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Abstract

The problem of autonomous navigation of a mobile device thaheart of the more
general issue of spatial awareness and is now a well-styt@zem in the robotics
community. Following a plethora of approaches throughleeihistory of this research,
recently, implementations have been converging towasisrvibased methods. While
the primary reason for this success is the enormous amoimfoofnation content en-
crypted in images, this is also the main obstacle in achigféaster and better solutions.

The growing demand for high-performance systems able tomaffordable hard-
ware pushes algorithms to the limits, imposing the need fanereffective approxima-
tions within the estimation process. The biggest challdiggein achieving a balance
between two competing goals: the optimisation of time caxip} and the preserva-
tion of the desired precision levels. The key isagile manipulation of datawhich is
the main idea explored in this thesis.

Exploiting the power of probabilistic priors in sequentiedcking, we conduct a
theoretical investigation of themformation encoded in measurements and estimates,
which provides a deep understanding of the map structuresiged through the
camera lens. Employing Information Theoretic principlegtide the decisions made
throughout the estimation process we demonstrate how thtkodology can boost
both the efficiency and consistency of algorithms. Focusimghe most challenging
processes in a state of the art system, we apply our Infoomatheoretic framework
to local motion estimation and maintenance of large prdiséibi maps. Our investi-
gation gives rise to dynamic algorithms for quality maptianing and robust fea-
ture matching in the presence of significant ambiguity anthisée camera dynamics.
The latter, is further explored to achieve scalable peréoroe allowing dense feature
matching based on concrete probabilistic decisions.
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Introduction

Practical spatial awareness for autonomous robots arfitiaitsystems is gradually
becoming a reality and forms the backbone of autonomougyatiwn. One of the
most important aspects of this is Simultaneous Localisaéind Mapping (SLAM)
which addresses the following question:

How can a body navigate in a previously unknown environmdiiieveonstantly
building and updating a map of its workspace using on-bo&rmksrs only?

The capability of images to supply a wealth of data, togetyitr the compactness and
affordability of cameras, have established vision as thmidant choice of sensing in
today’s systems. Despite the long literature of approatdhtee problem of SLAM and
the plethora of implementations, robotic devices have ebtyite left the laboratory
to perform everyday tasks. The work in this thesis is aboutstigating how the
best of these methods work from a scientific perspective deroto understand how
we can deal with real world data in a manageable way. As a m&ameploring the
theoretical aspects of existing algorithms, we employrmigtion Theory to provide
an insight into the quality and efficiency of their perforrnanwith the prospect to
guiding research towards better, even optimal algorithms.

1



2 Introduction

1.1 The Progress and Vision of SLAM Research

Spatial awareness is a key requirement for autonomousicstantd a wealth of other
sensor-carrying systems. In particular, the ‘solutionStoAM can provide the ability
of self-controlled navigation attracting major researnteliest across the world. Real-
ising the inherent uncertainties in all sources of realldvdata, it is now well accepted
across the robotics, vision and artificial intelligence ooumnities that probabilistic in-
ference provides the best way to handle them, leading tortimpilistic formulations
of the navigation problem of SLAM.

Throughout the years, a diversity of implementations hasrged in the literature
triggered by the applicability of systems in both specalisectors and everyday life.
Whether the question is navigation of an indoor domestiot;adn all-terrain mining
vehicle or an underwater exploring device, SLAM forms theecproblem that has
to be solved. What differentiates implementations are teams employed to solve
this problem. The nature of the environment and the appicatequirements are
decisive factors in the choice of sensing modalities andgs® models to be used.
When highly accurate estimates are a prerequisite for ebeatager range-finders can
be used, whereas if affordability is an issue then cameeaa better option. However,
the growing need for generally compatible solutions hatddahe establishment of
cameras as the most popular sensor choice at present.

The unique ability of cameras to capture information-rictasshots of a scene
provides the potential of quality of performance in systehwwvever it was not until
the advances in hardware that processing of visual data éwmme feasible. Sub-
stituting laser range-finders with camera rigs, the rokot&search community has
started moving towards computer vision algorithms to sdiheeestimation problem.
In an impressive breakthrough, it has been shown that evag assingle hand-held,
monocular camera it is possible to estimate the trajecmltgviied in real-time. While
Structure From Motion (SFM) has been studied extensivelghiotogrammetry, this
was the first time that the basic idea of estimating the scemma individual images
has been performed online. Monocular SLAM today has seat grprovement with
state of the art systems being able to map small-scale em@nts, however there is
still a lot to be done before truly robust and dynamic perfance becomes reality.

The blend of robotics and vision algorithms through SLAM idyoat the begin-
ning, revealing new research avenues towards general amsh@atl systems. The
prospect of importing amazing techniques from computeiorisike dense match-
ing and scene reconstruction, can enrich the ‘perceptibmbloots and give rise to
fascinating applications for embedded platforms. Howether employment of such
techniques and more generally the management of visuabdéatzp of maintaining a
probabilistic map, is still a computationally intensiveska With online performance
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comprising a requirement in most modern systems, greaetigas are imposed from
the scientific perspective: while an accurate solution seageful, extensive process-
ing of all the available data, this is not possible within al#me framework, which
inevitably leads into a series of necessapproximations Such approximations range
from the assumptions made on the robot motion, the scenetwstey the underlying
probability distributions and the perception of the wortdaaset of small, measurable
entities called ‘features’.

In an attempt to cope with the rising demand for fast motiod bigger, denser
maps, modern SLAM systems often employ ad hoc approximsatiorthe full prob-
lem. These are usually tailored to specific tasks, lackirt generality and theoretical
investigation. In fact, the performance of algorithms defseheavily on both the ex-
tend and quality of sparsifications, determining the spemu)stness and precision of
the implementation. As a result, the challenge we face atghint in the history of
SLAM, is to balance the benefits and losses involved in suphoxmations. Follow-
ing this rationale, here we use Information Theory as a ahtixtension to Probability
Theory which provides the ability to quantify uncertaintydanformation during the
estimation process. While there has been little investiganhto the value of this ap-
proach in improving the performance of systems, it has a nwider role of play
in general Bayesian inference problems. Applying Infoiorafheory in this context,
we aim to explore our theoretical interest on understandovwg SLAM methods really
work which in turn can drive progress towards practical amihaced systems.

1.2 Aims and Goals of this Work

Across the span of existing implementations, the univezsatept of the underlying
‘solution’ of SLAM is to establish correspondences of feattmeasurements made
throughout the motion of the sensor-carrying body and usmtto sequentially es-
timate the current pose. Normally, we identify featuresali®st aspects of the raw
sensor data and use them to serve as landmarks in the cnstgranding map which
is used to infer the relative trajectory of the moving bodieTifficulty lies in uncer-
tainty inherent in the body’s interactions with the real ldahrough noisy sensors and
actuators. Every state estimate and every sensor measursmecertain. Therefore,
managing computational complexity, preserving consgstan the map and coping
with online data rates are issues that the SLAM community dessn dealing with
since the emergence of this field.
Generally, SLAM systems have now reached considerablerityatbut the ex-

clusive use of visual data in this context is still in its infy having great potential
for improvement. In this work, we tackle challenges facesdisual SLAM and more
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(a) Ml graph (b) Robust matching (c) Underlying structure
Applying Information Theory to quantify uncertainty anddanmation in SLAM. In this work
we apply Information Theoretic analysis on the probabdisstimates we maintain in SLAM
and employ it to understand how algorithms work, guidingaesh towards more efficient and
robust algorithms. The figures above give a preview of whétfallow, where (a) shows a
complete graph of Mutual Information links between feaslinemeasurement space, (b) shows
an example of search for matching consensus, while (c) tiethie underlying tree structure in
this distribution of features used to infer overall map stnwe.

specifically, we choose to conduct our investigations baseadmonocular SLAM sys-
tem as the most general and perhaps most difficult case umderategory. However,
nothing about the ideas and algorithms developed in thsighgecludes their appli-
cation on more complex sensing arrangements. A freely ngoWiand-waved camera,
while providing great versatility, makes the problem fagsl€onstrained as the inten-
tions of the carrier are hard to model. While powerful modacimplementations now
exist in the literature, the need for bigger and better gmigtdrives research towards
more effective but at the same time, quality approximations

The richness of priors encoded in an image which is to be ditecefor the suc-
cess of vision-based solutions to date, is twofold: whilewmh data is available to
infer the trajectory of the robot reliably with respect te ttmapped environment, the
processing load involved in converting this data into ‘e@ton’ is often overwhelm-
ing imposing a bottleneck on online performance. The deseitauild more accurate
maps under general tracking conditions pushes algoritomartds more conservative,
careful processing. On the other hand, the strong priorgasla in high frame rate
tracking can result to more accurate predictions in SLAMyéfiore this drives inves-
tigation towards more efficient and faster algorithms ablauh on such limited time
budget. On top of this, the need for larger and denser maps<toradd to the chal-
lenge of intelligent manipulation of the prior data avaliéaim visual SLAM. With this
in mind, this thesis aims to provide a comprehensive insigiat the value of priors
within the context of SLAM which will form the basis of the dsions we are making
when approximating the full problem to meet the demandiggirements in a modern
system.

Processing an extra piece of data is bound to refine our klgelef the uncertain
state of the camera and the scene. To assess whether orsiimidieeéd worth making
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the effort to process it, one has to askw much morenformation is this data is

able provide. The answer is far from trivial as it is both telto some frame of

reference and dynamic with respect to a variety of influéfdietors. As a means of
quantifying the amount of this information, we employ Infation Theory to assign
a value on the additional knowledge that each new piece afidgiredicted to give.

Through our investigation on the informational value of didate measurements in
the context of SLAM, we aim to provide a general understapdifithe relationships

between the members of the map and the camera state. Thatelgyoal is to exploit

the knowledge about these correlations at runtime to ddogie efficient and robust
approximations of the SLAM processes.

In order to exploit the probabilistic predictions we so ¢allg maintain in SLAM,
here we use Information Theoretic techniques to make aessiot about the optimal
motion strategy as done before, but to guideereto look for information anchow
to use it. Figure 1.2 gives small taster examples of the woekgnted in the rest of
this thesis. Tackling the main components comprising a modesual SLAM system,
we apply an Information Theoretic methodology to both featmatching and map-
partitioning. Good local tracking is a vital asset in a hjggrformance system since
fusing erroneous estimates or missing matches for featheshave actually been
present can result to either inconsistencies in the magpckitrg failure. While current
solutions perform successfully in the presence of idebtdiand distinctive features,
here the focus is to explore the use of priors for efficientamay in the presence of
outliers and generally more challenging tracking condgio

All visual SLAM systems depend greatly on the ability to rateglly measure vi-
sual features from a wide range of viewpoints, thereforekirey more features per
frame is bound to provide more precise estimates about thergamotion. However,
more data translates into more processing which accenttlfaaeed for effective ap-
proximations to the feature matching process. Studyingtitueture of feature correla-
tions through an Information Theoretic perspective, wdangatheir power in driving
scalable matching, but also submapping which is now a heawilployed method for
approximating the structure of large maps.

1.3 Organisation

The following chapter (Chapter 2) provides a general bamkgd on the method-
ologies used to attack the problem of SLAM. Discussing saimivorks following

the recognition that consistent probabilistic mapping wdandamental problem in
robotics, attention is quickly drawn to state of the art eyst. The contributions of
this thesis are put into context following an analysis ofdhellenges faced in modern
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visual SLAM systems.

Chapter 3 introduces the reader to the framework of Bayasi@amocular SLAM
employed in the system used to demonstrate the ideas amtiveffeess of algorithms
presented in this thesis. This system has formed the basissearch and experi-
mentation described in this work as a means of identifying atacking the current
challenges faced in state of the art systems.

The core theoretical concepts used throughout the resedhtsis are described
in Chapter 4. This chapter discusses the motivation betiaduse of Information
Theoretic principles in SLAM, developing the basic ideathi field within the visual
SLAM framework. Evaluating the knowledge encoded in thebptilistic predictions
we are able to make in sequential tracking, we give tasteampbas of the power of
Information Theoretic measures fully exploited in subssdwchapters.

Chapter 5 discusses the evolution of a fully Bayesian algorfor frame-to-frame
matching, which we call Active Matching. Driving decisiobased on Shannon Infor-
mation Theory while searching for global consensus, therdlgn achieves efficient
and robust matching throughout a frame maintaining the iplelhypotheses natu-
rally arising in real tracking scenarios. The capacity 6$ tmethodology is pushed
to the limits exploring its strengths and weaknesses thraumgextensive performance
analysis.

Chapter 6 tackles the issue of constantly expanding SLAMswdgich imposes
computation and consistency limitations on SLAM systemsirag for large maps ei-
ther due to denser representations of the environment ottéoded areas of tracking.
Manipulating the correlations progressively built withlire tracking filter, we illustrate
how Information Theoretic principles can be employed talgweffective partitioning
into submaps achieving quality approximations to the flWAS! map.

Building on the experience of previous chapters in mantmgainformation
within SLAM, Chapter 7 tackles the problem of increasing pdewity in dense feature
matching. The biggest challenge in such scenarios is t@goptocessing within the
real-time allowance. Dense matching strategies are threredilored to optimise for
processing time ignoring part of the available informatioressence trading accuracy
with speed. Aiming to bring the robustness of fully probitiit techniques towards
the same performance standards as randomised stratéjgeshdpter describes how
Active Matching can be used as a prototype on top of which@prations are made
based on an Information Theoretic analysis. The CLAM atbani emerging from
this research achieves online, dense matching throughies sgr probabilistic and
information-guided decisions.

Finally, Chapter 8 closes this thesis summarising the gehients of the work
presented and giving future work directions.
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1.4 Publications

The biggest part of the work presented in this thesis has peenreviewed and pre-
sented in conferences. The journal and conference publisaemerged from this
research are listed below.

Chli and Davison [2008a] Active Matching. InProceedings of thaG" European
Conference on Computer Vision (ECCWarseille, France, October 2008.

Chli and Davison [2008b] Efficient Data Association in Images using Active Match-
ing. In theworkshop ‘Inside Data Association’ of Robotics: Sciencel &ystems
(RSS) Zurich, Switzerland, June 2008.

Chli and Davison [2009a] Automatically and Efficiently Inferring the Hierarchical
Structure of Visual Maps. IfProceedings of the IEEE International Conference on
Robotics and Automation (ICRMAobe, Japan, May 2009.

Chli and Davison [2009b] Active Matching for Visual Tracking. Iispecial Issue on
‘Inside Data Association’ of Robotics and Autonomous $yst20009.
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Related Work

This chapter intends to provide the reader with a panorantheo$tate of the art ap-
proaches to the problem of SLAM with particular focus on thallenging case of
tracking with a single, freely moving camera. The contiifa$ of this thesis are
put into context via a discussion of the individual compdeeromprising a modern,
high-performance system as they have been developed foosvseries of historic
advances throughout the years. Giving a background of k&iiblished and more
recent methodologies we discuss their relative strengtdsaseaknesses, identifying
the questions still open in this area.

2.1 Simultaneous Localisation And Mapping

The process of building a map of the surroundings of a mobletwhile estimating
its relative pose solely on the basis of feeds coming fronbeard sensors, is what
we refer to as the Simultaneous Localisation And MappingA®). problem. While
initial attempts to solve this problem date back more thayers, this area has been
highly active since. Recent advances focusing on efficpiémentations are able
to exhibit real-time performance while demonstrating ihass and maintaining the

9
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Figure 2.1: Formulation of the SLAM problem as a graph. The features éwtiorldy are
observed using the on-board sensor(s) via measuremerdade from the corresponding pose
x while the robot is moving. In some implementations the odwyriaputu which controls the
robot movement is also available and taken into account. dnaoular SLAM the on-board
sensor is a single, hand-held camera which implies ther@dslometry information. A motion
model is used instead to predict camera motion and the cditsemg of landmarks comprise
of image patches, as observed from each camera viewpoiffer&it approaches to SLAM
attempt to optimise this graph by satisfying as many comgrdetween nodes as possible,
often making approximations to meet real-time limits.

consistency of the map constructed.

Despite the long history of research in this field, we have oatently gained a
new, general understanding of the nature of the problem. afslgcal representation
of SLAM as a Bayesian network is depicted in Figure 2.1, capguthe conditional
dependencies formed between features of the world as pedcom different poses
of the robot. It is now understood that via a full, global oisation of this graph
the best solution to SLAM can be achieved such that the demsig of the depen-
dency constraints is maximised between the robot trajgend the map built. This
batch procedure of brute-force optimisation is often refgito asbundle adjustment
in the visual SLAM literature, adopted from the field of phgt@mmetry where this
technique has a long history.

The work by Thrun and Montemerlo [2006] is an example of adsath graphi-
cal formulation approach to the problem of SLAM, hence thagna their algorithm
GraphSLAM. Inspired by the work on globally consistent afigent of laser range
scans of Lu and Milios [1997], they translate the data depecids into a graph of
nonlinear quadratic constraints. Following a nonlineastesquares optimisation, they
can resolve these constraints into a maximum likelihood afd@ndmarks and corre-
sponding robot poses.

Performing bundle adjustment over the whole graph of posdsadl the features
ever measured is a computation-hungry process which gronstantly as more data
is collected. As a result a full, batch optimisation can dréysustained online for small
data sets so such methods are usually restricted to offliplementations. However,
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(a) MRF: eliminating observations

Approximations for online performance:
?9 ®» B @ ® ® e e

L
o ///// \

)

(b) Filtering approach (c) Key-frames approach

Figure 2.2: The best solution to SLAM is a full graph optimisation (bumdidjustment)
of the Markov Random Field formulation depicted in (a) whifises from elimination of
the observation nodes. The constantly expanding set ofarks and poses incorporated in
the graph and the costly processing of full optimisatiordezronline performance infeasible,
highlighting the need for sparsification techniques. The most successful approaches for
real-time performance are: the traditional filtering agmtoin (b) where the state of the map
is summarised in a state vector and associated covariaticeegpect to the last pose, and
the ‘key-frames’ methodology which chooses to retain thestmmepresentative poses along
with their dependency links subject to optimisation, wh@aoring all other measurements
and poses.

if the goal is real-time localisation and mapping, often guieement in modern sys-
tems, sparsifications and approximations to the full graypm@lation of SLAM are
necessary. The goal is then to estimate the current monygydae of the robot, while
a map of the environment is built incrementally. Severallengentations approach
real-time performance from different perspectives, batrttain two axes spanning the
spectrum of SLAM algorithms are thidtering andkey-framesapproaches.

2.1.1 Filtering vs. Keyframes for Real-Time Performance

Figure 2.2 shows a graphical representation of the two narsffication methodolo-
gies used in online systems with respect to the Markov Ranéiehd (MRF) graph
of the SLAM problem. This is equivalent to the moralised d¢rayb the full SLAM
problem illustrated in Figure 2.1 with implicit represetiida of the feature measure-
ments. It has been realised that for online, sequentiatipogig and mapping it is
necessary to make approximations to cut down processirig. cbise quality of these
approximations determines the closeness of the approable tgiobal solution.

While bundle adjustment seeks to fulfil the majority of thexstbaints imposed
between robot poses and features in the world as depicteigume2.2(a), a filtering
approach reduces this graph by summarising past expetier@cstate representation
of a vector with an associated probability distributiontwiéspect to the last estimated
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robot pose. Marginalising out past camera poses in the MBkcEscorrelationlinks
between the features in the 3D map which will be the key stilgjeanalysis through-
out the rest of this thesis, leading to a broad understarafitige scene and hence the
design of efficient and robust algorithms.

From a totally different point of view, a key-frames approaoes retain past robot
poses and their constraints with the world, however it Bxdtehooses to sparsify the
problem by ‘forgetting’ intermediate poses together whkit landmark dependency
links. The idea here is to preserve the most representativespalong the trajectory
and subject these to repeated global optimisation, simedtasly refining the scene
geometry encoded in the landmark position estimates wigheret to the motion of the
robot. As this is basically a sparsified bundle adjustmeptageh it benefits from the
closeness it provides to the full graph optimisation, hasvesoth quality and speed
depend heavily on the approximation made. Maintaining favagles in the optimi-
sation or restricting optimisation within a sliding windavf poses are both popular
approaches used to improve the time complexity of this ntktho

2.1.2 Components of a Modern High-Performance System

Irrespective of the sparsification methodology chosen erapplication targeted, it
has now become apparent that a SLAM system aiming for onlierabust perfor-
mance needs to be equipped with a standard set of comporgeptesented visually
in Figure 2.3. Namely, these are:

e Good local estimate of metric motion. Robust and accurate frame to frame
motion estimation is essential in any modern system andistsnsf obtaining
persistent correspondences and resolving mismatches.isThiwhole research
area on its own since the types of features suitable foritmgokary greatly de-
pending on the sensors on board and the type of environmeaiterngxpecting to
track. Data association between features in the map andredegqbservations to
resolve the matching consensus is key to robust performsince mismatches
are inevitable when tracking with real data. Apart from pdavg robustness,
this component should also be optimised for efficiency sincemprises a pro-
cess performed on a per frame basis, therefore fast opeiataéorequirement.

e Mapping and loop closure detection.The data gathered is constantly expand-
ing as the robot explores new areas. As a result, it is impbta have an
efficient way of representing this data in the map. Systewiditey large-scale
tracking in particular need to sparsify into efficient dat@nesentations which
allow both fast and sufficiently accurate propagation obinfation. In long
exploration periods however, the drift due to the compasitf errors in the
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(b) Mapping and loop-closure detection (c) Global optimisation

Figure 2.3: Amodern, high-performance SLAM system ought to have (a)sblmcal motion
estimation of metric motion, (b) a way of mapping the scenthwespect to the estimated
trajectory and a loop-closure detection module, and fin@)yonce such a loop-closure is
detected, then full, global optimisation of the robot tcagey and the map constructed should
follow.

Images used for this figure have been taken from Google Strestand Bing

robot and map estimates is another limiting factor. So isisally the case that
upon traversal of long loops geometry is no longer reliableugh to recognise
places the robot has visited before. As a result, modernadsthlso use purely
appearance-based methods to detect i closures

¢ Map management and optimisation.Upon the detection of loop closures, new
dependencies are introduced into the map of poses and laksiniEherefore,
optimisation is necessary then to reach a globally comgigt@p from both local
metric and global topological constraints.

The SLAM literature has seen a variety of implementationsgudifferent sensor
types selected to suit the targeted application. Loc#édisand mapping underwater
for example, requires special attention to the trackingd@@ms and types of features
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expected to track; Williams and Mahon [2004] use acoustit\asual sensors while
Ribas et al. [2008] use solely sonar sensing arguing thatiskeof vision is reliable

in clear waters and very close to the sea bed restrictingeHfenmance of robot nav-

igation. Sensor fusion has been a popular choice for conmigixonments with the

aim of exploiting the benefits of different sensing modasiti Combining GPS feeds
with inertial sensing Kim et al. [2003] perform airborne igation using Unmanned
Air Vehicles (UAVS), whereas later on Kim and Sukkarieh [ZDhstead incorporate

data coming from a single monochrome camera and an ineriakarement unit. The
precision of acceleration and rotation rate estimates @by inertial sensing to-
gether with the high update rates it provides make it anaive solution for such

specialised environments. However the drift accumulatetié estimated inertial po-
sition is inevitable (drift rate scales cubicly with timecaeding to Kim and Sukkarieh

[2007]) which imposes the need for supplementary inforomatike visual data. In-

evitably though, when fusing data from different sensoenef they are of the same
type, adds the hassle of data registration which if not rethdarefully can lead to fatal
inconsistencies in the acquired map.

Laser range-finders have also received major researcleshtieom early on due
to their ability to provide accurate depth estimates anthfdense point clouds resem-
bling the scene structure. Weingarten and Siegwart [2088]laser data to achieve
scene reconstruction while Bosse and Roberts [2007] parfaser-only SLAM to
tackle the lack of robustness of systems in large unstredtenvironments. While
laser sensing can provide high precision and dense condspoes, the inherent de-
scriptiveness of data is very poor as is the case with allstyfeange sensing. As a
result, it has been realised that using appearance infanmiatscenarios with limited
priors can provide the extra input that the system needsstive tracking, leading to
the use of image-based loop-closure technigues even irbased tracking systems
(e.g. [Newman et al., 2006])).

Despite the variety of sensing modalities and their contlina used in SLAM
implementations appearing in the literature, for a numlbgears now there has been
a significant trend towards vision-based approaches. Qfedhe choice of sensors
is a question of the type of task at hand, however the needefoerglly applicable
solutions drives research towards widely compatible imglistations. Cameras can
promise compactness, affordability and descriptivenesisiwjointly satisfy more re-
guirements than any other type of sensor. In fact, many efdle art systems now use
cameras as their primary sensor. Perceiving the world giv@ucamera lens can be
less accurate than laser range sensing, however the richhieformation encoded in
visual data has been proved enough to recover reliable a&stnof camera motion and
scene structure. On the other hand, the load of priors etaxhjip an image imposes
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the challenge of efficient processing to achieve onlinegoarénce.

