential: controls the response speed to a
change in the light-related signal

diffOn 482443 0x075C8B On event threshold: — need to be higher than
the diff bias

diffOff 132 0x000084 Off event threshold: — need to be lower than the
diff bias

injGnd 1108364 0x10E98C injected ground: controls the response speed to
the acknowledge in order to reset

req 159147 0x026DAB pull down for passive load inverters in digital
AER pixel circuitry

refr 6 0x000006 refractory period: defines the time period during
which the pixel will be reset

PuY 16777215 0xFFFFFF pull up on request from Y arbiter
PuX 8159221 0x7C7FF5 pull up on request from X arbiter

reqPd 16777215 0xFFFFFF pull down on chip request

We present all the bias setting values used in our work and a brief description of each

bias in the table. Again, for more details, please see technical reference manual from the

manufacturer5.

3.6 Event Camera Calibration

Although the sensors of event cameras are fundamentally different from conventional ima-

ging sensors, they use the same optics to which traditional perspective projection applies

as described in Section 3.4, and therefore a calibration procedure is required for intrinsic

5User Guide: Biasing Dynamic Sensors: www.inilabs.com/support/hardware/biasing (accessed Septem-
ber 2017)

58

www.inilabs.com/support/hardware/biasing

3.6. Event Camera Calibration

Table 3.3: DVS Intrinsic Parameters

Intrinsic Parameter Value Description

fu 115.534 camera focal length
fv 115.565 camera focal length
u0 79.262 optical center
v0 65.531 optical center
k1 -0.308 distortion parameter
k2 0.110 distortion parameter
p1 0.001 distortion parameter
p2 0.002 distortion parameter

calibration and to compensate radial distortion to make use of the projective geometry of

events.

While such a calibration method is now a standard process for conventional cameras, the

obvious difficulty for event cameras is that the standard static calibration pattern cannot

be used as the event camera only responds to scene changes — we need to either move

the camera or the calibration chart, or have an active pattern such as blinking LEDs as

in [123]. We therefore first create a special calibration pattern consisting of a grid of dots

using the Animated Graphics Interchange Format (GIF)6, and display it on a computer screen

as shown on the left monitor in Figure 3.5. As the pattern is blinking frequently enough to

stimulate the static event camera’s pixels, we generate a sequence of image-like event frames

by accumulating events within a time interval as shown on the right monitor in the same

figure, and apply a standard intrinsic calibration method such as the polynomial power

series model [179] to the event video stream. Table 3.3 presents the intrinsic parameters from

the calibration method as an example, and we recommend readers to view our video7 which

illustrates the calibration procedure in a better form than a still figure (also see Appendix A).

Within all the methods described in this thesis, we use the same lens with 4.5mm focal

length and 60◦ horizontal/vertical field of view, and always remove lens distortion based

on the distortion parameters estimated from event camera calibration to make use of the

projective geometry of events at the start of the processing pipeline. Figure 3.6 shows image-

like visualisations of events with and without lens distortion.

6Animated Graphics Interchange Format (GIF): https://en.wikipedia.org/wiki/GIF (accessed September
2017)

7Event Camera Calibration: https://youtu.be/OK_m6OobntE (accessed September 2017)

59

https://en.wikipedia.org/wiki/GIF
https://youtu.be/OK_m6OobntE

3. Preliminaries

Figure 3.5: Event camera calibration. We apply a standard intrinsic calibration method to a
sequence of image-like event frames (shown on the right monitor) created by accumulating
events within a time interval while the event camera is looking at the blinking calibration
pattern consists of a grid of dots displayed on the left monitor.

(a) (b)

Figure 3.6: Event camera lens distortion compensation: (a) an image-like visualisation of
events with lens distortion — straight lines appear curved; (b) an image-like visualisation
of events with lens distortion removed by the compensation process — straight lines remain
straight.

60

3.7. Event Camera Simulator

(a) (b) (c)

Figure 3.7: In our simulator, synthetic events are generated as shown in (c) from any
pixel where the log intensity difference between corresponding pixels in the rendered frame
at t − 1 and t (shown in (a) and (b) respectively) satisfies the positive or negative event
conditions.

3.7 Event Camera Simulator

As well designed synthetic benchmark methods often greatly contribute to the develop-

ment and evaluation of new algorithms, especially with new sensors, we have developed an

event camera simulator which mimics the characteristics of the event camera to provide a

repeatable experimental environment.

Our implementation is largely inspired by Handa et al. [70] who used POV-Ray8 and syn-

thetic trajectories in their framework to obtain photo-realistic rendered frames and ground

truth depth maps. However, in our case, simulating a realistic sensor noise model for the

event camera has not been well studied yet and this remains as an important issue for fu-

ture research. We therefore assume a perfect noise-free event camera, and render greyscale

frames at the same 128×128 resolution and at very fine time resolution based on various

synthetic scenes and trajectories. We then generate synthetic events from any pixel whose

log intensity difference between corresponding pixels in two consecutive rendered frames

satisfies the positive or negative event conditions. Figure 3.7 shows the synthetic living room

scene of the ICL-NUIM dataset [71]9 as an example.

Our event camera simulator generates a sequence of synthetic events along with ground

truth data such as camera trajectory, IMU data, scene intensity, log intensity gradient, scene

8POV-Ray: http://www.povray.org (accessed September 2017)
9ICL-NUIM dataset: https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html (accessed September

2017)

61

http://www.povray.org
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

3. Preliminaries

Figure 3.8: Our event camera simulator generates synthetic events as shown in (a) along
with various ground truth data such as: (b) 3D point cloud; (c) camera trajectory; (d) motion
flow; (e) log intensity gradient; (f) scene depth.

depth, 3D point cloud, and motion flow. Figure 3.8 shows a graphical representation of the

various outputs of our event camera simulator.

3.8 Software

When developing the software systems to implement the methods described throughout this

thesis, we have greatly benefited from many publicly available software libraries and APIs

including CUDA, OpenGL, OpenCV and Eigen, which have already become very useful

common tools for computer vision or robotics researchers.

In addition, we largely relied on the open source Pangolin library10 for OpenGL display,

user interface, managing config files, and real-time data plotting, and also the open source

Sophus library11 to utilise Lie groups more easily for 2D and 3D geometric problems (e.g. the

10Pangolin: https://github.com/stevenlovegrove/Pangolin (accessed September 2017)
11Sophus: https://github.com/strasdat/Sophus (accessed September 2017)

62

https://github.com/stevenlovegrove/Pangolin
https://github.com/strasdat/Sophus

3.9. Summary

special orthogonal group SO(3) or the special Euclidean group SE(3)). For a more thorough

description of these libraries and APIs, we refer the reader to the technical reference manuals

on their websites.

3.9 Summary

In this chapter, we have presented the mathematical notation conventions and geometrical

foundations used throughout this thesis. We have also given introduction to some important

prerequisites required to work with an event camera, especially how to communicate with

the DVS128 camera used in our research, and a number of software libraries and APIs

which were highly useful to implement our methods. In the following chapters, we will

now present our event-based visual SLAM methods in detail.

63

3. Preliminaries

64

Chapter4

Simultaneous Mosaicing and 3-DoF

Tracking with an Event Camera

Contents

4.1 Introduction . 65

4.2 Preliminaries . 66

4.3 Event Camera Pure Rotation Tracking . 71

4.3.1 Motion Prediction . 71

4.3.2 Measurement Update . 72

4.4 Spherical Mosaic Reconstruction . 74

4.4.1 Pixel-Wise EKF-Based Gradient Estimation 75

4.4.2 Reconstruction from Gradients . 77

4.5 Evaluation and Results . 79

4.5.1 Spherical Mosaicing . 81

4.5.2 High Resolution Reconstruction . 81

4.5.3 High Dynamic Range Reconstruction 81

4.6 Discussion and Summary . 84

4.1 Introduction

In this chapter, we show that an event stream from a single hand-held event camera, with no

additional sensing, can be used to track accurate camera rotation while building a persistent

and high quality mosaic of a scene which is super-resolution accurate and has high dynamic

range. A set of video frames from a standard camera with no parallax observed can be

65

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

fused into a panoramic image, and this technique has been considered well established

in computer vision for a long time [162]. It is however not possible to apply the same

methodologies such as a feature based filtering method [32] or a whole image alignment

with global optimisation method [99] as event cameras provide not image frames but an

asynchronous sequence of per-pixel log intensity changes. Therefore, approaches aiming at

simultaneous camera motion estimation and building a scene mosaic with an event camera

need also to jointly estimate the intensity appearance of the scene, or at least a highly

descriptive synchronous function of this such as a gradient map, and this is the essential

mechanism built into our event-based mosaicing method.

As shown in Figure 4.1, the method takes input in the form of a stream of events from a

single pure rotation event camera looking at an unknown and unstructured natural scene,

and operates on an event-by-event basis to maximise the update rate with low latency. Our

approach relies on two parallel probabilistic filters as shown in the blue rounded boxes to

jointly track the global rotational motion of a camera and estimate the log intensity gradients

of the scene around it. The gradient map is then upgraded to a full image-like mosaic, from

which we calculate the value of a measurement for the camera pose estimation, with super-

resolution and high dynamic range properties as shown in the grey rounded box. Each

of these components essentially assumes that the current estimate from one component is

accurate enough to lock for the purpose of estimating the other, following the alteration ap-

proach of most recent successful data-rich SLAM systems such as PTAM [84], DTAM [128],

LSD-SLAM [57], or ORB-SLAM [125].

Note that we do not currently explicitly address bootstrapping in our method. We have

found that simple alternation of the tracking and mapping components, starting from

scratch, will very often lead to rapid convergence of joint tracking and mapping, though

there are sometimes currently gross failures and this is an important issue for future re-

search.

4.2 Preliminaries

We use the notation e(u, v) = (u, v, p, t)> to denote an event with pixel location u and v,

polarity p and timestamp t. Our event camera has the fixed pre-calibrated intrinsic matrix K

and all event pixel locations are pre-warped to remove radial distortion via the event camera

calibration method described in Section 3.6. We define two important time intervals τ and

τc which are used in our algorithm. For a simple example to illustrate them, let us assume

66

4.2. Preliminaries

Event-Based Tracking
(Particle Filter)

Gradient Estimation
(Pixel-wise EKF)

Reconstruction
(Poisson Solver)

SO(3) Camera Pose Estimate
HR & HDR Scene Mosaic

u v p t

event

Mosaicing (Mapping)

Figure 4.1: Method overview showing separation of tracking and mapping: the method
takes input in the form of a stream of events from a single purely rotating event camera
looking at an unknown and unstructured scene, and operates on an event-by-event basis.
The core of the method is two decoupled probabilistic filters as shown in the blue rounded
boxes, each estimating camera rotation motion and scene log intensity gradient. The gradi-
ent map is also in parallel upgraded into a full image-like log intensity map as shown in the
grey rounded box (converted to intensity values for visualisation purposes).

we have a simple 2×2 event camera moving over a simple scene following the trajectory

illustrated as the grey arrow shown in Figure 4.2 (a). We then receive a stream of positive

and negative spikes from the camera; those spike events are depicted along the time axis

and can be associated with a specific pixel by its colour in Figure 4.2 (b). When a new event

arrives from a certain pixel, we define τ as the time elapsed since the most recent previous

event from any pixel; and τc as the time since the most previous event at the same pixel. Here,

τ is significant as the blind time since any previous visual information was received and

is used in the motion prediction component of our tracker; while τc is important since its

inverse serves as a local measurement of the rate of events at a particular location in image

space and is used in our gradient estimation filter. In Figure 4.3 we show event time interval

distributions for a typical scene and motion (the same pre-recoded event camera dataset as

in Figure 4.10 (a)) represented in the form of a normalised histogram for τ and τc.

As illustrated in Figure 4.4 (a), the current estimate of the event camera’s pose is represen-

67

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

time

positive
events

negative
event

(a) (b)

Figure 4.2: Event time intervals τ and τc: (a) a simplified 2×2 event camera moving over a
scene following the simple trajectory illustrated as the grey arrow, with different colours to
identify each pixel. (b) a stream of events generated by the camera. Upward and downward
spikes represent positive and negative events respectively, and their colours visualise the
pixel from which each event came. As shown, τ is the time elapsed since the previous
event at any pixel, and τc is the time since the previous event at the same pixel — both play
important roles in our camera pose and gradient estimation filters.

ted by a 3×3 orthonormal rotation matrix Rwc with respect to the world frame of reference w.

When an event is received at a pixel location (u, v)> in the event camera frame of reference

c, we obtain a corresponding 3D point pw on the view-sphere as:

pw =


pw1

pw2

pw3

 = RwcK
−1


u

v

1

 , (4.1)

where (u, v, 1)> is the camera pixel position in homogeneous coordinates and K is the camera

intrinsics, which can be also interpreted as yaw (θ ∈ [−π, +π]) and pitch (φ ∈ [−π
2 , + π

2])

angles in spherical coordinates [162].

The log intensity rotational mosaic or template we aim to reconstruct is denoted Ml(pm)

as shown in Figure 4.4 (b), and has its own fixed 2D coordinate frame with pixel position

vector pm as in [163]:

pm =

(
θ

φ

)
=

 tan−1 (pw1/pw3)

tan−1
(

pw2/
√

p2
w1 + p2

w3

) . (4.2)

To reconstruct super resolution scenes by harnessing the very high speed measurement

68

4.2. Preliminaries

(a)

(b)

Figure 4.3: Typical event time interval distributions represented in the form of a normalised
histogram for τ and τc as shown in (a) and (b) respectively.

69

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

(a)

(b)

Figure 4.4: Basic geometry: (a) the current estimate of the event camera’s pose is represen-
ted by a 3×3 orthonormal rotation matrix Rwc with respect to the world frame of reference
w, and when an event e(u, v) is received, we obtain a corresponding 3D point pw on a view-
sphere which can be also interpreted as yaw θ and pitch φ angles in spherical coordinates.
(b) the log intensity rotational mosaic we aim to reconstruct is denoted Ml(pm), and has its
own fixed 2D coordinate frame with pixel position vector pm = (θ, φ)>.

70

4.3. Event Camera Pure Rotation Tracking

property of the event camera which enables sub-pixel accurate camera tracking, we use a

higher resolution for the panoramic mosaic than for the low resolution sensor used in the

experiments (shown in Table 4.1).

4.3 Event Camera Pure Rotation Tracking

We first explain the tracking component of our algorithm, whose job is to provide an event-

by-event updated estimate of the rotational location of the camera with respect to the scene

mosaic (assumed correct). The basic idea is, as soon as a new event arrives, to find current

camera pose Rwc most consistent with the predicted log intensity change since the previous

event at the same pixel.

We have chosen a particle filter as a straightforward sequential Bayesian way to estimate

the rotation motion of our camera over time with the multi-hypothesis capability to cope

with the sometimes noisy event stream. In our event-based particle filter, the posterior

density function at time t is represented by N particles, {p(t)
1 , p(t)

2 , ..., p(t)
N }. Each particle p(t)

i

is a set consisting of a hypothesis of the current state R
(t)
i ∈ SO(3) and a normalised weight

w(t)
i . Initially, all particles are set to the same nominal value with the same weight i.e. 1

N .

At every new event arrives, the particles evolve in the standard particle filter prediction

and measurement update steps as follows.

4.3.1 Motion Prediction

For motion prediction in our particle filter, we use a constant position (random walk) motion

model where the predicted mean rotation of a particle at any given time remains constant

while the variance of the prediction is proportional to the time interval as shown in Fig-

ure 4.5.

Specifically, we perturb the current so(3) vector on the tangent plane with Gaussian noise

independently in all three axes and reproject it onto the SO(3) unit sphere to obtain the cor-

responding predicted mean rotation. The noise is the predicted change the current rotation

might have undergone since the previous event was generated. This is further simplified by

the composition property of rotation matrices and yields the final update at the current time

71

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

Uncertainty
-2 -1 0 1 2

T
im

e
 I

n
te

rv
a

l

0

10

20

30

40

50

60

Figure 4.5: By modelling random walk in our motion model, the variance of the motion
prediction is proportional to the time interval i.e. σ2

i τ.

t via the matrix exponential map [155]:

R
(t)
i = R

(t−τ)
i exp

(3

∑
k=1

nkGk

)
, (4.3)

where Ri is a 3×3 orthonormal rotation matrix for the ith particle, the noise vector n =

(n1, n2, n3)> is obtained by generating random numbers sampled from Gaussian distribu-

tions independently in all three directions i.e. ni ∼ N (0, σ2
i τ), and Gk are the Lie group

generators for SO(3) as follows:

G1 =


0 0 0

0 0 −1

0 1 0

 , G2 =


0 0 1

0 0 0

−1 0 0

 , G3 =


0 −1 0

1 0 0

0 0 0

 . (4.4)

4.3.2 Measurement Update

The weights of these perturbed particles are now updated through the measurement update

step which applies Bayes rule to each particle:

w(t)
i = P(z|R(t)

i)w(t−τ)
i . (4.5)

72

4.3. Event Camera Pure Rotation Tracking

0.0 0.2 0.4 0.6 0.8 1.0

contras t

0.0

0.2

0.4

0.6

0.8

1.0

e
ve

n
t

lik
e

lih
o

o
d

Figure 4.6: Mexican hat shaped event likelihood function of absolute log intensity difference
(contrast) with its mean aligned to a known event contrast C, which highly likely generates
an event [96], an appropriate standard deviation σe, and the minimum constant ke. All the
parameters used in the experiments are given in Table 4.1.

We calculate the value of a ‘measurement’ z given an event e(u, v), the current state R
(t)
i and

the previous state R
(t−τc)
i by taking the log intensity difference between the corresponding

log intensity map positions:

z = Ml(p
(t)
m)− Ml(p

(t−τc)
m) , (4.6)

where p(t)
m and p(t−τc)

m can be obtained as in Equation (4.1) and (4.2). The measurement z is

now used to calculate the likelihood P(z|R(t)
i) for each particle, essentially asking ‘how likely

was this event relative to our mosaic given a particular hypothesis of camera pose?’. We

first compare the sign of the log intensity difference with the polarity of the event, and we

give a particle a fixed low likelihood Pmin if the signs do not agree. Otherwise, we look up

the likelihood of this absolute log intensity difference (contrast) in the Mexican hat shaped

curve shown in Figure 4.6, with its mean aligned to a known contrast C, which highly likely

generates an event [96], an appropriate standard deviation σe, and the minimum constant

ke. All the parameters used in the experiments are given in Table 4.1.

After updating all the weights of the particles and normalising them i.e. wi = wi

∑N
1 wi

, we

resample the particle distribution in the standard way — making a new particle set which

73

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

copies old particles with probability according to their new weights [51, 34]. However,

due to the very high frequency of events, we do not resample at every iteration to avoid

unnecessarily deleting good particles in cases where all weights are similar. Instead, we

follow a selective resampling scheme [52] to determine whether the resampling should be

carried out depending on the so-called effective number of particles Ne f f :

Ne f f =
1

∑N
i=1(w(t)

i)2
, (4.7)

and we only resample the set of particles whenever Ne f f is less than N/2.

Lastly, for the following steps and iterations, a mean pose is saved for the event pixel. To

calculate the mean of particles, we apply the matrix logarithm [155] to all particles’ SO(3)

components to map them to the tangent space, e.g. ri = log(Ri) and ri ∈ R3, calculate

the arithmetic mean, and re-map to the SO(3) group’s manifold by applying the matrix

exponential. However, because of the random walk nature of our motion model which

generates a noisy particle mean pose r̃, a new mean pose r̄(t) is calculated in a form of a

weighted average with the previous mean pose r̄(t−τc) as:

r̄(t) = (1− γ)r̄(t−τc) + γr̃, (4.8)

where γ is a weight variable which controls the smoothness of estimated camera motion.