2.2 State Of The Art Vision-Based SLAM

At this point in the history of SLAM one can say that implensigns have reached
considerable maturity. However, the use of visual data eptimary source of infor-
mation in a SLAM system has not had the time yet to convergest@iglly efficient
and robust solutions, leaving much room for experimemasiod improvement. The
wide compatibility of vision-based implementations hagmgd up new application
areas sparking growing research interest across the cstaoid computer vision com-
munities. As mentioned earlier, the high bandwidth of infation provided in visual
data requires careful manipulation therefore importinghodologies from computer
vision and photogrammetry has been essential for sucdéessftems. This section
aims to give a brief review of modern, high-performancejovishased systems cur-
rently considered as state of the art in this area. The skelet the discussion is
formed around the key components comprising such a systel@taited in the previ-
ous section.

As a good example of a modern visual SLAM system, the work ofdfige
and Agrawal [2008] dubbed ‘FrameSLAM’ is used here as a Hasidescribing the
wider literature. In FrameSLAM the authors perform visuaAM using a stereo rig
mounted on a wheeled robot. Their results demonstrate sapretracking perfor-
mance over long trajectories 10Km) under very challenging conditions like travers-
ing rough terrain in urban environments. The FrameSLAMeaysand the work of
Mei et al. [2009] which are discussed below, comprise thetposerful robot-based
SLAM systems using stereo vision at present.

2.2.1 Map Representation

Konolige and Agrawal [2008] form a ‘skeleton’ map represgion which comprises
of a graph of nonlinear constraints between selected, mpftamesinstead of the
individual 3D positions of world features (hence the namehef algorithm). They
essentially use a sparsified variant of the classic poséngrpfimisation approach to
solving SLAM. A pose graph consists of nodes representibgtrposes or frames in
this example, interconnected with edges describing afaostion relationship which
is defined in terms of the desired node configuration. Thevagéition process there-
fore involves computation of the nodes’ position such thatgoal of this cost-function
is achieved; that is the maximum likelihood (ML) map.

In this map representation they only keep relative poserimftion between the
frames. Depending on the trajectory of the robot, they ati@ptrepresentation ac-
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cordingly by explicitly selecting the frames to participdah the graph optimisation.
With this sparsification formulation, they enforce the ueanstant amount of space
for a particular area so loopy browsing of the same area dutasanse an inflated map.
However, as with every approximation the quality of perfanoe depends heavily on
how close this sparsification is to the full problem.

2.2.2 Local Motion Estimation

Moving on rough terrain means that the feature tracks in @sage highly jerky, as
is the case with any scenario of high camera dynamics. Inrdodbe able to track
this motion, Konolige and Agrawal extract hundreds of feaduper pose so that there
are statistically enough inliers to be able to resolve cosige later. The local motion
estimation is acquired incrementally using the onlineaisulometry system for stereo
images as presented in [Konolige et al., 2007].

Visual Odometrys the term used to refer to the process of estimating theiposi
and orientation of a robot by analysing images taken fronseouative poses. This
either means constructing a pixelwise optical flow field otahiang image projections
of features from one image to the next. Feature matching isre popular approach
in the robotics community, while optical flow works have béeavily explored in the
vision literature. However, the latter has also been agphierobotics. The seminal
work of Lucas and Kanade [1981] who assumed constant flowdal Ipixel neigh-
bourhoods, has been applied by Campbell et al. [2004] foravisdometry estimation
for robot exploration on different types of terrain. Nowli$ the work of Comport
et al. [2007] who use all grey-scale information availalleaistereo-pair to achieve
very low drift in trajectory estimation over hundreds of erst In the meantime, the
sparser nature of correspondence-based visual odometriethdo more successful
performance in terms of achieving a better balance betwigenitamic accuracy and
efficiency, allowing real-time operation on general harbyalatforms.

Scaramuzza and Siegwart [2008] describe a system whicbrpesfvisual odom-
etry on images from an omni-directional camera mounted @nafoa car. Their
real-time ego-motion estimation system uses a fusion df bptical flow and feature
matching approaches in an attempt to combine their strengthe authors use SIFT
features [Lowe, 2004], well-known for their capacity in degtivess and robustness,
to establish image correspondences. They then estimatethegraphy from one im-
age to the next, imposing the assumption of planar motiohe@tamera. Examining
the column shift between two consecutive unwarped frameg sked the rotational
estimate between poses into the optimisation procedudedal motion estimation.

Konolige et al. [2007] use CenSurE (Centre Surround Extjdesures [Agrawal
et al., 2008] which tend to pick out regions of either darketsxsurrounded by lighter
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ones or vice versa. The information captured in the desergrid the matching robust-
ness they exhibit seems comparable to that of SIFT, whiledhgputation process ex-
ploits the cost-effective properties of integral imaged Hiaar wavelets [Lienhart and
Maydt, 2002] which makes them a more attractive choice feringeal-time appli-
cations. In FrameSLAM, correspondences are obtained keette left and the right
stereo images at a certain pose which are then matched todeatbtained in the left
image of the previous frame. A consensus estimate is forraid) three-point pose
RANSAC [Fischler and Bolles, 1981]. Since the arrangememe fronsists of cali-
brated stereo cameras, three points are enough to pin dewel#iive poses between
frames [Hartley and Zisserman, 2004]. However, single canmaplementations re-
guire a minimum of five points for visual odometry as impleneehby Nistér et al.
[2004]. Acquiring different pose estimates, the RANSAC biyesis generated get
scored based on the reprojection error of the rest of therest Finally, a nonlinear
least squares optimisation is performed to polish theivelgiose estimates. While
this procedure is used to resolve data association for tno#ibn estimation, it is also
applied to wide-baseline matching in FrameSLAM.

The recent work of Mei et al. [2009] tackles explicitly theplem of precise local
mapping for stereo using the relative graph representafiGibley et al. [2009], which
together the two works form perhaps the most significant aitgp of FrameSLAM.
Rectifying and normalising intensities of both images ag¢wa frame, they then extract
SIFT descriptors centred on FAST corners [Rosten and Drumdir2005] detected at
different pyramid levels. Aiming to avoid the common fadumode of large inter-
frame rotation they use the method of Mei et al. [2008] tonesate the 3D rotation
of ego-motion so that temporal correspondences can be édsiitified. Projecting
fixed-size search windows for expected landmarks on botlg@sithey then establish
correspondences which are cleaned from outliers using R¥INBchniques.

2.2.3 Loop-Closures: Detection and Enforcement

In FrameSLAM, the method the authors use for place recagmis fairly simple and
relies on a good initial pose estimate; the search for alpledsiop-closure is restricted
within the vicinity of the hypothesised pose. Over largep®dhis means that this
method becomes linear in the size of the area searched (akdleton grows linearly
with the area explored).

The literature has seen more sophisticated methods fordlospire detection able
to exhibit robust and relatively fast performance even ffier ‘kidnapped’ robot prob-
lem which is essentially the case of a complete loss of mogdrientation estimate of
the robot with respect to its environment. Inspired by thg bhwords approach in
Video Google [Sivic and Zisserman, 2003], Cummins and New[2807, 2008] and
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more recently Cummins and Newman [2009] presented an ordicegnition detec-
tion over large data sets demonstrating impressively Idsefpositive rates. Building
on conclusions from the earlier work of Newman et al. [2006]appearance-based
detection of loop closures, rather than examining sintylast observations Cummins
and Newman assessed the probability that these come frosauthe place. Overcom-
ing the need for offline training to obtain a visual words idicary, Angeli et al. [2008]
proposed a method for online recovery of candidate placethreatwith an associated
probability of the occurrence of a loop-closure.

Upon detection of a loop closure in [Konolige and AgrawalD&[) a nonlinear
optimisation takes place so that the two ends of the loop mespagating corrections
throughout the whole graph. The optimal solution is the grajnich minimises the
reprojection error of the positions of landmarks in the iemgbtained at all different
poses. The nonlinear nature of constraints in the graph snakevergence less trivial
and more time consuming since the cost-function surfacéagtnlocal troughs and
peaks. This graph optimisation is usually performed usiagdard techniques like the
Levenberg-Marguardt method or gradient descent and catgugradient.

Olson et al. [2006] also follow a pose graph representatimhuse stochastic gra-
dient descent to optimise this, aiming to find the equilibrigtate iteratively such
that any antagonistic constraints are in balance. Theihooksolves the optimisation
problem incrementally, limiting the fluctuations of nodéda @ learning rate which
gradually pushes the graph towards the optimal solutiom Shistem of Konolige and
Agrawal [2008] also provides an incremental solution ugingconditioned conjugate
gradient. In general, conjugate gradient methods are krtowserform better than
gradient descent alternatives, since they accumulatenigfiion on the optimisation
direction from one iteration to the next, facilitating fastonvergence to the optimum.

While Konolige and Agrawal [2008] adopt a generally relatiepresentation of
constraints between poses, the poses themselves and tlienobi®n are defined with
respect to a single Euclidean frame. In general, repres@msadefined in a single co-
ordinate frame can potentially suffer a great computatibottleneck particularly in
the case of large loop closures since during optimisatieretttire loop has to be vis-
ited in order to correct global errors. Instead, Sibley ef28109] propose an adaptive,
fully relative representation which they argue is key fonstant time bundle adjust-
ment. Their method not only solves for an optimal trajectesgimate from a pose
graph but they attempt to solve the full SLAM problem takirg@unt for the land-
marks structure in the optimisation. Expressing the whaéplg in a relative manner
means that loop-closure can be enforced using a small, $otelet of the graph. Re-
sembling what they call a ‘continuous submapping’ apprahely perform a breadth-
first search from the last pose to nominate nodes to entercéimeaegion’ subject to



2.3 Monocular SLAM With An Unconstrained, Perspective Ceame 19

adjustment later. Such nodes are selected according teshthid on their reprojection
error. In theory, their method guarantees arbitrarily éaggaph optimisation in con-
stant time. In practice, they demonstrate achievement afl amfaximum likelihood
solution using stereo-image data in constant time, for muodest trajectory lengths
(around 1 km).

2.3 Monocular SLAM With An Unconstrained, Perspective
Camera

While an omni-directional camera or a stereo arrangemexvigies more information
than a single perspective camera, the low cost, compactedfidasitained nature of
the latter makes it an appealing choice for a much wider rarfiggplications. The
complete freedom that a monocular SLAM system allows is attedcts both research
and industrial interest. Overcoming the need for precitibregion of a rig of cameras
and careful positioning of an omni-directional camera w/allowing unconstrained
dynamics means that it is no longer necessary to have a coblatiform to support
any arrangement restrictions.

Assuming nothing but a freely moving camera in an unknowrirenment comes
with obvious advantages while introducing several hurtibesvercome in a SLAM
system. This section intends to provide the reader with siglih into state of the art
monocular SLAM systems, tracing recent advances througg. ti

2.3.1 From SFM to SLAM

The estimation of camera motion from a set of images is a proldtudied in depth
in the vision literature, well before the appearance of SLA¥ucture from Motion
(SFM) is a well-studied problem in the fields of photogranmye@nd computer vision
aiming for fully automated 3D scene reconstruction from alfoollection of images,
leading to the development of projective geometry and baptlmisation techniques.
SLAM on the other hand, is a problem faced comparatively mgan the mobile
robotics community, essentially addressing the hardtiesd-mapping and navigation
problem. The main difference and the real challenge is th&LAM we are inter-
ested in the ‘'sequential’, interactive estimation of stuee and motion as mentioned
in [Davison and Kita, 2000] rather than post-processinghefdata gathered to come
to a globally consistent solution. Bridging the gap betwentwo fields, monocu-
lar SLAM comes to bring SFM techniques to the same basis dfcgtions allowing
similar, online performance.

According to Hartley and Zisserman [2004] who provide anefieat analysis
of SFM techniques, the reconstruction problem from an insagpience is typically



20 Related Work

Figure 2.4: Structure from motion (SFM) is a problem studied in photogrzetry and
computer vision. Given a collection of unordered images afcane, the goal is to re-
construct the 3D geometry of both the scene and the trajedtdiowed by the camera.
Standard procedure is to extract interest points from tpetiimages, establish correspon-
dences and perform bundle adjustment optimisation to exocoptimal shape and movement.

Images for this figure have been taken from Google Street,\Reworamio and Google 3D Warehouse

tackled in three stages: (a) establishment of feature gporelences throughout the
sequence, (b) computation of an initial reconstructiommese and finally (c) bundle
adjustment using the result of (b) as a seed. In order to 2@ scene structure from
2D geometry, researchers have made several simplifyingrggfons constraining the
motion of the camera and the scene structure; a key assungtifionade by modern
systems is that of scene rigidity.

In the seminal work of Tomasi and Kanade [1992] feature satk extracted and
batch processed in parallel. The reconstruction probleformaulated into a single
measurement matrix which is factorised using singularevalecomposition separat-
ing the effects of the camera motion from the scene structlités Tomasi-Kanade
factorisation is based on a framework only valid for ortlagaric projection cameras
and relies on the assumption that all features are visitdeeny single frame through-
out the sequence. However restrictive, this approach hers the basis of many SFM
systems since. Overcoming partly the motion restrictiohsrthographic projection
cameras, Poelman and Kanade [1993] extended this metlyydmldhe paraperspec-
tive case which is a closer approximation to perspectiveetam Szeliski and Kang
[1993] generalised to simultaneous recovery of motion drape from image sets
acquired using a perspective projection camera. Followimpnlinear least squares
formulation inspired by the work on two-dimensional SFM afyTor et al. [1991], they
recover 3D structure using Levenberg-Marquadt optinosatlhe work of Fitzgibbon
and Zisserman [1998] is now considered a typical approa&tid building local es-
timates from 2-view or 3-view geometry which are then used si®rting point in the
optimisation stage of bundle adjustment.

While most of the aforementioned systems require that therrial calibration
parameters of the camera are known, Faugeras [1992] paxheato-calibration tech-
nigues using a SFM framework, recovering both external (gogition, rotation) and
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internal (e.g. focal length, principal point, skew) campasiameters. However, deter-
mining the absolute scale of the scene or movement withalitiadal external infor-
mation is impossible; unless there is an absolute distarezsane input into the sys-
tem, only relative scale is recovered. Since then, reseesdtave tackled this problem
assuming partial knowledge about the calibration parameteollefeys et al. [1998]
presented a self-calibration method applicable to castsamariety of such assump-
tions, allowing flexibility and versatility in metric recstruction scenarios. Azarbaye-
jani and Pentland [1995] were the first to use the ExtendechKalFilter to estimate
sequentially the focal length. Very recently, Civera ef20009a] presented a SLAM-
based approach for online auto-calibration using a Sum ofs§ans filter [Alspach
and Sorenson, 1972] to cover the multiple hypotheses grahie to the large nonlin-
earities in the optimisation of parameters.

The need for online solutions to the SFM problem has arisecesiesearchers
realised their use in robot navigation and the flexibilitisthrovides in several appli-
cations like 3D modelling. As the robot is moving from one@tsthe next it needs to
recover any scene or position estimates during this shadgef time to feed back to
the controller (this could be the human administrator indhse of guided navigation
or a module in the system itself, responsible for autononmavsgation). In order to
allow constant-time updates of the robot and scene staeeafery frame irrespective
of the length of the trajectory traversed it has been redlibat a constant-size state
representation is crucial, leading to the use of filteririptéques to represent the robot
state at every instant.

The early work of Harris [1992] used a separate Kalman Hitteevery landmark
obtained in the image sequence maintaining track of theip@&tions and associated
uncertainties in the estimates. Broida et al. [1990] usedBktended Kalman Filter
(EKF) to estimate the structure and motion of a rigid objehtolv is a simple exten-
sion to Kalman Filtering providing the ability to cope witlmlinear state estimation,
as the latter linearises about the current mean and coeatiaBroida et al. [1990]
used the EKF in an iterative way such that recursive estimas performed on every
update to reach convergence. Avoiding the introductiomitifalisation errors upon
the incorporation of new features in the system, Chiuso.42@02] used a separate
filter to initialise each feature which under successfuditiiag over some probationary
period gets fused into the main EKF. As this section will dsslater on, the EKF still
comprises a key ingredient of some modern SLAM approachses] as a sequential
approximation to bundle adjustment to build a persistertbabilistic representation
of the state parameters.

Besides applications in auto-calibration and robot naiega SFM techniques
have expanded towards image mosaicing. The work of Szedis#ti Shum [1997]
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Figure 2.5: A state of the art SFM system: PhotosyhtljMicrosoft®, 2008]. Here are two
snapshots taken while browsing the constructed mosaic giaH8ophia in Istanbul, Turkey.
Aligned images are projected together with a point cloudit@ ghe impression of the 3D
structure even for parts of the building that have not begtucad from the current viewpoint.
The colour of the points is sampled from relevant views ofithege database.

is a representative example where full image panoramasoastracted by aligning
and stitching images together to form a large composite énatpanually detecting
loop-closures. Capel and Zisserman [1998] have employeld S¥C to reject outlier
correspondences and achieved super-resolution mos#imsifg bundle adjustment
optimisation, while Brown and Lowe [2003] have used SIFTWilep 2004] features
to tackle the problem of robust correspondences in the dase&le-baseline images.
The most recent work of Civera et al. [2009b] promises drée, real-time mosaic
building from a live camera.

Current state of the art SFM systems aim to generate a decsesteuction of a
scene or an object approaching the problem from a varieterspectives. Vogiatzis
et al. [2007] for example, tackle dense recovery of an olsj&d geometry by la-
belling regions as “object” or “empty” followed by a graphts optimisation. The
method of Habbecke and Kobbelt [2007] produces impresdivetject models ap-
proximating the surfaces with sets of small discoidal tidsch are independently
fitted and progressively expanded to imitate the true siractin a far more costly set-
up, Pollefeys et al. [2008] achieve real-time 3D reconsibacof urban scenes, fus-
ing GPS measurements with inertial and visual sensing psecton advanced hard-
ware. Probably the most representative modern SFM systéme isublicly available
Photosynti™ [Microsoft®, 2008] software application. Based on the earlier pubtishe
work of Snavely et al. [2006] dubbed “Photo Tourism”, it & users to upload im-
ages and generate their own “photo-synths”, forming pdouds from images rather
than dense models. Figure 2.5 shows snapshots from a ‘pintihio®f Hagia Sophia
in Istanbul demonstrating the image mosaic correspondirifye current viewpoint.
The visible parts of the building which do not correspondridraage in the database
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taken from the particular viewpoint are projected as thtieeensional point clouds
replicating the structure of the walls.

While structure from motion and vision-based SLAM for mehibbots are gen-
erally two views of a similar problem, at this point in thethiy of both fields, works
have substantial overlap in terms of the goals they targetlzsia is mostly evident in
monocular SLAM systems. Using the trivial and low cost seifip single camera in
SLAM can bring the best of technologies from both fields thgetupon the achieve-
ment of persistent, reliable and dense maps as a frame oémete for localisation.
The rest of this section is dedicated to review the most ath@single camera SLAM
systems at present, using the work in Eade [2008] as a badisafssion.

2.3.2 State Of The Art in Monocular SLAM

Real-time solutions to SLAM using a single camera in the atsef any odometry
information have only recently appeared in the literatuEdiminating the need for
careful positioning, data fusion and the induced noise e¢hprocesses in a more
complex sensing arrangement, monocular systems can prguiat flexibility which
is otherwise far more restricted. Their usability and duiditg have been the driv-
ing force of research into this domain, leading to succésgiplications in wearable
computing [Davison et al., 2003; Castle et al., 2007], hwm@amputer interfaces with
augmented reality for various applications like gaminggidland Murray, 2007] or
interactive model building [Bunnun and Mayol, 2008].

The most successful, high-performance implementatiomsasfocular SLAM are
the three recent works of Eade [2008], Davison et al. [200id] ldlein and Murray
[2007]. This review provides a discussion of these systeraaking them down in
terms of their fundamental components as defined earlienbsection 2.1.2. Since
the work of Eade [2008] embodies the complete set of thesaegits, it is hereby
used as a frame of reference and discussion.

State Representation and Maintenance

Davison [2003] was the first to present a real-time monocsgistem named
MonoSLAM, designed to track the position of an uncontralleand-held camera cap-
turing frames at rates of 30Hz and processing pose and lakdrstimates on a typical
laptop. A refined version of this system appears in Davisai.§2007] which com-
prises the platform used to demonstrate the algorithmslalese in this thesis. The
authors stack all camera parameters and landmark estinmagestate vector main-
tained with an associated covariance, together comprisiagrobabilistic 3D map.
This EKF-based approach propagates updates on every fradrechieves successful
drift-free tracking for small, room-sized environments.
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The idea of a stochastic map dates back to the seminal workmithSet al.
[1988b,a] where they proposed a probabilistic frameworkld@scribe uncertainty in
geometric relationships and parametrisations. Reprieggtttese in a probability dis-
tribution with a state mean and covariance which can be mghlementally led to
the conception of the stochastic map. Moutarlier and Co§t®89] were the first to
implement the idea of a stochastic map, using the EKF foresgtipl maintenance of
their state consisting of the vehicle and landmark parameteeying a motion model
and an observation model, respectively. The EKF, which le@s lthe most popular
choice of SLAM systems to date, linearises these modelgsepting all distributions
by Gaussians.

In an attempt to increase the number of landmarks maintdimétae map, Eade
and Drummond [2006b] employ a particle filtering approacBité&\M inspired by the
FastSLAM method of Montemerlo et al. [2003]. Representhmggtate estimate by a
particle cloud, each particle represents a camera pose apdypothesis. Following
the application of a linear dynamic model with process ndise camera pose distri-
bution is modified to predict the new pose at the beginningaochdrame and yields a
Gaussian distribution for each particle. Incorporatimgdiaark observations the pos-
terior distribution is computed and new sample poses akerdrin essence, at the end
of every frame the distribution is represented by pose sasnpith associated indepen-
dent Gaussian feature estimates. Their method is able ibieghccessful real-time
operation tracking 20-30 landmarks per frame which is caatgla MonoSLAM’s ca-
pability but as demonstrated in [Eade, 2008] with synthedquences, this method
is potentially capable of maintaining denser maps of thewaod a thousand features
online.

It was soon realised that approximating the nonlinear eatfithe estimation pro-
cess in SLAM by linear models can cause inconsistenciestim BKF [Bailey et al.,
2006a] and FastSLAM-based [Bailey et al., 2006b] appraacl@n this ground and
driven by the strengths and weaknesses of the aforemedtiwoneks on monocular
SLAM, Eade and Drummond [2007] introduced a graph-basetsydubbed Graph-
SLAM (not to be confused with the GraphSLAM method of Thruml &tiontemerlo
[2006] mentioned in section 2.1) in which landmark estiraetee ‘coalesced’ into
graph-nodes maintaining the transformation links betwbese nodes as determined
by any shared entries. Figure 2.6 can provide a more intuitivderstanding of the
different state representations used in current stateeofithsystems. Observations
obtained in a particular frame do not generate a full updatehfe whole graph, in-
stead only thectivenode is updated, selected so that the observation modehiik/ne
linear, thus boosting consistency in the map. This framkwermits the absence of
a global coordinate frame which is crucial to the cheap,llapdate of the graph. In
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(a) Coalesced-observations graph

Image (a) is based on an illustration from [Eade and Drumm2@d7]

landmarks

last camera
position

(b) Stochastic map (c) Map of keyframes

Both (b) and (c) are taken from Klein and Murray [2007] onljhanced and labelled for clarity.

Figure 2.6: The state representations in the three most successfulaalam@SLAM sys-
tems. The diagram in (a) depicts the graph-based statesegiegion of Eade and Drummond
[2007] which groups observations into nodes, each havimgal kcoordinate frame. In (b) is
a stochastic map as used in the full EKF maintained in theerysif Davison et al. [2007]
summarising all information with respect to the last canygwae. Tracking the same scene
using the keyframe approach of Klein and Murray [2007] iadte¢he map obtained is depicted
in (c).

essence, with their representation the authors manageoito Bravison’s large filter
which contains all the features and is destined to grow betymtine processing when
mapping larger environments.

While all the above works employ incremental mapping fromitarfng perspec-
tive, Klein and Murray [2007] present a very powerful monacuwsystem using a
keyframes approach in which the processes of tracking apgimgare run in separate
but parallel threads. Forgetting intermediate keyfranaslhave a negligible effect in
accuracy but a large impact on the computational efficiefibis is especially the case
when the camera is stationary where consecutive framesioomdundant informa-
tion but on the same basis, accuracy can be compromisedreatiglerations. On the
other hand, a decisive point in making the keyframe mettamoko powerful is that
it allows a lot more features in the system (associated liptalkeyframes) provid-
ing evidence for potentially achieving better precision.fdct, this approach reveals
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some of the important pitfalls in filtering methods whichwedy choose to incorpo-
rate data from processing every single frame irrespectiveeoamount information
this is bound to provide; it would be much more intuitive arficeent to be able to
judge if a frame is worth the effort of processing or not. Kl@ind Murray [2007]
on the other hand do not take any particular care of whichdsatn drop or insert in
the state representation either. Using heuristics onitrgajuality, temporal distance
between keyframes and metric distance with known keypdiireg manage the graph.
Although conditions indeed avoid insertion of identicaykames when the camera
is at rest, they can easily permit the insertion of many sinkeyframes (hence con-
taining a lot of redundancy) when the camera is moving sloWtywever, running the
bundle adjustment on a background thread is the key to rémgaivithin the real-time
bounds. While this representation is also bound to explbderae point restricting the
size of trackable scenes, it provides fast and accuratkitigaéor small desktop-like
environments.