In fact, a small γ value implicitly implements a strong accumulation of events, but our

method still provides an event-by-event updated estimate of the rotational location of the

event camera as they arrive.

4.4 Spherical Mosaic Reconstruction

We now turn to the other main part of our algorithm, which having received an updated

camera pose estimate from tracking must incrementally improving our estimate of the log

intensity mosaic. This takes two steps; pixel-wise incremental EKF estimation of the log

intensity gradient at each template pixel, and interleaved Poisson reconstruction to recover

absolute log intensity.

74

4.4. Spherical Mosaic Reconstruction

Figure 4.7: Pixel-wise EKF-based gradient estimation overview: for each incoming new
event e(u, v) in the current camera frame of reference c, we obtain its corresponding map
location p(t)

m and know the previous one p(t−τc)
m in the map frame of reference m based on

the assumption that the camera pose estimates are correct. We then find a displacement
vector between them to calculate a motion vector v which is used to compute the value of
a measurement (g(p̂m) · v)/C at the midpoint p̂m based on the brightness constancy and the
linear gradient assumptions. We then update the gradient estimate using a pixel-wise EKF
framework. Essentially, each new event which lines up with a particular map pixel improves
our estimate of its gradient in the direction parallel to the motion of the camera over the
scene at that pixel while we learn nothing about the gradient in the direction perpendicular
to camera motion.

4.4.1 Pixel-Wise EKF-Based Gradient Estimation

We receive an event e(u, v) at a pixel location (u, v)> in the event camera frame of reference

c and, using our tracking algorithm as described in Section 4.3, we find the corresponding

map location p(t)
m and know the previous one p(t−τc)

m in the mosaic frame of reference m as

shown in Figure 4.7. Each pixel of the gradient map has an independent gradient estimate

g(pm) = (gx, gy)>, consisting of log intensity gradients gx and gy along the horizontal and

vertical axes in image space respectively, and a 2× 2 uncertainty covariance matrix Pg(pm).

At initialisation, all estimated gradients are initialised to zero vectors with large variances

such as g0 and Pg0 , used in the experiments shown in Table 4.1.

Now, we want to improve the gradient estimate at a point in the mosaic based on a new

incoming event and a tracking result using the pixel-wise EKF. We first find motion vector

75

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

v which is the displacement vector between p(t)
m and p(t−τc)

m divided by the elapsed time τc:

v =

(
vx

vy

)
=

p(t)
m − p(t−τc)

m

τc
. (4.9)

Assuming, based on the rapidity of events, that the gradient in the template and the camera

velocity can be considered locally constant, we update the midpoint p̂m of the two points

p(t)
m and p(t−τc)

m . We now say (g(p̂m) · v)τc is the amount of log grey level change that has

happened since the last event. Therefore, if we have an event camera where log intensity

change C should trigger an event, the brightness constancy constraint [76] tells us that:

(g(p̂m) · v) τc = ±C , (4.10)

where the sign of C depends on the polarity of an event (i.e. +C for a positive event, and

−C for a negative one). We now define z, a measurement of the instantaneous event rate at

this pixel, and its measurement model h, as follows:

z =
1
τc

, (4.11)

h =
g(p̂m) · v

C
. (4.12)

In the EKF framework, the gradient estimate and the uncertainty covariance matrix are

updated using the standard equations at every event:

g(p̂m)(t) = g(p̂m)(t−τc) + Wν , (4.13)

Pg(p̂m)(t) = Pg(p̂m)(t−τc) −WSW> , (4.14)

where the Kalman gain W is:

W = Pg(p̂m)(t−τc) ∂h
∂g(p̂m)(t−τc)

>
S−1 , (4.15)

76

4.4. Spherical Mosaic Reconstruction

the innovation ν is:

ν = z− h , (4.16)

and the innovation covariance S is:

S =
∂h

∂g(p̂m)(t−τc)Pg(p̂m)(t−τc) ∂h
∂g(p̂m)(t−τc)

>
+ R , (4.17)

where R is the measurement noise, in our case scalar σ2
m. Finally, Jacobian ∂h

∂g (simplified

notation for clarity) is derived as:

∂h
∂g

=
∂

∂g

(g · v
C

)
(4.18)

(4.19)

=
(

∂

∂gx

(gxvx + gyvy

C

) ∂

∂gy

(gxvx + gyvy

C

))
(4.20)

(4.21)

=
(vx

C
vy

C

)
. (4.22)

Essentially, each new event which lines up with a particular template pixel improves our

estimate of its gradient in the direction parallel to the motion of the camera over the scene

at that pixel while we learn nothing about the gradient in the direction perpendicular to

camera motion. We visualise an estimated gradient map in Figure 4.8; the colours and

intensities of the figure represent the orientations and strengths of the gradients of the scene

respectively — refer to the overlaid colour chart.

4.4.2 Reconstruction from Gradients

The estimated log intensity gradient map as shown in Figure 4.8 is now upgraded into a

full image-like log intensity map as shown in Figure 4.9, from which we calculate the value

of a measurement for the camera pose estimation, with super-resolution and high dynamic

range properties. This reconstruction module does not run at the event rate but instead runs

in a separate thread as often as computing resources allow.

77

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

Figure 4.8: Estimated gradient map — the colours and intensities of this figure represent
the orientations and strengths of the gradients of the scene respectively (refer to the overlaid
colour chart).

Reconstructing a 1D scalar function from its derivatives is a matter of simple integration

up to an additive constant, but in the 2D case we cannot simply obtain an image by integrat-

ing its gradients since it is not necessarily integrable. In fact, the gradient vector field should

have zero curl to be integrable — i.e. it must be a conservative vector field meaning that the in-

tegral along any closed path should be equal to zero [72]. In practice, the estimated gradient

map is rarely integrable due to the various sources of noise in the sensing and estimation

processes — i.e. the integral of such a gradient vector field depends on the chosen path.

As one possible solution to this problem, we perform a reconstruction from gradients by

solving a Poisson equation method [58] which has proven very useful for many applications

such as high dynamic range tone mapping [58], removing shadows from images [59], novel

image editing tools [131], surface reconstruction [2, 3], and even the novel concept of a

gradient camera [166]. Specifically, we wish to reconstruct a log intensity mosaic Ml(pm)

whose gradients across the whole image domain are close to the estimated gradients g(pm) =

(gx, gy)> in a least squares sense; in other words, Ml should minimise:

∫ ∫
J(∇Ml , g)dxdy , (4.23)

78

4.5. Evaluation and Results

where:

J(∇Ml , g) = ‖∇Ml − g‖2 =
(

∂Ml

∂x
− gx

)2

+
(

∂Ml

∂y
− gy

)2

. (4.24)

Based on the Variational Principle, Ml that minimises Equation (4.23) must satisfy the Euler-

Lagrange equation:

∂J
∂Ml
− d

dx
∂J

∂Mlx
− d

dy
∂J

∂Mly
= 0 , (4.25)

which is a partial differential equation in Ml . Substituting J with Equation (4.24) we obtain:

2
(

∂2Ml

∂x2 −
∂gx

∂x

)
+ 2
(

∂2Ml

∂y2 −
∂gy

∂y

)
= 0 . (4.26)

Dividing by 2 and rearranging the equation, we obtain:

∂2Ml

∂x2 +
∂2Ml

∂y2 =
∂gx

∂x
+

∂gy

∂y
, (4.27)

which is the well known Poisson equation:

∇2Ml = divg , (4.28)

where ∇2 is the Laplacian operator and divg is the divergence of the vector field g.

To solve Equation (4.28), we use a sine transform based method with Dirichlet boundary

conditions assuming the log intensity values of the boundary are known (initially, they are

set to nominal values) [137]. In bootstrapping, we initialise all log intensity mosaic pixels to

log(128), and Figure 4.9 shows a reconstructed intensity map using the method described in

this section.

4.5 Evaluation and Results

We recommend readers to view our video1 which illustrates all of the key results below in

a form better than still pictures (also see Appendix A). We have conducted spherical mosa-
1Simultaneous Mosaicing and Tracking with an Event Camera Video: https://youtu.be/l6qxeM1DbXU (ac-

cessed September 2017)

79

https://youtu.be/l6qxeM1DbXU

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

Figure 4.9: Reconstructed log intensity map from the gradient map shown in Figure 4.8 —
converted to intensity values for visualisation purposes.

icing in both indoor and outdoor scenes. Also, we show the potential for reconstructing high

resolution and high dynamic range scenes from very small camera motion. Our algorithm

runs in real-time on a standard PC for a low number of particles and low template resol-

utions; the results we show here were generated using high number of particles at higher

resolution and are currently off-line. We present a real-time version of this by adopting

faster algorithms in Chapter 5.

In all experiments, we have used the DVS camera from iniLabs2 with 128×128 resolu-

tion, 120 dB dynamic range, and 15 microsecond latency, and communicated with a host

computer using our own USB 2.0 driver. The camera has pre-calibrated intrinsics and all

event pixel locations are pre-warped to remove radial distortion via the event camera calib-

ration method described in Section 3.6. We run both on a standard desktop PC with an Intel

Xeon W5590 3.33GHz quad-core CPU, and an Apple MacBook Pro with an Intel i7 2.6Ghz

dual-core CPU.

We present all the parameters used in the experiments in Table 4.1. As shown, we have

used the same values for most of the parameters across a wide range of experimental envir-

onments, except the ones related to the motion estimation which are sensitive to different

motion speeds.

2iniLabs Ltd: www.inilabs.com (accessed September 2017)

80

www.inilabs.com

4.5. Evaluation and Results

Table 4.1: Parameters used in the experiments

Parameter Value Reference
map size 2304 × 1152 Section 4.2

of particles N 100 Section 4.3
σ1 ∼ σ3 2.3× 10−8 ∼ 7.0× 10−5 Section 4.3.1

Pmin 1.0× 10−6 Section 4.3.2
C 0.22 Section 4.3.2
σe 8.0× 10−2 Section 4.3.2
ke 1.0× 10−3 Section 4.3.2
γ 2.0× 10−3 Equation (4.8)
g0 02×1 Section 4.4.1

Pg0

(
3.0× 101 0

0 3.0× 101

)
Section 4.4.1

σ2
m 2.5× 103 Section 4.4.1

Ml0(·) log(128) Section 4.4.2

4.5.1 Spherical Mosaicing

As shown in Figure 4.10, our algorithm is able to reconstruct indoor and outdoor scenes

with super resolution and high dynamic range properties. In these mosaics, the overlaid

box represents the current tracked field of view of the event camera.

4.5.2 High Resolution Reconstruction

Even though current event cameras have very low resolution (the DVS has a 128×128 pixel

array), as they provide very fast visual measurements we can reconstruct high resolution

scenes since our algorithm tracks rotation at sub-pixel accuracy. In Figure 4.11 we compare

(a) an image from a standard camera down-sampled to 128×128 resolution with (b) our

reconstructed super resolution result, showing sharper details.

4.5.3 High Dynamic Range Reconstruction

Another key characteristic of the event camera is its sensitivity over a very high dynamic

range (e.g. 120dB for DVS). Our algorithm can build mosaics which make use of this range,

to deal with scenes where there are large intensity difference between the brightest and

darkest parts. We created a scene with a very high range of light intensity by placing a row

of bright LED lights on top of a poorly lit sketch pad. A standard global shutter camera

81

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

(a) (b) (c)

Figure 4.10: Reconstructed spherical mosaics for indoor (shown in (a) and (b)) and outdoor
(shown in (c)) scenes with super resolution and high dynamic range properties — converted
to intensity values for visualisation purposes. The overlaid boxes represent the current field
of view of the event camera being tracked.

82

4.5. Evaluation and Results

(a)

(b)

Figure 4.11: High resolution reconstruction: (a) a 128×128 down sampled normal camera
image for a comparison; (b) a reconstructed high resolution scene by harnessing the very
high speed measurement property of the event camera which enables sub-pixel accurate
camera tracking — converted to intensity values for visualisation purposes.

83

4. Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera

(a) (b) (c)

Figure 4.12: High dynamic range reconstruction: (a) a saturated normal CCD camera image
with the smear effect for a comparison; (b) a visualisation of a stream of events from the
DVS camera showing the decent number of events being generated from both the bright and
dark areas; (c) a reconstructed high dynamic range scene — converted to intensity values
for visualisation purposes.

generates an image which is partly saturated, partly very dark and also has smearing effects

(Figure 4.12 (a)). However, the event camera and our algorithm are able to reconstruct the

high dynamic range log intensity image in Figure 4.12 (c) where all elements are clear.

4.6 Discussion and Summary

In this chapter, we have presented breakthrough results, showing how joint sequential and

global estimation permits the great benefits of an event camera to be applied to the real

problem of mosaicing. The proposed method takes input in the form of a stream of events

from a single pure rotation event camera looking at an unknown and unstructured nat-

ural scene, and operates on an event-by-event basis to maximise the update rate with low

latency – Equation (4.8) with a small γ value implicitly implements a strong accumulation

of events, but still provides an event-by-event updates. Our approach relies on two parallel

probabilistic filters to jointly track the global rotational motion of a camera and estimate the

log intensity gradients of the scene around it. The gradient map is then upgraded to a full

image-like mosaic with super-resolution and high dynamic range properties.

84

Chapter5

Real-Time Mosaicing and 3-DoF

Tracking with an Event Camera

Contents

5.1 Introduction . 85

5.2 Real-Time Processing Requirements for Event Cameras 86

5.2.1 Current and Future Processors . 87

5.2.2 Typical Event Rates . 87

5.2.3 Processing Time of the Method in Chapter 4 88

5.3 Real-Time Mosaicing and 3-DoF Tracking with an Event Camera 92

5.3.1 EKF-Based 3-DoF Camera Pose Estimation 92

5.3.2 Primal-Dual Reconstruction . 96

5.4 Evaluation and Results . 97

5.4.1 Processing Time . 98

5.4.2 Spherical Mosaicing . 99

5.4.3 High Speed Tracking . 100

5.4.4 Qualitative Comparisons . 104

5.5 Discussion and Summary . 104

5.1 Introduction

The method described in Chapter 4 presents breakthrough results showing how joint se-

quential and global estimation permits the great benefits of an event camera to be applied

85

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

to a real problem of mosaicing and camera pose tracking. However, its practicality is some-

what limited because of the high computational complexity of the particle filter used in

tracking and the Poisson solver-based log intensity reconstruction running on a CPU. As

addressed in the previous chapter, it runs in real-time on a standard PC for a low number of

particles and low template resolutions, but to obtain the high quality of the results presen-

ted in Section 4.5, a high number of particles and a high resolution template are required

and it is, therefore, currently off-line. Moreover, the relatively slow update rate of log in-

tensity reconstruction tends to cause poor tracking, then data association errors, and finally

corruption of the other parts of the estimation process. This is because the interaction of

these estimation processes and reconstruction is key as the approach of interleaved prob-

abilistic filters and separated log intensity reconstruction makes many assumptions about

independence which are certainly an approximation.

Bearing the above in mind, in this chapter, we first discuss the real-time processing re-

quirements for event cameras by analysing measured event rates in different experimental

conditions and the current processing time of the method described in Chapter 4. We then

present a new real-time implementation of simultaneous mosaicing and 3-DoF camera pose

estimation whose overall structure and functionality is the same as the previous method, but

where a substantial speed up has been achieved via adapting a computationally efficient es-

timation method for tracking as well as parallelisable log intensity reconstruction running

on a GPU. The experimental results in Section 5.4 show that this speed-up also increases the

quality of estimation and reconstruction as it guarantees higher fidelity of the independence

assumption.

5.2 Real-Time Processing Requirements for Event Cameras

When we use conventional cameras operating at the standard frame rate (e.g. 25-60Hz), we

normally have a time budget within the range of 16 to 40ms to process each incoming frame

to run any computer vision method in real-time. However, one of the superior characterist-

ics of event cameras, the high measurement rate, comes at a price — a highly limited time

budget for real-time processing. In the standard DVS128 device used in our work case, for

instance, we need to process each event within 1µs in the worst scenario as its maximum

event rate is one million eps. Newer event cameras provide even higher maximum band-

width such as 12Meps from the DAVIS sensor [19]. Of course, we can process a bundle

of events accumulated within a small time window at once or only selected events based

on a certain filtering criterion to mitigate the greatly restricted real-time processing time

86

5.2. Real-Time Processing Requirements for Event Cameras

budget per event. In our work, however, we aim to process all of the incoming events on an

event-by-event basis to minimise latency and to maximise the generality of our methods.

5.2.1 Current and Future Processors

Despite the high speed processing capabilities of today’s hardware and the small informa-

tion content of each event, performing meaningful tasks per event within such a limited time

initially appears infeasible. This is partly due to the limitation of the traditional von Neu-

mann computing architecture1, which separates its processing and memory components,

and we expect special hardware become available in the near future. For instance, neur-

omorphic processors or graph processors placed directly behind and connected in parallel

to the pixels of event sensors, and incoming events wake up and activate local computation

and message passing, while the majority of the processor remains in a sleep state to conserve

power. However, although significant progress have been achieved recently in the related

hardware research and development such as IBM’s TrueNorth [111], Qualcomm’s Zeroth2,

Graphcore’s IPU3, and CPA [9, 23, 98], SCAMP [22] and SpiNNaker [63] from the University

of Manchester, the challenges are to map estimation methods into message passing (belief

propagation) algorithms and to obtain globally consistent estimates of non-local parameters

such as ego-motion, and they still remain as subjects for future research. Therefore, for now,

we only consider serial processing of events on a standard PC.

In practice, however, saturating an event camera to the maximum event rate is relatively

rare as it requires extremely rapid motion while looking at densely textured scenes. In

the next section, we examine the typical event rates measured under different experimental

conditions to determine the practical maximum event rate and real-time processing time

budget for the event camera used in our work.

5.2.2 Typical Event Rates

In Table 5.1, we present the measured maximum and average event rates (i.e. eps: events-

per-second) from twenty different datasets which were captured using a standard DVS128

device with fixed bias settings, and we visualise them in the form of accumulated events as

shown in Figure 5.1. The presented datasets include different motion types: pure rotation,

1Von Neumann architecture: https://en.wikipedia.org/wiki/Von_Neumann_architecture (accessed
September 2017)

2Zeroth (software): https://en.wikipedia.org/wiki/Zeroth_(software) (accessed September 2017)
3Graph computing for machine intelligence with Poplar: https://www.graphcore.ai/posts/

graph-computing-for-machine-intelligence-with-poplar (accessed September 2017)

87

https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Zeroth_(software)
https://www.graphcore.ai/posts/graph-computing-for-machine-intelligence-with-poplar
https://www.graphcore.ai/posts/graph-computing-for-machine-intelligence-with-poplar

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

hand shaking, typical 3D motion, walking, moving while looking down at the ground, and

driving in a road vehicle at different speeds; and different indoor and outdoor scenes with

different proximity to objects under various lighting conditions. Although these are just

several examples and different event rates can be obtained with different bias settings, we

believe that they are representative enough of most scenarios that our methods aim to cover.

As shown in the table, besides a few extreme cases such as datasets 4 with rapid rotating

motion, 8 with rapid shaking motion, and 20 with an artificially textured spinning object

at high speed, none of the measured maximum event rates exceed 400keps. Moreover,

unrealistic dataset 20 is the only one that exceeds the 1Meps maximum bandwidth of the

DVS128 event camera, indicating that saturating an event camera to the maximum event rate

is relatively rare. We therefore safely set the practical maximum event rate to 400keps, and

in our serial processing aim to process each event within 3µs to achieve real-time processing

in the following methods.

5.2.3 Processing Time of the Method in Chapter 4

Before we present a real-time implementation of simultaneous mosaicing and 3-DoF event

camera pose estimation which can run in real-time on a standard PC up to the practical

maximum event rate 400keps in Section 5.3, we first investigate the current processing time

of the method described in Chapter 4. As mentioned, the previous method works in near

real-time on a standard PC with a small number of particles and a low log intensity map

resolution due to the very high computational cost of the tracking and reconstruction com-

ponents running on a CPU. The high quality results shown in Section 4.5, however, were

generated using a high number of particles at high template resolution and were unable to

be processed in real-time.