Local SLAM

As a new image arrives at the camera, the filtering SLAM methak a camera mo-
tion model to predict the motion undergone during the ‘Gliimterval therefore pro-
ducing probabilistic estimates of the new positions of kndandmarks in the new
image. Davison [2003] exploits these predictions to nardmmn searches for fea-
tures in regions constrained by the Bncertainty bounds as projected in image space.
This ‘active’, top-down Bayesian approach to feature matglstill proves more ef-
ficient than exhaustive bottom-up search over the whole énvaaml is therefore used
in many works since, including those of Eade and Drummon@¢Bpand Eade and
Drummond [2007].

The quality of frame-to-frame feature matching determithesaccuracy of a sys-
tem. Provided that the camera motion model produces c@nestimates closely re-
flecting reality, then the problem boils down to retrievin@tahes from the image
and resolving any ambiguity incurred. The latter is refén@ as the problem of data
association between predictions and observations of lanidinBoth Eade and Drum-
mond [2007] and Davison et al. [2007] describe trackablestaimage regions with
image patches saved at initial detection of landmarks. Vfeature measurement is
acquired, the state estimates are used to predict not omlgxpected position of the
patch, but also the appearance of the texture from the dwimpoint. In the latest
MonoSLAM system, the authors employ the work of Molton ef2004] to further es-
timate a surface normal of the patch at detection assumaadiyoplanar surfaces. This
allows for full projective warping with perspective distion and shearing to simulate
rotation-invariant patches which are searched for usirrgnabised cross-correlation.
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It is important to note that the saved patch is never refineaissio avoid drift in the
appearance of a landmark.

Aiming for highly distinctive and reliable features, difést detectors and descrip-
tors have been used in the context of matching. Point femfineea popular choice in a
variety of implementations mainly due to their simplicifavison et al. [2007] use the
Shi-Tomasi criterion [Shi and Tomasi, 1994] while Eade amdrimond [2006b] and
Eade and Drummond [2007] use the FAST detector [Rosten anthibond, 2005]
as a means of identifying well-textured regions in the imagjiening to improve the
reliability of feature matching, Chekhlov et al. [2006] gw the more invariant SIFT
Lowe [2004] descriptor instead of using a template patcleémh feature. Essentially,
they compute a descriptor of each landmark for differentescapon detection, al-
lowing matching at different resolutions. Eade and Drumehf2008] use SIFT-like
descriptors with a sparser structure for speed, but they s an optimised scale
space extrema detector so that each interest point has ge ssale. During match-
ing, the image pyramid has to be computed so that a featuratished at its closest
scale.

Point features, however simple and well-studied, induagaesproblems during
tracking. A monocular camera can only measure the bearingage features. To
infer the 3D position of a corner point, the camera must olesiéfrom different view-
points since this is the only way that depth can be estimaisd result, distant fea-
tures which exhibit very small parallax in consecutive femntake longer to initialise
properly while their depth estimates are not well represifity the Gaussian distri-
butions in the EKF. Montiel et al. [2006] suggested a methiochaintaining inverse-
depth estimates when initialising features which on thereoy are better modelled
by Gaussians. Most modern probabilistic systems now usg@#rametrisation as it is
widely accepted that it is enforcing consistency in mapesies.

Aiming to build maps with higher-level geometrical infortivan, Eade and Drum-
mond [2006a] have proposed tracking edgelets, defined todadly linear small por-
tions of a strong, one-dimensional intensity change (heedge) in the image. Relying
only on points is indeed problematic when it comes to motilum s depending on
its severity the majority of the points, if not all, get wipedt as illustrated clearly in
Figure 2.7. On the contrary, as demonstrated by Klein and&UJ2008] any edgelets
parallel to the direction of blur remain intact, potengighiroviding all the information
necessary to keep the tracker going. Using points as weltigslets is doubtlessly
enforcing robustness for rapid camera translations, buipalotational motion is still
a challenge as almost everything distant from the centretafion can be wiped out.
While less descriptive than regions around points, edgee bame more desirable
properties like robustness to lighting and viewpoint vaci resulting to their appli-
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(b) The camera view of the scene on the left and the constructed map on the right

Figure 2.7: Tracking edgelets as well as points provides some nice piiepencluding
robustness to translational motion blur as demonstratéd)imvhich is a snapshot from the
work of Klein and Murray [2008]. In (b) is an illustration fno Eade and Drummond [2009]
(employing the machinery of Eade and Drummond [2006a]) efatiditional geometrical in-
formation that edgelets can provide in the map where soméeotfrtie structure is clearly
visible in the 3D map.

cation in various SLAM implementations. The early work ofifdect al. [1997] for
example used vertical edges fused with odometry informatiolocalise a mobile
robot while more recently Smith et al. [2006] demonstratdidexbased tracker built
on top of the system of Davison [2003] to achieve real-tiraeking using either lines
alone or incorporating information from point features aslw

Irrespective of the type of features chosen to track, dasacition remains a
challenge. Itis true that the more descriptive a featurthesgasier it becomes to dis-
cover which observation it corresponds to. However, missatthes or false positives
are inevitable when dealing with real images. Both the wofade and Drummond
[2006b] and Davison et al. [2007] did not explicitly addréss problem, relying heav-
ily on the constrained active search region and the richné$ise template patches
to provide robust associations, naively accepting pasrioffeatures with the high-
est scoring template match (satisfying a correlation tiole§. Eade and Drummond
[2006b] however, employed Nearest Neighbour (NN) to esthtdorrespondences of
edgelets followed by RANSAC [Fischler and Bolles, 1981]dject outliers. Incorrect
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pairings of predictions and observations cause jittemriststencies in the map and
subsequently tracking failure. While the simplicity of Nd&sed matching has been
appreciated in many early SLAM implementations [Leonardlet1992; Guivant and
Nebot, 2001] it was soon realised that correct data assaciatith multiple hypoth-
esis handling is essential for robust algorithms. RANSA®yisfar the most cited
technique for outlier rejection and variants like preenmidr adaptive RANSAC by
Nistér [2003] and Hartley and Zisserman [2004] respebtiveave also been used in
an attempt to reduce the otherwise large number of hypathteséed. The first fully
probabilistic method to discover matching consensus iddive Compatibility Branch
and Bound (JCBB) test proposed by Neira and Tardos [20Qtfently considered
one of the most reliable choices for data association. wWollg a tree-search, it looks
for associations that maximise the probability of the hjppstsed, jointly compatible
prediction error. Variants of this method have also beepgsed like the randomised
JCBB [Paz et al., 2007Db] to tackle the exploding computaticomplexity with bigger
data sets by cutting down on the number of tested hypotheses.

Deviating from traditional filtering approaches, Klein addirray [2007] employ
different techniques for local SLAM estimates. Separatiiggking from mapping,
the authors essentially decouple the probabilistic esésaf mapping in tracking
and vice versa. As a result, tracking can no longer be guiddle sense used in the
aforementioned techniques but on the other hand, givetitbahap needs no longer to
get updated at the end of every frame, it allows more timenfiaige processing during
local tracking. This method is therefore capable of tragkimusands of features per
frame providing visual odometry for local estimates. Sifeatures are detected at
different scales, tracking is done in a two-stage coardexomanner: searching for
50 features at the highest pyramid levels over large seadihprovides a refined pose
estimate, which is in turn used to reproject predictiongHerfiner sets of features. No
data association issues are addressed explicitly, threrngéaformance relies heavily on
matching large numbers of features — while accepting thditeos are incorporated
into the map, this method confides in bundle adjustment teidetf inconsistencies
and enforce robustness.

Building Large Maps Out Of Small Parts

TheO(n?) cost of maintaining the full EKF state relative to the state s done in the
work of Davison et al. [2007] mandates the construction afsp maps, limiting the
number of trackable features per frame so that online pedace is sustained. While
it provides accurate results for room-sized environmetfits, constantly expanding
map in exploratory sequences is bound to degrade the realgerformance when run
over larger scenes. Moreover, as mentioned earlier, tr&@stency problems of a large
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(a) Traversing a long loop (b) Auto-scaling (c) Loop-closure is enforced

Figure 2.8: Large-scale mapping using local submaps. In (a) is thetreftriacking a long

exploratory sequence using the method of Clemente et @)7]20hich is using the two-level
hierarchical submapping of Estrada et al. [2005] and theaggh of Davison et al. [2007].
It is evident that local tracking drifts especially on thertsi of the trajectory but following
auto-scaling (b) and loop-closure detection, the trapgasoptimised in (c).

EKF becomes more evident with increasing the filter size eEamti Drummond [2007]
have explicitly confronted both of these issues by strustuthe problem in a set of
smaller, more manageable groups of features each relatiegrhy node, which can be
viewed as decomposing a map into submaps. Not only does #tisch permit denser
local maps providing more consistent local estimates,ttalso provides the ability of
covering much larger areas than classical full EKF appresacfihe method of Klein
and Murray [2007], by construction exhibits some spardificaof the full SLAM
problem by splitting the map using keyframes rather thamsgs. The effect however
is very similar, since as clearly depicted in Figure 2.24dgature maintains only links
with the keyframes it has been seen from. A keyframe can lveedeas similar to a
node in Eade’s approach while the relative positions of feegyEs is not represented
explicitly; the constellation is instead optimised at bienadjustment considering the
landmarks shared between keyframes.

The benefits of breaking down a large map into smaller paste baen a subject
of significant interest over the last decade as SLAM methtadtes! aiming for bigger
and better solutions. The work of Tardos et al. [2002] on $L#sing sonar data, the
Constrained Local Submap Filter of Williams et al. [20024i&ine Divide and Conquer
approach of Paz et al. [2007a] are all examples of standaifipation strategies of
the full map into statistically independent submaps eachtaiaed by a small EKF
of bounded size. As in the work of Eade and Drummond [200¢ ugdates are kept
local providing constant update cost. However, while Eadepresentation maintains
relative transformations (edges) between submaps pargiigal-time optimisation of
the whole (still relative) graph at the end of every time stép rest of the methods
mentioned here register each new submap to the global maprstily. In a slightly
different approach, Divide and Conquer SLAM follows a binaee of submap join-
ings to provide better cost than the sequential case.
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Realising the power of relative representation of tramsfdfons between
submaps, both Bosse et al. [2004] based on the Atlas frankdBosse et al., 2003]
and the Hierarchical SLAM of Estrada et al. [2005] attackednsapping in a two-
level hierarchical manner. While the lower level corregimio statistically indepen-
dent submaps as described above, the topological configuraft these submaps is
maintained using a graph of nodes in the upper hierarchy Vevg much resembling
Eade’s representation of the environment. Their commderdiice however, is that
no constraints are imposed for the positions of landmarkseshamong two or more
submaps, which on one hand maintains independence anamrdfydbut always at the
cost of mapping quality.

On a substantially different track, the Thin Junction TrdeeFof Paskin [2003]
and the Treemap approach of Frese [2006] provide complextherwise very ef-
ficient solutions to inference by representing the jointbyadaility distribution of the
system via tree-like factorisations, which are essegtiallifferent type of approx-
imation of the full SLAM graph. When a map element is obseyvbe tree-node
directly representing it gets updated issuing ‘messagedet passed to every other
node, following the branch paths along the tree, essentiatipagating the update in
the map. While the distributions are represented with Gansghe parametrisation
is done in the information form (maintaining the inversearmance) which allows ex-
ploitation of the sparse representation of links betweerables as exploited also in
Sparse Extended Information Filters [Thrun et al., 2002¢dastruct the tree struc-
tures. However, the information form imposes a major difficwhen it comes to
data association since most algorithms are based on theamse form as maintained
in the EKF for example, rendering them inapplicable espigcishen this involves
large data sets where matrix inversion becomes a computhtittieneck. Eustice
et al. [2005b] has taken account for this issue to some eiteedting a subset of the
covariance approximating the actual covariance of thealdas in question.

More recently, Pinies and Tardos [2008] proposed a powalfiorithm for build-
ing a large map out otonditionally independent submaps of constant size. In
essence, their representation enforces better managemshéared information be-
tween submaps, allowing more effective propagation of tggdand in linear time
with respect to the number of submaps. While linear timevegoof the global map
with respect to the number of submaps has been made possiplevious works,
the authors here achieve it surpassing any limiting coimt&rén the configuration of
the submaps (Paz et al. [2007a] for example restrict subimapsree arrangement).
However, in order to maintain the conditional independdret®veen submaps at loop
closures, the features that have been recognised to beldraitt the start and the end
submaps need to get copied into every intermediate submagh wieans extensive
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usage of storage in loopy sequences.

Loop-Closing, Relocalisation and Graph Optimisation

While Davison et al. [2007] address small-scale SLAM protdeclosing a loop be-
comes increasingly difficult with growing uncertainty iretiposition of the camera.
This translates into large active search regions for featimcreasing the chance of
false positive matches, thus making the task of data assmcigery challenging,
even for robust techniques like JCBB [Neira and Tard6s,1200n the application
of MonoSLAM in larger scale maps, this problem becomes evarenevident. An
example is the system of Clemente et al. [2007] which mapge lésops adopting
the Hierarchical SLAM technique [Estrada et al., 2005], dubmaps constructed in
a Davison-like approach. While the bounded size of submipssaonline building
of the map, loop-closures push performance past the realtiarrier. Moreover, the
EKF assumptions of Gaussian representation of uncertairggtimates break down
for big maps, rendering the filter predictions erroneous.

Eade and Drummond [2008] however, using their earlier GI&IpAM system
[Eade and Drummond, 2007], explicitly tackle the problerhdaiection and enforce-
ment of loop-closures achieving real-time performancarfaps of 1000 features on a
dual-core computer. A bag-of-words dictionary is trainedire, clustering observed
features based on their appearance so that image deseriptotbe generated based
on the occurrence of certain ‘visual words’. Every node eghaph maintains a list of
the observed words along with a count of their occurrencdéaithat node has been ac-
tive. The words in the dictionary are subsequently informitth a ranked list of most
representative nodes they occur in (based on the termdnegtinverse-document-
frequency metric [Sivic and Zisserman, 2003] taking actafnthe uniqueness of
words in the database). The highest-ranking nodes matchgurrent view that
do not already share an edge with the active node, are coedids candidates for
loop-closing, matching them using Nearest Neighbour basettie distance measure
proposed in [Lowe, 2004]. Following the visual appearanges¢ the system then
seeks for a match in structure using MLESAC [Torr and Zissern2000] which is a
variant of RANSAC, only scoring hypotheses based on thieiliiood (representing
the error distribution as a mixture model) rather than thelner of inliers.

Interestingly, Eade and Drummond [2008] address the pnoldErelocalisation
as a special case of the loop-closure problem. If trackiilgréaoccurs, the SLAM
system does not need to restart; instead it creates a new gaapponent which is
subject to unification with the rest of the graph upon rewigiof previously mapped
regions. Recovery is therefore approached as the enfontesh@ consistent fusion
of the active graph with the rest of the known map. After thelsshment of a new
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edge connecting the two ends of the loop, global optimiratiédkes place as in the
end of every normal frame to enforce any new constraintsrogitig the graph using
preconditioned gradient descent for speedy convergence.

Klein and Murray [2007] do not really address loop-closuihile this is implic-
itly enforced for very local loops by projecting expecteddtions of known features
in the current frame, for longer, exploratory sequencesedlage not handled meaning
that their system can therefore suffer from drift. Howevley address the relocali-
sation problem allowing recovery once the camera gets dokipting the method of
Williams et al. [2007]. The latter work is based on Davisosystem, incorporating
JCBB on top of active search for robust outlier rejectione Thacking-failure flag is
raised once no match is found within the predicted searciomegf features, while
relocalisation is tackled by searching the entire imagedorespondences with known
features, using the randomised-lists classifier of Lepetit Fua [2006]. The key in-
sight is the treatment of online feature recognition as asifigation problem where
classes are trained on trees of randomly generated testebirgensity comparisons.
As a result, at runtime, a feature can be dropped down thassifitation trees to pro-
vide probabilistic estimates of class memberships, witthedass corresponding to a
different known feature. Upon the establishment of comasgences with known parts
of the map, RANSAC [Fischler and Bolles, 1981] is applieddcaver the position of
the camera using the three-point-pose algorithm so thekitrg resumes.

Klein and Murray [2007] perform local bundle adjustmentulagly optimising
the pose of the most recent keyframe with its closest neigish® keyframes in total)
using all the measurements ever made for the landmarks smartese viewpoints.
Global bundle adjustment to refine the poses of all keyfrapresent in the map is
also run in the background, but only whenever the size ofritnie reasonable speed
performance. As an example, the authors mention that magdgiommg more than 150
keyframes would require ‘tens of seconds’. In order to raiigthe complexity cost of
using all available measurements in bundle adjustmentnE®let al. [2009] combine
the benefits of the relative graph representation of Sikiey. §2009] and the parallel
tracking and mapping approach of Klein and Murray [2007]lev/lsubsampling the
data input into the optimisation stage. Their method is destrated to permit contant
time exploration and maintain conservative estimatesehthp.

While the relocalisation method of Williams et al. [2007Heed provides robust
results, its processing and storage cost scale badly witkasing number of features.
Allowing relocalisation for map-sizes of 1500 featuresiKland Murray [2008] in-
stead use a very simple relocalisation method. Importingtimithe machinery used in
their earlier system [Klein and Murray, 2007], they save z®aean, heavily blurred
version of the sub-sampled image obtained at every keyfraffieen tracking is lost,
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every new frame is compared against every such keyframeriges’, choosing the
one with minimal difference to estimate a camera rotationgimisation of their
sum-of-squared differences after alignment.

2.4 0Ongoing Challenges and Progress in this Thesis

The recent growth of monocular SLAM algorithms has desdyestablished its place
in the list of hot research topics at present. The engageaientart and theoretically
solid techniques has brought implementations a long wayekier much remains still
to be done for successful operation outside the benign tonsgiof a lab environment.
The performance of most modern existing systems as reviab@ek, is indeed limited
to fairly small-range, careful camera manoeuvers. Denggping on one hand offers
local accuracy while it proves a bottleneck when it comes apping slightly larger
areas. In a nutshell, the focus of future monocular SLAM algms needs to be on:
¢ fast camera motion

e very large scales
e rich maps towards online 3D scene reconstruction
e real robustness in unstructured environments and dynamniditions, and

e low computation to permit embedded applications

The underlying challenge inherent in these points is to leataiger amounts of
data in a more effective way. The key isdgile manipulation of informatioto exploit
the value of the extra knowledge while avoiding the drawbamkthe computational
burden that this is accompanied with. Sustaining truly fiastion in dynamic condi-
tions, mandates robust matching for different levels ofitnpriors. Large-scale and
dense mapping translates into efficient data maintenant¢eddust outlier rejection
to close larger loops. Effective approximations to the futiblem can provide the so-
lution to lower computational complexity while maintaigimuality of performance.
Attacking these currently open questions successfullyhsihg monocular systems a
step closer to truly general algorithms for arbitrary eomiments.

2.4.1 Efficient and Robust Matching

How do observations relate to known parts of the map?

The biggest difficulty in tracking is the data associatiorolfpem of correctly
identifying known 3D features in the image projection of #oene from the current

viewpoint. It is important that the descriptors of landmé&shtures are resilient
to lighting and viewpoint changes, they are fast to computé distinctive with
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(a) Frame 10 (b) Frame 474

Figure 2.9: Accumulated uncertainty after traversing a loop with MohA8!. The projected
uncertainty of features in image space as ellipses denatesthow uncertain older features
become at the loop closure frame (b). Even looking for thethiwtheir active search regions,
the matcher is likely to fire at erroneous positions as evidftar a search fdfy in (b) (matches
are shown in green). Similar results for the rest of the lolmsing features makes the problem
of data association even harder as more outliers lie in tteesis.

respect to the surroundings. Tracking in a general enviemirhowever, provides no
guarantees that these conditions are met; on the contrésycertain that the feature
matcher will fire at erroneous positions in the image whileeotfeatures will not be
recognised at all. As a result was the emergence of outljectien techniques and
their application in SLAM systems like JCBB [Neira and Tasd2001], RANSAC

[Fischler and Bolles, 1981] and variants.

Resolving correspondences of visual data (as opposed ¢ge rarasurements for
example) is on one hand easier due to the extra descriptisesfeappearance infor-
mation, but on the other hand it becomes tricky to handle neeitable variance in
the quality of the input data. It was soon realised that rideatures are equally reli-
able in matching, assessing them in terms of their relativgueness and repeatability
of recognition. Newman et al. [2006] propose discardingrimfation coming from
repeatable appearance, while the more advanced bag-dEvemproach [Sivic and
Zisserman, 2003; Cummins and Newman, 2007] is becomingésangly popular in
detecting loop-closures.

In fact, loop-closure detection, relocalisation and frabmérame matching are sib-
ling problems all aiming to solve the puzzle of data ass@natT heir only difference
is the strength of input prior information. While from onarfine to the next the motion
of the camera can be predicted with some accuracy (dependitige frame rate and
camera dynamics), when the robot is at the end of a long It@pyncertainty in the
camera position is much bigger. This is clearly illustraitreé&igure 2.9. Even further,
when the camera is lost, by definition the pose uncertaintybesarbitrarily large (de-
pending on the time elapsed since tracking failed). The gledys being to relate
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current observations to known parts of the map, the featatemar can be employed
to establishing correspondences are reject outliers.

While RANSAC is the dominant approach to matching, it is fani a gold stan-
dard method. The method itself is indeed very simple to iTigliet but due to the
fact that it relies on arbitrary thresholds and most impalyarandomness, it is prone
to extensive testing of erroneous hypotheses using upgu®grocessing time and
increasing the likelihood of a spurious result. More recariants mentioned ear-
lier have explicitly tackled this problem but they still yebn heuristics and random
numbers.

The increasing popularity of JCBB proves there is room fquriovement in robust
matching in the presence of priors, but its exponential aidgfion in performance in
the presence of many outliers is limiting its use to highlgentain scenarios. In the
Active Matching algorithm discussed later as a contribuiio this thesis, individual
feature characteristics can be taken into account togefittethe degree of correlation
between features to guide the course of matching towardskapilistically backed-
up result. As opposed to traditional approaches of gettorgespondences first and
resolving them later, the methodology follows a top-dowprapch to search for can-
didates resulting in fewer image processing operationdemsicontamination of data.

2.4.2 Scaling and Map Management

When is it worth splitting a map into two submaps?

As the need for bigger and denser maps is increasing, so iseéhd for effi-
cient data manipulation. Earlier, this chapter discussed researchers have realised
this need leading to the emergence of sparsification teabriglree approximations,
frames, nodes, keyframes or submaps have been vital inirdogtanline SLAM
performance for large-scale mapping irrespective of thesing modalities used.
By bounding accumulated uncertainty, number of landmarkdistance since last
partition, systems have managed real-time performanckeaetpense of accuracy
of approximation. However, there has been little theoatiiavestigation of efficient
map management in terms of the quality of sparsificationfopaed, limiting the
applicability of existing techniques to more challengimgsarios.

Taking the popular choice of representing the state withoaehststic map as an
example, splitting this map into two submaps means cuttiegcbrrelation links be-
tween features lying in separate submaps. In the most consasmof preserving full
EKF filters for each submap, this successfully boundsaf#) maintenance cost for
small numbers oh while updates across the whole map become linear to the mumbe
of submaps. While besides the computational benefit, agistiorks report improve-
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ments in accuracy in terms of limiting the linearisationoesrinflicted in the case of
keeping a long EKF. However, no particular care is taken abereto place submap
partitions.

The stochastic map by definition models explicitly the iielaghips between dif-
ferent parts of the state as correlations. A very useful gntgpof these correlations is
that measuring one part of the state tells a lot about theotethe updates can be
propagated through the correlation links between the blsa— and indeed this is
one of the key ideas used in the Active Matching algorithmis the strength of the
correlation links that we cut during an approximation thetedmines the quality pre-
served in the map. Moreover, the infinite range of a cameramedrrelation structure
in a visual-SLAM map more tricky since distant features ia itene can appear very
close together in image space strengthening their canelaQuantifying the level
of correlation shared between different landmarks in teofmisiformation Theoretic
measures, Chapter 6 demonstrates that covisibility ishebhly factor that provides
strong correlations as previously believed, but coherariapotion is even more im-
portant. Understanding the tracker's impression of thenesceve present a simple
and fully automatic method for partitioning general visoaps which optimises the
quality of sparsification.



38

Related Work




A Top-Down, Filtering Approach
to Monocular SLAM

While the literature has seen a plethora of approaches tdvBuging expensive and
highly accurate range sensors, a trend towards the cheppen @f cameras has re-
cently become established. Allowing greater freedom amskidity, are single, hand-
held camera implementations relaxing problem specifictcaimés. On the other hand,
assuming nothing but a freely moving camera in an unknowtr@mwent imposes
several additional obstacles to the estimation processpi@ethe inherent difficulty
and challenges faced in monocular SLAM, recent implemeamtathave shown that
map and trajectory estimation is possible within smallgamnvironments, as dis-
cussed in the previous chapter. This chapter is dedicatiaititiarise the reader with
the key concepts and notation used in sequential, Bayesiaocalar SLAM through
a description of the MonoSLAM system proposed by Daviso®R@nd later refined
in [Davison et al., 2007]. This system comprises the plaifased throughout the rest
of this thesis to demonstrate the methodologies and dtgositdeveloped.

The online recovery of the 3D trajectory of the camera in M®InAM is achieved
by incrementally building a map of natural landmarks (feegdi on the fly, as detected
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40 A Top-Down, Filtering Approach to Monocular SLAM

Figure 3.1:Tracking the camera movement relative to the observed larkBnOn the left is
the current camera view and on the right is a representatitreqerceived map of the scene.
The natural landmarks selected for tracking (the imageheaton the left image) correspond
to ellipsoids on the right image, the shape of which encodesature of uncertainty in the
position of the relevant feature.

and tracked throughout the movement of the camera. The nmsraoted is then used
to guide the search for features in subsequent frames. ldrikgtended Kalman Filter
(EKF), the system produces estimates of the joint disiobubver the 3D location of

the camera and the set of known features. On the arrival ofvdmege, a probabilis-

tic motion model is applied to the accurate posterior estnad the previous frame,
adding uncertainty to the estimated new camera positiostaimdard configuration the
system then makes independent probabilistic predictibtteedmage location of each
of the features of interest, and each feature is indepelydsearched for within the

ellipse defined by a three standard deviation gate. Comgtasgiasuring and refining
the constructed map of the surroundings, MonoSLAM achiegaktime tracking of

the path followed by the camera. Following, is a more dedailescription of the key
components in the top-down filtering approach of MonoSLAM.

3.1 Representation of the World

Based on the probabilistic framework introduced by Smitlalef1988b], the belief
about the state of the world at any time instant can appraeidhaith a single, mul-
tivariate Gaussian distribution. Therefore, the proligbdensity describing the state
vectorx is defined as below, in terms of its estimated mgand covariance matrix;

p(x) = (2m) 4P| E expl—2 (x—) TP xR} 31)

Here,d denotes the dimension &fandP is a squaré€d x d) matrix, partitioned as
follows:
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Xe Pux  Pxyy  Pxy
. V1 Pyx P P .
& = 1 - Y1 yiya y1y2 . (3.2)
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The state vectax stacks the camera statgand the 3D positiory; of each featuré
in the map. The uncertainty in the individual entries statetthe mean vector together
with their relationships are described in the covarianc&iraMVore specifically, the
blocks along the diagonal express the uncertainty in eauohats of the mean vector
while the off-diagonal blocks encode the correlation befwthese estimates. Essen-
tially, X andP comprise a snapshot of the current state estimates of theraaand the
features in the map. Figure 3.1 is an example of the 3D maptremtsd after a few
frames of tracking using MonoSLAM.

In order to describe the camera state vestowe need to define a fixed ‘world’
coordinate frame and a camera coordinate frame (definedrasiect to the current
position and orientation of the camera) denoted by sugptscw’ and ‘c’, respec-
tively. Hence, adopting the notation of Davison et al. [J00& comprises of the
following set of parameters: the 3D position of the camefathe quaterniorg*'®
describing the rotation transformation between the twadioate frames, the linear
velocity of the camera" and its angular velocitgw®. In total, X. is composed by 13
parameters and explicitly is expressed as:

Xec = . (3.3)

A feature state vectoy; is generally comprised by a three-element vector describ-
ing the 3D coordinates of the feature with respect to the dvodordinate framew).
However, when a feature is first initialised in a monoculatemn, its depth estimate is
infinitely uncertain and is only bound to become more pre€igewed from different
camera poses. Demonstrating that uncertainties of suenesre not well-modelled
by a standard Gaussian distribution, Montiel et al. [2006ppsed a reparametrisation
of the representation of a feature state vector in termsafivierse depth. Illustrating
low linearisation errors at low parallax, this modificatioas been shown to model the
estimation uncertainty at feature initialisation much enaccurately by a Gaussian.
Hence, this parametrisation has been adopted in MonoSLANQding newly ini-
tialised features by a six-dimensional vecgpicomprising the camera position from
which the feature was first observed' (using the above notation), the azimugh
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and elevationd" angles defining the direction of the ray of observation, andllff
the point’s inverse depth/d; along this ray:

rW

w
vi=| o | (3.4)
|

1/d

Upon observation of this feature from a sufficiently wideddam, the uncertainty in
its depth estimate reduces enough to allow conversion infllg-initialised’ point
representation, requiring solely the 3D coordinates dfféature.

3.2 Motion and Probabilistic Prediction

In probabilistic form, SLAM requires computation of the parsor given all state es-
timates and observations up to the current frame (if odome#s available, all the
control inputs would be included here also). However, this be formed in a recur-
sive estimation of posterior of the new state paramet&tst time instank given the
last estimated state*~Y and the observatiorﬁr(k> made since then:

PO D 70y Jy(g<k|k>7p<k\k>)7 (3.5)

where.4” denotes a Normal distribution characterised by its firsttwaments. How-
ever, before processing the input image to make obsergafiom the new camera

pose, the system makes a series of predictions based onxpasieace and implicit
assumptions to enforce consistency and efficiency of psirogs

1. Camera state the system makes a guess of the motion undergone by theadamer
during the ‘blind’ interval between the last estimated pasd the new one.

2. Candidate measurements based on the predicted new viewpoint, any known
map-features that should be visible/measurable are fokhti

3. Search regions for every feature selected for measurement in the new frame
corresponding likelihood region in the image is estimatethat the search for
each feature is localised.

Below, we elaborate on the way these predictions are madeiaadss their im-
portance in the performance of the system.

3.2.1 Camera State

As the camera captures frames processing them sequentiaibgs there is some mo-
tion model to describe how the camera moves in between fratime® is no way to
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P
I =
Figure 3.2:MonoSLAM uses a smooth camera motion model of constant angud lin-

ear velocity, to imply that on average, we expect undetegtheccelerations to occur with a
Gaussian profile.

predict the new pose of the camera before analysing the inpage. In contrast to
robot-based implementations, monocular SLAM has no adcesdometry informa-
tion (a term used to describe the series of commands to ¢dhé&anotion of a robot
platform). The movement of a hand-waved camera in fact, isqodarly difficult to
model as it does not allow for precise assumptions to be miaolet #he dynamics of
the camera or the intentions of the carrier. Acknowledgimng tssue, MonoSLAM
uses aonstant velocity motion modélhis model essentially asserts that between one
frame and the next, the camera is expected to experiena imal angular changes
in velocity which are unknown in detail but can be charastatiprobabilistically by
a zero-mean Gaussian distribution. The variance of the skuglistribution used
depends on both the level of dynamic motion expected of theeca and the inter-
frame time interval. Large frame-to-frame motion uncetiaioccurs when vigorous,
jerky movements are expected for when the frame-rate isSomooth motions or high
frame-rates allow more precise motion predictions and {gitrer uncertainty.

The motion model can be described in terms of a probabil#yribution on state
transitions:

MKy — p(x® kD) oy <§((klk—1)7 p(k\kfl))_ (3.6)

Denoting the motion modélwe can predict the new camera sta€ Y in terms of
the camera parameters from the last known stéte!). Therefore, if the uncertainty
introduced through this process is denotedQbfprocess noise), the predicted state
x(Kk=1) after the motion of the camera (EKF prediction step) is dbsdrby:

fr&Y)
o (k—1)

% (Kk=1) e | (3.7)
2
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and dropping the superscript iék_1> for clarity,

of pk=1) o T of p(k=1)  9f (k-1
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3.2.2 Candidate Measurements and Search-Regions of SelttMea-
surements

When a new image arrives, we can project the current prabathistribution over state

parameters into measurement spacepraalict the image locations of all the features
T
candidate for measurement. Defining stacked vextee ( 21 Zp ... contain-

ing all predicted feature measurements and stacked ldadiHfunctionp(zr|x), the
density:
p(zr) = [ pzr (DX (3.9

is a probabilistic prediction not just of the most likely igeposition of each feature,
but a joint distribution over the expected locations of dltleem. This joint distri-
bution, if formulated correctly, takes full account of badtidividual feature motion
assumptions and global inter-feature constraints.

Given the prediction of the new camera viewpoint at the negegdollowing the
application of the motion model, we can predict which of thewn landmarks, if
any, should be visible using the measurement mbdalso referred to as ‘observation
model’). If Xy, denotes the stack of state parameters in measurement sgactng
camera state and the vectt), then the application of this model gives the probability
of distribution ofxy, given the predicted new pose:

PXm XM<Y~ A (Xm, Pm) - (3.10)

The measurement model acts on the predicted stdte? at the new frame to
produce expectations on the individual feature measum{!m(*l) comprising the
vectorz(Tklk_l>. Here, a measurement for a feature yields its 2D image coatel. As

a result, the state parameters in image space can be descidbe

)A(((:k|k—1)
5(kk—1)

Zl hl(

2(Zkuel) = o (X(KK-1)) , (3.11)

0
3
Il
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and dropping the superscriptssitf<— andp®*1 for clarity,

(Kk—1) ohy T dh, T
Pxx PWT P .
ohy ohipdhy dhipdhy
b %P ®Pax th 9% F o5 (3.12)
m— 0h2p &me @p@T+R ’ )
2% © 0% 9% © 0% 2
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whereg,; denotes the measurement noise in each prediction. The-higiportion of
P encoding the covariance values of the elemeﬁ!ﬁ%_l), is known as thénnovation
covariance matrixs in Kalman filter tracking. Generally, during the processratk-
ing, the matrixs becomes dense as is the mamigrogressively building correlations
between different parts of the map. Practically, high datien between two feature
position estimates means that while we are uncertain abeirt absolute locations,
their relative locations may be known with high accuracy.egé correlations are of
great importance to a convergent solution in SLAM and agdthy Durrant-Whyte
and Bailey [2006]: the more these correlations grow, théebdhe solution. In fact,
the analysis performed in this thesis to enforce robustaegsfficiency of algorithms
aims to exploit these correlation links as much as possible.

Predicting the locations of map features in the new imagestistem can decide
whether a feature lies in the predicted field of view and thugeeenlist it as a measure-
ment candidate. Given individugl(z) parts of this prediction, the image search for
each feature can sensibly be limited to high-probabiliyioes (what we calbctive
search, which will practically often be small in situations suchteacking. Therefore,
in MonoSLAM we can avoid costly exhaustive search of eaclipted-to-be-visible
feature in the whole image by restricting search to ‘gatdiitecal regions around
the predicted feature locations, of size determined byrthevation covariancg; and
a chosen number of standard deviations. Innovation is definde the discrepancy
between the predicted and the observed feature locatioeacd the innovation co-
variance is the expected deviation from this predictionpdiding the sub-matrix on
the diagonal oP, corresponding to featuiieits innovation covariance is defined by:

ohi  on" oh_ on' on_ on ' oh_ oh "

Si = = Puxoer  + =—Pxy = +—=Pyx=o + —=—Pyy =
= 0% 0% 9% Mg oy WAk 9y Mo,

+Rj (3.13)
Uncertainty in the probabilistic prediction of feature iggalocations in MonoSLAM
is dominated by the first term in the above expression whikbstaccount for the un-
certainty in camera pose introduced by the frame-to-fraroéam model. Therefore,
the size of these ellipses reflects the variance of the Gausdsstribution used for the
motion model.
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3.3 Active Feature Measurement and Map Update

MonoSLAM allows ‘active’ feature measurements in the s¢haesearch for a feature
can be confined within the bounds of the innovation covagasdefined in equation
3.13, rather than across the whole image which can be vegydonsuming. Perform-
ing exhaustive template match search within the three atdndkeviation gated ellipse
for each feature, the top-scoring template match is takeroasct if its normalised
sum-of-squared-difference score passes a threshold. a&igop of the match is fur-
ther refined to subpixel accuracy by fitting a paraboloid & lkical neighbourhood
of the match and estimating its peak. Generally, subpiXelement is considered to
result to smoother estimated trajectories.

At low levels of motion model uncertainty, mismatches vie tnethod are rela-
tively rare, but in advanced applications of the algorithravben the motion modelling
is poor [Chli and Davison, 2008a; Clemente et al., 2007;ig¥ik et al., 2007] it has
been observed that compatibility tests find a significantlmemef matching errors and
greatly improves performance. Chapter 5 addresses this eseplicitly and offers a
way to handle multiple occurring matches per feature.

The saved patch of each feature to be measured is warpedliagera template of
its expected appearance from the new camera position. Bfensynaintains a record
for both the successful and attempted measurements of aadmark. If a feature
fails to match in a certain number of successive framesgigissified as an unreliable
landmark for tracking and thus gets automatically deletechfthe map.

The vector of measuremerzt%k) obtainedfrom feature matching in the new frame
is then fed back into the system to update the map (EKF uptispé. sAn estimate of
the posterior distribution oveX) can then be acquired as stated in equation 3.5. The
mean and covariance of this estimate can be obtain as follows

RN = gk) | g(zx0 oK)y (3.14)

K — pkk-1) _ggrT | (3.15)

where the Kalman gail is defined to ag = p(kk-1) aA{z‘E,DTS*l. From this point
X

onward, the superscripts referring to the different tirteeygps (i.e.k, k— 1, etc.) are
omitted for the sake of clarity and hereafter, the notatrwill generally refer to
predictedmeasurements while the asteriskzirwill denote obtainedmeasurements.

3.4 System Initialisation and Map Maintenance

Since tracking with a single camera makes the task of estim#ie depth of features
harder and there is no way we can estimate the absolute ddake scene, the system
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can be initialised with a set of features with known relapesitions to overcome that.

This is not a necessary condition though since scale canrtsidared as a completely
unknown degree of freedom without affecting performanee] & has been shown

that reparametrisation of point features in terms of invatspth as described earlier,
allows efficient initialisation of the system.

At any given frame where the number of ‘trackable’ featurespd below the de-
sired threshold, the system looks to initialise new, didiire visual landmarks by look-
ing into randomly selected image regions where other featare not already present.
In MonoSLAM we rely on the Shi and Tomasi criterion [Shi andrisi, 1994] to ex-
tract the visually salient regions in the form of 2D patchdgcl are saved at the time
the feature is initialised. The system however, is not djpadly tied to this feature
selector so any other feature detector/descriptor carbalssed.

The maintenance of the SLAM map using the EKF requires qtiadcampu-
tational complexity in the total number of features in thepmaience, the key to
achieving real-time performance lies in the assumptiondam the information re-
trieved during motion. Maintaining a sparse map of highligpéeatures, modelling
the camera motion and actively searching for features guigeuncertainty, are the
main techniques used to optimise the use of processing nesouHowever, if there
is the need for a more detailed map or the environment magdedge, the real-time
performance of MonoSLAM is compromised since the time toatpdhe filter begins
to grow rapidly with the number of features. Also, as mergbim section 3.3, during
frame-to-frame matching the association of the obsematigith the map features is
crucial for the accuracy and consistency of the trackeresoimce accepted they cannot
be undone. In a nutshell, real-time performance of a visu&Ns system able cope
with general camera motion and large map sizes is still datgg. The rest of this
thesis tackles this issue by consulting Information Théogrinciples introduced in
the following chapter, to carefully guide the allocatiorre$ources and make the least
wasteful approximations to the complete problem.
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Information Theory and
Probabillistic Predictions

Our perception of the uncertain state of an event has thenjmitéo advance upon
the acquisition of additional relevant knowledge. In orttetranslate raw input data
into useful cues however, we employ probabilistic reaspeissentially redistributing
perceptual uncertainty based on the new evidence. On thiewhkbile an extra piece
of information can prove of great importance in resolvingentainty, this can only be
accomplished at the expense of processing resources. Wtgdd are imposed on
the resources available, as is the case in real-time afiplisathen achieving a com-
promise evolves into a real challenge: staying within thétkéd time budget of online
performance requires balancing the potential gains ant$ éo#lved in processing
incoming data.

In sequential tracking, any information extracted from tlerent scene in con-
junction with any models available describing the procesegolved, can serve as
prior knowledge for the next frame. The use of such priorg great benefit to SLAM
as they tell us where to look for cues in the image, allevigtire burden of frame-to-
frame processing. Surely though, the amount of informaaieailable in an incoming

49
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image can be enormous. Thus, extracting and processinfjiatan be an extensive
and costly process which brings us to the conclusion thatssatection is necessary.
But on what grounds should we base our decisions on whabithy of our time and
effort from what isdispensable Also, are we really making the most of the prior
knowledge we choose to carry forward in the end?

This chapter looks deep into the value of the probabilistedjztions we can make
in visual SLAM and ways we can use these efficiently at ruretims will become
evident in this and subsequent chapters, investing in smanipulation of the infor-
mation available not only can help boost the computatiofiaiency and consistency
of algorithms, but more importantly it provides a compresiea insight into the task
at hand. Here, we discuss the concepts and measures formeitigformation Theo-
retic basis used throughout the rest of this thesis to guiilgemt image processing
and map-management in SLAM.

4.1 Principles of Information Theory

Information Theory is generally considered to have beended by Claude Shannon
in 1948. Initially aiming at tackling the engineering preiy of reliable data trans-
mission over a noisy channel, it has since been establishadr@eans ofjuantifying
information contentThis section devotes some time to notation and descripfitime
guantities of information later used to analyse the expktt@lue’ of features in the
SLAM map and their relations.

4.1.1 Entropy

Using the notation introduced by Mackay [2003], a discreteablex can take values
inthe setAx = {as,ay, ...,an} with associated probabilitigd = {p1, p2, ..., Pn} such
that p = p(x = &). Therefore, the ensemb}é describing the triple{x, Ax, P} has
information entropyH (X) defined as:

H(X)=E {Iog %x)} = N p(X) Iog%x) . 4.2)
In words, this describes the expected information conttatpmssible outcome on the
value ofx given the set of different possibilitiex = g’ and their associated probabili-
ties of occurrence. More intuitively, the entropy of a val@arepresents the uncertainty
in its current state, often referred to as expected surprisef the distribution. Think-
ing in terms of simple examples, there is less surprise éggeshen tossing a fair
coin (where both heads and tails are equally likely) thanrwiading a die (there are
six equally likely outcomes). There is more uncertaintyd(#rus entropy) involved in
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predicting the outcome of the die than that of the coin.

Taking this rationale a step further, the entropy of a paldic variable reaches
its maximum value in the most unpredictable (hence uncgrzase: when all the
events in the event space are equiprobable. Hence, in tieeofamriablex above
this happens when each possible outcaan@as a probabilityp(x = &) = 1/n of
occurrence, resulting to the entropytdfX) = logn.

The choice of the base of the logarithm determines the unih@isurement of
entropy. In this thesis, we use the binary logarithmic s¢alth ‘log’ used as short for
‘log,") measuring entropy and information in absolute numbetsitst

4.1.2 Joint Entropy

Introducing another discrete varialyléaking values in the finite s&, with associated
probabilitiesR,, we can deduce useful measures like the joint entropy of khathd
y. This is defined as the entropy of the probability distribotdf the pairinggx,y),
expressed as:

HX,)Y)= % p(xy)log (4.2)

XEAX ye BY p(x7 y) ‘

In the special case thatandy are independent i.ep(x,y) = p(X)p(y) then it can
easily be shown that their joint entropy is equivalent to skhien of their individual
marginal entropiesi (X,Y) = H(X) +H(Y). If however the outcome ofis in some
way affected by the outcome gfand vice versa, their joint entropy is also affected
depending on the amount and the nature of their correlagositfve or negative).

4.1.3 Conditional Entropy

In the case that two variables are indeed correlated, tranitey the exact value of
one can affect the uncertainty (or the entropy) of the otRer.example, ify is found
to be equal tdy (such thatox € By), the entropy of the conditional distribution »f
for this value ofy then becomes:

H(Xly=bk) = ) p(Xly=bg)log ol (4.3)

XEAX X|y: bk) .

More generally, ify is to become known then we can predict the conditional egtrop
of the distribution ofX givenY averaging over all possible outcomesyof

HOMY) = 3 p) pr(XIy)logﬁ] (4.2)

1
= p(x,y)log——— . (4.5)
xeA%e By pP(Xy)
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Observing Equations 4.1, 4.2 and 4.5 one can point out that
H(X|Y) =H(X,Y)—H(Y) (4.6)

which indeed captures the true meaning of conditional egtrdt reflects the uncer-
tainty expected to remain in the outcome of one variablenwgpsupposed observation
of the other.

4.1.4 Mutual Information

Entropy, which encodes the uncertainty in the state of albégiand Mutual Informa-
tion, which expresses the amount of informatstraredbetween two variables, are the
two key measures in Shannon Information Theory. Thinkinthefcommon informa-
tion between variables andy in terms of the reduction in uncertainty we expect in
the distribution of one upon a supposed observation of therobelow we derive the
expression from first principles:

o P(x|y)
(xY) = E ["’g P ] o
= H(X)—H(X]Y) o
1 1
= Y P¥log o - XZy PY)Iog o)

P(X|y)
p(x)
p(x,y)

pP(X)p(y)

= Y p(xy)log
Xy

= > p(xy)log (4.9)
Xy

This measure which is termed as the Mutual Information betweandy, is sym-
metric sol (X;Y) = I(Y; X) holds. In the special case where the two variables are in-
dependent, then intuitively they share no information ktvetich is confirmed when
expandingp(x,y) resulting to the cancellation of the numerator and denotoina-
side the logarithm of equation 4.9. If we now substitutingi&tipn 4.6 into 4.8 we
get,

[(X;Y) =H(X)+H(Y)—H(X.Y) (4.10)

which can be visualised in Figure 4.1 together with all immiplielationships between
the rest of the measures introduced in this section.
4.1.5 Continuous Variables

On attempting to extend these quantities for continuougdsriduted variables, one
has to be cautious of preserving consistency. Standardeguoe involves splitting
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Figure 4.1:The relationship between marginal, joint and conditiomat@pies with mutual
information.

This figure is based on an illustration from Mackay [2003]

the now continuous range &f into discrete interval bins eadkx wide, such that the
probability ofx falling within a particular bin is equal tp(x)Ax. Therefore entropy is
described as:

= Z p(x)Ax log p(xl)Ax .

Taking now the limit ofAx — 0 it is evident that on every halving dik the entropy
content increases by 1 bit, rendering the expression iikbed as indicated by Mackay
[2003]. It is permissible however to take this limit for batbntinuous ranges of and
Y on the analogous expression for mutual information. Theesfollowing from the
expression for discrete variables in Equation 4.9, the aiuhformation of the two
continuous variables is derived by:

[(X;Y) = Axl,iAr)T/LO [z p(X, y)AxAy Iog% (4.12)
- / p(xy)log () 3(’)) dxdy (4.12)
- / p(xy)log > |)) dxdy. (4.13)

4.1.6 Mutual Information in a Multivariate Gaussian

Given the brief introduction into the most important Shamimformation measures,
we now look at the special case of multivariate Gaussiarceshre goal is to use Infor-
mation Theory in the context of SLAM. Considering a singlajltirvariate Gaussian
probability density describing the state veckdoy a mean vectok and a covariance
matrix P, we consider the mutual information shared between disgibsets of vari-
ables included in the state vector. Denoting the two subseibrs bya and b of
lengthsN,; andNy, respectively, then we consider the partitiorkaindP as follows:

a Paa Pab
. ,P= . (4.14)
b Ppa Ppp

0
Il
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Considering the effect that a supposed observation of wéctall have on the state
of partitiona, Davison [2005] has shown that the mutual information sthéetween
two such partitions ok can be expressed as

o p(ajb)
[(a;b) = E[Iog 0@ } (4.15)
_ 1 Paal
= 2Iog IPaa—Pangblea| . (4.16)

Essentially, equation 4.16 suggests that the informatiotent shared betweenand
b can be evaluated considering the reduction in the uncéytaina incurred by the
observation ob. While this expression seems very intuitive in terms ofdiivg the
magnitude in the variance @& before and after measurirty computing the actual
value can be very expensive. Consider for example evafyétie shared information
content between different parts of a 1000-long vector; hiagdnatrix inversions and
multiplications in the denominator are bound to take up easbunts of processing
time, consequently rendering such computations impasséilsl real-time processing.
However, viewing this expression from a slightly differeamgle, Chli and Davison
[2008a] considered the entropy in vectoas the joint entropy of théa, b) pair. This
minor change in perspective proved key to reaching a mucle cust-effective repre-
sentation of the mutual information efandb, as derived below. Starting from first
principles and applying Bayes’ rule in Equation 4.7:

Y p(ab)] _ p(a,b)
I(a;b) =E [Iog 0@ } =E [Iog 0@ p(b)] . (4.17)

However the joint probability density gi(a,b) is by definition, equal tg(x). More-
over, if N refers to the length of, the probability distributiorp(x) can be expanded
as

p(x) = (2m) " Z|p| 2 e 2R PHxR) (4.18)

A similar expression is applicable for the PDF of each partjtadapting the symbols
accordingly. Therefore, expanding out these PDFs in Equatil7:

[(a;b) = E[Iogﬁgzb)] (4.19)

1
)
= E|lo _ ]
[ J ]Paa]*% e 3(a-8)TPaa (a-8) ‘Pbbr% o1

_ }l ’PaaHPbb‘_ 1

51995 " Znas (X=R)TP (=)

+ %nz (E [(a— a)"Paa Ha— é)} +E [(b —B) Py (b — 6)} > (4.20)




4.2 Information Theory in Probabilistic Robotics 55

Using arguments of Cover and Thomas [2006]:

E|(a—a) P a— a)} - E [(a— a)@a—a)" -paafl] (4.21)
_ (E [aaq _ ééT) Paa L (4.22)
= Paa-Paa 1=Nj. (4.23)

Therefore, applying this result into Equation 4.20 and giin= N, + Np:

I(a;b) = =lo —N-+Na+N 4.24
_ }I |Paa||Pbb|
2 [P|

(4.25)

Consequently, this last expression is a much more efficialtation to perform than
that of Equation 4.16. In fact, this formulation is fundartano making our Active

Matching algorithm (discussed in Chapter 5) perform in-temak, since the compu-
tation of the shared information content between two panist of the state vector is
performed many times throughout the processing of a simghad.