Figure 5.2 (a) and (b) show the current processing time required for the estimation and

reconstruction components with respect to different numbers of particles and map resol-

utions respectively — measured by a time measurement software function running on a

3.33GHz quad-core computer, and ignoring its overhead. As shown, even with as few as

10 particles, the current processing time of particle filter based tracking and pixel-wise EKF

based gradient estimation barely meets the 3µs real-time processing requirement, and the

Poisson solver-based log intensity reconstruction method shows a very slow reconstruction

update rate which tends to cause poor tracking, leading to data association errors, and

corruption of the other part of the estimation process.

88

5.2. Real-Time Processing Requirements for Event Cameras
Ta

bl
e

5.
1:

M
ax

im
um

an
d

av
er

ag
e

ev
en

t
ra

te
s

(e
ps

)
m

ea
su

re
d

w
it

h
di

ff
er

en
t

m
ot

io
ns

,s
pe

ed
s,

sc
en

es
an

d
lig

ht
in

g
co

nd
it

io
ns

—
al

l
of

th
e

da
ta

se
ts

ar
e

ca
pt

ur
ed

us
in

g
a

D
V

S1
28

w
it

h
fix

ed
bi

as
se

tt
in

gs
.

A
s

sh
ow

n,
th

e
m

ax
im

um
ev

en
t

ra
te

s
do

no
t

ex
ce

ed
40

0k
ep

s
ex

ce
pt

in
a

fe
w

ex
tr

em
e

ca
se

s
su

ch
as

da
ta

se
ts

4
an

d
8

w
it

h
ex

tr
em

el
y

ra
pi

d
m

ot
io

n
an

d
da

ta
se

t
20

w
it

h
an

ar
ti

fic
ia

lly
te

xt
ur

ed
m

ov
in

g
ob

je
ct

m
ov

in
g

at
hi

gh
sp

ee
d.

A
ls

o
no

te
th

at
ex

ce
pt

th
e

da
ta

se
t

20
,

no
ne

of
th

e
da

ta
se

ts
ex

ce
ed

th
e

1M
ep

s
m

ax
im

um
ba

nd
w

id
th

of
th

e
D

V
S1

28
de

vi
ce

us
ed

in
ou

r
w

or
k.

A
ll

of
th

e
da

ta
se

ts
lis

te
d

he
re

ar
e

vi
su

al
is

ed
in

th
e

fo
rm

of
ac

cu
m

ul
at

ed
ev

en
ts

in
Fi

gu
re

5.
1.

da
ta

se
t

ti
m

e
du

ra
ti

on
#

of
ev

en
ts

ev
en

ts
pe

r
se

co
nd

(e
ps

)
no

.
m

ot
io

n
sc

en
e

lig
ht

in
g

m
ax

.
av

g.

1
ro

ta
ti

ng
at

sl
ow

sp
ee

ds
in

do
or

ro
om

lig
ht

in
g

64
.4

1
se

c
2.

93
M

88
.9

8k
44

.7
1k

2
ro

ta
ti

ng
at

sl
ow

sp
ee

ds
ou

td
oo

r
da

y
59

.1
6

se
c

1.
82

M
89

.1
8k

30
.4

7k
3

ro
ta

ti
ng

at
di

ff
er

en
t

sp
ee

ds
in

do
or

ro
om

lig
ht

in
g

71
.4

1
se

c
6.

58
M

18
8.

90
k

91
.0

6k
4

ro
ta

ti
ng

at
fa

st
sp

ee
ds

in
do

or
ro

om
lig

ht
in

g
30

.0
8

se
c

8.
02

M
68

9.
80

k
26

0.
40

k
5

sh
ak

in
g

at
di

ff
er

en
t

sp
ee

ds
in

do
or

,c
lo

se
-u

p
H

D
R

16
.8

6
se

c
32

7.
62

k
28

.5
3k

18
.5

1k
6

sh
ak

in
g

at
di

ff
er

en
t

sp
ee

ds
in

do
or

,d
es

k
ro

om
lig

ht
in

g
17

.3
4

se
c

1.
21

M
14

6.
00

k
66

.6
8k

7
sh

ak
in

g
at

di
ff

er
en

t
sp

ee
ds

in
do

or
,c

lo
se

-u
p

ro
om

lig
ht

in
g

23
.6

5
se

c
3.

66
M

20
8.

20
k

15
0.

30
k

8
sh

ak
in

g
at

fa
st

sp
ee

ds
in

do
or

ro
om

lig
ht

in
g

2.
86

m
in

16
.1

3M
75

0.
40

k
93

.6
1k

9
na

tu
ra

l3
D

m
ot

io
n

ou
td

oo
r

du
sk

46
.8

4
se

c
4.

46
M

14
3.

40
k

93
.8

6k
10

na
tu

ra
l3

D
m

ot
io

n
in

do
or

ro
om

lig
ht

in
g

59
.1

4
se

c
6.

83
M

16
9.

00
k

11
3.

20
k

11
na

tu
ra

l3
D

m
ot

io
n

in
do

or
,d

es
k

si
ze

d
ro

om
lig

ht
in

g
4.

78
m

in
29

.4
4M

19
4.

80
k

10
2.

30
k

12
w

al
ki

ng
in

do
or

ro
om

lig
ht

in
g

4.
08

m
in

19
.1

7M
28

1.
10

k
78

.2
7k

13
w

al
ki

ng
ou

td
oo

r
da

y
29

.7
1

m
in

69
.1

8M
37

4.
90

k
38

.8
9k

14
w

al
ki

ng
ou

td
oo

r
da

y
10

.7
3

m
in

65
.6

6M
39

7.
01

k
10

0.
45

k
15

gr
ou

nd
m

ov
in

g
at

fa
st

sp
ee

ds
in

do
or

ro
om

lig
ht

in
g

71
.8

4
se

c
4.

62
M

30
1.

30
k

65
.7

9k
16

dr
iv

in
g

at
m

ax
.3

0
m

ph
ou

td
oo

r,
ro

ad
ni

gh
t

7.
65

m
in

13
.9

0M
16

1.
90

k
29

.6
7k

17
dr

iv
in

g
at

m
ax

.3
0

m
ph

ou
td

oo
r,

ro
ad

su
nn

y
8.

79
m

in
25

.8
1M

18
9.

70
k

48
.1

3k
18

dr
iv

in
g

at
m

ax
.4

0
m

ph
ou

td
oo

r,
ro

ad
du

sk
10

.5
1

m
in

31
.8

2M
20

0.
00

k
50

.0
9k

19
lo

ok
in

g
at

a
sp

in
ni

ng
fa

n
in

do
or

,c
lo

se
-u

p
ro

om
lig

ht
in

g
44

.8
5

se
c

6.
30

M
30

1.
70

k
13

8.
70

k
20

lo
ok

in
g

at
a

te
xt

ur
ed

sp
in

ni
ng

fa
n

in
do

or
,c

lo
se

-u
p

ro
om

lig
ht

in
g

33
.4

7
se

c
32

.7
8M

2.
15

M
99

4.
00

k

89

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

(a) dataset no. 1 (b) dataset no. 2 (c) dataset no. 3 (d) dataset no. 4

(e) dataset no. 5 (f) dataset no. 6 (g) dataset no. 7 (h) dataset no. 8

(i) dataset no. 9 (j) dataset no. 10 (k) dataset no. 11 (l) dataset no. 12

(m) dataset no. 13 (n) dataset no. 14 (o) dataset no. 15 (p) dataset no. 16

(q) dataset no. 17 (r) dataset no. 18 (s) dataset no. 19 (t) dataset no. 20

Figure 5.1: Visualisation of accumulated events within a 33ms time interval for all of the
datasets used in Table 5.1. White and black pixels represent positive and negative events
respectively and grey areas represent no event.

90

5.2. Real-Time Processing Requirements for Event Cameras

of Particles
0 50 100 150 200 250

E
s
ti
m

a
ti
o
n
 T

im
e
 (

µ
s
 p

e
r

e
v
e
n
t)

0

20

40

60

80

100

120

Map Size (Mpixel)
0 2 4 6 8 10

R
e

c
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) estimation processing time per event (b) reconstruction processing time

Figure 5.2: Processing time of the method described in Chapter 4: (a) The processing time
per event in microseconds plotted with respect to the number of particles used in particle
filter-based tracking and the pixel-wise EKF-based gradient estimation components showing
that even with as few as 10 particles, it barely meets the 3µs real-time processing require-
ment. (b) The processing time in seconds plotted with respect to different map resolutions
of the Poisson solver-based log intensity reconstruction method running in parallel showing
a very slow reconstruction update rate which tends to cause poor tracking, leading to data
association errors, and a corruption of the other part of the estimation process.

Although the current implementation is not optimised for speed, it is clear that using

the method described in Chapter 4, which relies on slow particle filter based tracking and

Poisson reconstruction running on a CPU, achieving real-time performance is not feasible.

We initially attempted to speed it up by using the OpenMP (Open Multi-Processing) API4,

which supports multi-platform shared memory parallel programming, or by harnessing

the parallel compute power of a GPU while minimising algorithmic changes. It was how-

ever soon realised that both software optimisation attempts were not sufficient because of

the limited hardware resources and the overhead of data transfer between CPU and GPU

memory. We therefore decided to adopt significant algorithmic changes as described in the

following section.

4OpenMP (Open Multi-Processing) API: www.openmp.org (accessed September 2017)

91

www.openmp.org

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

5.3 Real-Time Mosaicing and 3-DoF Tracking with an Event

Camera

In this section, we present a real-time implementation of simultaneous mosaicing and 3-

DoF event camera tracking whose overall structure and functionality is the same as the one

described in Chapter 4, but substantial speedup has been achieved via adapting a computa-

tionally efficient EKF based estimation method for tracking instead of the previous particle

filter based one that approximates the multimodal posterior distribution of the Bayes filter

by a finite number of particles. We also replace the Poisson solver based log intensity recon-

struction running on a CPU with a parallelisable primal-dual method which is implemented

in NVIDIA’s CUDA to harness the parallel compute power of a GPU. The third main ele-

ment of computation, the log intensity gradient estimation method, is the same as described

in Section 4.4.1. The experimental results in Section 5.4 show that these algorithmic changes

also increase the quality of estimation and reconstruction as they guarantee a higher fidelity

of the independence assumption on which our approach of interleaved probabilistic filters

and separated log intensity reconstruction heavily rely.

5.3.1 EKF-Based 3-DoF Camera Pose Estimation

We first explain the tracking component of our method which is based on the EKF and

provides an event-by-event updated estimate of the rotational location of the event camera

with respect to the scene mosaic based on the assumption that the current reconstructed log

intensity is correct. It estimates the global 3-DoF camera rotation motion over time with its

state x ∈ R3, which is a minimal representation of the camera orientation c with respect to

the world frame of reference w, and updates a covariance matrix Px ∈ R3×3 representing

uncertainty. The state vector is mapped to a member of the Lie group SO(3) by the matrix

exponential map [155]:

Rwc = exp
(3

∑
i=1

xiGi

)
, (5.1)

where Gi are the Lie group generators for SO(3) as in Equation (4.4), and Rwc is a 3×3

orthonormal rotation matrix.

At initialisation, the initial pose is set to a nominal value with absolute certainty (e.g.

x0 = 03×1 and Px0 = 03×3 as shown in Table 5.2), and whenever a new event arrives, the

92

5.3. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

state vector and the uncertainty covariance matrix evolve in the standard EKF prediction

and measurement update steps as follows.

Motion Prediction

We again use a 3-DoF constant position (random walk) model for motion prediction, where

the predicted mean rotation at any given time remains constant while the variance of the

prediction is proportional to the time interval as shown in Figure 4.5:

x(t|t−τ) = x(t−τ|t−τ) + n , (5.2)

Px
(t|t−τ) = P

(t−τ|t−τ)
x + Pn , (5.3)

where each component of n is independently Gaussian distributed in all three axes i.e.

ni ∼ N (0, σ2
i τ), and Pn = diag(σ2

1 τ, σ2
2 τ, σ2

3 τ). The noise is the predicted change the current

rotation might have undergone since the previous event was received — all the parameters

used in the experiments are given in Table 5.2. We also use the same time interval notation

τ and τc as before, which are the time elapsed since the most recent previous event from any

pixel and at the same pixel respectively.

Measurement Update

We calculate the value of a measurement zx given an event e(u, v), the current camera pose

estimate R
(t)
wc, the previous pose estimate R

(t−τc)
wc where the previous event was received at

the same pixel, and a reconstructed image-like log intensity map, by taking the log intensity

difference (i.e. prediction hx) between two corresponding points p(t)
m and p(t−τc)

m :

zx = ±C , (5.4)

hx(x(t|t−τ)) = Il

(
p(t)

m

)
− Il

(
p(t−τc)

m

)
. (5.5)

Here ±C is the known event threshold — its sign is decided by the polarity of the event (i.e.

+C for a positive event, and −C for a negative one), Il is a log intensity value based on a

93

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

reconstructed log intensity map, and pm is obtained as:

pm =

(
θ

φ

)
=

 tan−1 (pw1/pw3)

tan−1
(

pw2/
√

p2
w1 + p2

w3

) , (5.6)

where:

pw =


pw1

pw2

pw3

 = RwcK
−1


u

v

1

 . (5.7)

Basically, what we want to do is to find the current camera orientation which best predicts

the log intensity change between the current time of the new event and the last time there

was an event at this pixel.

In the standard EKF framework, the camera pose estimate and its uncertainty covariance

matrix are updated by the standard equations at every event using:

x(t|t) = x(t|t−τ) + Wxνx , (5.8)

P
(t|t)
x =

(
I3×3 −Wx

∂hx

∂x(t|t−τ)

)
P

(t|t−τ)
x , (5.9)

where the innovation νx is:

νx = zx − hx(x(t|t−τ)) , (5.10)

the innovation covariance Sx is:

Sx =
∂hx

∂x(t|t−τ)
P

(t|t−τ)
x

(
∂hx

∂x(t|t−τ)

)>
+ Nx , (5.11)

and the Kalman gain Wx is:

Wx = P
(t|t−τ)
x

(
∂hx

∂x(t|t−τ)

)>
Sx
−1 . (5.12)

94

5.3. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

The measurement uncertainty Nx is a scalar variance σ2
x — all the parameters used in the

experiments are given in Table 5.2, and the important Jacobian ∂hx
∂x(t|t−τ) , the partial differ-

entiation of the measurement function with respect to changes in camera pose, is derived

as:

∂hx

∂x(t|t−τ)
=

∂

∂x(t|t−τ)

(
Il

(
p(t)

m

)
− Il

(
p(t−τc)

m

))
, (5.13)

=
∂

∂x(t|t−τ)
Il

(
p(t)

m

)
− 0 , (5.14)

=
∂

∂p(t)
m
Il

(
p(t)

m

) ∂p(t)
m

∂x(t|t−τ)
, (5.15)

=
∂

∂p(t)
m
Il

(
p(t)

m

) ∂p(t)
m

∂p(t)
w

∂p(t)
w

∂x(t|t−τ)
, (5.16)

=
∂

∂p(t)
m
Il

(
p(t)

m

) ∂p(t)
m

∂p(t)
w

∂p(t)
w

∂Rwc

∂Rwc

∂x(t|t−τ)
, (5.17)

where ∂

∂p(t)
m
Il

(
p(t)

m

)
is:

∂

∂p(t)
m
Il

(
p(t)

m

)
=
[
Il x Il y

]
, (5.18)

∂p(t)
m

∂p(t)
w

is:

∂p(t)
m

∂p(t)
w

=


pw3W

2π(pw1
2+pw3

2) 0 − pw1W
2π(pw1

2+pw3
2)

− pw1 pw2 H
π(pw1

2+pw2
2+pw3

2)
√

pw1
2+pw3

2

√
pw1

2+pw3
2 H

π(pw1
2+pw2

2+pw3
2)

− pw2 pw3 H
π(pw1

2+pw2
2+pw3

2)
√

pw1
2+pw3

2

 ,

(5.19)

and ∂p(t)
w

∂Rwc
is:

∂p(t)
w

∂Rwc
=


pw1 0 0 pw2 0 0 pw3 0 0

0 pw1 0 0 pw2 0 0 pw3 0

0 0 pw1 0 0 pw2 0 0 pw3

 , (5.20)

95

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

and ∂Rwc
∂x(t|t−τ) is:

∂Rwc

∂x(t|t−τ)
=



0 R1,3 −R1,2

−R1,3 0 R1,1

R1,2 −R1,1 0

0 R2,3 −R2,2

−R2,3 0 R2,1

R2,2 −R2,1 0

0 R3,3 −R3,2

−R3,3 0 R3,1

R3,2 −R3,1 0



. (5.21)

5.3.2 Primal-Dual Reconstruction

We now explain the new fast log intensity reconstruction component of our real-time mo-

saicing and 3-DoF tracking method with a single event camera. Basically, we replace the

Poisson solver based method running on a CPU described in Chapter 4 with a parallelis-

able primal-dual method which is implemented in NVIDIA’s CUDA to harness the parallel

compute power of a GPU.

Specifically, we define our convex minimisation function as:

min
Il

{∫
Ω
||g(pm)−∇Il(pm)||hεd

+λ||∇Il(pm)||hεr
dpm

}
. (5.22)

Here the data term represents the error between estimated gradients g(pm) and those of a re-

constructed log intensity ∇Il(pm), which we would like to minimise, and the regularisation

term enforces smoothness, both under a robust Huber norm. To minimise Equation (5.22),

we use a primal-dual algorithm following [4, 27, 181] which guarantees its optimal conver-

gence and is easily parallelisable. To arrive at its primal-dual form, we use duality prin-

ciples replacing individual Huber norms of the equation by their convex conjugates using

the Legendre-Fenchel transformation [69]:

min
Il

max
q

max
p

{
〈p, g−∇Il〉 −

εd

2
||p||2−δp(p) + 〈q,∇Il〉 −

εr

2λ
||q||2−δq(q)

}
. (5.23)

96

5.4. Evaluation and Results

Here p and q are dual variables, 〈y, x〉 computes the inner product between the primal

variable x and its dual y, the convex conjugate of the Huber norm in the region ||x||1> ε is

the indicator function in the dual variable:

δ(y) =

{
0 if ε < ||y||1≤ 1

∞ otherwise
, (5.24)

while its quadratic region for ||x||1≤ ε results in a quadratic conjugate function within that

region ε
2 ||y||2.

We can solve Equation (5.23) by maximising with respect to p; by following iterate steps:

p(n+1) =

p(n)+σp(g−∇Il)
1+σpεd

max
(

1,
∣∣∣p(n)+σp(g−∇Il)

1+σpεd

∣∣∣) , (5.25)

maximising with respect to q with steps:

q(n+1) =

q(n)+σq∇Il

1+
σqεr

λ

max
(

1, 1
λ

∣∣∣∣q(n)+σq∇Il

1+
σqεr

λ

∣∣∣∣) , (5.26)

and minimising with respect to Il with steps:

I
(n+1)
l = I

(n)
l − σIl

(
divp(n+1) − divq(n+1)

)
. (5.27)

In our CUDA implementation, we initialise both dual variables as p = 0 and q = 0, and

iterate the above steps until either the change of the reconstructed log intensity values be-

comes lower than a certain threshold ∆Il , or the number of iterations reaches to a pre-set

maximum number of iterations nmax — all the parameters used in the experiments are given

in Table 5.2.

5.4 Evaluation and Results

Our algorithm runs in real-time on a standard PC with typical scenes and motion speeds,

and we have conducted experiments both indoors and outdoors under different conditions

including motion speeds, proximity to objects and illuminations. We recommend viewing

97

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

our video5 which illustrates all of the key results in a better form than still pictures and in

real-time (also see Appendix A).