4.2 Information Theory in Probabilistic Robotics

The notion of information has long been used in SLAM and pbilsiic robotics,
albeit in a quite different sense than discussed in thisggh&sr the sake of complete-
ness, before introducing the contributions of this workotyeve summarise the most
important uses of information in the field.

4.2.1 Active Control for Exploration

Mutual information has primarily been used in the sense tf&lg controlling the
behaviour of the robot or camera during exploration. Sucges are the works of
Bryson and Sukkarieh [2005] and Vidal-Calleja et al. [20@6lo evaluate the infor-
mation gain for all possible actions (e.g. turn left, keepstaight) essentially guiding
the robot movements to maximise the quality of estimategpeding on the question
posed, mutual information can be formulated accordinglyadbieve the objective:
whether this is active localisation of the robot with redge@ known map, or the con-
verse problem of optimising mapping for a known trajectorngven a combination of
both localisation and mapping as is the case in SLAM, the &egfficient exploration
is in the evaluation of input information.

However, while all these methods study the enhancemengaofdhigation strategy
assuming the ability to control the motion of the robot, tthiesis looks at the more
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fundamental problem of making the most of the data that sadly available during
general tracking.Active behaviour in this work can only refer to dynamic decisions
that we are able to make only within the context of manipoathe input material at
every frame — these decisions cannot have an effect on tleettoey followed or the
camera viewpoint as this is left entirely up to the intergiofithe carrier of the camera
(human or robot). Dealing with a less constrained problém guestions tackled here
lead to a methodology applicable on a wider range of prohlems

4.2.2 Information Filters

A special family of filters called ‘information filters’ appein the literature to char-
acterise probability distributions. Like the Kalman fill@nd the Extended Kalman
filter, an information filter represents the belief aboutdtate of a variable by a Gaus-
sian. However, rather than parametrising a multivariatenab distribution.#" (X, P)
by its mean and covariance matrix, it is instead paramelttige/” ~1(n,\) wheren is
called the ‘information vector’ and is the ‘information matrix’ such thay = P~1%,
and A\ = P~1. Consequently/\ is also referred to as the inverse covariance matrix.
Transforming the standard expression describing the P¥Eaibrx by its mean and
covariance, one can easily confirm that the dual expressidhei information form
corresponds to:

p(x) = const el~zx Axtx"n) (4.26)

)

where tonst’ here is a constant. This formulation, while having very i@mprop-
erties to the Kalman-based representations, it has thentdy@that conditioning on
a subset of variables is a very cheap operation meaningritegration of new input
data into the state can be fast. However, marginalising autbaset of variables re-
guires matrix inversion to resolve estimates back into &glodity distribution which
is much more expensive. On the other hand, marginalisabaresponds to a straight-
forward deletion of entries (corresponding to the varialbiedergoing marginalisation)
in the equivalent covariance form. In essence, as Eustile [@005a] has shown very
clearly, the conditioning and marginalisation processethé two representations are
inversely analogous and so are their costs.

Several successful applications of the information filtexsst in the literature.
Multi-sensor systems like the work of Manyika [1993] and macently Eustice et al.
[2006] benefit from the fast information fusion implied ingHormulation, while in-
terestingly other works reviewed in detail by Thrun et a0(Q23] aim at exploiting the
sparse structure of the inverse covariance matrix and ttteHat information filters
can be thought of as graphs, otherwise referred to as Gaudsigkov random fields.
Indeed, any two conditionally independent variables (esegarated’ in graph theo-
retic terminology) while having a non-zero cross-covat@antry, their corresponding
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inverse-covariance entry is zero. Thinking in terms of thar§ion measures defined
earlier, these two variables do share a non-zero mutuainmzftion — it only becomes
zero when the variables are entirely independent. Follgihe intuition of this exam-
ple, it is evident that the entries of the information matkare subtly different from
Shannon’s mutual information. In fact, the term ‘inforneatimatrix’ comes from a
different measure of information, namely the Fisher infation as pointed out by
Mutambara [1998]. In the case of multivariate distributipthis corresponds to the
matrixJ(8) defined for distributions parametrised by vedforollowing the notation
of Cover and Thomas [2006], given the density functfgr; 0) relating vectox with
the parameters vectdt, the elements of matrix the Fisher Information matiiare
defined as follows:

3 () :/f(x; 6)(%'Inf(x; e)a%jlnf(x; 6)dx . (4.27)

Expressing this in terms of the likelihood of measuremerith vespect to the state
vector we aim to estimate in SLAM, it has been shown thdéiecomes equivalent
to the inverse covariance matrix (assuming Gaussian noise and minimum mean-
squared-error predictions). While this information maaxhibits attractive properties
like sparseness, the true meaning of individual entriesti@hall obvious. This thesis
studies Shannon-based information measures and theicaipph to different parts of
the processes involved in SLAM with the aim to provide a mamaprehensive insight
into the relationship of the quantities discussed.

4.3 Information Value of a SLAM Measurement

Probabilistic filtering for SLAM involves maintaining a starepresentation of the map
and the camera parameters, which are constantly refined lbasthe measurements
made in the course of tracking. Using probabilistic infeenve are able to both
make predictions regarding the new state since the lasha®tdl pose but also update
the state parameters following a collection of observatiorade on a subset of these
parameters. In this thesis we use the term ‘observationmeasurement’ to refer to
the process of acquiring matches of feature-patches peeldic be visible in the given
image.

As explained in Chapter 3, in a visual SLAM system like Mon@$Lthe system
bases any state updates upon the successful or failed maithiee features it has
attempted to measure. Since this is the only observableopdne state vector (the
new camera position or viewpoint can only be inferred from dhservations), these
measurements are vital to successful tracking. Howevdiingsd earlier not all mea-
surements can be equally informative when inferring theesththe non-observable
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parts of the state. The amount of information each measuriecam provide though
depends on a variety of factors like the uncertainty in eithe position of the fea-
ture prior to measurement or the camera state, but more temiby the correlation
between the two. Acknowledging this fact, one can make ptiedis about the value
of a measurement prior to making it effectively guiding te@asumption of processing
resources towards more promising actions.

Selective processing is key to online processing sincelimgnthe incoming bulk
of information at frame-rate becomes a challenge. Aimingdbieve a balance be-
tween the knowledge gained and the time spent on processng we investigate the
information value of possible feature measurements in aNBl#ap. While work has
previously been done in cutting down unnecessary proagsgian the reception of a
new image (e.g. active feature search during frame-todramatching), the cues that
are available in probabilistic filtering and have usuallemeverlooked are the cor-
relations of predicted, candidate feature measuremeritgserlcorrelations are often
very strong, since all predictions about feature locatidegend on common parts of
the scene state. In a nutshell, the presence of strong atiorebetween two candidate
measurements means that measuring one feature tells ualmlatwhere to look for
the other. However, the level of correlation of either feasuwith each other or with
the camera state can vary substantially, confirming thaalhohage cues are equally
valuable in resolving the current uncertain state.

The value of a measurement primarily depends on the refergnestion we aim
to answer (e.g. ‘where is the camera?’ vs. ‘where is feaf®§ but also a long
list of influential factors including the the type of envirment where tracking takes
place, the camera dynamics or the density of features bedoged. Each and every
factor has a substantial effect on the estimation procedshemefore on the worth of
each measurement, however it is practically impossiblexéonine them individually
at runtime. This is where Information Theory can be employegdrovide dynamic
measures of how valuable a feature measurement reallypkaitmng the power of the
fully probabilistic framework maintained in filtering.

This section studies the application of mutual informaiiothe context of SLAM
providing an understanding of the relationships betweatufes and the inherent re-
dundancy in the map. Previously, Manyika [1993] has suggesh information-based
framework in robot localisation and mapping and more rdgddavison [2005] sug-
gested the application of Information Theory principle SIDAM techniques to guide
efficient image processing. Following this direction, here explore further the in-
sights provided by mutual information which leads to effexand efficient algorithms
for guided processing of incoming data discussed in sulesgqthapters. Since the
work of Davison [2005] has been the main inspiration for thetdbutions of this the-
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sis, below we begin with a brief discussion of the ideas anttlesions drawn there
before presenting our investigation on mutual information

4.3.1 Feature Ml in Measurement Space

Upon the reception of a new frame during sequential SLAM,system makes a se-
ries of predictions including the new camera pose and tberdghe subset of known
features predicted to be visible from the new viewpoint. SEhieatures consequently
comprise the set of candidate measurements. Such candidg®urements vary in
two significant ways: the amount of information which theg akpected to offer, and
the amount of image processing likely to be required to ekamatch; both of these
guantities can be computed directly from the current seprihr. There are ad-hoc
ways to score the value of a measurement such as searcle aliqgs used for simple
active search for instance in Davison and Murray [1998]. E\v, Davison [2005],
building on early work by others such as Manyika [1993], ekgéd clearly that the
Mutual Information (MI) between a candidate and the sceake $$ the essential prob-
abilistic measure of measurement value.

Following the notation introduced in Chapter 3 and the esgion for the MI of
continuously distributed variables in Equation 4.13, telee evaluate the Ml of the
camera stat&; and a candidate predicted measurenzeas:

l(Xc;z) = E {log pg((iz)i)} (4.28)
-/ _ p(Xc,z)log ps((;lz)i)dxcdzi ) (4.29)

Thereforel (X¢;z) describes the number difts of information we expect to learn
about the uncertain vectar by determining the exact value nf Using this measure
to evaluate the MI scores of each candidate predicted measumtz;, we can fairly
compare them to determine which one has most utility in reduancertainty in the
statex, even if the features themselves have different types (paint feature vs.
edge feature). Furthermore, aiming to quantify the effoctirred in a supposed mea-
surement of a given candidate Davison [2005] proposed ttierfnation efficiency’
score obtained by dividing the Ml value of a candidate by asusaof the associated
measurement cost, essentially describing the number ©tdibe gained per unit of
computation.

Mutual Information vs. Information Efficiency

Suppose that a rectangular rigid object is free to move irRespace as shown in
Figure 4.2 and the aim is to estimate its position and oriEmagiven that a set of
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F2: 0.74 \F1:0.78
-

F10: 0.

(c) Measure feature 8 (d) Measure feature 0

Figure 4.2: Pinning down the object by selecting measurements acapidithe Mutual
Information they are predicted to provide to the state ofdbgct. Three standard devia-
tion uncertainty bounds are shown before and after measmeimblue and red respectively.
Alongside the integer label of each measurement candidats MI with the object state.

This figure is based on an illustration from Davison [2005]

candidate feature measurements is available to us. Thatede have a predicted
location and an associated uncertainty each and they alhltee object implying that

their position estimates are tightly correlated. The fesgtwvith the biggest uncertainty
are predicted to provide the most information to the stath®@bbject as illustrated in
Figure 4.2(a). Measuring the feature with the highest Mugalith the object state
first, has indeed a big impact on the object state which isateftiein the dramatically

reduced uncertainty regions of the rest of the candidat&sgure 4.2(b). Proceeding
with measuring the candidate with the biggest predicted N the object state at
each step, it is evident that the object is soon localisel suifficient accuracy (this is
assumed to be when further candidate measurements aretpdeidi provide less than
1 bit of information).

Of all the possible sequences of measurement, the one ugédure 4.2 is the
optimal one with respect to localising the object in the feivaeasurements possible.
However, each search for a feature match requires a numbaeagé processing oper-
ations proportional to thed uncertainty region of that feature depicted with ellipses
in both figures 4.2 and 4.3. Indeed a feature measuremenv@s/exhaustive search
for a match across all possible locations within that regiés a result, when inter-
ested in the speed of processing as well as accuracy of thi oee has to take into
account that when choosing to measure the candidate withiggest uncertainty first
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Figure 4.3: Selecting measurements by information efficiency valuereHaside from the
label of each feature and its Ml with the object state, we display the area of its correspond-
ing search ellipse in pixels and the relevant informatidicieincy score (in bits per pixel).

This figure is based on an illustration from Davison [2005]

it will inevitably yield a large number of image processingeoations. In an attempt to
optimise then with respect to both accuracy and speed, Baj2005] proposed an al-
ternative scheme of ordering measurements which takesnatial information and
computational cost into account making decisions baselainformation efficiency
ratio of each feature:

MI with the object state

Area of search region (4.30)

Information Efficiency =

Figure 4.3 presents the matching steps involved for the sgosiEoning scenario,
but making decisions on a highest-information-efficieficst basis. In this case, one
additional measurement is necessary achieve the desireddkeaccuracy but it is
evident that the overall area searched is reduced (anddhetbe computational cost).
In Chapter 5 where we discuss our Active Matching algoritiia,make use of these
findings extending the methodology to cope with the hurdiegased when dealing
with real images as opposed to simulation scenarios.

Feature’'s Ml with All Other Features

While Davison [2005] has proposed using the measure of the dahdidate measure-
ment has with the object state, evaluating this in practibdeatracking real scenes
with SLAM has not proved very stable: the most recently atigied features have a
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F-label:
features' Ml, state MI

camera

(a) Camera view (b) 3D map view

Figure 4.4: Comparing Ml scores of each candidate with the rest (featdi®) and the M
of each candidate with the camera state (state MI). Figyrilatrates both Ml measures in
bits, where for each feature we display its label along wighHeatures’ Ml score on the left
and its state Ml score on the right, as computed based ondiitex for this frame. (b) is a
visualisation of the global 3D uncertainty in each featrgically, newly initialised features
have large depth uncertainty and inherit most of the camenaertainty boosting their state
MI scores likeF15 here (note that in this example feature labels are chaseeflect the
order of initialisation). Howevel; 15 being the ‘youngest’ feature in the system has not built
strong correlations with the rest of the features achiethiegsmallest features’ MI. Features’
MI scores exhibit more stable behaviour since they only takal frame data into account.
F8 being a moderately old feature with a good position estitads the highest features’ Ml
score promising large uncertainty reductions in the reshefvisible features which is more
desirable for frame-to-frame matching.

large uncertainty in their depth estimate and also inhkétibhcreasing uncertainty in
the camera pose, which immediately makes their M| valuessubstantially with re-

spect to older features visible in the frame as demonstiatéte example of Figure

4.4. As a result, these features lie at the top of the MI-scbseinfluencing the order

of measurement until they get initialised properly. Moreowhen the global uncer-
tainty in the map is large after continued exploration, ‘yger’ features again promise
larger reductions in state uncertainty while this is notassarily desirable when the
objective is frame-to-frame matching. On the other harahgforming all calculations

into measurement space (i.e. image space) and computinglteeores of features

with respect to the rest of the candidates for measuremémniypcan we capture the
true worth of a measurement action in local matching but tiledvil values obtained

exhibit more constant behaviour due to the very fact thattixed data is taken into

account (as opposed to the global camera location as before)

This measure has the very satisfying property that actiaeckefor features can
proceed purely in measurement space while it is also apypeali problems where
it is not desirable to make manipulations of the full statstribution during active
search, such as SLAM or SFM applications where the stat@wvecpotentially very
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(a) 14 candidate measurements

Select a candidate, measure it and update the search-state

(b) F4 is measured (c) F7 is measured

Figure 4.5: The information value of a feature with respect to all thedidates for mea-
surement is the total reduction expected in uncertaintys iBhan example illustrating the Ml
scores of candidates with respect to the rest of the feainré® scene, as computed using
Equation 4.31 and displayed in absolute number of bits. igdfte matching begins in (a) ev-
ery feature has some uncertainty in its position. Measwirgjof the candidates and updating
using the EKF update rules, at the bottom row of images is arpaggition of the outcomes
depending on the choice made: measuring a feature with lwmniration value as in (b) or
a feature with high Ml as in (¢). The effect of each of these sneaments is evident in the
relative reduction in the ellipse-areas and is also refteictehe updated Ml value of each fea-
ture. In essence, the resulting overall uncertainty in tmeasured features is reduced much
more when measuring; predicted to provide Z bits than measuring4 with predicted Ml

of 1.9 bits.
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large. Following our derivation in Equation 4.25 of the Mitlween two partitions of
a means vector, we consider the Ml of a predicted measurezneiith respect to the
rest of the feature-candidates..;:
|(zi;274) = = |OQM , (4.31)

2 S|
where the vector of predicted measuremestand the innovation covariance matrix
S are partitioned as follows:

Z Sii Si T#i

T = , S = . (4.32)
Z74j ST4ii STA T i

This expression is used in Chapter 5 to suggest the order ichvth carry out
measurements for efficient and robust frame-to-frame feaarching and matching.
Figure 4.5 illustrates through a real tracking example p@ieation the features’ Ml
scores and the effect different measurements have to thestamty left in matching
that frame. Projecting thedBuncertainty regions of visible features feature in image
space as computed fromFigures 4.5(b) and (c) superimpose the individual uncer-
tainty reductions of unmeasured features when measuriagdidate with a low and
a high features’ Ml score respectively.

4.3.2 Pairwise Mls Between Features

Aiming at isolating the effect that a candidate measurerhaston individual features,
here we also introduce the notion of pairwise Ml as the munfarmation between
two different features in the SLAM map, in measurement spadamely, the Ml
shared between candidatgsndz is:

oy p(zi|zx)
(z;2z) = E[IogTZi)} (4.33)
= |, p@a0mg péz(il;k)dzidzk (4.34)

1 ISiil[Skk
Slo S (4.35)

wheres; i is the joint innovation covariance of both candidates. Theual informa-
tion between predicted measurements of features capte#Escommon information
content, therefore providing an absolute, normalised oreasf their correlation.
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The MI Matrix

We can now define the Mutual Information matrix as below, s évery off-diagonal
entry is calculated based on sub-blockssaind represents the expected information
gain of a candidate measurement given the exact state diieanolf N is the total
number of candidates then:

* [(z1;22) ... l(z1;2n)
L(zr) = I(ZZ: 71) * I(ZZE ZN) . (4.36)
l[(zn;21) Hznsz2) .. *

This matrix is symmetric and the elements on the diagonahatelefined here and
therefore filled with«'s (while mutual information of a variable with itself can be
shown to be equal to the entropy of that variable [Cover anonTds, 2006], it is a
meaningless entity in this study of relationships betweariables). The matrix has
a value for every pair of features predicted to be observedanh frame and we can
use it to analyse feature correlations on a frame by framis.b&ghile two features
that have never been predicted to be observed togetheravil &in MI value of zero,
any features being covisible throughout a substantial rurobframesand moving
consistently will share strong mutual information links.n @e other hand, if two
features despite being co-observed, have significant dkffitihence in the scene they
are bound to share a weaker MI link since this translatespatallax difference in
image space meaning that they won't really move consistéram the viewpoint of
the camera. In Figure 4.6(a) is a visual projection of howNHamatrix looks in a
real tracking example frame. This MI matrix forms the basisdll of the analysis we
conduct in Chapter 6 to discover the map structure in theexowf SLAM and use it
to suggest meaningful approximations for large-scale rimgpp

Both measures of Ml introduced in this section prove usefuifferent problems
as will become apparent in the chapters to follow due to thetfat they provide the
answer to different, equally important questions: featukél gives a measure of the
joint expected reduction in uncertainty upon a measurement logeest of the visible
features in the scene, while pairwise Ml describes the im#tion content shared be-
tween individual combinations of visual features. The tweasures are indeed related
since they describe information based on the same progt@bitiata, however their re-
lationship is not straightforward. One might naively sagttthe features’ Ml score is
equivalent to the sum of pairwise Mls it shares with the réshe features. However,
this does not hold since thgpe of information shared between features is crucial in
the relationship of the two measures: while a candidate uneasentA is predicted to
provide somen bits of pairwise Ml to either oB andC, part of the information that this
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(a) Pairwise Mls (b) Features’ Mls

Figure 4.6: Comparison of pairwise vs. features’ MI. While features’shith (b) provide a
measure of the Ml a candidate measurement is predicted widerto the rest of the features
in the scene, pairwise Mis in (a) reflect the individual imf@tion gain in each feature with
respect to the candidate in question. In (a) is a visual ptioje of the MI matrix for this frame
highlighting the MI links spanning out df1; (Ml values are shown in absolute number of
bits). Depending on the strength of correlation betweenfeatures, their pairwise Ml reflects
how much information they share in common. For example, m&asF,1 is only predicted to
provide 13 bitsto F; but 1.4 bitsmore to its strongly correlated neighbdty. To contrast the
two different Ml scores introduced here, (b) shows the Mireanf each feature with respect
to all other unmeasured features for the same frame. In this exaih@ evident that while
the scores in (b) do not vary much, the pairwise MIs in (a) asptmore subtle differences
between combinations of features. Both measures howewse pseful in different problems
as discussed in subsequent chapters.

measurement will pass on Bis the same as the information it will pass ortas the
uncertainty ofB andC will be reduced along the same direction and magnitude as the
uncertainty ofA. The amount of information overlap passed on from a measmem

to the rest of the features is of course a function of the featorrelations and initial
uncertainties. The subsequent chapters discuss how tHasedsdures can be applied

in SLAM to guide efficient processing while enforcing comsigy of the algorithms
involved.



Active Matching

In the feature matching tasks which form an integral partistfia tracking or SLAM,
there are invariably priors available on the absolute anglative image locations of
features of interest. Usually, these priors are used pmsirhthe process of resolving
feature matches and obtaining final scene estimates, véa ¢gfat candidate matches,
then resolve’ consensus algorithms such as RANSAC or JCBBhi$ chapter we
show that the dramatically different approach of using nsridynamically to guide a
feature by feature matching search can achieve global magtetith far fewer image
processing operations and lower overall computational &ssentially, we put image
processingnto the loopof the search for global consensus. In particular, our aagro
is able to cope with significant image ambiguity thanks to magigic mixture of Gaus-
sians treatment. In our fully Bayesian algorithm denotetiv&dMatching, the choice
of the most efficient search action at each step is guidedtiigly and rigorously by
expected Shannon information gain as discussed in Chaptéveddemonstrate the
algorithm in feature matching as part of the sequential Mgi&aM system for 3D
camera tracking with a range of settings, and give a detaitedlysis of performance
which leads to performance-enhancing approximationseditt algorithm.

67
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Figure 5.1: Bottom-up matching: get candidate matches, then resolVe fifst cue for
matching is similar appearance of features. The occurrehagismatches in inevitable for
matching in a real scene, as demonstrated in this exampls.pftblem of data association
is tackled by searching for consensus. RANSAC is an exanfphestandard method which
resolves mismatches by choosing a random set of correspoesiehypothesising a solution
and checking the number of matches in agreement with theopempmodel.

5.1 Introduction

It is well known that the key to obtaining correct featurecasations in potentially am-
biguous matching (data association) tasks using compigi@nvor other sensors is to
search for a set of correspondences which aoeirsensusthey are all consistent with
a believable global hypothesis. The usual approach taksearch for matching con-
sensus is as follows: first candidate matches are genefatddstance by detecting
all of a certain type of salient features in a pair of image$eiring up features which
have similar appearance descriptors. Then, incorrecliéouatches are pruned by
proposing and testing hypotheses of global parameterdweascribe the world state
of interest — the 3D position of an object or the camera ifdelfinstance. The ran-
dom sampling and voting algorithm RANSAC proposed by Fischhd Bolles [1981]
has been widely used to achieve this in geometrical visioblpms.

Outliers are match candidates which lie outside of boundsraened by global
consensus constraints. The idea that inevitable outliécimea must be ‘rejected’ from
a large number of candidates achieved by some blanketlimit@ge processing is
deeply entrenched in computer vision and robotics.

The approach of oufictive Matchingparadigm is very different — to cut outliers
out at source wherever possible by searching only the patteedmage where true
positive matches are most probable. Both individual featootion assumptions (such
as that the image displacement of a feature between conseeideo frames will
be boundediand global consensus constraints can be expressed as prione dmué
absolute and relative locations of features within a rigsrBayesian framework.

In Active Matching, instead of searching for all featuresl &imen resolving, fea-
ture searches occur one by one within tightly targeted regioThe results of each
search affect the regions within which it is likely that eaifithe other features will
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(a) Interpretation tree (b) Image space

Figure 5.2: JCBB [Neira and Tardos, 2001] applied to visual trackingisTs a probabilistic
algorithm for resolving global consistency between caatiidnatches. An interpretation tree
and branch and bound search are used to evaluate the joldlplity of proposed matches
given a probabilistic prior on their joint location. The rolaes need to be obtained before
resolving consensus, hence this is still a bottom-up metHede is an example where the tree
in (&) is used to pair each observatiinwith a known feature such that the all such pairings
are jointly compatible. The match found &g gets rejected (considered as spurious) since
the implied prediction error does not comply with the resthaf pairings (note: the blue blobs
denote the predicted locations of features before measmm

lie. This is thanks to the same inter-feature correlatidnstich standard consensus
algorithms take advantage — but our algorithm’s dynamicatipd of these regions
within the matching search itself means that low probapitiarts of the image are
never examined at allThe result is that the number of image processing opemation
required to achieve global matching is reduced by a largeirfac

Based in the information theoretic framework analysed iafér 4, we demon-
strate the ability of information theory to intelligentlyigle the step by step search
process and answer the question “where to look next?”. Theda&d information
content of each candidate measurement is computed and cen@and can also be
traded off against the expected computational cost of tte@processing required.
The absolute bit units of information scores mean that bgereous feature types can
be rigorously and intuitively combined within the same rhiig process. Information
theory can also indicate when matching should be termiregttagoint of diminishing
returns.

While matching is often formulated as a search for corredpnoe between one
image and another (for example in the literature on 3D nuidtiv constraints with
concepts such as the multi-view tensors), stronger cantsrare available when we
consider matching an image testate— an estimate of world properties perhaps ac-
cumulated over many images. Uncertainty in a state is repted with a probability
distribution. Matching constraints are obtained by priiferthe uncertain world state
into a new image, the general result being a joint prior podita distribution over the
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image locations of features. These uncertain fegbneeictionswill often be highly
correlated. When probabilistic priors are available, #edom sampling and preset
thresholds of RANSAC are unsatisfying. In more recent vasiaf the algorithm it
has been realised that an unnecessarily large number dafi@sso hypotheses gets
tested, therefore speedups have been proposed either loysagvrandomised selec-
tion of hypotheses as done in [Chum and Matas, 2008] or taddmge motion priors
into account proposed by Tordoff and Murray [2005]. Howetlee true value of the
probabilistic priors available has not yet fully been apjated and exploited in these
methods which rely heavily on randomness and arbitraryshiolels. This has been
improved by probabilistic methods such as the Joint CorbtitiBranch and Bound
(JCBB) algorithm proposed by Neira and Tardbs [2001] whitdtches features via
a deterministic interpretation tree [Grimson, 1990] and been applied to geometric
image matching in [Clemente et al., 2007]. JCBB which is destrated with an ex-
ample in Figure 5.2, takes account of a joint Gaussian pricfeature positions and
calculates the joint probability that any particular hypestised set of correspondences
is correct.

Our algorithm aims to perform at least as well as JCBB in deit@ng global
consensus while searching much smaller regions of an imiggmes much further
than previously published ‘guided matching’ algorithmstsas the Guided-MLESAC
of Tordoff and Murray [2005] in guiding not just a search fansensus but the image
processing to determine candidate matches themselves.

Davison [2005] presented a theoretical analysis of inféinagain in sequential
image search. However, this work had the serious limitatibrepresenting the cur-
rent estimate of the state of the search at all times withglesimulti-variate Gaussian
distribution. This meant that while theoretically and ititeely satisfying active search
procedures were demonstrated in simulated problems, thaitpie was not applica-
ble to real image search because of the lack of ability to déthl discrete multiple
hypotheses which arise due to matching ambiguity — only Etian results were
given. Here we use a dynamic mixture of Gaussians (MoG) septation which
grows as necessary to represent the discrete multiple lgpes arising during active
search. We show that this representation can now be appleszhieve highly efficient
image search in real, ambiguous tracking problems.

This chapter presents in full detail the Active Matchingaaithm which was first
introduced in [Chli and Davison, 2008a,b] and analysedch&rrtin terms of perfor-
mance in [Chli and Davison, 2009b]. We start with an in-degtplanation of the
motivation for the mixture representation via a histogtaased analysis of the under-
lying probability distributions. Applying an Informatiomheoretic methodology on
the probabilistic estimates maintained throughout matghive demonstrate the in-
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fluence on the decisions the matcher makes and we detail héhaithe mixture is
maintained depending on the outcome of each individualfeagearch. Lastly, we
discuss the results of a comprehensive set of experimestinmuthe capabilities of
the algorithm to the limits, with the aim of assessing itemgths and weaknesses.
Our study on the evolution of the informational value of meaments throughout
the matching process indicates the route towards effeafypeoximations which can
further increase the efficiency of Active Matching.

5.2 Active Search and Beyond

In our general matching formulation, we consider makinggmeneasurements of an
object or scene of which the current state of knowledge isethed by a probability
distribution over a finite vector of parametets These parameters may represent the
position of a moving object or camera as is the case in Mond&li@ instance. The
probability distributionp(x) which describes our uncertain knowledge of the param-
eters at the moment an image arrives will be determined bgrgéprior knowledge
and what has happened previously to the system. For instemite2 common case of
sequential tracking of motion through an image sequep@e, at each time step will
be the result of projecting the distribution determinedhat previous frame forward
through a motion model.

In an image, we are able to obseffeatures measurable projections of the state.
A measurement of featurieyields the vector of parameters. In MonoSLAM for
example,z; holds the 2D image coordinates of a keypoint of known appeasathe
position of an edge or a higher-dimensional parametevisati a more complex image
entity. In each case, a likelihood functigrizi|x) models the measurement process,
yielding the predicted parametezs

Projecting the current probability distribution over stglarametersg into feature
space, we can predict the image locations of all the featwhésh are predicted to
be visible from the current viewpoint, as explained in Sect8.2.2. Our goal is to
use the joint distribution over all such measurement cadgb(zr), to guide in-
telligent active search and matching. The first possibiie might consider is to
marginalise elements(z ) to give individual predictions of the image location of each
feature under consideration, thus allowing active seascliefatures within their cor-
responding high-probability regions. This procedure latieely common in visual
tracking, where strong motion models mean that these seegabns are often small
and efficiently searched. Several Kalman Filter-basedkérscsuch as MonoSLAM
implement the same scheme by using gates at a certain nurfrdtandard deviations
to restrict the search. In the Condensation algorithm ofliaad Blake [1996] feature
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searches take place in fixed-size windows around predetednneasurement sites
centred at a projection into measurement space of each gfattieles representing
the state probability distribution.

The fact that has usually been neglected in feature seamtever, is that the
predictions of the values of different measurememisre very often correlated since
they all depend on common parts of the scene statés discussed in Chapter 4,
these correlations are the key to efficient coupled actiaecke we thus exploit them
in Active Matching to guide a step by step approach to seaatiter than blanket
examination of all feature regions.

5.2.1 Single Gaussian Model

To attack the coupled search problem, Davison [2005] maglsithplifying assump-
tion that the PDFs describing the knowledge of the cameta staand the features’
image coordinategr can be approximated always by single multi-variate Ganssia
distributions, as defined by measurement state vegioaind associated covariance
matrix Pr, in Equations 3.11 and 3.12 respectively. Using this singdeisSian for-
mulation and as explained in detail in Section 4.3.1, Davisloowed via simulations
how Information Theory can guide active search reducing#agch-space by pinning
down an object given some candidate measurements withiatsxbancertainty.

The simulation examples presented in [Davison, 2005] (sfeavn in Figures 4.2
and 4.3) are based on the assumption that the matching &cpeeivery search for a
candidate yields a single match occurring atttiie feature position. This is a very op-
timistic assumption to make when dealing with real imagesr&lambiguity and more
generally, perceptual aliasing is inevitable. Davisoathnique is therefore inapplica-
ble outside the benign conditions of a simulation environmélowever, we believe
that Information Theory is the key to maintaining the optiralance between pro-
cessing costs and information gains, therefore this woskide®n very much inspired
by Davison’s approach.

5.2.2 Full Histograms and Multiple Hypotheses

The weakness of the single Gaussian approach to matchihgtisas ever, a Gaus-
sian is uni-modal and can only represent a PDF with one peakedl image search
problems, no match (also referred to here as a failed maghpe fully trusted: true
matches are sometimes missed (false negatives), andr dinttigar in appearance to
the feature of interest can lead to false positives.

To investigate the theoretical performance of active seamcsuch ambiguous
cases, a simulation of 1D Bayesian active search for a sieglieire has been de-
veloped which uses a simple but exhaustive histogram reptason of probability.
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Figure 5.3: Pixel-by-pixel search using a histogram representatiopp8se that a feature is

predicted to lie within an 1D array of pixels and that a fulbrmalised histogram represents
the probability distribution that this feature truly lielseaach such image location. The distribu-
tion is refined sequentially starting off with a Gaussiampand updated accordingly as each
pixel location is tested for a template match. Figures (&) (@) show the outcome of either a

successful or failed match at the pixel in the centre of thar pvhich is checked first: a success
causes a spike in the distribution while a failure resulta tmough. In (c), measurements at a
number of central sites have led to an intermediate digtabuand (d) shows the final poste-
rior distribution in a situation where all positions haveehechecked to reveal two significant
candidate locations for the true feature.
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As demonstrated with an example in Figure 5.3, the goal isdaté a feature in a one-
dimensional search region by making pixel-by-pixel attesrgt template matching.
Each pixel is represented by a discrete histogram bin gtdhia current probability
that the true feature is in that location. The true featuretriia in exactly one true
position, so at all times the discrete histogram is norredli® total probability one.
At the start of search, we initialise a Gaussian prior actiesgegion.

Active search proceeds by a selecting pixel locati@s a candidate, measuring
it and updating the whole histogram via Bayes rule accoiylinbhe update uses the
following likelihood expression:

(i—k)?

1
2 02 (5.1)

P(M;|Bx) =Crp+Crpe

HenceP(F|Bx) = 1— P(M;|By) holds, for the probabilities of making a template match
M; or a failed match+ at positioni given By, that the feature is truly at positida
HereCrp is a constant representing the per-pixel false-positiabalility of finding

a template match to clutter, aréhp is a constant proportional to the true-positive
probability of matching to the feature in its true positidris likelihood function says
that if the feature is &t then there is a raised, Gaussian-profile probability of mgki
a match at nearby locations, the parametepecifying the standard deviation of the
feature’s ‘measurement uncertainty’ (here set to 1 pixel).

The final distribution after all positions have been measuneFigure 5.3(d) is
the motivation for the mixture of Gaussians formulationdusethe rest of the paper.
The single Gaussian method of Section 5.2.1 cannot refréseclear multiple hy-
potheses present here. This histogram representatidyg gess to the truth of active
search, but is impractical in reality because of the comjmurtal cost of maintaining
a histogram — rising exponentially with the number of diniens of the total mea-
surement vector. Practical real-time searches happenynmdsby-one pixel checks
followed by probabilistic updates, but by examining a whiagion at once and ob-
taining zero, one or more candidate matches. Figure 5.8(Bests that a mixture of
Gaussians represents the posterior in this case well.

5.3 Active Matching Algorithm

Ideally, any features selected for measurement would bawtlel/ unique and always
recognisable, meaning that they produce a match only whesept and at the true
feature location. Since this is not the case in real imagecBegaroblems, we can
never fully trust the matching outcome of a feature searcbdélling the probabilistic
‘search state’ as a mixture of Gaussians, we wish to retaifetture-by-feature qual-
ity of active search. Our new MoG representation allows dyicaonline updating of
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the multi-peaked PDF over feature locations which repissiie multiple hypotheses
arising as features are matched ambiguously.

Our Active Matching algorithm searches for global corrasfence in a series of
steps which gradually refine the probabilistic search dtdtially set as the prior on
feature positions. Each step consists of a search for a &enplatch to one feature
within a certain bounded image region, followed by an updéathe search state which
depends on the search outcome. After many well-chosen, stepsearch state col-
lapses to a highly peaked posterior estimate of image fe&ioations — and matching
is finished. Figure 5.4 illustrates the a step-by-step exawipActive Matching (AM),
operating on a typical MonoSLAM frame where some ambigustgmcountered but
consensus is successfully resolved following a serieslettee measurements.

5.3.1 Search State Mixture of Gaussians Model

A single multi-variate Gaussian probability distributi@ver the vectorx,, which
stacks the object state and candidate measurements, msgiarsed by a ‘mean vec-
tor’ X, and its full covariance matriky,. We use the shorthar@ (X, Pm) to represent
the explicit normalised PDF:

PXm) = G(%m,Pm) 52
= # _} o \Tp-1 o
NI exp{— 5 (Xm — Xm) ' Py (Xm — &)} , (5.3)

whereD denotes the cardinality of vecto,. However, during Active Matching
we represent the PDF over the estimatexqirwith a multi-variate MoG distribution
formed by the sum oK individual Gaussians each with weight

P(Xm) = é P(Xm) = é/\iei ; (5.4)

where we have now used the further notational shorth@ne: G(Xm,Pn). Each
Gaussian distribution must have the same dimensionaliyttaweights\; must nor-
malise to add up to 1 for this to be a valid PDF.

The current MoG search state forms the prior of the next stégtive Matching.
This prior together with the likelihood and posterior distitions as shown in sym-
bolic 1D form in Figure 5.5, are explained in the followingdens. However, before
looking into the details of the theoretical background obelve give an overview of
the algorithm describing the processes involved from a-téghl perspective.
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Figure 5.4: Resolving ambiguity using AM. Based on the input prior diésog the joint
probability distribution over the features’ locationsg t| values are computed for each ellipse
to describe the information each measurement is expecfgdvide to the rest of the features.
As Fg achieves the highest Ml score per pixel to search, it getsured yielding two matches
as shown in (a). Propagating this outcor@g,andG, are spawned in (b) and Ml values are
recomputed. The match found fég in G, boosts the newly spawneds, weakeningGg
andG; enough to get pruned off the mixture in (c). The matchFes comes to resolve the
ambiguity in (d) withG4 having dramatically reduced width with respect to the ahipirior
Gp. Measuring the rest of the features in the same sequentiah@naAM concludes in (e).
Figure (f) superimposes of the elliptical areas searchexthieve data association with AM
and traditional matching techniques. In this example, Aldrebes % less image area than
standard ‘get matches first, resolve later’ approached(i@B and RANSAC.
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5.3.2 The Algorithm

The Active Matching process is initialised with a joint Gaias prior over the features’
locations in measurement space (e.g. prediction afteicagbioin of a motion model).
Hence, at start-up the mixture consists of this single, iwaulate Gaussian. Every
measurement candidate is evaluated based on the Mutuamiafion(Ml) it is pre-
dicted to provide to the rest of the candidates. The carglife¢ature, Gaussiarmpair
to achieve the highest Ml-efficiency score is chosen for mm@asent. Essentially, a
{Feature, Gaussiarpair corresponds to an ellipse in image space, as shown ime~ig
5.5. Section 5.4 is dedicated to explain how measuremesttsm is performed.

For every template match yielding from the search of thectetemeasurement
pair, a new Gaussian is spawned with mean and covariancé&iooed on the hypoth-
esis of that match being a true positive — this will be morekgédathan its parent.
In both cases of either a successful or null template setiretweights of the existing
Gaussians are redistributed to reflect the current MoG bestate. The full description
of the update step after a measurement is detailed in thefréss section.

Finally, very weak Gaussians (with weight0.001) are pruned from the mixture
after each search step. This avoids the otherwise rapidtigtiovthe number of Gaus-
sians such that in practical cases, fewer than 10 Gaussian#/a’ at any point, and
most of the time much fewer than this. This pruning is thedsefully probabilistic
equivalent in the dynamic MoG scheme of lopping off brandhem explicit interpre-
tation tree search such as JCBB [Neira and Tardos, 2001].

Below, are the pseudo-code descriptions of the Active Matcklgorithm and
the mixture-updating procedure. While some of the notasoexplained later in the
section, these are really aimed at providing the readeravijneral understanding of
the processes involved.

ACTIVEMATCHING(Gp)

Mixture =[[1,Go]] // Each entry in the Mixture is a [weight, Gaussian] tuple
{F¢,Gc} = getmaxmi_efficiency.candidate(Mixture)
while (pair_notyet measure{Fc, Gc}))
Matches = measuféFc, G¢})
UPDATEMIXTURE (Mixture, ¢, Matches)
pruneinsignificantgaussian@vixture)
{F¢,G¢} = getmaxmi_efficiency candidate(Mixture)
end while
Gpest = find_most probablegaussiafMixture)
return G pest

© 00 N O 0o W DN P

[
o




78 Active Matching

UPDATEMIXTURE(Mixture, i, Matche$

Propagate the result of a measurement of a feakue G;, following the update rule of Equa-
tion 5.10

1 for k=1:K //loop through all Gaussians

2 [Ak, Gk] = Mixture[K]
3 if k=i then // this is the measured Gaussian
4 for m=1:M // for every match, spawn a new Gaussian
5 G = spawngaussianand fuse matchGy, Matchesin|)
6 Am = Ak X Umatch< Prior(Matchespn], Gy)
7 Mixture = [Mixture, [Am, Gm]
end for
8 Ak = Ak X Uin X (1—prior_sum(Matche3y))
else
I/l Probability ofGy for the measured feature, summed over the region coveréqg:by
9 prob=prior_sumundeG; (Gy)
10 sum=prior_sum(Matchesy)
11 Ak = Ak X [Umatch< SUM iy X (prob— sum) + Loyt x (1—prob)]
end if
12 Mixturelk] = [Ax, Gk] // reset entry to the updated state and weigl®of
13 end for
14 normaliseweights(Mixture)
15 return

Note: prior(Matchesfn], Gy) returns the prior probability of matcim being a true match, in
Gy (highest value at the centre of this Gaussian). Similgshpr_.sum(MatchesGy) returns

the sum of all such prior probabilities for all elementsiftches.

5.3.3 Likelihood Function

One step of Active Matching takes place by searching theredéfined by the high-
probability 30 extent of one of the Gaussians in the measurement space eéthe
lected feature. Suppose that = (z; ...z, ... ZKA)T is the outcome of this search
for matches, meaning that template matching has been sfiscatM different pixel
locations, but failed everywhere else in the region. Thelililood distribution of this
result with respect to the current statées defined as:

M
P(Z*|X) = HinTin + HoutTout+ » HMmatcH (Zm) » (5.5)
m=1
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Figure 5.5: Updating the Mixture of Gaussians. In this example, theaear regionG,
yields a match. Given this result, the likelihood functieriarmed as in Equation 5.5 and when
multiplied with the prior mixture, leads to the estimatediaoior MoG. The latter consists of
a scaled version of the old mixture and a n@wto represent the hypothesis that the match is
a true positive. The updated distribution of weights degesrdthe statistical properties of the
feature matched, the position of the match and the amountextap of the searched region
with respect to each Gaussian. The closer the position ehtteh to the centre of the searched
G, the strongest the weight of the spawr@&gl ‘Third-party’ Gaussians lik&,, get scaled
according the total belief they had that the match wouldri¢hie searched region in the first
place; if the overlap betwedB; andG» is small and the match occurs away from the centre
of G4 then this Gaussian will become really weak in the posteriatume.

whereL,, Hout andmatchare constants (defined later in Equations 5.6-5.8) cafurin
the matching characteristics of each feature. In esseheelikelihood function is
modelled as a mixture of:

e M hypothese#i(z;,), each to account for one candidafge Z* being the true
match (considering all others as false positives) — these hypethare Gaus-
sians having very small width, corresponding to the measeant uncertainty;
as shown in the example of Figure 5.5, and

e two constant termsT;, accounts for the hypothesis that the true match lies
in the searched region but has not been recognised, Whilg supports the
possibility of the true feature actually lyirmut of the region searched. In fact,
these are both top-hat functions aimed at enforcing acdoutite spurious false
positives in the measurement proceg, and T oyt have a value of one inside
and outside of the searched Gaussian respectively and Izemhere, since the
probability of a null search depends on whether the featureally within the
search region or not.
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The p-terms in the likelihood function expression (Equation)ats introduced so
that the individual feature characteristics are consildiging the estimation process.
Surely, thadistinctivenesand themeasurabilityof features varies depending on a wide
variety of factors (e.g. the type of feature detector/dpsar, the repetitive structure
in the scene, the lighting conditions). A match coming froreearch for a unique
feature should be trusted more than a match yielding fronagckdor a very common
one. Conversely, a failed match for a feature that has beamifihible most of the
times comprises stronger evidence than a failed searchféatare that has not been
detected consistently throughout the sequence. Therefesessing the true-positive
Py, false-positivePy,, true-negativé?, and false-negativey, probabilities of different
features via ‘statistical training’ during tracking, thective Matching methodology
can inherently take them into account to enforce the rolesstiof the outcome based
on the reliability of features.

Going back to the formation of the likelihood function upte imeasurement of a
{Feature, Gaussiarpair, if N is the total number of pixels searched for this measure-
ment, then thei-terms of expression 5.5 can be computed as follows:

N—(M+1

n = PhP.Ry MY (5.6)
Hout = PPy M (5.7)
Hmatch = PtpR";\JA_le_M- (5.8)

Given that there can only be one true match in the searchézhrdtere the idea is to
take account of all different possibilities:

e the true match fact liein the searched region but does not correspond to any of
the M matches, sqy, is the probability of obtainingV false positives, a false
negative andN — (M + 1) true negatives.

e the true maitch liegut of the searched region, g6t is the probability ofM
false positives antll — M true negatives, and finally,

¢ one of the obtained matches is actually the true featury,sqchis the prob-
ability of a true positive occurring along witil — 1 false positives antl — M
true negatives.

5.3.4 Posterior: Updating After a Measurement

The standard application of Bayes’ Rule to obtain the pasteistribution forx given
the new measurement, is:

PZ*X)PX) 59

pixz) = P
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Substituting the mixture models from Equations 5.4 andWwebget the posterior esti-
mate:

M K
(“inTin+UoutT0ut+ Z HmatcH (Z*m)> (ZI)\iGi>

m=1 i=

p(Z*)

The denominatop(Z*) is a constant determined by normalising all new weights

to add up to one. Figure 5.5 illustrates the formation of agras when the search

outcome consists of a singe matdh £ 1). This posterior will then become the prior
for the next Active Matching step.

p(X|Z*) = (5.10)

In the top line of Equation 5.10, the product of the two mietsums will lead
to K scaled versions of all the original Gaussians &t terms which are the prod-
ucts of Gaussians with hypotheses, in essence yieMiKghew Gaussians. However,
we make the approximation that only of theseMK product terms are significant:
those involving the prior Gaussian currently being meatuiM/e assume that since
the other Gaussians in the prior distribution are eitherelyideparated or have very
different weights, the resulting products will be negligib Therefore there are only
M new terms added to the mixture which are generally highlighted, spiked Gaus-
sians corresponding to matches found in the searched refimse are considered to
be ‘children of the searched parent Gaussian. An important point to,ristthat if
multiple matches in a search region lead to several new Guldssians being added,
one corresponding to a match close to the centre of the seagatn will correctly
have a higher weight than others, having been formed by tupt of a prior and a
measurement Gaussian with nearby means.

All other existing Gaussians get updated posterior weightsultiplication with
the constant terms. Note that the information of making &sedrch where no tem-
plate match is found, is fully accounted for in our framewerkin this case we will
haveM = 0 and no new Gaussians will be generated, but the weight cfgheched
Gaussian will diminish.

Pruning Weak Gaussians From the Mixture

The nature of the MoG update implies that every time a matemi®untered, a new
Gaussian is spawned to represent the scenario that it is entaitch, while the searched
Gaussian is maintained to account for the case that the risgftalse — most probably
assigned to a much lower weight. As a consequence, by thefehd matching pro-
cess, the mixture is populated by as many matches as encediples the initial one.
The vast majority of these Gaussians however, are usuddly rasignificant, quickly
after they get spawned since they pass on most of their waigthteir descendant,
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newer Gaussians as demonstrated in the example of Figure 5.6

This means that in essence, we carry an unnecessarily laxgerenthroughout
the matching process, constantly updating them and euadutite potential effect of
measuring them for each feature (explained in detail in dlleviiing section), but
without them having any impact on the decisions made througmatching or the
achieved accuracy. Thus, by pruning hypotheses whose tidgbelow a certain
threshold, the algorithm becomes a lot faster at no expefhsdeed, cutting off a
Gaussian means that we can never go back to correct the mgasdenario down that
particular route, so itis vital not to cull a potentially éraypothesis — this accentuates
the importance of a realistic weighting scheme within thetare.

5.4 Measurement Selection

We assume that the input prior at the start of the search gsasewell-represented
by a single Gaussian and thereforg= 1. As active search progresses and there is
a need to propagate multiple hypotheses, this and subgeGaeissians will divide

as necessary, so that at a general instant there wil IBaussians with normalised
weights.