In all of the experiments, we have used a DVS128 camera from iniLabs6 with 128×128

resolution, 120 dB dynamic range, and 15 microsecond latency, and communicated with

a host computer using our own USB 2.0 driver. We applied the same bias settings to all

of the experiments regardless of quite different experimental conditions especially lighting,

and we expect even better results with optimised bias values under specific conditions. The

camera has pre-calibrated intrinsics and all event pixel locations are pre-warped to remove

radial distortion via the event camera calibration method described in Section 3.6. We run

all of the experiments both on a standard desktop PC consisting of an NVIDIA GeForce GTX

680 GPU hosted by an Intel Xeon W5590 3.33GHz quad-core CPU, and an Apple MacBook

Pro consisting of an NVIDIA GeForce GT 750M GPU hosted by an Intel i7 2.6Ghz dual-core

CPU.

We present all of the parameters used in the experiments in Table 5.2. As shown, we

have used the same values for most of the parameters across a wide range of experimental

environments, except the ones (i.e. σ1, σ2, σ3) relating to the motion estimation which are

sensitive to different motion speeds.

5.4.1 Processing Time

The processing time per event of the EKF based 3-DoF camera tracking and the pixel-wise

EKF based log intensity gradient estimation components is measured within a range of 1-2µs

which is sufficient to meet the real-time requirement we discussed in Section 5.2 — meas-

ured by the same time measurement software function, and ignoring its overhead running

on the same 3.33GHz quad-core computer. In contrast to the particle filter which requires

monotonically increasing processing costs with respect to the number of particles being

used, EKF based camera pose estimation requires almost constant processing time without

compromising its performance.

The graph in Figure 5.3 also presents the processing time required for the primal-dual log

intensity reconstruction with respect to different map pixel sizes running on a GPU (NVIDIA

GTX 680 in this experiment), showing a significant speed up achieved (e.g. reduced from

about 1.2s to about 41ms). Considering the high measurement rate of the event camera, it

5ETAM 2D: Real-Time Event-Based Tracking and Mapping: https://youtu.be/z72lNV7idUs (accessed
September 2017)

6iniLabs Ltd: www.inilabs.com (accessed September 2017)

98

https://youtu.be/z72lNV7idUs
www.inilabs.com

5.4. Evaluation and Results

Table 5.2: Parameters used in the experiments

Parameter Value Reference
map size 2304 × 1152

x0 03×1 Section 5.3.1
Px0 03×3 Section 5.3.1
g0 02×1

Pg0

(
1.0× 10−3 0

0 1.0× 10−3

)
σ1 ∼ σ3 2.0× 10−3 ∼ 4.0× 10−3 Section 5.3.1

∆Il 1.0× 10−8 Section 5.3.2
nmax 100 Section 5.3.2

C 0.15 Section 5.3.1
σx 1.0× 10−2 Section 5.3.1
γ 1.0× 10−2

σt 1.0× 10−4

σC 1.0× 10−1

εd 0.1 Section 5.3.2
εr 0.1 Section 5.3.2
σp 0.5 Section 5.3.2
σq 0.5 Section 5.3.2
σIl 0.5 Section 5.3.2
λ 1.0× 10−1 Section 5.3.2

is, of course, a still relatively slow update rate especially with high template resolutions,

but we have found that it is sufficient to guarantee a higher fidelity of the independence

assumption which increases the quality of estimation and reconstruction as shown in the

following sections.

5.4.2 Spherical Mosaicing

As in the previous chapter, we have first conducted spherical mosaicing in both indoor

and outdoor scenes, but running in real-time on a standard PC. As shown in the follow-

ing two figures, our algorithm is able to estimate scene log intensity gradients (shown in

Figure 5.4 (a) and Figure 5.5 (a) — the colours and intensities represent the orientation and

strengths of the estimated gradients of the scene) and reconstruct scene log intensity (shown

in Figure 5.4 (b) and Figure 5.5 (b) — converted to intensity values for a visualisation pur-

99

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

Map Size (Mpixel)
0 2 4 6 8 10

R
e
c
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

m
s
)

0

5

10

15

20

25

30

35

40

45

Figure 5.3: Processing time in milliseconds with respect to different map resolutions of
the primal-dual log intensity reconstruction method running in parallel on a GPU, showing
a significant speed up achieved which guarantees a higher fidelity of the independence
assumption.

pose) while tracking the 3-DoF orientation of the event camera in real-time. The quality of

tracking can also be measured by the sharp details of the reconstructions.

5.4.3 High Speed Tracking

The real-time processing capability has enabled us to easily evaluate our method against ex-

tremely rapid rotating motion. For instance, our method is able to reconstruct a high quality

mosaic while tracking the event camera under vigorously oscillating motion up to about ±
10 rad s−1 as shown in Figure 5.6 — the graph in (a) plots angular velocity measurements

from a gyroscope which was firmly attached to the event camera in this experiment showing

its rapidly oscillating motion between 15 and 30 seconds, and (b) presents the high quality

reconstruction with the overlaid FOV of the event camera (yellow box) and well aligned ac-

cumulated events within about 33ms (red and blue dots) showing the quality of our tracker.

We again highly recommend viewing our video7 which illustrates these high speed tracking

results in a better form than still pictures and in real-time (also see Appendix A).

7ETAM 2D: Real-Time Event-Based Tracking and Mapping: https://youtu.be/z72lNV7idUs (accessed
September 2017)

100

https://youtu.be/z72lNV7idUs

5.4. Evaluation and Results

(a) (b)

Figure 5.4: Spherical mosaicing — William Penney Laboratory at Imperial College London
dataset: (a) estimated gradient map — the colours and intensities represent the orientation
and strengths of the gradients of the scene (refer to the colour chart in the corner); (b) re-
constructed log intensity spherical mosaicing (converted to intensity values for visualisation
purposes).

101

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

(a) (b)

Figure 5.5: Spherical mosaicing — Queen’s Lawn at Imperial College London dataset: (a)
estimated gradient map — the colours and intensities represent the orientation and strengths
of the gradients of the scene (refer to the colour chart in the corner); (b) reconstructed log
intensity spherical mosaicing (converted to intensity values for visualisation purposes).

102

5.4. Evaluation and Results

Time (s)
0 5 10 15 20 25 30

A
n

g
u

la
r

V
e

lo
c
it
y
 (

ra
d

 s
-1

)

-10

-5

0

5

10

ω
x

ω
y

ω
z

(a)

(b)

Figure 5.6: High speed tracking result: (a) angular velocity measurements from a gyroscope
attached to the event camera in this experiment showing vigorously oscillating motion up to
about ± 10 rad s−1; (b) reconstructed mosaic with the overlaid event camera’s FOV (yellow
box) and accumulated events within about 33ms (red and blue dots) showing the quality of
our tracker.

103

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

5.4.4 Qualitative Comparisons

Lastly, we conducted qualitative comparisons between the methods described in Chapter 4

and this chapter using three pre-recorded event camera datasets (i.e. office, lecture room,

and outdoor) as shown in Figures 5.7, 5.8 and 5.9. In all cases, the speed up achieved by our

new method also increases the quality of estimation and reconstruction as it guarantees a

higher fidelity of the independence assumption which is key to our approach of interleaved

probabilistic filters and separated log intensity reconstruction. The improvements can be

observed in the higher image quality of the reconstructed mosaics.

5.5 Discussion and Summary

In this chapter, we have presented a real-time implementation of simultaneous mosaicing

and 3-DoF camera pose estimation method whose overall structure and functionality is the

same as the previous method, but a substantial speed up has been achieved via adopting a

computationally efficient EKF based estimation method for tracking as well as parallelisable

primal-dual log intensity reconstruction running on a GPU. The experimental results in

Section 5.4 show that the processing time of the proposed method is sufficient to meet

the real-time requirement we discussed in Section 5.2, and this speed-up also increases the

quality of estimation and reconstruction as it guarantees higher fidelity of the independence

assumption.

104

5.5. Discussion and Summary

(a) (b)

Figure 5.7: Office dataset qualitative comparison: (a) reconstructed intensity mosaic using
the method described in Chapter 4 (performed off-line); (b) reconstructed intensity mosaic
using the method described in this chapter showing sharper details (performed in real-time).

105

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

(a) (b)

Figure 5.8: Lecture room dataset qualitative comparison: (a) reconstructed intensity mosaic
using the method described in Chapter 4 (performed off-line); (b) reconstructed intensity
mosaic using the method described in this chapter showing sharper details (performed in
real-time).

106

5.5. Discussion and Summary

(a) (b)

Figure 5.9: Outdoor dataset qualitative comparison: (a) reconstructed intensity mosaic
using the method described in Chapter 4 (performed off-line); (b) reconstructed intensity
mosaic using the method described in this chapter showing sharper details (performed in
real-time).

107

5. Real-Time Mosaicing and 3-DoF Tracking with an Event Camera

108

Chapter6

Real-Time 3D Reconstruction and

6-DoF Tracking with an Event Camera

Contents

6.1 Introduction . 110

6.2 Event Camera 6-DoF Tracking . 111

6.2.1 Corresponding 3D Point Search . 114

6.2.2 Motion Prediction . 116

6.2.3 Measurement Update . 117

6.3 Gradient Estimation and Log Intensity Reconstruction 120

6.3.1 Pixel-Wise EKF-Based Gradient Estimation 121

6.3.2 Log Intensity Reconstruction . 123

6.4 Inverse Depth Estimation and Regularisation 124

6.4.1 Pixel-Wise EKF-Based Inverse Depth Estimation 128

6.4.2 Inverse Depth Regularisation . 132

6.5 Evaluation and Results . 132

6.5.1 Single Keyframe . 135

6.5.2 Multiple Keyframes . 135

6.5.3 Video Rendering . 138

6.5.4 High Speed Tracking . 138

6.6 Discussion and Summary . 138

109

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

6.1 Introduction

In this chapter, we extend the panoramic reconstruction and 3-DoF camera tracking meth-

ods described in the previous chapters to perform real-time 3D semi-dense reconstruction

from a single hand-held event camera with no additional sensing. Our method works in un-

structured scenes of which it has no prior knowledge. This work was inspired by a strong

belief that depth estimation from a single moving event camera must be possible, because

if the device is working correctly and recording all pixel-wise intensity changes then all of

the information, that is important for localisation and mapping, present in a standard video

stream must be available in principle, at least up to scale. In fact, the high temporal resolu-

tion and dynamic range of event pixels should remove the usual bounds on frame-rate and

dynamic range of standard video frames. The essential insight to extending the previous

simultaneous mosaicing and 3-DoF tracking methods towards getting depth from events is

that once the camera starts to translate, if two pixels have the same intensity gradient then

the one which is closer to the camera will move past the camera faster and therefore emit

more events than the farther one. This is the essential mechanism built into our probabilistic

filter for inverse depth.

As shown in Figure 6.1, our method takes inputs in the form of a stream of events from

a freely moving event camera looking at a natural scene, and operates on an event-by-

event basis to maximise the update rate with low latency. We again follow the many recent

successful SLAM systems such as PTAM [84], DTAM [128], LSD-SLAM [57], and ORB-

SLAM [125] which separate the tracking and mapping components based on the assumption

that the current estimate from one component is accurate enough to lock for the purpose

of estimating the other. The basic structure of the method relies on three decoupled prob-

abilistic filters, shown as the blue rounded boxes, each estimating one unknown aspect of

this challenging 3D SLAM problem: 6-DoF event camera global motion, scene log intensity

gradient, and scene inverse depth. All of them are estimated relative to a virtual projective

reference keyframe as shown in Figure 6.2, and each incoming event contributes to the es-

timation components while the event camera frame of reference is near to the keyframe. We

also upgrade the log intensity gradient estimate for the keyframe into a log intensity im-

age, allowing us to calculate the value of a measurement for the camera pose estimation as

well as to recover a real-time video-like intensity sequence with spatial and temporal super-

resolution from the low bit-rate input event stream. Also a textured semi-dense 3D point

cloud can be generated from the keyframe with its associated reconstructed intensity and

inverse depth estimates. To reconstruct super resolution scenes by harnessing the very high

110

6.2. Event Camera 6-DoF Tracking

EKF-Based 6-DoF Tracking

Gradient Estimation
(pixel-wise EKF)

Reconstruction

SE(3) Camera Pose Estimate
Log Intensity & Inverse Depth

u v p t

event

Inverse Depth Estimation
(pixel-wise EKF)

3D Mapping

Figure 6.1: Method overview showing separation tracking and mapping: The method
takes inputs in the form of a stream of events from a single hand-held, freely moving event
camera looking at an unstructured scene, and is operating on an event-by-event basis. The
basic structure of the method relies on three decoupled probabilistic filters as shown as blue
rounded boxes, each estimating 6-DoF camera global motion, scene log intensity gradient,
and scene inverse depth. The log intensity gradient is also in parallel upgraded into a full
image-like intensity map as shown in the grey rounded box.

speed measurement property of the event camera which enables sub-pixel accurate camera

tracking, we use a higher resolution for keyframes than for the low resolution sensor. We

also use a wider field of view (FOV) to cover all pre-warped event pixel locations, especially

those which are out of the event camera’s FOV after the radial distortion compensation step

(e.g. 576× 576 instead of 128× 128 as shown in Table 6.2).

We again do not use an explicit bootstrapping method as we have found that, starting from

scratch, alternating estimation very often leads to convergence, though there are sometimes

currently gross failures, and this is an important issue for future research.

6.2 Event Camera 6-DoF Tracking

We now explain one of the main parts of our proposed method, the 6-DoF event camera

tracking component, whose job is to provide an event-by-event updated estimate of the

position and orientation of the camera with respect to the reconstructed 3D map in the

111

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

Figure 6.2: Virtual keyframe: a virtual projective reference frame whose pose is represented
as a 3D rigid body transformation matrix Twk with respect to the world frame of reference w.
It consists of a log intensity gradient map, a log intensity map, and an inverse depth map. A
textured semi-dense 3D point cloud can be also generated from the reconstructed intensity
and inverse depth estimates. All of the probabilistic filtering components are estimated
relative to this keyframe, and each incoming event contributes to the estimation components
while the event camera frame of reference is near by the keyframe.

world frame of reference. The basic idea is, by assuming that the current log intensity and

inverse depth estimates are correct, to find the new camera pose T
(t)
wc which best predicts a

log intensity change consistent with the polarity of the event just received, as illustrated in

Figure 6.3.

We use an EKF to estimate the global 6-DoF event camera motion over time with state

x ∈ R6 (i.e. translation in R3 and rotation in R3), which is a minimal representation of

the camera pose c with respect to the world frame of reference w, and covariance matrix

Px ∈ R6×6. At initialisation, the initial pose is set to a nominal value with absolute certainty

(e.g. x0 = 06×1 and Px0 = 06×6 as shown in Table 6.2).

112

6.2. Event Camera 6-DoF Tracking

Figure 6.3: Camera pose estimation: based on the assumption that the current log intensity
estimate (shown as the colours of the walls) and inverse depth estimate (shown as the
geometry of the walls) are correct, we estimate the current camera pose most consistent with
the predicted log intensity change since the previous event at the same pixel. Specifically,
we first find two corresponding ray-triangle intersection points, p(t)

w and p(t−τc)
w , in the world

frame of reference using the ray-triangle intersection method detailed in Section 6.2.1 to
predict the value of a measurement. This is a log intensity difference between two points
given an event e(u, v), the current keyframe pose Twk, the current camera pose estimate
T

(t)
wc, the previous pose estimate T

(t−τc)
wc and the reconstructed log intensity and inverse depth

keyframe. We update the camera pose estimate based on the standard EKF framework.

The state vector is mapped to a member of the Lie group SE(3), the set of 3D rigid body

transformations, by the matrix exponential map [155]:

Twc = exp
(6

∑
i=1

xiGi

)
=
(
Rwc tw

0> 1

)
, (6.1)

where Rwc ∈ SO(3) is a 3× 3 orthonormal rotation matrix representing rotation only point

transfer between frames c and w, and tw ∈ R3 is a 3D translation vector in the world frame

113

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

of reference w. The Lie group generators for SE(3) Gi are:

G1 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G2 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G3 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

G4 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G5 =


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G6 =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 .

(6.2)

As every new event arrives, the state vector and its covariance matrix evolve in the stand-

ard EKF motion prediction and measurement update steps, which we explain in detail next.

6.2.1 Corresponding 3D Point Search

We again denote an event as e(u, v) = (u, v, p, t)>, where u and v are pixel location, p is

polarity and t is microsecond-precise timestamp as in the previous chapters. Our event

camera has fixed pre-calibrated intrinsics matrix K and all event pixel locations are pre-

warped to remove radial distortion via the event camera calibration method described in

Section 3.6.

While conventional dense tracking methods such as DTAM [128] use whole image ren-

dering to get correspondence, we do it the other way around using ray casting because we

process event-by-event — when an event is received at a pixel location pc = (u, v)> in the

event camera frame of reference at Twc, we obtain a corresponding 3D point pw in the world

frame of reference w using ray casting as illustrated in Figure 6.4.

Specifically, we examine whether the event pixel’s ray r = RwcK
−1ṗc + tw intersects a tri-

angle formed by any three adjacent vertices v0, v1, and v2 in the 3D point cloud using the

ray-triangle intersection algorithm proposed by Möller and Trumbore [117] which is a fast

method for calculating a 3D intersection point without needing to compute the equation

of the plane containing the triangle. The method takes as input the origin of a ray, i.e.

the centre of the event camera frame of reference, the direction vector of the ray which is

calculated using camera intrinsics for each pixel, and three adjacent vertices, and yields a

vector (l, a, b)>, where l is the distance to the triangle from the origin of the ray and a, b

114

6.2. Event Camera 6-DoF Tracking

Figure 6.4: Corresponding 3D point search: when an event e(u, v) is received at a pixel
location pc = (u, v)> in the event camera reference of frame at Twc, we obtain the corres-
ponding 3D point pw in the world frame of reference w by examining whether the event
pixel’s ray intersects a triangle formed by any three adjacent vertices v0, v1, and v2 in the
3D point cloud using the ray-triangle intersection method [117]. We accelerate the compu-
tationally demanding ray casting method by restricting the number of search candidates to
a subset of 3D points generated from pixels along the epipolar line lk in the keyframe at
Twk. Further speed-ups can be achieved by defining minimum and maximum depths and
by starting from the depth of the previous intersection point based on the assumption of
spatially smooth depth.

are the barycentric coordinates of the intersected point which is then used to calculate an

interpolated log intensity.

The ray-triangle intersection 3D point search is however very computationally demanding

especially if we inspect all possible triangles in the point cloud, and can be accelerated by

restricting the number of search candidates to a subset of 3D points generated from pixels

along the epipolar line lk in the keyframe at Twk. Given the event pixel location pc, the

current keyframe pose Twk, and the current event camera pose estimate Twc, the epipolar

115

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

line lk which encodes the line equation (i.e. l1x + l2y + l3 = 0) in its 3-vectors form can be

computed as [74, Chapter 9]:

lk = Fṗc , (6.3)

where the fundamental matrix F is:

F = K−>RkcK
>
[
KR>kctkc

]
×

, (6.4)

and [·]× is a skew-symmetric matrix as follows [74, A4.5-p581]:

[ξ]× =


0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

 . (6.5)

Further speed-ups can be achieved by defining minimum and maximum depths which

can make the search space smaller in some circumstances, and also by not starting from

scratch (always starting from the minimum depth) but from the depth of the previous in-

tersection point. This gives a higher chance of finding a corresponding point more quickly

based on the spatially smooth depth assumption. In our current implementation, we use

both tricks to keep the computation as low as possible.

6.2.2 Motion Prediction

We use a 6-DoF (translation and rotation) constant position motion model for motion pre-

diction. The predicted camera pose at any given time remains constant while the variance

of the prediction is proportional to the time interval as shown in Figure 4.5:

x(t|t−τ) = x(t−τ|t−τ) + n , (6.6)

Px
(t|t−τ) = P

(t−τ|t−τ)
x + Pn , (6.7)

where each component of n is independent Gaussian noise in all six axes, i.e. ni ∼ N (0, σ2
i τ),

and Pn = diag(σ2
1 τ, . . . , σ2

6 τ). The noise is the predicted change the current camera pose

116

6.2. Event Camera 6-DoF Tracking

might have undergone since the previous event was received. We use the same time interval

notation τ and τc as before, which are the time elapsed since the most recent previous event

from any pixel and at the same pixel respectively.

6.2.3 Measurement Update

As shown in Figure 6.3, we calculate the value of a measurement zx given an event e(u, v),

the current keyframe pose Twk, the current camera pose estimate T
(t)
wc, the previous pose

estimate T
(t−τc)
wc where the previous event was received at the same pixel, and a reconstructed

image-like log intensity keyframe with inverse depth. We take the log intensity difference

between two corresponding ray-triangle intersection points, p(t)
w and p(t−τc)

w :

zx = ±C , (6.8)

hx(x(t|t−τ)) = Il

(
p(t)

w

)
− Il

(
p(t−τc)

w

)
, (6.9)

where:

Il (pw) = (1− a− b)Il (v0) + aIl (v1) + bIl (v2) . (6.10)

Here ±C is a known event threshold, its sign decided by the polarity of the event (i.e. +C

for a positive event, and −C for a negative one), and Il is a log intensity value based on

the reconstructed log intensity keyframe. To obtain the corresponding 3D point location pw,

a ray intersection point with respect to a triangle represented by three vertices v0, v1, and

v2, in the world frame of reference, we use the ray-triangle intersection method detailed in

Section 6.2.1. The method yields a vector (l, a, b)>, where l is the distance to the triangle

from the origin of the ray and a, b are the barycentric coordinates of the intersected point

which is then used to calculate an interpolated log intensity.

In the EKF framework, the camera pose estimate and its covariance matrix are updated

by the standard equations at every event using:

x(t|t) = x(t|t−τ) + Wxνx , (6.11)

P
(t|t)
x =

(
I6×6 −Wx

∂hx

∂x(t|t−τ)

)
P

(t|t−τ)
x , (6.12)

117

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

where the innovation νx is:

νx = zx − hx(x(t|t−τ)) , (6.13)

the innovation covariance Sx is:

Sx =
∂hx

∂x(t|t−τ)
P

(t|t−τ)
x

(
∂hx

∂x(t|t−τ)

)>
+ Nx , (6.14)

and the Kalman gain Wx is:

Wx = P
(t|t−τ)
x

(
∂hx

∂x(t|t−τ)

)>
Sx
−1 . (6.15)

The measurement uncertainty Nx is a scalar variance σ2
x , and the important Jacobian ∂hx

∂x(t|t−τ) ,

the partial derivative of the measurement function with respect to changes in camera pose,

is derived as:

∂hx

∂x(t|t−τ)
=

∂

∂x(t|t−τ)

(
Il

(
p(t)

w

)
− Il

(
p(t−τc)

w

))
, (6.16)

=
∂

∂x(t|t−τ)
Il

(
p(t)

w

)
− 0 , (6.17)

=
∂

∂x(t|t−τ)
((1− a− b)Il (v0) + aIl (v1) + bIl (v2)) , (6.18)

where the barycentric coordinates a and b are computed as in [117]:

a =
1

(e1 · (d× e2))
((o− v0) · (d× e2)) , (6.19)

b =
1

(e1 · (d× e2))
(d · ((o− v0)× e1)) , (6.20)

when o = (o0, o1, o2)> and d = (d0, d1, d2)> are the origin and direction vectors of the ray (i.e.

camera pose) intersected at p(t)
w , e1 = v1 − v0, and e2 = v2 − v0.

If we simply denote ((1− a− b)Il (v0) + aIl (v1) + bIl (v2)) as Il , then using the chain rule,
∂hx

∂x(t|t−τ) becomes:

118

6.2. Event Camera 6-DoF Tracking

∂hx

∂x(t|t−τ)
=

∂Il

∂

[
a

b

] ∂

[
a

b

]

∂

[
o

d

] ∂

[
o

d

]
∂x(t|t−τ)

, (6.21)

where ∂Il

∂

a

b


is:

∂Il

∂

[
a

b

] =
[
Il (v1)− Il (v0) Il (v2)− Il (v0))

]
, (6.22)

∂

a

b


∂

o

d


is:

∂

[
a

b

]

∂

[
o

d

] =


∂a
∂o

∂a
∂d

∂b
∂o

∂b
∂d

 , (6.23)

where ∂a
∂o is:

∂a
∂o

=
(

1
(e1 · (d× e2))

(d× e2)
)>

, (6.24)

∂a
∂d is:

(6.25)
∂a
∂d

=
(
− 1

(e1 · (d × e2))
((o− v0)× e2) + ((o− v0) · (d× e2))

1
(e1 · (d × e2))2 (e1× e2)

)>
,

119

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

∂b
∂o is:

∂b
∂o

=
(
− 1

(e1 · (d× e2))
(d× e1)

)>
, (6.26)

and ∂b
∂d is:

(6.27)
∂b
∂d

=
(

1
(e1 · (d × e2))

((o− v0)× e1) + (d · ((o− v0)× e1))
1

(e1 · (d × e2))2 (e1 × e2)
)>

,

and

∂

o

d


∂x(t|t−τ) is:

∂

[
o

d

]
∂x(t|t−τ)

=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 d2 −d1

0 0 0 −d2 0 d0

0 0 0 d1 −d0 0


. (6.28)

6.3 Gradient Estimation and Log Intensity Reconstruction

We now use the updated camera pose estimate to incrementally improve the estimates of

the log intensity gradient at each keyframe pixel based on a pixel-wise EKF. Essentially,

each new event which lines up with a particular keyframe pixel improves our estimate of

its gradient in the direction parallel to the motion of the camera over the scene at that pixel

while we learn nothing about the gradient in the direction perpendicular to camera motion.

However, because of the random walk nature of our tracker which generates noisy motion

estimates, we first apply a weighted average filter to the new camera pose estimate x̃ as:

x(t) = (1− γ)x(t−τ) + γx̃. (6.29)

where γ is a weight variable which controls the smoothness of estimated camera motion. In

fact, a small γ value implicitly implements a strong accumulation of events, but our method

120

6.3. Gradient Estimation and Log Intensity Reconstruction

still provides an event-by-event updated estimate of the position and orientation of the event

camera as they arrive.

Note that the high average frequency of events relative to the dynamics of a hand-held

camera strongly motivates the use of a stronger motion model (e.g. constant velocity or

acceleration) [66], and this is an important issue for future research.

6.3.1 Pixel-Wise EKF-Based Gradient Estimation

Each pixel of the keyframe holds an independent gradient estimate g(pk) = (gu, gv)>, con-

sisting of log intensity gradients gu and gv along the horizontal and vertical axes in image

space respectively, and a 2× 2 uncertainty covariance matrix Pg(pk). At initialisation, all

gradients are initialised to zero with large variances like the ones used in the experiments

shown in Table 6.2.

Based on the rapidity of events, we assume a linear change of gradient between two

consecutive events at the same event camera pixel, and update the midpoint p̂k of the two

projected points p(t)
k and p(t−τc)

k as illustrated in Figure 6.5. We now define zg, a measurement

of the instantaneous event rate at this pixel, and its measurement model hg based on the

brightness constancy equation (g · m)τc = ±C [76], where g is a gradient estimate and

m = (mu, mv)> is a motion vector — the displacement between two corresponding pixels in

the current keyframe divided by the elapsed time τc:

zg = ±C
τc

, (6.30)

hg = (g(p̂k) ·m) , (6.31)

where:

m =
p(t)

k − p(t−τc)
k

τc
. (6.32)

Based on the standard EKF equations, the current gradient estimate and its uncertainty

covariance matrix at that pixel are updated independently as:

g(p̂k)(t) = g(p̂k)(t−τc) + Wgνg , (6.33)

121

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

Figure 6.5: Gradient estimation: based on the assumption that the current camera pose
estimates (T(t)

wc and T
(t−τc)
wc) and inverse depth estimate (shown as the geometry of the walls)

are correct, we first project two intersection points onto the current keyframe, p(t)
k and p(t−τc)

k .
We then find a displacement vector between them, which is used to calculate a motion
vector m to compute the value of a measurement (g ·m) at a midpoint, p̂k, based on the
brightness constancy and the linear gradient assumption. We update each independent
gradient estimate based on the pixel-wise EKF framework. Essentially, each new event
which lines up with a particular keyframe pixel improves our estimate of its gradient in the
direction parallel to the motion of the camera over the scene at that pixel while we learn
nothing about the gradient in the direction perpendicular to camera motion.

Pg(p̂k)(t) =
(
I2×2 −Wg

∂hg

∂g(p̂k)(t−τc)

)
Pg(p̂k)(t−τc) , (6.34)

where the innovation νg is:

νg = zg − hg , (6.35)

122

6.3. Gradient Estimation and Log Intensity Reconstruction

the innovation covariance Sg is:

Sg =
∂hg

∂g(p̂k)(t−τc)Pg(p̂k)(t−τc)
(

∂hg

∂g(p̂k)(t−τc)

)>
+ Ng , (6.36)

and the Kalman gain Wg is:

Wg = Pg(p̂k)(t−τc)
(

∂hg

∂g(p̂k)(t−τc)

)>
S−1

g . (6.37)

The Jacobian of the measurement function with respect to changes in gradient is:

∂hg

∂g(p̂k)(t−τc) =
∂

∂(gu, gv)>
(gumu + gvmv) = (mu, mv), (6.38)

and the measurement noise Ng is:

Ng =
∂zg

∂C
PC

(
∂zg

∂C

)>
=

σ2
C

τ2
c

, (6.39)

where σ2
C is the sensor noise with respect to the event threshold.

However, once νg and Sg have been computed, in order to be more robust to scene changes

which violate the static scene assumption, a simple Mahalanobis distance DM based outlier

rejection is performed. The EKF update equations are employed only if DM is within a

confidence limit (e.g. 3σ), where DM is:

DM =
√

ν>g S−1
g νg . (6.40)

6.3.2 Log Intensity Reconstruction

Along with the pixel-wise EKF based gradient estimation method, we perform interleaved

absolute log intensity reconstruction running on a GPU. As described in detail in Sec-

tion 5.3.2, we define our convex minimisation function as:

min
Il

{∫
Ω
||g(pk)−∇Il(pk)||hεd

+λ||∇Il(pk)||hεr
dpk

}
. (6.41)

123

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

Here the data term represents the error between estimated gradients g(pk) and those of a

reconstructed log intensity ∇Il(pk), and the regularisation term enforces smoothness, both

under a robust Huber norm. This function can be written using the Legendre Fenchel

transformation as follows [69]:

min
Il

max
q

max
p
{〈p, g−∇Il〉 −

εd

2
||p||2−δp(p) + 〈q,∇Il〉 −

εr

2λ
||q||2−δq(q)} , (6.42)

where we can solve by maximising with respect to p:

p(n+1) =

p(n)+σp(g−∇Il)
1+σpεd

max
(

1,
∣∣∣p(n)+σp(g−∇Il)

1+σpεd

∣∣∣) , (6.43)

maximising with respect to q:

q(n+1) =

q(n)+σq∇Il

1+
σqεr

λ

max
(

1, 1
λ

∣∣∣∣q(n)+σq∇Il

1+
σqεr

λ

∣∣∣∣) , (6.44)

and minimising with respect to Il :

I
(n+1)
l = I

(n)
l − σIl

(
divp(n+1) − divq(n+1)

)
. (6.45)

These steps are iterated until either the change of the reconstructed log intensity values

becomes lower than a certain threshold ∆Il , or the number of iterations reaches a pre-set

maximum number of iterations nmax. We visualise the progress of gradient estimation and

log intensity reconstruction over time during hand-held event camera motion in Figure 6.6

and Figure 6.7 respectively.

6.4 Inverse Depth Estimation and Regularisation

We use the same smoothed camera pose estimate from the weighted average filter described

in Section 6.3 to incrementally improve the estimates of the inverse depth at each keyframe

pixel based on another pixel-wise EKF. In order to get more accurate and consistent depth

124

6.4. Inverse Depth Estimation and Regularisation

t = 0 t = a

t = b t = c

t = d t = e

Figure 6.6: Typical temporal progression (0 < a < b < c < d < e) of gradient estimation as a
hand-held camera browses a 3D scene. The colours and intensities represent the orientations
and strengths of the gradients of the scene (refer to the colour chart in the top right).

125

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

t = 0 t = a

t = b t = c

t = d t = e

Figure 6.7: Typical temporal progression (0 < a < b < c < d < e) of log intensity
reconstruction as a hand-held camera browses a 3D scene.

126

6.4. Inverse Depth Estimation and Regularisation

Figure 6.8: Inverse depth estimation: we assume that the current reconstructed log intensity
(shown as the colour of the walls) and camera pose estimates (T(t)

wc and T
(t−τc)
wc) are correct,

and find the inverse depth most consistent with the predicted log intensity change since
the previous event at the same pixel. Specifically, we first find two corresponding ray-
triangle intersection points, p(t)

w and p(t−τc)
w , in the world frame of reference w using the

ray-triangle intersection method detailed in Section 6.2.1. We then compute the value of
a measurement, a log intensity difference between two points given an event e(u, v), the
current keyframe pose Twk, the current camera pose estimate T

(t)
wc, the previous pose estimate

T
(t−τc)
wc and the reconstructed log intensity and inverse depth keyframe. We update each

independent inverse depth estimate based on the pixel-wise EKF framework.

estimation, we use the inverse depth parametrisation [119, 31] which is well suited to repres-

enting uncertainty using a Gaussian distribution over a huge range of depths, in particular

for distant points, even at infinity (i.e. low parallax cases).

As illustrated in Figure 6.8, by assuming that the current camera pose estimates and re-

constructed log intensity are correct, we find the inverse depth estimate which best predicts

a log intensity change compared to the previous log intensity value recorded when the same

event pixel got the previous event at pose T
(t−τc)
wc consistent with the polarity of the event

just received.

127

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

6.4.1 Pixel-Wise EKF-Based Inverse Depth Estimation

Each pixel of the keyframe holds an independent inverse depth state value ρ(pk) with vari-

ance σ2
ρ(pk). At initialisation, all inverse depths are initialised to nominal values with large

variances — the initial values ρ0 and σρ0 used in our experiments are shown in Table 6.2.

In the same way as in our tracking method, we calculate the value of measurement zρ

which is the log intensity difference between two corresponding ray-triangle intersection

points, p(t)
w and p(t−τc)

w , as shown in Figure 6.8:

zρ = ±C , (6.46)

hρ = Il

(
p(t)

w

)
− Il

(
p(t−τc)

w

)
, (6.47)

where:

Il (pw) = (1− a− b)Il (v0) + aIl (v1) + bIl (v2) . (6.48)

Again here ±C is a known event threshold — its sign is decided by the polarity of an event

(i.e. +C for a positive event, and −C for a negative one), and Il is a log intensity value based

on a reconstructed log intensity keyframe. To obtain a corresponding 3D point location pw,

a ray intersection point with respect to a triangle represented by three vertices v0, v1, and

v2, in the world frame of reference w, we use the ray-triangle intersection method detailed

in Section 6.2.1, which yields a vector (l, a, b)> where l is the distance to the triangle from

the origin of the ray and a, b are the barycentric coordinates of the intersected point which

is then used to calculate an interpolated log intensity.

In the EKF framework, we stack the inverse depths of all three vertices of the intersected

triangle ρ = (ρv0 , ρv1 , ρv2)> which contributed to the intersection 3D point and update them

with their associated uncertainty covariance matrix Pρ = diag
(

σ2
ρv0

, σ2
ρv1

, σ2
ρv2

)
using the

standard equations at every event as:

ρ(t) = ρ(t−τc) + Wρνρ , (6.49)

P(t)
ρ =

(
I3×3 −Wρ

∂hρ

∂ρ(t−τc)

)
P(t−τc)

ρ , (6.50)

128

6.4. Inverse Depth Estimation and Regularisation

where the innovation νρ is:

νρ = zρ − hρ , (6.51)

the innovation covariance Sρ is:

Sρ =
∂hρ

∂ρ(t−τc)P
(t−τc)
ρ

(
∂hρ

∂ρ(t−τc)

)>
+ Nρ , (6.52)

and the Kalman gain Wρ is:

Wρ = P(t−τc)
ρ

(
∂hρ

∂ρ(t−τc)

)>
Sρ
−1 . (6.53)

The measurement noise Nρ is a scalar variance σ2
ρ , and the important Jacobian

∂hρ

∂ρ(t−τc) , the

partial derivative of the measurement function with respect to changes in inverse depths, is

derived as:

∂hρ

∂ρ(t−τc) =
∂

∂ρ(t−τc)

(
Il

(
p(t)

w

)
− Il

(
p(t−τc)

w

))
, (6.54)

=
∂

∂ρ(t−τc)Il

(
p(t)

w

)
− 0 , (6.55)

=
∂

∂ρ(t−τc) ((1− a− b)Il (v0) + aIl (v1) + bIl (v2)) . (6.56)

Again, if we simply denote ((1− a− b)Il (v0) + aIl (v1) + bIl (v2)) as Il , then using the

chain rule,
∂hρ

∂ρ(t−τc) becomes:

∂hρ

∂ρ(t−τc) =
∂Il

∂

[
a

b

] ∂

[
a

b

]

∂


v0

v1

v2



∂


v0

v1

v2


∂ρ(t−τc) , (6.57)

129

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

where ∂Il

∂

a

b


is the same as in Section 6.2.3:

∂Il

∂

[
a

b

] =
[
Il (v1)− Il (v0) Il (v2)− Il (v0))

]
, (6.58)

∂

a

b



∂


v0

v1

v2


is:

∂

[
a

b

]

∂


v0

v1

v2


=


∂a

∂v0

∂a
∂v1

∂a
∂v2

∂b
∂v0

∂b
∂v1

∂b
∂v2

 , (6.59)

where ∂a
∂v0

is:

(6.60)
∂a

∂v0
=
(

((o − v0)× d)
1

((d × e2) · (v0 − v1))
+ (d × e2)

1
((d × e2) · (v0 − v1))

+((o−v0) · (d×e2))((d× (v0−v1))− (d× (v0−v2)))
1

((d × e2) · (v0 − v1))2

)>
,

∂a
∂v1

is:

∂a
∂v1

=
(
−((o− v0) · (d× e2))(d× e2)

1
((d× e2) · (v0 − v1))2

)>
, (6.61)

∂a
∂v2

is:

130

6.4. Inverse Depth Estimation and Regularisation

(6.62)
∂a

∂v2
=
(
−((o − v0)× d)

1
((d × e2) · (v0 − v1))

− ((o − v0) · (d × e2))(d × (v0 − v1))
1

((d × e2) · (v0 − v1))2

)>
,

∂b
∂v0

is:

(6.63)
∂b

∂v0
=
(

(d × (o − v1))
1

((d × e2) · (v0 − v1))

+(d · ((o−v0)×e1))((d× (v0−v1))− (d× (v0−v2)))
1

((d × e2) · (v0 − v1))2

)>
,

∂b
∂v1

is:

(6.64)
∂b

∂v1
=
(

((o − v0)× d)
1

((d × e2) · (v0 − v1))

− (d · ((o − v0)× e1))(d × e2)
1

((d × e2) · (v0 − v1))2

)>
,

and ∂b
∂v2

is:

∂b
∂v2

=
(
−(d · ((o− v0)× e1))(d× (v0 − v1))

1
((d× e2) · (v0 − v1))2

)>
, (6.65)

and

∂


v0

v1

v2


∂ρ(t−τc) is:

∂


v0

v1

v2


∂ρ(t−τc) =



−Rwk

[
pk

1

]
1

ρ2
v0

~0 ~0

~0 −Rwk

[
pk

1

]
1

ρ2
v1

~0

~0 ~0 −Rwk

[
pk

1

]
1

ρ2
v2


. (6.66)

131

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

As in gradient estimation, once νρ and Sρ have been computed, in order to be more robust

to scene changes which violate the static scene assumption a simple Mahalanobis distance

DM based outlier rejection check is performed — the EKF update equations are employed

only if DM is within a confidence limit (e.g. 3σ), where DM is:

DM =
√

ν>ρ S−1
ρ νρ . (6.67)

6.4.2 Inverse Depth Regularisation

As a background process running on a GPU, we perform inverse depth regularisation on

keyframe pixels whenever the change of the inverse depth estimates becomes higher than

a certain threshold ∆Dρ. We penalise deviation from a spatially smooth inverse depth map

by assigning each inverse depth value the average of its neighbouring pixels in a given

local window Wρ, weighted by their respective inverse variances as described in [56]. If a

neighbour’s inverse depth is different more than 2σρ, it is not taken into account during the

regularisation step to preserve discontinuities due to occlusion boundaries.