5.4.1 Search Candidates

At each step of the MoG Active Matching process, we use theurexto predict
the expected outcome of individual feature measurementstrais decide on which
action to take. In this sense our algorithm has been dulbtematching suggesting
a fully dynamic and automatic performance. At every instémre areKF possible
actions, wherd~ is the number of measurable features. We rule out {dfsature,
Gaussiah combinations where we have already made a search. Also oufedre
‘child’ Gaussians for a certain feature which lie complgtelthin an already searched
ellipse. Looking at Table 5.1 for example, if we have meagdumot Gaussiait; at
feature 1, leading to the spawn@$ which after searching for feature 3 generdies
then the candidates marked with tvould be ruled out from the selection:

Fi F2 F3 Fi F2 F3 Fi. F2 F3
Gl * = G]_ * G]_
Gy * * | = | Gy * *
G3

Table 5.1: Excluding measurement-pairs lying completely within shad Gaussians from
the candidates selection
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Figure 5.6: The evolution of Gaussians and the distribution of theirghits per search-stepin
a matching example. At the beginning of search in (a) theomlig one Gaussiag present,
which is the input joint distribution over the locations bktfeatures. The search fBi> in
Gp yields two matches, hence in (b) two new Gaussians are sgh{@eandG;) each to
represent that one of the matches is true. The distributiamegyhts in the mixture at every
matching step, is shown in (c). The search in a Gaussian {eendgth pink blobs) at every
step has two possible effects on the mixture: (i) one or maesSians get spawned depend-
ing on the number of matches found (e.g. searcBgirspawnsG; andG;) and weights get
redistributed, or (ii) only the weights of the existing Gsiass are affected following an unsuc-
cessful measurement attempt (e.g. at step 5 whgfails to match inGs). It is evident from
this histogram that by the end of matching, the MoG getsalatt with many, insignificantly
weighted hypotheses which take up precious processingwitheut having any effect in the
matching process.
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(a) Common feature patch (b) Distinctive feature patch

Figure 5.7:Analysing feature false-positive rates within MonoSLAMgish detects features
using the criterion proposed by Shi and Tomasi [1994]. Tlufe-patch queried in (a) de-
scribes a common structure in this scene with around 20 reattcurring per image, whereas
the feature-patch in (b) is much more distinctive. In bothraples, the brightness of the boxes
indicates the strength of similarity. It is preferred toyrein distinctive features to resolve
matching consensus for the obvious reason that the measuoteasult of such patches can be
trusted more than others capturing more repeated scerméustru Therefore, if both features
queried in (a) and (b) are candidates for measurement inesn lame, choosing to measure
the feature of (b) first boosts the chances of the spawneds@awiseing a good start towards
successful data association. The ability of Active Matghmincorporate statistical models for
feature characteristics (rate of false positives, truétpes, etc.) can potentially drive robust
matching in highly challenging scenarios.

All of the remaining candidates are evaluated in terms ofNh#ual Informa-
tion they are predicted to provide to the estimates of theakthe candidates in the
mixture. The selection of which feature to measure next gefdan the Information
Efficiency scores defined as the Mutual Information valueded by the are of the
region to be searched. The latter metric has been propos&hklison, 2005] and has
been discussed in more detail in Chapter 4.

As demonstrated in Figure 5.7, some features can be matchezlraliably than
others. Our algorithm should automatically be able to befrelin the same proper-
ties, and probabilistically favour measurement of stiatdly trusted candidates with
their ability to reduce ambiguity in hypotheses. We havelemented a straightfor-
ward feature statistics capability within MonoSLAM to seqtially record the average
number of locations in an image similar to each of the mappatlfes, counting suc-
cessful and failed match attempts in the feature’s truetimecaThis is used to assess
false positive and false negative rates for each featutd@miihe current type of scene
(e.g. office, garden). The results shown in this chapter aidetnonstrate the effect of
efficient and robust matching without prior knowledge of ém@ironment that SLAM
is performed, so the false-positive and false-negativesrathich have been used are
uniform for every feature considered.
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It is worth noting that in all the experiments presented, dtiength of the mea-
surement noiseg() is assumed to be constant across all features. While inaiegd
features with strong texture are likely to be matched witatgr subpixel precision,
this approximation is not expected to affect significanklg the final outcome or the
order of measurement. Alternatively, one could determimegpropriate value for
eachR; using the learned feature statistics. If however multies¢eatures are used,
then greater care should be taken in evaluaging incorporate knowledge about the
scale that each feature has been detect&g steould no longer be assumed to be con-
stant. In general, when using a realistic valueEpm the measurement model then
Active Matching is expected to provide an accurate matchitgome.

5.4.2 Mutual Information for a Mixture of Gaussians Distrib ution

In order to assess the amount of information that each catedjéfeature, Gaussian
measurement pair can provide, we predict the post-searctummiof Gaussians de-
pending on the possible outcome of the measurement:

1. A null search, where no template match is found above a threshold. Theteffe
is only to change the weights of the current Gaussians in thiura into A/’

2. Atemplate match, causing a new Gaussian to be spawned with reduced width
as well as re-distributing the weights of the all Gaussidrti@®new mixture to
Al

In a well-justified assumption of ‘weakly-interacting Gaias’ which are either
well-separated or have dramatically different weights, sgparate the information
impact of each candidate measurement into two componeajdyifcrete Captures
the effect of the redistribution of weights depending on ¢karch outcome and (b)
lcontinuousdives a measure of the reduction in the uncertainty in théesyon a
match-search. Due to the intuitive, absolute nature of alutifiormation, these terms
are additive:

| = lgiscretet Icontinuous (5.11)
One of either of these terms will dominate at different stagfethe matching process,
depending on whether the key uncertainty is due to discratgguity or continuous

accuracy. Itis highly appealing that this behaviour areg®matically thanks to the
MI formulation.

Mutual Information: Discrete Component

Following the introduction to the notion of Mutual Infornia in Chapter 4, we con-
sider the effect of a candidate measurement purely in tefthe change in the weights
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of the Gaussians in the mixture. Restating Equation 4.8 thighrelevant symbols, the
mutual information that a candidate (predicted) measunémés predicted to provide
is:

1(zj;z1) =H(zr) —H(z7|Z)). (5.12)

Given that the search outcome can have two possible stai#sofrmatch-search),
then:

lgiscrete= H(zr) — P(zj=null) xH(zr|zj =null) (5.13)
— P(z; = match x H(zr|zj = match , (5.14)
where

K 1
H(zr) = Ailog, — (5.15)

i; | A

K ) 1
H(zr|zj=null) = iZlAi Iong—i, (5.16)

K+1 Y 1

H(zr|zj = match = i; A Iogz)\—i// . (5.17)

While the weights of Gaussians currently in the mixture azaaded byA;, the
notation A/ and A/ stands for the predicted weights after a failed and a suftdess
search, respectively. These predicted weights are cédcuissing the mixture-update
Equation 5.10 with the only difference that the likelihooaosuccessful search is
summed over all positions in the search-region that caritggsseld a match.

Mutual Information: Continuous Component

In Section 4.3 we have discussed the Mutual Information (¢Eveen one candidate
and the rest visible in the scene as the essential prolabitieasure of measurement
value. Following the single Gaussian formulation, we degan efficient expression
for the mutual information in bits between any two partisoof the state vector in
Equation 4.25. Hence, the continuous component of the rimfieemation of a par-
ticular candidate paifz;, G;}, is calculated using Equation 4.31:

lcontinuous= Am ! (j;2r) = %A%IOQW ; (5.18)
whereA// denotes the predicted weight of the Gaussian to be spawoedtfre suc-
cessful measurement of this candidate. Also, the entrigsaofl its sub-blocks in the
above expression, correspond to the current innovatioar@oce matrix ofs;. This
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captures the information gain associated with the shriakdghe measured Gaussian
thanks to the positive match: if the new Gaussian has halfigterminant of the old
one, that is one bit of information gain. This was the only Mint considered by
Davison [2005] but is now scaled and combined with the disccemponent arising
due to the expected change in thalistribution.

Generally, an important aspect of the algorithm that is iwermphasising, is its
fully dynamic nature allowing a general, adaptive behavidthis is to be accounted
to the fully probabilistic maintenance of the mixture, bisicethe way these predictions
are made on the shape of the mixture to guide decisions fosunement. Defying the
need for arbitrary scaling of weights, we combine the digecesnd continuous terms
of Mutual Information to take account of the expected vaoiat in the distribution
relying on the probabilistic predictions and Informatiohebretic principles to drive
the matcher towards efficient and robust performance.

5.5 Results

We present results on the application of the algorithm téufeamatching for several
different situations within the MonoSLAM system of Davisenhal. [2007] for real-
time probabilistic structure and motion estimation, asuksed in Chapter 3. After
discussing initial results in this section, we give a dethinalysis of how performance
varies with different factors in Section 5.6.

In most cases where MonoSLAM has been applied (for exampleagking the
motion of a hand-held camera in an indoor scene for use in antgd reality), the
angular term is dominant in the motion uncertainty’s eff@etimage search-regions,
since clearly, it is much easier to induce fast feature motf@ough rotation than
translation. Note that this fact has been harnessed dirgctiecent state of the art
visual SLAM results like in the PTAM system of Klein and Muyr§2008], where
an explicit multi-stage tracking pipeline first performsnpie but effective camera
rotation estimation before tracking features to estimatsep We would hope that
Active Matching would be able to exhibit similar behaviout@matically.

5.5.1 Algorithm Characterisation

Our Active Matching algorithm simply takes as input from M&LAM the predicted
stacked measurement vectgr and innovation covariance matrix for each image
and returns a list of globally matched feature locationscihire then digested by
MonoSLAM's filter.
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(a) Fast motion at 15Hz (b) Slow motion at 15Hz

Figure 5.8: Active matching (AM) dramatically reduces image procegsiperations and
mismatch encounters while still achieving global matchingsensus. Here is a superposition
of the individual gating ellipses searched in order to geteecandidates for outlier rejection
by JCBB (large, green ellipses) and the yellow ellipsesceat for our Active Matching [Chili
and Davison, 2008a] method. In these frames, joint comitigtibeeded to search.8x more
image area than active matching in (a) argbdin (b). Moreover, the ‘intelligent’ guidance of
where to search in AM, pays off in terms of the matches en@vedt(yellow blobs) avoiding
introducing unnecessary confusion in the system with theeratches (green blobs) encoun-
tered in JCBB. Note that while typically AM needs to searchmatst one ‘large’ ellipse as
shown in (a), in the case of a failed match-search like thadh (b) there is no evidence
to reduce the rest of the search-regions further, resultingmplate matching across another
large ellipse foiFs. This demonstrates the adaptability of the methodologyfterdnt match-
ing conditions, permitting the revisit of hypotheses upaeklof evidence.

5.5.2 Initial Sequence Results

Two different hand-held camera motions were used to captoage sequences at
30Hz one with a standard level of dynamics slightly faster thathe results of Davi-
son et al. [2007], and one with much faster, jerky motion. B®bAM’s motion
model parameters were tuned such that prediction sear@nsegere wide enough
that features did not ‘jump out’ at any point — necessitatintarge process noise
covariance and very large search regions for the fast sequéiiwo more sequences
were generated by subsampling each of thid 88equences by a factor of two. These
four sequences were all processed for 11 features per fraing Active Matching.
As a means of comparison, the same sequences have also beesspd with the
combination of full ellipse-searches of standard MonoSLaM the JCBB method of
Neira and Tardos [2001] to prune outliers. In terms of aacyrActive Matching was
found to determine the same set of feature associationsBB d€ all frames of the
sequences studied. This observation confirms that the @assspawned throughout
the process of matching in each frame, were placed arouniddhrect’ matches, and
also that the weight-scaling of the different hypothesesb®en consistent with real-
ity; if a Gaussian had got a low weight without enough evigeofit being an unlikely



5.5 Results 89

. . No. pixels searched Max no. live
One tracking step | Matching only [relative ratio] Gaussians
Fast Sequence abHz (752 frames)
JCBB 56.8ms 51.2ms 40341 [8.01:1] -
AM 21.ans 16.1ms 5039 o 7
Fast Sequence abHz (376 frames)
JCBB 102.6ns 97.1Ims 78675 [8.27:1] -
AM 38.1ms 30.4ns 9508 — 10
Slow Sequence &MHz (592 frames)
JCBB 34.9ms 28.Mms 21517 [6.89:1] -
AM 19.5ms 16.1ms 3124 o 5
Slow Sequence a6Hz (296 frames)
JCBB 59.4ms 52.4ms 40548 [7.78:1] -
AM 22.0ms 15.6ns 5212 T 6

Table 5.2: Statistical results of matching 11 features per frame wikh and JCBB. While
both methods achieve successful resolution of consensa$i four sequences, Active Match-
ing achieves fewer pixels(minimum ef 7x less) searched leading to lower matching timings
and lower overall tracking timings. The ‘Fast Sequence &tZ% evidently the most chal-
lenging one, requiring a maximum of 10 Gaussians to reptékersearch-state at a particular
instant.

scenario, then it could be mistakenly pruned off the mixttesulting in missing some
of the correct matches in the final, accepted result. Thiglights the importance of
our fully probabilistic weighting scheme but also the guida of matching using the
mutual information cues to measure the most reliable aroirimdtive features first —
it would not be a sensible strategy to search for a very comieature (with a high
false-positive rate) when there are more distinctive festypresent, or implode the
weight of the searched hypothesis after a null-search ofdyheecognisable feature
(low true-positive rate).

The key difference of the two algorithms was in the compateti requirements
as shown in Table 5.2. The main result here is the ability dfvédviatching to cope
efficiently with global consensus matching at real-timeesjze(looking at the ‘One
tracking step’ total processing time column in the tabledrefor the very jerky camera
motion which is beyond the real-time capability of the staadsearch all ellipses and
resolve with JCBB’ approach whose processing times excealdtime constraints.
This computational gain is due to the large reductions iratrerage number of tem-
plate matching operations per frame carried out duringufeasearch, as highlighted
in the ‘No. pixels searched’ column — Global consensus niiagchas been achieved
by analysing around one eighth of the image locations nebgathndard techniques.
(JCBB itself, given match candidates, runs typically in Jpesframe.)

Testing fewer pixels for a template match, has the immediffiect of fewer
matches being encountered. Guiding the matcher to ‘look'asgfully selected (re-
duced) regions, we avoid introducing additional confug@mthe system by extra false-
positives improving the odds of converging to the true assion scenario. A compar-
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ison against RANSAC should have similar or worse than witBBsince the matcher
would probably search into larger, fixed-sized windows toiee a globally consis-
tent outcome. The dramatic reduction in the area searclyather with the matches
encountered by the two techniques are overlaid on frames tin of the sequences
in Figure 5.8.

In all the experiments presented in this work, we have usedsthi-Tomasi cri-
terion [Shi and Tomasi, 1994] to extract the features trdckdowever, our Active
Matching algorithm is not specifically tied to any partiaui@ature detector/descriptor.
While SIFT [Lowe, 2004] or SURF [Bay et al., 2008] featuresulgbbe particularly
useful for matching due to their highly descriptive andiditive nature (especially
in the presence of only weak priors) the cost associated thtin extraction renders
them unsuitable for frame-rate matching (depending ontimetrer of features tracked
per frame). However, Active Matching could potentiallyoall standard use of sophis-
ticated descriptors in tracking, since they need only béiegfocally in small search-
regions. Despite the somewhat lower quality alternatikes3hi-Tomasi, FAST [Ros-
ten and Drummond, 2005, 2006] features or the randomised fdassifier [Lepetit
and Fua, 2006] as used by Williams et al. [2007], could be espdhlly effectively
in matching — allowing denser frame-to-frame correspordescenarios studied in
Chapter 7.

5.5.3 Computational Complexity

We have seen that active matching will always reduce the eumbimage process-
ing operations required when compared to blanket matctéhgmes, but it requires
extra computation in calculatinghere to searclat each step of the matching process.
The sequence results indicate that these extra compudadienmore than cancelled
out by the gain in image processing speed, but it is apprgpt@aanalyse of their
computational complexity.

Each step of the algorithm first requires Ml efficiency scdrebe generated and
compared for up to th&F measurable combinations of features with current live
Gaussians (note thadt is the total number of Gaussians live at any instant during
matching, whileF denotes the corresponding total number of measurablerésatu
Each such combination is evaluated for the Ml it is predidigrovide, requiring
computation of orde©(K) for the discrete component a@{F?3) for the continuous
component using the expression of Equation 5.18 (the datants can be computed
by LU decomposition or similar). The constants of propardility are small here
and these evaluations are cheap for low numbers of featadidzstes. However, this
complexity becomes the weakness of the algorithm with cegarhigh numbers of
features, as addressed in the following section. The nunftsteps required to achieve
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(a) Matching at 7.5Hz (b) Matching at 30Hz

Figure 5.9: Typical images from the detailed performance analysisttedt Both (a) and (b)
illustrate the search-regions for matching with AM and JGE&n tracking at BHzand 3MHz
respectively. At low frame rates the search-regions amgeléo allow for bigger prediction
error, resulting to more matching ambiguity. In both caged,shrinks the searched area with
respect to the initial prior that methods like JCBB need tarcle, however this reduction is
less evident at higher frame rates.

global matching of all features will be arould-, whereK is the average number of
live Gaussians after pruning.

5.6 Detailed Performance Analysis

In order to assess the performance of Active Matching inillgta have generated a set
of experimental sequences by taking a high frame-rate irregeence (with resolution
of 512x 384) and down-sampling temporally to generate reducedoresrs Varying
both the frame-rate and the number of features being trapkeframe, we generate
a matrix of experiments to form a test-bed of the performawfcActive Matching.
Typical images are shown in Figure 5.9.

5.6.1 Performance with Varying Frame-Rate and Number of Fetures

In this analysis of the computational performance of Acletching, we consider the
average time consumed per frame in terms of the main stagies afgorithm. Namely,
within each matching step it is necessary toefialuatethe mutual information that
each candidate measurement is predicted to provide folldweii) measurementof
the selected candidate (by correlation) and finally (i@ thpdate of the mixture of
Gaussians according to the measurement result.

For the sake of comparison with the ‘get candidates firsglvedater’ methods,
we monitor the computational time needed to perform JCBBRaiAgthe timings are
considered in terms of the time consumed to perform the twia staps of the method,
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Figure 5.10: Statistics gathered while tracking a78Hz using Active Matching (AM) and
Joint Compatibility Branch and Bound (JCBB). Carefullyesgting where to look for matches
pays off for Active Matching which needs to search dramdgidawer pixels per frame than
JCBB as demonstrated in (a). Also, constantly refining thecberegion for each feature
avoids encountering unnecessary false positives, whitteisase with Joint Compatibility as
shown in (b).

namely to (i)get the candidate matchedor each feature (by correlation) and (ii)
resolvetheir consensus.

Fixed Frame-Rate; Varying Number of Features

Increasing the number of features tracked per frame meanththmatcher is equipped
with more evidence to aid the resolution of ambiguities, andeneral it has been
shown that tracking many features is key in obtaining moeeigion in pose estima-
tion [Klein and Murray, 2008] and therefore is clearly dabie. On the other hand,
more time needs to be consumed to process the extra infomeatailable. In order to
study how much more time is needed we recorded timings whilging the number
of features matched per frame when tracking a particulanesgzp. Time breakdowns
for both Active Matching and Joint Compatibility are showrFigure 5.11.

Our results show that Active Matching scales badly with éasing number of
features and the step dominating the time consumed is theafinformation calcu-
lation of the candidate measurements in order to selecthaie to measure next.
This is explained by the fact that every new feature addedhénsistem introduces
a new candidate measurement &ach Gaussian present in the mixture. Therefore,
Active Matching has more candidates to choose from, edpeaica highly ambigu-
ous scene where there are many Gaussians present (i.e. lowtframe-rate case in
Figure 5.11(a)). Evaluating the MI of each candidate inesla prediction of how the
MoG will evolve in both cases of a successful and a failed mesgent of the cur-
rent candidate. The estimation of the continuous MI partartipular, translates into
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Figure 5.11: Computational time breakdown for AM and JCBB while varyihg humber of
features matched in the7®Hz (top row) and at 3Bz (bottom row) sequences. Active Match-
ing scales badly with increasing number of features mainly t the constantly expanding
cost of the evaluation of mutual information of all the maasonent candidates. Joint compati-
bility on the other hand maintains better performance wherereandidate measurements are
available but its performance is also far from real-time thuthe increasing number of pixels
needed to test for a template match.

the potentially costly handling of big innovation covagarmatrices — which expand
linearly in dimension with the number of features.

Joint Compatibility performs better with increasing numbgfeatures, but is still
far from real-time performance. Measuring more featuragdiates into more im-
age regions we need to search for template matches but aisotiply more false-
positives — hence the constantly increasing time needeetionmn correlation and
resolve consensus. In Active Matching on the other handesive are very selective
in the areas we look for matches, both the number of mismateheountered and the
number of pixels searched remain very low even for large rarsbf features matched
as demonstrated in Figure 5.10.
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Figure 5.12: Tracking 20 features per frame. Decreasing the frame rate pigels need
to be tested for a match as shown in (a). This also means theg ambiguity is present
during matching as more mismatches are likely to occur a®dstrated in (b). When tracking
highly ambiguous sequences, more matching scenariospaiseame, hence the mixture of
Gaussians needs to be populated with more members as cahiirif@d, in order to accurately
reflect the search-state at every instant.

Coping with Ambiguity: Varying Frame-Rate; Fixed Number of Features

As the frame rate decreases and the search-regions ofdeaimwer bigger image area
it becomes more likely to encounter more mismatches peureatherefore compli-
cating the process of discovering consensus in the predietiror. This is evident in
Figure 5.12 where again, the number of pixels searched meatreally reduced us-
ing Active Matching and as a result so is the number of mishest@ncountered. As
matching becomes more ambiguous with decreasing framewataeed more Gaus-
sians in the mixture to accurately represent the differgmotheses arising, hence
the negative slope in the maximum and average number of laxes§ans in Figure
5.12(c).

Tracking a scene with a low frame-rate camera is the realarige for data as-
sociation algorithms since the amount of time elapsing betwconsecutive frames
is increasing, introducing larger uncertainty into thetesgs The uncertainty in the
camera position translates into inflated search regiongdoh feature in the image
plane.

5.6.2 Evolution of Mutual Information

Mutual information is what guides our matcher to select pigdly more informa-
tive measurements, avoiding areas of high ambiguity. Simeg@rocess of evaluating
the discrete and continuous parts for every candidate hers fi®ven to be the main
computational bottleneck of our algorithm, here we studyetiolution of the mutual
information throughout the matching steps of each framentmver the true value it
has at different stages during matching.

As demonstrated in Figure 5.14 at the beginning of matchirggtis no ambiguity
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Figure 5.13: Timings breakdown for variable frame rate matching of a tamtsnumber of
features using Active Matching and JCBB (tracking 20 feegyper frame in the top row and
40 in the bottom row). For around 20 features per frame, &dilatching is entirely within
real-time limits for all frame-rates whereas JCBB's peniance degrades at low frame-rates
since more time is needed to find the correlation matches.nwheking 40 features per frame
though, the costly evaluation of Mls pushes the time peréoroe of Active Matching lower.

in the mixture since we start off with one Gaussian with higicartainty (which is
directly related to the frame-rate of tracking). This isresgented by the dominant MI-
continuous presence during the initial steps of matchimgesthis part of Ml takes
account of the desire to improve the accuracy of the mostgimebGaussian. As
we obtain matches for more features, the MI-continuousedsas dramatically and
if any of the matches encountered is inconsistent with iexjsbaussians, new ones
are spawned to accurately reflect the ambiguous seareh-dtasuch cases, the MI-
discrete part comes in and sometimes takes over until bsthution of ambiguity and
high accuracy are achieved.

The more features we match, the more information we expeghito, always at
the expense of computational time. So is it really worth tfi@emeasuring one more
feature? How much more information lies in this candidatasoeement? A good
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Figure 5.14: Evolution of the continuous and discrete components of Mtftferent frame
rates, throughout the matching steps followed during AMrragerage frame. In both (a) and
(b) the two MI parts are shown stacked on top of each other teodstrate the contribution
that each has to the total Ml in the mixture at any given stepe Tontinuous-Ml is the
dominant factor during the initial steps of matching, esplgcwhen tracking at ¥5Hzin (a)
where there is more uncertainty present. As features galisec one-by-one, the uncertainty
in the MoG decreases, but as soon as we start encounterimgsistent measurements, more
Gaussians are spawned resulting to an increase in the Riddigoart which aims at resolving
ambiguity. In both (a) and (b), the total Ml tails off smoatlfhotice the difference in scale) as
the matcher encounters more measurements.

MUTUAL INFORMATION IN THE MoG, per MATCHING STEP: 30 Hz
80

70

@10 features
[0 30 features
0 B 50 features
170 features

@
=}

MI-TOTAL (BITS)
IS
(=]

w
=]

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
MATCHING STEP

Figure 5.15: Matching many features is informative. But how much moreinfation is a
new measurement expected to give? This figure shows that dhe time features we match
per frame, the more information we expect to get during tlitelrsteps of matching. After
matching has progressed for a number of steps though, theddépt in the mixture does not
decrease significantly.
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answer to this question depends on a plethora of factorsiréeeharacteristics, camera
dynamics, speed of processor, etc. The evolution of thérattual information in the
mixture can be a representative measure of the value thattemraeasurement can
have in the current search-state. Figure 5.15 demonsttatealthough initially there
is higher mutual information to be gained for a bigger nurabaf features, as we
proceed with matching features one-by-one the total-Mbage@xponentially. During
the initial steps of the process, the evaluation of predidtés is key to the algorithm
since most of the uncertainty and ambiguity in the sceneagstived. Measuring an
extra feature after a certain stage though does not redaaettertainty of the current
search state very much more. Thus, predicting which featiltgorovide the most
information to measure next does not have any significamicefin the subsequent
result of the algorithm.