We visualise the progress of inverse depth estimation and regularisation over time as

event data is captured during hand-held event camera motion in Figure 6.9 and Figure 6.10.

The parameters used in the experiments are given in Table 6.2.

6.5 Evaluation and Results

Our algorithm runs in real-time on a standard PC with typical scenes and motion speed,

and we have conducted experiments both indoors and outdoors. We recommend viewing

our video1 which illustrates all of the key results in a better form than still pictures and in

real-time (also see Appendix A).

In all experiments, we have used a DVS camera from iniLabs2 with 128×128 resolution,

120 dB dynamic range, and 15 microsecond latency, and communicated with a host com-

puter using our own USB 2.0 driver — readers can instead use the one provided by the

manufacturer3. The camera has pre-calibrated intrinsics and all event pixel locations are

pre-warped to remove radial distortion via the event camera calibration method described

1Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera: https://youtu.be/yHLyhdMSw7w
(accessed September 2017)

2iniLabs Ltd: www.inilabs.com (accessed September 2017)
3jAER Open Source Project: https://github.com/SensorsINI/jaer (accessed September 2017)

132

https://youtu.be/yHLyhdMSw7w
www.inilabs.com
https://github.com/SensorsINI/jaer

6.5. Evaluation and Results

farnear

t = 0 t = a

t = b t = c

t = d t = e

Figure 6.9: Typical temporal progression (0 < a < b < c < d < e) of inverse depth estim-
ation and regularisation as a hand-held camera browses a 3D scene. The colours represent
the different depths of the scene (refer to the colour chart in the top right).

133

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

t = 0 t = a

t = b t = c

t = d t = e

Figure 6.10: Typical temporal progression (0 < a < b < c < d < e) of a semi-dense 3D
point cloud as a hand-held camera browses a 3D scene.

134

6.5. Evaluation and Results

Table 6.1: Average processing time

Decoupled Work Package Desktop Laptop
tracking 6.27µs / event 4.33µs / event

mapping (gradient and inverse depth) 2.47µs / event 1.98µs / event
reconstruction and regularisation 8.09ms 9.92ms

in Section 3.6. We run both on a standard desktop PC consisting of an NVIDIA GeForce GTX

680 GPU hosted by an Intel Xeon W5590 3.33GHz quad-core CPU, and an Apple MacBook

Pro consisting of an NVIDIA GeForce GT 750M GPU hosted by an Intel i7 2.6Ghz dual-core

CPU. Table 6.1 shows the average processing time of the three decoupled work packages

running on both machines — with our current unoptimised implementation, we can process

about 200k to 300k events per second in real-time.

We present all the parameters used in the experiments in Table 6.2. As shown, we have

used the same values for most of the parameters across a wide range of experimental en-

vironments, except the ones relative to the motion and inverse depth estimations which are

sensitive to different motion speeds and scene structures.

6.5.1 Single Keyframe

We demonstrate the results from our algorithm as it tracks against and reconstructs a single

keyframe in a number of different indoor and outdoor scenes. In Figure 6.11, for each

scene we show column by column an image-like view of the event streams generated by

accumulating events within a time interval, estimated gradient map, reconstructed intensity

map with super resolution and high dynamic range properties, estimate depth map, and

semi-dense textured 3D point cloud.

The 3D reconstruction quality is generally good, however we can see that there are some-

times poorer quality depth estimates near to occlusion boundaries and where not enough

events have been generated.

6.5.2 Multiple Keyframes

We evaluated the proposed method on several trajectories which require multiple keyframes

to cover. If the camera has moved too far from the current keyframe, we create a new key-

frame from the most recent estimation results and reconstruction. To create a new keyframe,

we project all 3D points based on the current keyframe pose and the estimated inverse depth

135

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

Table 6.2: Parameters used in the experiments

Parameter Value Reference
keyframe size 576× 576 Figure 6.2

x0 06×1 Section 6.2
Px0 06×6 Section 6.2
g0 02×1 Section 6.3.1

Pg0

(
2.5× 10−3 0

0 2.5× 10−3

)
Section 6.3.1

∆Il 1.0× 10−8 Section 6.3.2
nmax 100 Section 6.3.2

ρ0 0.33 ∼ 3.33 Section 6.4.1
σρ0 0.11 ∼ 1.11 Section 6.4.1
∆Dρ 1.0× 10−5 Section 6.4.2

Wρ size 7× 7 Section 6.4.2
σ1 ∼ σ3 1.5× 10−3 ∼ 2.5× 10−3 Equation (6.7)
σ4 ∼ σ6 1.0× 10−3 ∼ 2.5× 10−3 Equation (6.7)

C 0.15 Equation (6.8), (6.30), (6.46)
σx 1.0× 10−2 Equation (6.14)
γ 1.0× 10−3 Equation (6.29)
σC 1.0× 10−1 Equation (6.39)
εd 0.1 Equation (6.43)
εr 0.1 Equation (6.44)
σp 0.5 Equation (6.43)
σq 0.5 Equation (6.44)
σIl 0.5 Equation (6.45)
λ 1.0× 10−1 Equation (6.44)
σρ 5.0× 10−2 ∼ 1.0× 10−1 Equation (6.52)

136

6.5. Evaluation and Results

farnear

(a) (b) (c) (d) (e)

Figure 6.11: Demonstrations in various settings of the different aspects of our joint estima-
tion algorithm. (a) Visualisation of the input event stream generated by accumulating events
within a time interval — white and black pixels represent positive and negative events re-
spectively; (b) estimated gradient keyframes — the colours and intensities represent the
orientations and strengths of the scene gradients respectively; (c) reconstructed intensity
keyframes with super resolution and high dynamic range properties; (d) estimated depth
maps — the colours represent the different depths of the scene; (e) semi-dense textured 3D
point clouds.

137

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

into the current camera pose, and propagate the current estimates and reconstruction only

if they have high confidence in inverse depth.

Figure 6.12 shows one of the results in the form of a semi-dense textured 3D point cloud.

This is built from the generated keyframes each consisting of reconstructed super-resolution

and high dynamic range intensity and inverse depth map. The bright 3D coordinate axes

represent the current camera pose along with the current image-like visualisation of the

event stream, while the darker ones show all keyframe poses generated in this experiment

with their associated intensity and depth map estimates.

6.5.3 Video Rendering

Using the method described in this chapter, we can turn an event camera into a high speed

and high dynamic range artificial camera by rendering video frames based on ray casting as

shown in Figure 6.13. Here we choose to render at the same low resolution as event camera

input.

6.5.4 High Speed Tracking

We evaluated the proposed method on several trajectories which include rapid motion (e.g.

a shaking hand). The graph in Figure 6.14 shows the estimated camera pose history, and the

two groups of insets above and below show an image-like event visualisation, a rendered

video frame showing the quality of our tracker, and a motion blurred standard camera video

frame to make clear the rapid motion. Our current implementation is not able to process

this very high event-rate (up to 1M events per second in this experiment) in real-time —

with our current unoptimised implementation, we can process about 200k to 300k events per

second in real-time as shown in Table 6.1.

6.6 Discussion and Summary

All the results presented here are qualitative, no benchmark experiments have been con-

ducted, and we acknowledge that our work would certainly benefit from a wider range of

evaluations. In this chapter, however, we have focused on demonstrating the core novelty

of our approach in breaking through to get joint estimation of depth, 6-DoF motion and in-

tensity from pure event data with general motion and unknown general scenes. To the best

of our knowledge, there have been no previously published similar results and there are no

alternative systems with which to compare our results. Certainly, if event cameras become

138

6.6. Discussion and Summary

Figure 6.12: Semi-dense textured 3D point cloud of an indoor scene reconstructed from
multiple keyframes. The bright RGB 3D coordinate axes represent the current camera pose
along with the current image-like visualisation of the event stream, while the darker ones
show all keyframe poses generated with their associated intensity and depth map estimates.

139

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

t = a t = b t = c t = d t = e

t = f t = g t = h t = i t = j

t = a t = b t = c t = d t = e

t = f t = g t = h t = i t = j

Figure 6.13: The method described in this chapter can convert a stream of events into
HDR video frames at user-chosen time instances and resolutions by ray-casting the current
reconstruction. This is the same scene as in the first row of Figure 6.11.

140

6.6. Discussion and Summary

ra
p
id

 r
o
ta

ti
o
n

ra
p
id

 t
ra

n
sl

a
ti

o
n

Figure 6.14: The graph shows the estimated camera pose history, and the two groups of
insets above and below show an image-like event visualisation, a rendered video frame
showing the quality of our tracker, and a motion blurred standard camera video frame to
show the rapid motion (up to 5Hz of shake in this experiment).

141

6. Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera

well established as useful computer vision devices then an important piece of future work

will be to design and release suitable comparative benchmarks.

Our approach of interleaved filters and separated intensity reconstruction makes many

assumptions about independence that are certainly an approximation and thus constitute a

weakness of our approach. Therefore, while we believe that it is remarkable that our ap-

proach of three decoupled filters, each of which operates as if the results of the others are

correct, works at all, it is clear that we should try and consider those interactions as part of

future work. In particular the relatively slow convergence of inverse depth estimates tends

to cause poor tracking, leading to data association errors and a corruption of other parts

of the estimation process. We can also see poorer quality depth estimates near occlusion

boundaries and where not enough events have been generated. There are potential im-

provements in the inverse depth regularisation, and we will continue to work on improving

it further by adapting more sophisticated methods (e.g. gradient-aware regularisation) in

the near future.

Again, to the best of our knowledge, the method described in this chapter is the first

6-DoF tracking and 3D reconstruction method purely based on a stream of events with no

additional sensing, and it runs in real-time on a standard PC. We hope this opens up the

door to practical solutions to the current limitations of real-world SLAM applications.

142

Chapter7

Conclusions

Contents

7.1 Contributions . 143

7.2 Discussion and Future Research . 145

7.2.1 Limitations and Potential Improvements 145

7.2.2 Sensor Fusion . 146

7.2.3 Towards Fully Event-Based SLAM Systems 146

In this final chapter, we summarise the novel contributions presented in this thesis, and

further discuss their current limitations and potential improvements. Finally, we share some

ideas of future research to move towards more practical solutions for truly mass market

SLAM products which are efficient and robust enough under very rapid motion and extreme

lighting variation at always-on low power.

7.1 Contributions

In the previous chapters, we presented the first high performance real-time visual SLAM

algorithms based on a single event camera, a paradigm shift in visual sensing, with a strong

belief that such a next generation image sensor has great potential to solve the current lim-

itations of real-time visual SLAM when integrated with novel event-based computer vision

algorithms. Event sensors generate low bit-rate, information-rich data streams which are

free of the redundancy of video while providing high dynamic range and high time resol-

ution by reporting asynchronous intensity changes rather than full frames. Event sensors

have no shutter or global exposure settings, which leads to a very high dynamic range

143

7. Conclusions

(e.g. 130dB), and report events with almost continuous microsecond timestamps, allowing

detailed observation of even spinning fan blades.

After introducing the event camera and some of the prerequisites required to work with

it in Chapter 2 and Chapter 3 respectively, we showed for the first time that an event stream,

with no additional sensing, can be used to track accurate camera rotation while building

a persistent and high quality mosaic of a scene which is super-resolution accurate and has

high dynamic range in Chapter 4. The method involves parallel camera rotation tracking

and template reconstruction from estimated gradients, both operating on an event-by-event

basis and based on probabilistic filtering to maximise the update rate with low latency. In

Chapter 5, we then presented a real-time implementation whose overall structure and func-

tionalities are the same, but where a substantial speed up was achieved by adapting a com-

putationally efficient estimation method for tracking as well as a parallelisable log intensity

reconstruction running on a GPU. The experimental results also showed that this speed-up

increases the quality of estimation and reconstruction as it guarantees higher fidelity of the

independence assumption.

Lastly, in Chapter 6, to move towards 3D visual SLAM, we proposed a method which

can perform real-time 3D reconstruction from a single hand-held event camera with no

additional sensing, and works in unstructured scenes of which it has no prior knowledge. It

is based on three decoupled probabilistic filters, estimating 6-DoF camera motion, scene log

intensity gradient and scene inverse depth relative to a virtual keyframe. We build a real-

time graph of these keyframes to track and model over an extended local workspace. We

also upgrade the gradient estimate for each keyframe into an intensity image, allowing us to

recover a real-time video-like intensity sequence with spatial and temporal super-resolution

from the low bit-rate input event stream. To the best of our knowledge, this was the first

algorithm provably able to track a general 6D motion, along with reconstruction of arbitrary

structure including its intensity and the reconstruction of grayscale video, that exclusively

relies on event camera data.

All of the methods described in this thesis were able to harness the superior properties of

the event camera such as high speed measurement, low latency, high dynamic range, and

low data rate, and we hope our work opens up the door to practical solutions to the current

limitations of real-world SLAM applications.

144

7.2. Discussion and Future Research

7.2 Discussion and Future Research

7.2.1 Limitations and Potential Improvements

Our approach of interleaved probabilistic filters and separated intensity reconstruction

makes many assumptions about independence that are certainly an approximation and thus

constitute a weakness of our approach. Therefore, while we are truly excited that the meth-

ods work, it is clear that we should try and consider those interactions as part of future

work. In particular the relatively slow convergence of inverse depth estimates described in

Chapter 6 tends to cause poor tracking, leading to data association errors and a corruption

of other parts of the estimation process. We can also see poorer quality depth estimates

near occlusion boundaries and where not enough events have been generated, and there is

certainly a room for potential improvements in the inverse depth regularisation by adapting

more sophisticated methods such as gradient-aware regularisation. Additionally, although

the separation of the log intensity gradient and scene inverse depth estimation components

was made considering fewer number of events caused by parallax while almost all events

carry gradient information, the closely correlated nature of both visual quantities with re-

spect to event rates provides a strong motivation of a joint estimation which could enable

more consistent results.

All the implementations described within this thesis were able to run in real-time by

harnessing the parallel processing power of a GPU, especially for log intensity reconstruc-

tion, which make them difficult to be deployed on computationally limited platforms. The

clearest way to relieve the powerful hardware requirement is to directly track against es-

timated gradients from which we currently reconstruct log intensity values, so that we can

remove the reconstruction component completely or at least execute it at a lower frequency.

The high rate of event measurements relative to the dynamics of a hand-held camera also

strongly motivates changing our tracking component to use a stronger motion model such

as a constant velocity or constant acceleration which is more robust to significant hand-held

jitter when shaking the camera [66]. We also do not use an explicit bootstrapping method

as we have found that, starting from scratch, alternating estimation very often lead to con-

vergence, though there are sometimes currently gross failures and this is an important issue

for future research.

Lastly, all of our experimental results presented in this thesis are qualitative, no bench-

mark experiments have been conducted, and we acknowledge that our work would certainly

benefit from a wide range of evaluations. In this work, however, we have focused on demon-

145

7. Conclusions

strating the core novelty of our approaches in breaking through to get joint estimation of

hand-held camera motion, intensity and depth from pure event data with arbitrary motion

and unknown, unstructured scenes. To the best of our knowledge, there were no previ-

ously published similar results and there are no alternative systems with which to compare

our results. Certainly, if event cameras become well established as useful computer vis-

ion devices then an important piece of future work will be to design and release suitable

comparative benchmarks.

7.2.2 Sensor Fusion

Within this thesis, we only focused on single event camera SLAM solutions with no addi-

tional sensing, because we believe that first solving the hardest problem of not relying on

other supplementary sensors will be useful on its own and provides the insights to make

best use of additional measurements if they are available, as well as eliminating unneces-

sary extra complication including synchronisation and calibration problems to be solved.

But we also see that investigating sensor fusion (e.g. with an inertial measurement unit

or conventional image frames) will certainly result in a more accurate and robust system,

aiding bootstrapping and the resolution of scale ambiguity similar to standard visual in-

ertial methods [120, 80, 94, 16]. There are some early works on fusing the event camera

with other complementary sensors such as of Censi and Scaramuzza [26] with a CMOS

camera, Weikersdorfer et al. [170] with a RGB-D sensor, and Delbruck et al. [49] and Yuan

and Ramalingam [177] with an IMU. More recently, Zhu et al. [180] presented the first al-

gorithm to fuse a purely event-based tracking algorithm with an IMU, to provide accurate

metric tracking of a camera’s full 6-DoF pose. Rebecq et al. [140] also proposed an accurate

keyframe-based, tightly-coupled visual-inertial odometry algorithm based on nonlinear op-

timisation, and showed their system works well even in challenging conditions by utilising

the event camera’s outstanding properties.

7.2.3 Towards Fully Event-Based SLAM Systems

Despite the sparse and data-driven nature of event cameras, realising highly efficient SLAM

systems while still relying on conventional communication protocols and traditional von

Neumann computing architecture seems not feasible, and we expect special hardware to

become available in the near future. For instance, neuromorphic processors or graph pro-

cessors placed directly behind and connected in parallel to the pixels of event sensors, and

incoming events wake up and activate local computation and message passing, while the

majority of the processor remains in a sleep state to conserve power.

146

7.2. Discussion and Future Research

This concept resembles more closely biological vision systems where information is rep-

resented by means of data-driven pulsed messages, exchanged by nervous cells, and pro-

cessed by sparse neural network architectures. As briefly discussed in Section 2.1, under-

standing how biology functions in such an efficient way will undoubtedly provide profound

insights into new paradigms of sensing and processing. In the field of computational neuros-

cience, spike-based self motion estimation is well-studied. For instance, by investigating the

optomotor response of the beetle Clorophanus, Hassenstein and Reichardt [75] presented the

elementary motion detector (EMD) which detects the presence of motion in a specific direction

by computing the correlation between the signal of one photoreceptor and its neighbour-

ing photoreceptor’s time-delayed signal. In 1985, Adelson and Bergen [1] and Watson and

Ahumada [167] proposed similar models of how humans sense the velocity of moving im-

ages based on spatio-temporal frequency filtering. Simoncelli [151] formulated the motion

estimation problem in a probabilistic Bayesian framework based on the brightness constancy

constraint [76]. More recently, there are some early works on combining event cameras with

novel computing architectures such as that of Martel et al. [108] with CPA [9, 23, 98], Orch-

ard et al. [130] with SpiNNaker [63], and Samsung1 with TrueNorth [111]. The unsolved

challenges however are to map SLAM algorithms into message passing (belief propagation)

and to obtain globally consistent estimates of non-local parameters such as ego-motion, and

they remain as important subjects for future research.

1Samsung turns IBM’s brain-like chip into a digital eye: https://www.cnet.com/news/

samsung-turns-ibms-brain-like-chip-into-a-digital-eye (accessed September 2017)

147

https://www.cnet.com/news/samsung-turns-ibms-brain-like-chip-into-a-digital-eye
https://www.cnet.com/news/samsung-turns-ibms-brain-like-chip-into-a-digital-eye

7. Conclusions

148

AppendixA

Video Material

Event Camera vs Standard Camera

Detailed in Section 2.2. We recreated this an-

imation inspired by the associated animation

of [122]: youtu.be/LauQ6LWTkxM?t=35s.

https://youtu.be/kPCZESVfHoQ

Event Camera Calibration

Detailed in Section 3.6.

https://youtu.be/OK_m6OobntE

Simultaneous Mosaicing and Tracking with

an Event Camera

Hanme Kim, Ankur Handa, Ryad Benosman,

Sio-Hoı̈ Ieng and Andrew J. Davison. BMVC,

2014 [82]. Detailed in Chapter 4.

https://youtu.be/l6qxeM1DbXU

149

https://youtu.be/kPCZESVfHoQ
https://youtu.be/OK_m6OobntE
https://youtu.be/l6qxeM1DbXU

A. Video Material

ETAM 2D: Real-Time Event-Based Tracking

and Mapping

Detailed in Chapter 5.

https://youtu.be/z72lNV7idUs

Real-Time 3D Reconstruction and 6-DoF

Tracking with an Event Camera

Hanme Kim, Stefan Leutenegger and Andrew

J. Davison. ECCV, 2016 [83]. Detailed in

Chapter 6.

https://youtu.be/yHLyhdMSw7w

150

https://youtu.be/z72lNV7idUs
https://youtu.be/yHLyhdMSw7w

List of Figures

List of Figures

1.1 The First Full Joint EKF-Based Real-Time Visual SLAM System 12

1.2 MonoSLAM . 13

1.3 PTAM . 15

1.4 DTAM . 16

1.5 KinectFusion and ElasticFusion . 17

1.6 LSD-SLAM . 18

1.7 Applications . 20

1.8 Motion Blur and Low Dynamic Range . 21

2.1 Event Camera vs Standard Camera . 31

2.2 Dynamic Vision Sensor . 32

2.3 DVS: Abstracted Pixel Schematic and Principle of Operation 33

2.4 ATIS Output . 33

2.5 DAVIS Output . 34

2.6 RoboGoalie and Pencil Balancer . 39

2.7 Interacting Visual Maps . 40

2.8 Simplified Event-Based Tracking Methods . 42

2.9 Event-Based HDR Depth Camera . 44

2.10 MC3D: Motion Contrast 3D Laser Scanner . 44

2.11 Simplified Event-Based SLAM Methods . 46

3.1 Frames of Reference . 51

3.2 Projection . 53

3.3 The AER Protocol . 55

3.4 The DVS128 USB Event Packet . 57

3.5 Event Camera Calibration . 60

3.6 Event Camera Lens Distortion Compensation . 60

3.7 Synthetic Events . 61

3.8 Event Camera Simulator Outputs . 62

4.1 Method Overview . 67

4.2 Event Time Intervals . 68

4.3 Event Time Interval Distributions . 69

4.4 Basic Geometry . 70

151

List of Figures

4.5 Motion Noise . 72

4.6 Event Likelihood . 73

4.7 Pixel-Wise EKF-Based Gradient Estimation Overview 75

4.8 Gradient Estimation . 78

4.9 Intensity Reconstruction . 80

4.10 Reconstructed Spherical Mosaicing for Indoor and Outdoor Scenes 82

4.11 High Resolution Reconstruction . 83

4.12 High Dynamic Range Reconstruction . 84

5.1 Datasets . 90

5.2 Processing Time . 91

5.3 Primal-Dual Log Intensity Reconstruction Processing Time 100

5.4 Spherical Mosaicing — William Penney Laboratory 101

5.5 Spherical Mosaicing — Queens Lawn . 102

5.6 High Speed Tracking . 103

5.7 Office Dataset Comparison . 105

5.8 Lecture Room Dataset Comparison . 106

5.9 Outdoor Dataset Comparison . 107

6.1 Method Overview . 111

6.2 Virtual keyframe — a virtual projective reference frame 112

6.3 Camera Pose Estimation . 113

6.4 Corresponding 3D Point Search . 115

6.5 Log Intensity Gradient Estimation . 122

6.6 Typical Temporal Progression of Gradient Estimation 125

6.7 Typical Temporal Progression of Log Intensity Reconstruction 126

6.8 Inverse Depth Estimation . 127

6.9 Typical Temporal Progression of Inverse Depth Estimation and Regularisation . 133

6.10 Typical Temporal Progression of 3D Point Cloud 134

6.11 Single Keyframe Estimation Results . 137

6.12 Multiple Keyframes Results . 139

6.13 Video Rendering Result . 140

6.14 High Speed Tracking Result . 141

152

List of Tables

List of Tables

2.1 Event Cameras . 37

3.1 DVS128 USB Identifiers and Command . 57

3.2 DVS128 Biases . 58

3.3 DVS Intrinsic Parameters . 59

4.1 Parameters Used in the Experiments . 81

5.1 Typical Event Rates . 89

5.2 Parameters Used in the Experiments . 99

6.1 Average Processing Time . 135

6.2 Parameters Used in the Experiments . 136

153

List of Tables

154

Bibliography

Bibliography

[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of

motion. Journal of the Optical Society of America A, 2(2):284–299, 1985. 147

[2] A. Agrawal, R. Chellappa, and R. Raskar. An Algebraic Approach to Surface Recon-

struction from Gradient Fields. In Proceedings of the International Conference on Computer

Vision (ICCV), 2005. 78

[3] A. Agrawal, R. Raskar, and R. Chellappa. What is the Range of Surface Reconstruc-

tions from a Gradient Field. In Proceedings of the European Conference on Computer Vision

(ECCV), 2006. 78

[4] Jean-François Aujol. Some First-Order Algorithms for Total Variation Based Image

Restoration. Journal of Mathematical Imaging and Vision, 34(3):307–327, 2009. 96

[5] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó. The SLAM problem: a survey. In Proceed-

ings of the 11th International Conference of the Catalan Association for Artificial Intelligence,

2008. 19

[6] T. Bailey and H. Durrant-Whyte. Simultaneous Localisation and Mapping (SLAM):

Part II. IEEE Robotics and Automation Magazine, 13(3):108–117, 2006. 19

[7] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework: Part 1.

International Journal of Computer Vision (IJCV), 56(3):221–255, 2004. 47

[8] P. Bardow, A. J. Davison, and S. Leutenegger. Simultaneous Optical Flow and Intensity

Estimation from an Event Camera. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. 41

[9] D. R. W. Barr and P. Dudek. APRON: A Cellular Processor Array Simulation and

Hardware Design Tool. EURASIP Journal on Advances in Signal Processing, 2009. 40, 87,

147

[10] F. Barranco, C. Fermuller, Y. Aloimonos, and T. Delbruck. A Dataset for Visual Nav-

igation with Neuromorphic Methods. Frontiers in Neuroscience, 10, 2016. 47

[11] H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. In Proceed-

ings of the European Conference on Computer Vision (ECCV), 2006. 47

155

Bibliography

[12] A. N. Belbachir, S. Schraml, M. Mayerhofer, and M. Hofstätter. A Novel HDR Depth

Camera for Real-time 3D 360◦ Panoramic Vision. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), 2014. 43, 44

[13] R. Benosman, C. Clercq, X. Lagorce, S. Ieng, and C. Bartolozzi. Event-Based Visual

Flow. IEEE Transactions on Neural Networks and Learning Systems, 25:407–417, 2014. 40

[14] S. Betgé-Brezetz, P. Hébert, R. Chatila, and M. Devy. Uncertain Map Making in Nat-

ural Environments. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 1996. 11

[15] O. Bichler, D. Querlioz, S. J. Thorpe, J.-P. Bourgoin, and C. Gamrat. Extraction of tem-

porally correlated features from dynamic vision sensors with spike-timing-dependent

plasticity. Journal of Neural Networks, 32:339–348, 2012. 38

[16] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial odometry us-

ing a direct ekf-based approach. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS), 2015. 146

[17] K Boahen. Neuromorphic Chips. Scientific American, 2005. 28

[18] M. Bosse, P. Newman, J. J. Leonard, M. Soika, W. Feiten, and S. Teller. An Atlas

Framework for Scalable Mapping. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2003. 13

[19] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck. A 240×180 130 dB 3

µs Latency Global Shutter Spatiotemporal Vision Sensor. IEEE Journal of Solid-State

Circuits (JSSC), 49(10):2333–2341, 2014. 34, 35, 37, 86

[20] G. Brown. The Energy of Life. Free Press, New York, 1999. 28

[21] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. D. Reid, and

J. J. Leonard. Past, Present, and Future of Simultaneous Localization and Mapping:

Toward the Robust-Perception Age. IEEE Transactions on Robotics, 32:1309–1332, 2016.

19

[22] S. J. Carey, D. R.W. Barr, and P. Dudek. Low power high-performance smart camera

system based on SCAMP vision sensor. Journal of Systems Architecture, 59:889–899,

2013. 87

156

Bibliography

[23] S. J. Carey, A. Lopich, D. R. W. Barr, B. Wang, and P. Dudek. A 100,000 fps Vision

Sensor with Embedded 535GOPS/W 256×256 SIMD Processor Array. In Proceedings

of the VLSI Circuits Symposium, 2013. 40, 87, 147

[24] J. Carneiro, S. Ieng, C. Posch, and R. Benosman. Event-based 3D reconstruction from

neuromorphic retinas. Journal of Neural Networks, 45:27–38, 2013. 43

[25] J. A. Castellanos. Mobile Robot Localization and Map Building: A Multisensor Fusion

Approach. PhD thesis, Universidad de Zaragoza, Spain, 1998. 11

[26] A. Censi and D. Scaramuzza. Low-Latency Event-Based Visual Odometry. In Proceed-

ings of the IEEE International Conference on Robotics and Automation (ICRA), 2014. 42,

146

[27] A. Chambolle and T. Pock. A First-Order Primal-Dual Algorithm for Convex Problems

with Applications to Imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145,

2011. 96

[28] Y. M. Chi, U. Mallik, M. A. Clapp, E. Choi, G. Cauwenberghs, and R. Etienne-

Cummings. CMOS Camera With In-Pixel Temporal Change Detection and ADC. IEEE

Journal of Solid-State Circuits (JSSC), 42(10):2187–2196, 2007. 29

[29] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. “MFm”: 3-D Motion From 2-D Motion

Causally Integrated Over Time. In Proceedings of the European Conference on Computer

Vision (ECCV), 2000. 12

[30] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from Motion Causally Integrated

Over Time. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24(4):

523–535, 2002. 12

[31] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse Depth Parametrization for

Monocular SLAM. IEEE Transactions on Robotics (T-RO), 24(5):932–945, 2008. 127

[32] J. Civera, A. J. Davison, J. A. Magallón, and J. M. M. Montiel. Drift-Free Real-Time

Sequential Mosaicing. International Journal of Computer Vision (IJCV), 81(2):128–137,

2009. 66

[33] J. Civera, A. J. Davison, and J. M. M. Montiel. Structure from Motion Using the Extended

Kalman Filter. Springer Tracts in Advanced Robotics (STAR), 2012. 19

157

Bibliography

[34] J. L. B. Claraco. Contributions to Localization, Mapping and Navigation in Mobile Robotics.

PhD thesis, Universidad de Málaga, 2009. 74

[35] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardós. Mapping Large Loops

with a Single Hand-Held Camera. In Proceedings of Robotics: Science and Systems (RSS),

2007. 13

[36] R. T. Collins. A Space-Sweep Approach to True Multi-Image Matching. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1996. 45

[37] A. I. Comport, E. Malis, and P. Rives. Accurate Quadri-focal Tracking for Robust 3D

Visual Odometry. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2007. 15

[38] J. Conradt, M. Cook, R. Berner, P. Lichtsteiner, R.J. Douglas, and T. Delbruck. A pencil

balancing robot using a pair of AER dynamic vision sensors. In IEEE International

Symposium on Circuits and Systems (ISCAS), 2009. 38, 39

[39] M. Cook, L. Gugelmann, F. Jug, C. Krautz, and A. Steger. Interacting maps for fast

visual interpretation. In Proceedings of the International Joint Conference on Neural Net-

works (IJCNN), 2011. 39, 40

[40] A. J. Davison. Mobile Robot Navigation Using Active Vision. PhD thesis, University of

Oxford, 1998. 11, 12

[41] A. J. Davison. Real-Time Simultaneous Localisation and Mapping with a Single Cam-

era. In Proceedings of the International Conference on Computer Vision (ICCV), 2003. 12

[42] A. J. Davison, N. D. Molton, I. Reid, and O. Stasse. MonoSLAM: Real-Time Single

Camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

29(6):1052–1067, 2007. 12, 13

[43] T. Delbrck. Neuromorophic Vision Sensing and Processing. In ESSCIRC Conference

2016: 42nd European Solid-State Circuits Conference, Lausanne, Switzerland, September 12-

15, 2016, pages 7–14, 2016. 29

[44] T. Delbruck. Frame-free dynamic digital vision. In Proceedings of International Sym-

posium on Secure-Life Electronics, pages 21–26, 2008. 56

[45] T. Delbruck. Fun with Asynchronous Vision Sensors and Processing. In Computer

Vision - ECCV 2012. Workshops and Demonstrations - Florence, Italy, October 7-13, 2012,

Proceedings, Part I, pages 506–515, 2012. 29

158

Bibliography

[46] T. Delbruck and M. Lang. Robotic goalie with 3ms reaction time at 4% CPU load using

event-based dynamic vision sensor. Frontiers in Neuroscience, 7(223), 2013. 38, 39

[47] T. Delbruck and P. Lichtsteiner. Fast sensory motor control based on event-based

hybrid neuromorphic-procedural system. In IEEE International Symposium on Circuits

and Systems (ISCAS), 2007. 38

[48] T. Delbruck, B. Linares-Barranco, E. Culurciello, and C. Posch. Activity-Driven, Event-

Based Vision Sensors. In Proceedings of the International Symposium on Circuits and

Systems, pages 2426–2429, 2010. 29

[49] T. Delbruck, V. Villanueva, and L. Longinotti. Integration of Dynamic Vision Sensor

with Inertial Measurement Unit for Electronically Stabilized Event-Based Vision. In

IEEE International Symposium on Circuits and Systems (ISCAS), 2014. 146

[50] G. Dissanayake, S. Huang, Z. Wang, and R. Ranasinghe. A review of recent develop-

ments in simultaneous localization and mapping. In 2011 6th International Conference

on Industrial and Information Systems, pages 477–482, 2011. doi: 10.1109/ICIINFS.2011.

6038117. 19

[51] R. Douc, O. Cappé, and E. Moulines. Comparison of Resampling Schemes for Particle

Filtering. In Proceedings of the 4th International Symposium on Image and Signal Processing

and Analysis, pages 64–69, 2005. 74

[52] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods

for Bayesian filtering. Statistics and Computing, 10:197–208, 2000. 74

[53] H. Durrant-Whyte and T. Bailey. Simultaneous Localisation and Mapping (SLAM):

Part I The Essential Algorithms. IEEE Robotics and Automation Magazine, 13(2):99–110,

2006. 19

[54] E. Eade and T. Drummond. Scalable Monocular SLAM. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2006. 13

[55] E. Eade and T. Drummond. Monocular SLAM as a Graph of Coalesced Observations.

In Proceedings of the International Conference on Computer Vision (ICCV), 2007. 13

[56] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular

camera. In Proceedings of the International Conference on Computer Vision (ICCV), 2013.

17, 132

159

Bibliography

[57] Jakob Engel, Thomas Schoeps, and Daniel Cremers. LSD-SLAM: Large-scale direct

monocular SLAM. In Proceedings of the European Conference on Computer Vision (ECCV),

2014. 17, 18, 66, 110

[58] R. Fattal, D. Lischinski, and M. Werman. Gradient Domain High Dynamic Range

Compression. ACM Transactions on Graphics (TOG), 21(3):249–256, 2002. 78

[59] G. D. Finlayson, S. D. Hordley, and M. S. Drew. Removing Shadows from Images. In

Proceedings of the European Conference on Computer Vision (ECCV), 2002. 78

[60] A. W. Fitzgibbon and A. Zisserman. Automatic Camera Recovery for Closed or Open

Image Sequences. In Proceedings of the European Conference on Computer Vision (ECCV),

1998. 11

[61] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO: Fast Semi-Direct Monocular Visual

Odometry. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2014. 18

[62] F. Fraundorfer and D. Scaramuzza. Visual Odometry Part II: Matching, Robustness,

Optimization, and Applications. IEEE Robotics & Automation Magazine, 19:78–90, 2012.

19

[63] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana. The SpiNNaker Project. Proceed-

ings of the IEEE, 102:652–665, 2014. 39, 87, 147

[64] G. Gallego, J. E. A. Lund, E. Mueggler, H. Rebecq, T. Delbruck, and D. Scaramuzza.

Event-based, 6-DOF Camera Tracking for High-Speed Applications. arXiv preprint

arXiv:1607.03468, 2016. 42

[65] D. Gálvez-López and J. D. Tardós. Bags of Binary Words for Fast Place Recognition in

Image Sequences. IEEE Transactions on Robotics (T-RO), 28(5):1188–1197, 2012. 14

[66] P. Gemeiner, A. J. Davison, and M. Vincze. Improving Localization Robustness in

Monocular SLAM Using a High-Speed Camera. In Proceedings of Robotics: Science and

Systems (RSS), 2008. 121, 145

[67] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A Tree Parameterization for Effi-

ciently Computing Maximum Likelihood Maps using Gradient Descent. In Proceedings

of Robotics: Science and Systems (RSS), 2007. 13

160

Bibliography

[68] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A Tutorial on Graph-Based

SLAM. IEEE Intelligent Transportation Systems Magazine, 2:31–43, 2010. 19

[69] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison. Applications of the

Legendre-Fenchel transformation to computer vision problems. Technical Report

DTR11-7, Imperial College London, 2011. 96, 124

[70] A. Handa, R. A. Newcombe, A. Angeli, and A. J. Davison. Real-Time Camera Tracking:

When is High Frame-Rate Best? In Proceedings of the European Conference on Computer

Vision (ECCV), 2012. 21, 38, 61

[71] A. Handa, T. Whelan, J. B. McDonald, and A. J. Davison. A Benchmark for RGB-D

Visual Odometry, 3D Reconstruction and SLAM. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2014. URL http://www.doc.ic.ac.uk/

~ahanda/VaFRIC/iclnuim.html. 61

[72] J. W. Harris and H. Stocker. Handbook of Mathematics and Computational Science.

Springer-Verlag, 1998. 78

[73] L. A. Hart. How the Brain Works. Basic Books, New York, 1975. 28

[74] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, second edition, 2004. 19, 52, 116

[75] B. Hassenstein and W. Reichardt. Systemtheoretische Analyse der Zeit-, Reihenfolgen-

und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chloro-

phanus. Zeitschrift für Naturforschung, 11b:513–524, 1956. 147

[76] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203,

1981. 76, 121, 147

[77] S. Huang and G. Dissanayake. A critique of current developments in simultaneous

localization and mapping. International Journal of Advanced Robotic Systems, 13:1–13,

2016. 19

[78] Idaku Ishii, Yoshihiro Nakabo, and Masatoshi Ishikawa. Target tracking algorithm for

1 ms visual feedback system using massively parallel processing. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 1996. 21

[79] A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970. 11

161

http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
http://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html

Bibliography

[80] E. S. Jones and S. Soatto. Visiual-inertial navigation, mapping and localization: A

scalable real-time causal approach. International Journal of Robotics Research (IJRR), 30

(4):407–430, 2011. 146

[81] D. Kim and E. Culurciello. A Compact-pixel Tri-mode Vision Sensor. In IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), 2010. 29

[82] H. Kim, A. Handa, R. Benosman, S.-H. Ieng, and A. J. Davison. Simultaneous Mosa-

icing and Tracking with an Event Camera. In Proceedings of the British Machine Vision

Conference (BMVC), 2014. 23, 45, 48, 149

[83] H. Kim, S. Leutenegger, and A. J. Davison. Real-time 3D reconstruction, 6-DoF track-

ing and intensity reconstruction with an event camera. In Proceedings of the European

Conference on Computer Vision (ECCV), 2016. 24, 46, 48, 150

[84] G. Klein and D. W. Murray. Parallel Tracking and Mapping for Small AR Workspaces.

In Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR),

2007. 14, 15, 66, 110

[85] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza. Low-Latency Visual Odo-

metry using Event-Based Feature Tracks. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS), 2016. 45

[86] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A General

Framework for Graph Optimization. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2011. 13, 14

[87] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gillespie. Silicon Aud-

itory Processors as Computer Peripherals. IEEE Transactions on Neural Networks, 4(3):

523–528, 1993. 54, 56

[88] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C.-W. Shin, H. Ryu, and B. C. Kang.

Real-Time Gesture Interface Based on Event-Driven Processing from Stereo Silicon

Retinas. IEEE Transactions on Neural Networks and Learning Systems, 25(12):2250–2263,

2014. 39

[89] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco. A Signed

Spatial Contrast Event Spike Retina Chip. In IEEE International Symposium on Circuits

and Systems (ISCAS), 2010. 29

162

Bibliography

[90] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco. A 3.6µs

Latency Asynchronous Frame-Free Event-Driven Dynamic-Vision-Sensor. IEEE

Journal of Solid-State Circuits (JSSC), 46(6):1443–1455, 2011. 34, 37

[91] J. J. Leonard. Directed Sonar Sensing for Mobile Robot Navigation. PhD thesis, University

of Oxford, 1990. 11

[92] J. J. Leonard and Durrant H. Whyte. Simultaneous map building and localization for

an autonomous mobile robot. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS), 1991. 11

[93] S. Leutenegger, M. Chli, and R. Siegwart. BRISK: Binary robust invariance scalable

keypoints. In Proceedings of the International Conference on Computer Vision (ICCV), 2011.

47

[94] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale.

Keyframe-based visual-inertial odometry using nonlinear optimization. The Interna-

tional Journal of Robotics Research, 34(3):314–334, 2014. 146

[95] C. Li, C. Brandli, R. Berner, H. Liu, M. Yang, S.-C. Liu, and T. Delbruck. Design of

an RGBW Color VGA Rolling and Global Shutter Dynamic and Active-Pixel Vision

Sensor. In International Image Sensor Workshop (IISW), 2015. 35

[96] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128 120 dB 15 µs Latency Asyn-

chronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits (JSSC),

43(2):566–576, 2008. 29, 31, 33, 35, 37, 73

[97] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and L. Zhong. Draining our Glass: An

Energy and Heat Characterization of Google Glass. arXiv preprint arXiv:1404.1320,

2014. 22

[98] A. Lopich and P. Dudek. A General-purpose Vision Processor with 160×80 Pixel-

Parallel SIMD Processor Array. In Proceedings of the Custom Integrated Circuits Confer-

ence, 2013. 40, 87, 147

[99] S. J. Lovegrove and A. J. Davison. Real-Time Spherical Mosaicing using Whole Image

Alignment. In Proceedings of the European Conference on Computer Vision (ECCV), 2010.

66

[100] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision (IJCV), 60(2):91–110, 2004. 47

163

Bibliography

[101] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford.

Visual Place Recognition: A Survey. IEEE Transactions on Robotics (T-RO), 32(1):1–19,

2016. 19

[102] F. Lu and E. Milios. Globally Consistent Range Scan Alignment for Environment

Mapping. Autonomous Robots, 4(4):333–349, 1997. 13

[103] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an Ap-

plication to Stereo Vision. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 1981. 47

[104] M. Mahowald. VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and

Function. PhD thesis, California Institute of Technology, 1992. 28, 54, 56

[105] M. Mahowald and C. Mead. The Silicon Retina. Scientific American, 264(5):76–82, 1991.

28, 29

[106] E. Malis. Improving vision-based control using efficient second-order minimization

techniques. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2004. 47

[107] J. N. P. Martel and M. Cook. A Framework of Relational Networks to Build Sys-

tems with Sensors able to Perform the Joint Approximate Inference of Quantities. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Uncon-

ventional Computing for Bayesian Inference, 2015. 40

[108] J. N. P. Martel, M. Chau, P. Dudek, and M. Cook. Toward Joint Approximate Inference

of Visual Quantities on Cellular Processor Arrays. In IEEE International Symposium on

Circuits and Systems (ISCAS), 2015. 40, 147

[109] N. Matsuda, O. Cossairt, and M. Gupta. MC3D: Motion Contrast 3D Scanning. In

Proceedings of the IEEE International Conference on Computational Photography (ICCP),

2015. 43, 44

[110] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger. SemanticFusion: Dense

3D semantic mapping with convolutional neural networks. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2017. 19

[111] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan,

B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Ap-

puswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha.

164

Bibliography

A million spiking-neuron integrated circuit with a scalable communication network

and interface. Science, 345:668–673, August 2014. 39, 87, 147

[112] M. Milford, H. Kim, S. Leutenegger, and A. J. Davison. Towards visual SLAM with

event-based cameras. In The Problem of Mobile Sensors: Setting future goals and indicators

of progress for SLAM Workshop in conjunction with Robotics: Science and Systems (RSS),

2015. 24, 46

[113] M. Milford, H. Kim, M. Mangan, S. Leutenegger, T. Stone, B. Webb, and A. J. Dav-

ison. Place recognition with event-based cameras and a neural implementation of

SeqSLAM. In The Innovative Sensing for Robotics: Focus on Neuromorphic Sensors work-

shop at the IEEE International Conference on Robotics and Automation (ICRA), 2015. 24,

46

[114] M. J. Milford and G. Wyeth. Mapping a Suburb with a Single Camera using a Biolo-

gically Inspired SLAM System. IEEE Transactions on Robotics (T-RO), 24(5):1038–1053,

2008. 14

[115] Y. Miyatani, S. Barua, and A. Veeraraghavan. Direct Face Detection and Video Recon-

struction from Event Cameras. In IEEE Winter Conference on Applications of Computer

Vision (WACV), 2016. 41

[116] A. Moini. Vision Chips. Kluwer Academic, Boston, UK, 2000. 29

[117] Tomas Möller and Ben Trumbore. Fast , Minimum Storage Ray / Triangle Intersection.

Journal of Graphics Tools, 2(1):21–28, 1997. 114, 115, 118

[118] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A Factored Solution

to the Simultaneous Localization and Mapping Problem. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), 2002. 13

[119] J. M. M. Montiel, J. Civera, and A. J. Davison. Unified Inverse Depth Parametrization

for Monocular SLAM. In Proceedings of Robotics: Science and Systems (RSS), 2006. 127

[120] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint kalman

filter for vision-aided inertial navigation. In Robotics and Automation, 2007 IEEE Inter-

national Conference on, pages 3565–3572. IEEE, 2007. 146

[121] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot

location and environement modelling. In Proceedings of the International Symposium on

Robotics Research (ISRR), 1989. 11

165

Bibliography

[122] E. Mueggler, B. Huber, and D. Scaramuzza. Event-based , 6-DOF Pose Tracking for

High-Speed Maneuvers. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots

and Systems (IROS), 2014. 31, 41, 42, 149

[123] E. Mueggler, N. Baumli, F. Fontana, and D. Scaramuzza. Towards Evasive Maneuvers

with Quadrotors using Dynamic Vision Sensors. In Proceedings of the European Confer-

ence on Mobile Robotics (ECMR), 2015. 59

[124] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza. The Event-

Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odo-

metry, and SLAM. International Journal of Robotics Research (IJRR), 2016. 47

[125] R. Mur-Artal, J. M. M Montiel, and J. D. Tardós. ORB-SLAM: a Versatile and Accurate

Monocular SLAM System. IEEE Transactions on Robotics (T-RO), 31(5):1147–1163, 2015.

14, 66, 110

[126] R. A. Newcombe and A. J. Davison. Live Dense Reconstruction with a Single Moving

Camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2010. 15

[127] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli,

J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-Time Dense Surface

Mapping and Tracking. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR), 2011. 16, 17

[128] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM: Dense Tracking and Map-

ping in Real-Time. In Proceedings of the International Conference on Computer Vision

(ICCV), 2011. 15, 16, 66, 110, 114

[129] P. Newman. On the Structure and Solution of the Simultaneous Localization and Map

Building Problem. PhD thesis, University of Sydney, 1999. 11

[130] G. Orchard, X. Lagorce, C. Posch, S. B. Furber, R. Benosman, and F. Galluppi. Real-

time Event-driven Spiking Neural Network Object Recognition on the SpiNNaker Plat-

form. In IEEE International Symposium on Circuits and Systems (ISCAS), 2015. 147

[131] P. Pérez, M. Gangnet, and A. Blake. Poisson Image Editing. ACM Transactions on

Graphics (TOG), 22(3):313–318, 2003. 78

[132] J. A. Pérez-Carrasco, B. Zhao, C. Serrano, B. Acha, T. Serrano-Gotarredona, S. Chen,

and B. Linares-Barranco. Mapping from Frame-Driven to Frame-Free Event-Driven

166

Bibliography

Vision Systems by Low-Rate Rate Coding and Coincidence Processing. Application to

Feedforward ConvNets. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 35:2706 – 2719, 2013. 38

[133] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric reconstruction

in spite of varying and unknown internal camera parameters. In Proceedings of the

International Conference on Computer Vision (ICCV), 1998. 11

[134] C. Posch. Bio-inspired vision. Journal of Instrumentation, 7(1), 2012. 29

[135] C. Posch, T. Serrano-Gotarredona, B. Linares-Barranco, and T. Delbruck. Retino-

morphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output. Pro-

ceedings of the IEEE, 102(10):1470–1484, 2014. 29

[136] C. Posch, D. Matolin, and R. Wohlgenannt. A QVGA 143 dB Dynamic Range Frame-

Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-

Domain CDS. IEEE Journal of Solid-State Circuits (JSSC), 2011. 32, 33, 37

[137] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.

Numerical Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge Uni-

versity Press, 2 edition, October 1992. 79

[138] H. Rebecq, G. Gallego, and D. Scaramuzza. EMVS: Event-based Multi-View Stereo. In

Proceedings of the British Machine Vision Conference (BMVC), 2016. 43, 46

[139] H. Rebecq, T. Horstschaefer, G. Gallego, and D. Scaramuzza. EVO: A geometric ap-

proach to event-based 6-DOF parallel tracking and mapping in real time. IEEE Robotics

and Automation Letters, 2(2):593–600, 2016. 46

[140] H. Rebecq, T. Horstschaefer, and D. Scaramuzza. Real-time Visual-Inertial Odometry

for Event Cameras using Keyframe-based Nonlinear Optimization. In Proceedings of

the British Machine Vision Conference (BMVC), 2017. 43, 146

[141] C. Reinbacher, G. Graber, and T. Pock. Real-Time Intensity-Image Reconstruction for

Event Cameras using Manifold Regularisation. Proceedings of the British Machine Vision

Conference (BMVC), 2016. 41

[142] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: an efficient

alternative to SIFT or SURF. In Proceedings of the International Conference on Computer

Vision (ICCV), pages 2564–2571. IEEE, 2011. 14

167

Bibliography

[143] B. Ruckauer and T. Delbruck. Evaluation of Event-Based Algorithms for Optical Flow

with Ground-Truth from Inertial Measurement Sensor. Frontiers in Neuroscience, 10,

2016. 47

[144] S. Saeedi, M. Trentini, M. Seto, and H. Li. Multiple-Robot Simultaneous Localization

and Mapping: A Review. Journal of Field Robotics (JFR), 33(1):3–46, 2016. 19

[145] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison.

SLAM++: Simultaneous Localisation and Mapping at the Level of Objects. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

URL http://dx.doi.org/10.1109/CVPR.2013.178. 19

[146] R. F. Salas-Moreno, B. Glocker, P. H. J. Kelly, and A. J. Davison. Dense planar SLAM.

In Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR),

2014. 19

[147] D. Scaramuzza and F. Fraundorfer. Visual Odometry Part I: The First 30 Years and

Fundamentals. IEEE Robotics & Automation Magazine, 18:80–92, 2011. 19

[148] S. Schraml, A. N. Belbachir, and H. Bischof. Event-Driven Stereo Matching for Real-

Time 3D Panoramic Vision. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2015. 43, 44

[149] T. Serrano-Gotarredona and B. Linares-Barranco. A 128×128 1.5% Contrast Sensitivity

0.9% FPN 3 µs Latency 4mW Asynchronous Frame-Free Dynamic Vision Sensor Using

Transimpedance Preamplifiers. IEEE Journal of Solid-State Circuits (JSSC), 48(3):827–838,

2013. 35, 37

[150] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Sch-

rittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks

and tree search. Nature, 529:484–489, 2016. 28

[151] E. P. Simoncelli. Local Analysis of Visual Motion. The Visual Neurosciences, pages

1616–1623, 2003. 147

[152] M. A. Sivilotti. Wiring Considerations in Analog VLSI Systems, with Application to Field-

Programmable Networks. PhD thesis, California Institute of Technology, 1991. 54, 56

168

http://dx.doi.org/10.1109/CVPR.2013.178

Bibliography

[153] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in

robotics. In Uncertainty in Artificial Intelligence, pages 435–461. Elsevier, 1988. 11

[154] B. Son, Y. Suh, S. Kim, H. Jung, J-S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo,

Y. Roh, H. Lee, Y. Wang, I. Ovsiannikov, and H. Ryu. A 640×480 Dynamic Vision

Sensor with a 9µm Pixel and 300Meps Address-Event Representation. In International

Solid-State Circuits Conference ((ISSCC), 2017. 35, 36, 37

[155] J. Stillwell. Naive Lie Theory. Springer, 2008. 72, 74, 92, 113

[156] A. A. Stocker. An Improved 2D Optical Flow Sensor for Motion Segmentation. In

IEEE International Symposium on Circuits and Systems (ISCAS), 2002. 29

[157] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-Time Monocular SLAM: Why

Filter? In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2010. 14

[158] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale Drift-Aware Large Scale Mon-

ocular SLAM. In Proceedings of Robotics: Science and Systems (RSS), 2010. 14

[159] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double Window Optim-

isation for Constant Time Visual SLAM. In Proceedings of the International Conference on

Computer Vision (ICCV), 2011. 14

[160] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Visual SLAM: Why filter? Image and

Vision Computing (IVC), 30(2):65–77, 2012. 14

[161] J. Stuehmer, S. Gumhold, and D. Cremers. Real-Time Dense Geometry from a Hand-

held Camera. In Proceedings of the DAGM Symposium on Pattern Recognition, 2010. 15

[162] R. Szeliski. Image Alignment and Stitching: A Tutorial. Foundations and Trends in

Computer Graphics and Vision, 2(1):1–104, 2006. 66, 68

[163] R. Szeliski and H. Y. Shum. Creating full view panoramic image mosaics and envir-

onment maps. In Proceedings of SIGGRAPH, 1997. 68

[164] J. J. Tarrio and S. Pedre. Realtime edge-based visual odometry for a monocular camera.

In Proceedings of the International Conference on Computer Vision (ICCV), 2015. 18

[165] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Cambridge: MIT Press, 2005.

19

169

Bibliography

[166] J. Tumblin, A. Agrawal, and R. Raskar. Why I want a Gradient Camera. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. 29, 78

[167] A. B. Watson and A. J. Ahumada, Jr. Model of human visual-motion sensing. Journal

of the Optical Society of America A, 2(2):322–341, 1985. 147

[168] D. Weikersdorfer and J. Conradt. Event-based Particle Filtering for Robot Self-

Localization. In IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012.

41, 42, 45

[169] D. Weikersdorfer, R. Hoffmann, and J. Conradt. Simultaneous Localization and Map-

ping for event-based Vision Systems. In International Conference on Computer Vision

Systems (ICVS), 2013. 45, 46

[170] D. Weikersdorfer, D. B. Adrian, D. Cremers, and J. Conradt. Event-based 3D SLAM

with a depth-augmented dynamic vision sensor. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2014. 45, 46, 146

[171] T. Whelan, J. B. McDonald, M. Kaess, M. Fallon, H. Johannsson, and J. J. Leonard.

Kintinuous: Spatially Extended KinectFusion. In Workshop on RGB-D: Advanced Reas-

oning with Depth Cameras, in conjunction with Robotics: Science and Systems, 2012. 16

[172] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald. Real-

time large-scale dense RGB-D SLAM with volumetric fusion. International Journal of

Robotics Research (IJRR), 34(4-5):598–626, December 2014. 16

[173] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker, and A. J. Davison. Elast-

icFusion: Dense SLAM without a pose graph. In Proceedings of Robotics: Science and

Systems (RSS), 2015. 16, 17

[174] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and John B.

McDonald. Robust real-time visual odometry for dense rgb-d mapping. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA), 2013. 16

[175] M. Yang, S.-C. Liu, and T. Delbruck. A Dynamic Vision Sensor With 1% Temporal

Contrast Sensitivity and In-Pixel Asynchronous Delta Modulator for Event Envoding.

IEEE Journal of Solid-State Circuits (JSSC), 50(9):2149–2160, 2015. 35, 37

[176] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad. An Overview to Visual Odometry

and Visual SLAM: Applications to Mobile Robotics. Intelligent Industrial Systems, 1:

298–311, 2015. 19

170

Bibliography

[177] W. Yuan and S. Ramalingam. Fast Localization and Tracking using Event Sensors. In

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2016.

42, 146

[178] K. A. Zaghloul. A Silicon Implementation of a Novel Model for Retinal Processing. PhD

thesis, University of Pennsylvania, 2001. 29

[179] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 22:1330–1334, 2000. doi: 10.1109/34.

888718. 59

[180] A. Z. Zhu, N. Atanasov, and K. Daniilidis. Event-based Visual Inertial Odometry. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017. 42, 146

[181] M. Zhu. Fast numerical algorithms for total variation based image restoration. PhD thesis,

University of California at Los Angeles, 2008. 96

171

	Introduction
	Visual SLAM
	Limitations
	Contributions
	Publications
	Thesis Structure

	Event Cameras
	Neuromorphic Silicon Retina
	Event-Based Vision Sensors
	Related Work
	Discussion and Summary

	Preliminaries
	Notation
	Frames of Reference
	Rigid Body Transformations
	Projection
	Event Camera Interface
	Event Camera Calibration
	Event Camera Simulator
	Software
	Summary

	Simultaneous Mosaicing and 3-DoF Tracking with an Event Camera
	Introduction
	Preliminaries
	Event Camera Pure Rotation Tracking
	Spherical Mosaic Reconstruction
	Evaluation and Results
	Discussion and Summary

	Real-Time Mosaicing and 3-DoF Tracking with an Event Camera
	Introduction
	Real-Time Processing Requirements for Event Cameras
	Real-Time Mosaicing and 3-DoF Tracking with an Event Camera
	Evaluation and Results
	Discussion and Summary

	Real-Time 3D Reconstruction and 6-DoF Tracking with an Event Camera
	Introduction
	Event Camera 6-DoF Tracking
	Gradient Estimation and Log Intensity Reconstruction
	Inverse Depth Estimation and Regularisation
	Evaluation and Results
	Discussion and Summary

	Conclusions
	Contributions
	Discussion and Future Research

	Video Material
	List of Figures
	List of Tables
	Bibliography