These observations and conclusions are exploited in Gh@pterefine our Ac-
tive Matching method so that it can dynamically adapt itfqgrenance according to
the number of features and ambiguity in tracking, achievingroved computational
performance.

5.7 Conclusions

This chapter has demonstrated how Active Matching, usingxaune of Gaussians
formulation, allows global consensus feature matchingaaged in a fully sequential,
Bayesian framework. Information theory plays a key role udgng highly efficient
image search and we can achieve large factors in the redusfionage processing
operations.

While our initial instinct was that the algorithm would be sha@owerful in match-
ing problems with strong priors such as high frame-ratekirecdue to the advantage
it can take of good predictions, our experiments with lowanfe-rates indicate its
potential also in other problems such as recognition. Thergon absolute feature
locations will be weak but priors on relative locations mtl ke strong.

In an attempt to unveil the bottlenecks of the algorithm imparison to standard
‘get candidates first, resolve later’ approaches like JOB8discussed an evaluation
of the performance of Active Matching via extensive testiogvariable number of
features tracked per frame and different frame-rates.flgrieur results indicate that
the full Active Matching algorithm, despite maintainingl¢ime performance for dif-
ferent frame-rates and relatively low numbers of featusrdame (around 20), scales
badly when this number increases mainly due to the manipulatf large matrices
during the calculation of mutual information.

Following a detailed discussion of the value of mutual infation in the course of
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the algorithm, we observed that carefully selecting whightdire to measure at each
step (guided by mutual information) plays a key role durimg initial steps of match-
ing where most of the uncertainty and ambiguity in the systgets resolved. Based
on this extensive analysis on the performance of Active Matcand the conclusions
drawn, Chapter 7 explores hew avenues towards a more ssahthing algorithm
able to track even more features, faster.

From a more general point of view, we believe that mutualrimfation has yet a lot
to provide in high frame-rate tracking — the motion priors srdeed stronger then but
the limited processing time available makes the task ofuresoallocation in matching
even more challenging. Our long-term aim is to develop fatiglable algorithms via
the active matching approach which will be able to perform llest matching job
possible given a certain computational budget. For ingtastate of the art optical
flow algorithms [Zach et al., 2007] are now able to producé-tiege matching for
every pixel in an image when running on the latest GPU harewd hierarchical
active approach may permit such dense matching perforntartme approached with
much reduced computational requirements.



Inferring the Hierarchical
Structure of Visual Maps

In SLAM, it is well known that probabilistic filtering approhes which aim to esti-
mate the robot and map state sequentially suffer from pompatational scaling to
large map sizes. Various authors have demonstrated teairtitilem can be mitigated
by approximations which treat estimates of features irediffit parts of a map as con-
ditionally independent, allowing them to be processed rsgply. When it comes to
the choice of how to divide a large map into such ‘submapsjghitforward heuristics
may be sufficient in maps built using sensors such as lasgesfamders with limited
range, where a regular grid of submap boundaries perforriisWith visual sensing,
however, the ideal division of submaps is less clear, sirm@ngera has potentially un-
limited range and will often observe spatially distant partta scene simultaneously.

This chapter presents an efficient and generic method forraattcally determin-
ing a suitable submap division for SLAM maps as proposed ili[@&d Davison,
2009a], and demonstrates the application of this pariitpicriterion to visual maps
built with a single agile camera. The mutual informationvizn predicted measure-
ments of features is used as an absolute measure of camelatid highly correlated

99
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features get clustered into groups. Via tree factorisatiomnare able to determine not
just a single level division into submaps but a powerfullyfllierarchical correlation
and clustering structure. The analysis and experimentaisied reveal particularly
interesting structure in visual maps and give pointers toengdficient approximate
visual SLAM algorithms.

6.1 Introduction

As a moving camera (or multi-camera rig) explores its emrinent, each measurement
of the image location of a repeatably observable scenerteatovides a probabilis-
tic constraint on its location relative to the camera. It slivunderstood that many
such measurements captured over a long image sequenceplimetion with the as-
sumption that most elements of the scene are static, suffipermit stable estimates
of the camera’s 3D trajectory as well as a 3D map of the lonatiof the observed
features. The most accurate solution to this estimatiobleno will be obtained by a
batch optimisation approach which seeks the estimateshvaiz most globally con-
sistent with the measurements. This methodology is knowuasdle adjustment in
the photogrammetry and computer vision communities, asdiged in Chapter 2, and
has been generalised by SLAM researchers in graph optionisitameworks which
are able to incorporate all types of sensory input [Thrurl.eR805; Dellaert, 2005].

6.1.1 Sparsification for Real-Time Visual Mapping

The natural emphasis in robot vision has been on visual ikat@n and mapping
methods which are able to run not as off-line optimisationdsisequential procedures
potentially implementable in real-time on modest computiardware. Real-time op-
eration inevitably requires some form of approximation marsification of full global
optimisation, since it soon becomes infeasible to repéafiatl a globally optimal
solution based on the ever-growing volume of data acquiad & live camera. More-
over, the increasing demand for denser maps and extendedagavover larger areas,
drives research towards more agile manipulation of big ldatads since the complexity
of maintaining full probabilistic maps threatens realdigperformance.

Real-time methods for camera motion estimation like theke@f Mouragnon
et al. [2006] and Nistér et al. [2004], can be classed asalisdometry, choosing
to ‘forget’ information from past measurements beyond dirsj time window. In
essence, the focus there is on local motion estimationréthe the maintenance of
a complete probabilistic map of all visited scenes. Theltésindeed highly accu-
rate local motion estimates due to the ability to cope withrgd number of feature
measurements per frame, but on the other hand, such methibeilsfeom drift over
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Figure 6.1: Sparsifications of the complete graph for large-scale SLARNe most accurate
solution to SLAM is global off-line optimisation (bundle jadtment), but real-time systems
need sparsifying approximations to cope with the expandiag. Solutions include splitting
the map into local submaps to process separately like irrg#atet al., 2005; Bosse et al.,
2003] or discovering approximate global tree-like struet(e.g [Frese et al., 2005; Paskin,
2003]). These methods work well when they capture the mgsbrtant correlation structure
— but the question of identifying suitable sparsificatiamgisual maps remains.

extended sequences. This problem has recently been sudlgasstigated by the use
of ‘keyframes’: a subset of representative images and capases selected from the
continuous stream and subject to global optimisation with fest of the trajectory
related to these. Both the PTAM monocular system of Klein lshodray [2007] and
the FrameSLAM stereo system of Konolige and Agrawal [2008jehdemonstrated
impressive performance.

Alternative real-time methods for visual mapping basedemuential probabilistic
filtering (e.g. [Davison, 2003; Eade and Drummond, 2006bY) @ ‘summarise’ the
information gained from past images with a probabilistatest This uncertain estimate
of the camera and map state can be combined with the infamftm each new im-
age in a weighted average of fixed complexity at each timg-$téurns out however,
that the accurate probabilistic representation of unc#ytavhich is required here is
computationally expensive in a way which scales poorly i number of mapped
features. For this reason methods such as in [Davison, 2008]map features rela-
tively sparsely. The most successful solution to this @wbhas been, as in real-time
SLAM research using other sensors (e.g. [Bosse et al., Bifxke and Roberts, 2007,
Chong and Kleeman, 1999; Kaess et al., 2008; Tardbs etCil2]R to split a large
map into several conditionally independent visual submalpieh can be processed
separately (e.g. [Clemente et al., 2007; Eade and Drumn®9@¥,; Piniés, 2009]).
Perhaps the most successful approach has been the s@tbitieal-time monocular
SLAM system of Eade and Drummond [2007, 2008] which connsglsnaps (here
called ‘nodes’) with a higher level graph structure estintatheir relative locations.
Their method has been discussed extensively in Chapter 2.

So keyframes or submaps are sparsifying approximationshytegrmit real-time
implementation of globally consistent mapping. But in thee of either keyframes or
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(a) Close-up

(d) Close and far features visible at the same time

Figure 6.2: Visual tracking in a cafeteria, studying the regions of ceamaotion within which
features are observable. The features on a table can alighigagithin a small distance from it
asin (a). Moving back a little in (b), some more features carteethe field of view permitting
camera motion estimation over a bigger area. In the sameth@&yamera can track its path
along the cafeteria in (c) using the features observabla ach pose. This might seem a
straight-forward sub-mapping scenario, but what happdrmenwhere is also a window as in
(d)? The camera’s infinite range makes features in both tfegjfound and the far background
visible at the same time, which makes an ideal submap divisis clear.

submaps, there remains the question of how to choose tltatiidas and scope.

6.1.2 The Special Character of Visual Maps

A little consideration makes it clear that visual sensingdsin general conducive to
a straightforward division of a scene into block-like sulps#or the purposes of effi-
cient map processing, as has proven successful with othsorse Laser range-finders
and sonar sensors have strictly limited ranges of measumteraed setting submap
sizes which relate closely to this is a sensible strategy atufes located farther apart
than this range will not be simultaneously observed. Thex®ther potential heuristic
strategies for the choice of submap boundaries: an uppemdbom the number of fea-
tures, or bounded uncertainty (or deviation from lineaai¢yin [Eade and Drummond,
2007]) within a submap. In keyframe approaches, all of trenscelements visible
from a particular camera pose are implicitly grouped togefbr the purposes of esti-
mation, independent of their distance from the camera. ddmiscope with a range of
depths, but is still a somewhat arbitrary grouping.

Consider for instance the example of a large, cluttered r(garhaps a cafeteria),
browsed and mapped by a mobile camera carried by a robot svipas in Figure 6.2.
The camera will view parts of the room from different distasndo obtain different
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levels of detail: a table may be framed from close-up, or gr@&ra may move even
closer to inspect particular objects. The periphery oféhdésws though may simul-
taneously be filled with distant walls or even the outsidenedeeyond the windows.
Different features in a scene tend to have more stronghetaied estimates in a map
when they are regularly co-observable by the moving sebsobthis is not always the
case if they give different information about camera lamati Similarly, features in

almost the same scene location but measured from diffeegné@ positions may be
uncorrelated.

6.1.3 Determining Hierarchical Map Structure

The simple tracking scenario of Figure 6.2, demonstratestied for a general and
dynamic criterion to place submap divisions when dealintp wisual maps. Basing
decisions solely on the co-observability of features iaut{einsufficient, while more
ad hoc thresholds limit the applicability of algorithms andst often lack the insight
of a theoretical investigation. Here, we explore the besefithe application of Infor-
mation Theory in this context, to drive map partitioning.

Our investigation leads to the emergence of a straightfiahaad absolute measure
for the level of correlation between features in a mappirpado based on the mutual
information of predicted measurements. We show that thisnaatic inference of
structure can easily go beyond a single level of submapsdaagea full hierarchy
of correlation relations via a tree decomposition. In faegny of the most exciting
recent approximate but super-efficient SLAM algorithmsefe, 2006; Paskin, 2003;
Paz et al., 2007a] are tree-like in nature, showing the ptiiegives.

The tree structure encodes a hierarchy of correlationgdwetiveen features which
permits their grouping into sets with a user or applicasettable coarseness or fine-
ness, from one extreme where all features are consideredggandent and unrelated
to the other where they will all be grouped together. In betwefeatures will be
accumulated into clusters which gradually join into a stnghole.

It is important to understand that the hierarchical stmectuhich this method dis-
covers is that of th@robabilistic map not a fundamental property of the scene itself.
The structure depends on the motion of the camera, priorshwhé have about how
the camera moves, and its imaging properties such as riesoluid field of view. In a
map built using an omnidirectional camera, for instance night expect simultane-
ously observable features on opposite sides of a robot tecadarly highly correlated
in measurements and that they would be clustered togethéde iw a map built using
a camera with a narrow field of view they would be distant intilee. We consider
that this dependence on the specifics of the camera and miststrength of the
approach, not a weakness.



104 Inferring the Hierarchical Structure of Visual Maps

6.2 Feature Correlations in Mutual Information Space

In order to achieve high quality approximations, we mustkhin terms of preserving
the most important correlation structure of the SLAM map.ingghe Information
Theoretic framework discussed in Chapter 4, here we tramstarrelations between
individual image feature measurements into the mutuakin&ion (MI) space. Ml
can be understood as an absolute, normalised measure ekedeaigcorrelation and
more precisely, the pairwise Ml as defined in Section 4.3stidees the amount of
common uncertainty (entropy) shared between two candidatsurements.
Following the notation for probabilistic SLAM filtering ofiage sequences intro-
duced in Chapter 3, we consider making image measuremeatsogie of which the
current state of knowledge is modelled by a probabilityriistion over a finite vector
x stacking camera and map parameters. When a new image aw&esn project the
current probability distribution over the state paramekeinto measurement space to
predictthe candidate feature measurements from the new viewpiiig.joint proba-

bility distribution p(zr) describes the entries of stacked veapr ( 1 2o ... )T

containing all predicted candidate feature measureméats mean vectdt; contain-
ing their predicted image positions and the innovation dawae matrixS encoding
the variance in these predictions.

Equipped with this set of predictions we can assess thegitrasf correlation
between individual candidates — essentially asking ‘hovelmn average, does mea-
suring one feature tells us about the others?’. In Chaptee hawe seen how this
joint prediction can be used for probabilistic data asgmria(matching), in either
batch [Neira and Tardos, 2001] or sequential [Chli and Bawvj 2008a] forms. How-
ever, here we are interested in frarwiserelationships between the candidate feature
measurements (rather than the relationship of one feahar¢he set of the rest of the
visible features in the frame) with the aim of understandimgstructureof correla-
tions and therefore the scene.

In order to convert the correlations between candidate anea®ntsz; and zk
encoded irs into the pairwise MI space, we use the expression derivedyjimion

4.35 and restated below:
|Sii || Sk«|

[Si|
Evaluating this quantity for every pair of candidate meaments, we can build
the MI matrix as described in Section 4.3.2. If the pairwisk IN;; z) is large, a
measurement far; is expected to tell us a lot about the predicted locatiomcdand
vice versa) suggesting the presence of a strong correlétikrbetween them. On
the other hand, if the two features have never been predioted-occur then their
common information content in measurement space will be. Zeenerally, when two

(zi;z¢) = %Iog (6.1)
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Figure 6.3: The projection of the MI matrix during real single-cameraeking in a cafete-
ria. Depending on the covisibility and the coherence of orothroughout the sequence, some
features build stronger correlations than others, as avidehe projected Ml links (quantities
shown in bits). For example, a potential measurement oftifead is predicted to give .9
bits of information to its neighbour B, whereas C is expedtedain only 06 bits from this
measurement. Indeed, due to the fact that both A and B liedrfahbackground, they have
been moving consistently throughout the sequence buildisgong correlation bond. How-
ever, while C has also been visible in all frames, its coti@tawith A has weakened through
time since it lies closer to the camera and moves incohgreiith A.

features have been regularly covisible throughout a satistmumber of frames in the
tracked video sequence they are usually strongly corgkldtewever, this stops being
true when the two features do not maa@herently each individual measurement then
gives different information about the camera motion, heheg correlation link grad-
ually weakens despite being co-observed. This fact confilaisthe elements of the
MI matrix encode the scene structure as perceived by thereatmeughout its path
— hence all processing to reveal the scene structure canseé loa the manipulation
of this matrix. Figure 6.3 demonstrates the visual propecof the Ml matrix built
using real data captured while tracking the camera moti@ndafeteria.

6.2.1 State Space vs. Measurement Space

All our Information Theoretic analysis of the value of elertgein the SLAM map
is performed in the measurement space (i.e. image spaceile Wis is an obvious
choice when applied to feature matching where all actioegalken in measurement
space, the most natural choice when dealing with the actagl amd its structure
would be to perform calculations in state space. Howevaregperimentation with
state space data has revealed drawbacks in this approactirgjfthe quality of perfor-
mance. In fact, the problem relies in taking into accountglodal uncertainty in the
map estimates. As the camera keeps exploring new areasnti@gainty in constantly
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Snapshot at Frame 60:

¥

(a) Map-view (b) State-space (c) Measurement-space

=

Snapshot at Frame 250:
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(d) Map-view (e) State-space (f) Measurement-space

Figure 6.4: Comparison of pairwise Mls in state and measurement spabies.top row
images are snapshots taken at Frame 60 while the bottom rowsponds to Frame 250.
The map-view in (a) and (d) are shown to scale in an attempeioastrate the growth in
uncertainty of the camera throughout the intermediate ésalfthe camera here follows an
exploratory trajectory). The rest of the figures illustréite projections of the pairwise M
links as calculated in either state-space or measurenpaces It is important to note that
while the thickness of lines corresponds to the strengtlingg] the MI scores computed in
state-space are two orders of magnitude larger than in measmt-space. So for the sake of
clarity, (b) and (e) share the same thickness scale butshigferent from the scale shared by
(c) and (f). While the link structure in (b) is fairly homogeous, in (c) we observe a more
interesting distribution of Ml strength. As the uncertgiimt the camera pose grows as shown
in (d), the state-space estimates of feature locationg aréeheavily affected, resulting to great
variations in link strengths due to discrepancy in globaifion estimates of feature locations.
In measurement space however, fiflativestructure remains much more stable throughout the
sequence while illustrating some detail of feature coti@is still. Since we are interested in
the relative uncertainties in the estimates of featuretiooa in order to understand the scene
structure, we conduct all our Information Theoretic anialg$ maps in measurement space.
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growing with newly initialised features inheriting mostibfMoreover, the inevitable
depth uncertainty of features in the map influences heawéystructure of the corre-
lations and subsequently the pairwise Ml links (computeskdaon state-space data).
As a result, while the structure of the Ml graph of pairwise IMks in measurement
space exhibits relative stability throughout the cameagedttory, the corresponding
link structure based on state-space data is far more iaegul the strength of links
is progressively enforced as more uncertainty accumuiateshe global feature esti-
mates, and there is also a large variance of correlationgitren these links resulting
from the partially initialised features (i.e. those witihga depth uncertainty).

Figure 6.4 depicts a comparison of the MI graph as obtainétyusoth state-
space and measurement-space estimates, for two diffemame$ of an exploratory
sequence. As the camera moves away from its initial positterstate estimate pro-
gressively becomes more uncertain and so is the probabitistp, having a big impact
on the state-space computations. Here, we are interested lielative uncertainties
and correlations of features with the aim of maintainingablg ‘representation’ of
the scene structure, in order to understand it. Therefoeegamduct our Information
Theoretic investigation in the measurement space, whiahllyshas the additionally
property of manipulating smaller matrices than in stat@esp

6.2.2 From a Single Frame to a Sequence

Our analysis on inferring the scene structure begins bystigating the distribution of
correlations between features in a single frame. Howeirezedhe goal is to expand
our understanding to the whole map, we can easily extend etinadology to cover
all the data gathered in the system throughout the sequéffrearees used to build this
map. Keeping a running average of the Ml links between featir the map, we can
accumulate information on features that were co-observaghainstant. It is worth
noting that at any frame we only need to calculate the Ml maifithe measurable
features in that frame, therefore the cost is tractableesali data needed is evaluated
in image space.

Depending on the nature of the scene and the camera motesirtitture of this
full MI matrix (containing average Ml links between all featuneghe map) will be
different — for example, in the case of a purely exploratagience this matrix will
be sparse since features viewed from spatially distantspegenever be co-observed.
On the contrary, when the camera browses a small scene ipyhoanner, we expect
denser configuration of Ml links as most features will be bsarved. Following this
formulation, we can then inspect the MI matrix built over thieole map to automati-
cally discover areas of high mutual information density.
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@)

(a) Complete MI graph (b) Chow-Liu tree approximation

Figure 6.5: The approximation of a joint PDB(z3, 25, .. . ,Zs) by second-order and marginal
distributions yields a tree. Here, (a) shows the completggfph where thicker links repre-

sent higher mutual information between the nodes they ainaead (b) is the optimal such

approximation maximising the total information preseruedhe tree as suggested by Chow
and Liu [1968].

6.3 Tree Factorisation

With the goal of unveiling the hierarchy of correlations eded in the Ml graph, one
can consider different graph structures that can poténfiabvide a ‘meaningful’ in-
sight into the structure of the complete graph. The treegotkia simplest such struc-
ture, here we consider how we can decompose the MI matrix riedactorisation.

A probabilistic estimate of the values of a set of variables z,,...,zn} given
background informatiomh is most generally specified by a joint density function over
all of those variables:

p(Z]_,ZZ,...,ZN): f(Z]_,ZZ,...,ZN) : (62)

One possible approximation to a general joint probabilépgity is the factorised form
below:

N—-1
p(z1,22,...,2n) = IO(ZN)” P(Zi|Zis1...2n) (6.3)

Q

N—-1
p(zn) I] P(zi|zit1) - (6.4)

Figure 6.5 shows that this approximation can be interprated tree-shaped model
of probabilistic links between variables (each link reprdsig a conditional density
function over just the two connected variables). Out of aigible such tree approxi-
mations, Chow and Liu [1968] showed that the one closestetduth joint probability
density can be found by considering the Mutual Informatietwkeen pairs of vari-
ables in this distribution: the optimal approximation of ttomplete distribution via a
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first-order dependency tree corresponds to the maximurmspatreé in the Mutual
Information space. The application of this conclusion im stene structure analysis
is straightforward, as we already have the MI graph of linksMeen the features in
the SLAM map. The optimal tree approximation in the M| spaeidi,be subsequently
referred to as the ‘Chow-Liu tree’.

6.4 Inferring Hierarchical Structure from the Tree

Have deduced an undirected tree structure linking the festthere remains the ques-
tion of how to use this to infer hierarchical clusters. Ongapwould be to somehow
choose a root feature and then *hang’ the tree from this. Bpsimg a number of lev-
els down from this root we could fix where to lop off branchdknades further down
each branch forming a cluster. Alternatively, we could udeeshold on the Ml scores
on branches of the tree, cutting all those weaker than aicesitue to divide the tree
into clusters. In experimentation, while this approachdwse nice properties it tends
to leave many features alone in clusters of one. We have alssidered expanding
this idea to progressively identify cliqgues of features levhowering the threshold of
MI link strength. However, despite the theoretical juséfion, in practice features
most often team up to a single cluster before constructiaditst clique resulting to a
single cluster.

Instead, here we propose a simple bottom-up procedure vibahares are pro-
gressively grouped in a manner similar to Chow and Liu’sinagalgorithm to build
the spanning tree. The goal being to identify image regidiggh mutual information
density, we consider an example whédéeatures have been tracked in a sequence of
frames and start joining features together. Figure 6.6 steoveal, simplified example
of the step-by-step building process of this tree.

We start off with every predicted-to-be-visible featurintyin a separate cluster
(or submap), as if these features were completely unceecklll off-diagonal entries
in the MI matrix would then be zero and therefore at this stagehaveN different
clusters. Jumping a level up the hierarchy, the aim is todiakh tree to the tree with
which it is sharing the strongest tie so that no cycles amdiuiced. Therefore, we
progress by examining all Ml links spanning out of each @ysind fuse the strongest
such link (avoiding loops) and the node it is connected to the cluster in question.
Identifying the new clusters forming from joining featurexyether in the previous
step, we define a new level in the hierarchy containing alesahd links participating
into clusters. Proceeding in the same manner, we reach pHewuel of this hierarchy
where all features are connected into a single clustendstiagly, all links ‘activated’

1The acyclic path connecting all nodes in a weighted graplefvpiields the maximal sum of weights.
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(e) Level 2: Features joint in a single cluster, Chow-Liu tree is created

Figure 6.6: Discovering regions of high Ml density by progressivelylbirg the Chow-Liu
tree in areal scene. Having computed the links of the compliégraph, initially each feature
is set to a different cluster as in (a). (Note: different tdus are denoted by different colours
and on the left of each row is a diagrammatic representafitiredeatures’ memberships into
clusters). In (b) each cluster attempts to join with the fe@lfdwing the strongest, outgoing Ml
link. This growing process results in the ‘activation’ of @bset of the links of the MI-graph
which is then used to define new clusters for the new hierdest®yas in (c). Since the features
have not yet joined into a single map, another growing protaees place in (d) which leads
to the completion of the Chow-Liu tree joining all featuresatsingle map, signifying the end
of the procedure.
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throughout this process and present in this final clusteespond to the links forming
the Chow Liu Tree. Moreover, the clusters in intermediatzdrichy levels correspond
to smaller parts of the Chow Liu Tree, where the density of vlregth is high.

DISCOVERCLUSTERS

Hierarchy leveh = 0: each feature in different cluster
while (number of clusters- 1)
Grow each cluster following the strongest, outgoing Ml link
DEFINE new level:h = h+ 1 corresponding to new clusters
end while

g b~ W N PP

Following the analysis to infer the scene structure in alsifiggme, we can ex-
pand this idea to a sequence of frames, keeping a runninggevef all Ml links, as
described in Section 6.2.2. We can then build the Chow Lie treer the whole map
to automatically discover areas of high mutual informatiamsity in a hierarchical
manner.

6.5 Results

We demonstrate this algorithm on several different visugbsgenerated from a hand-
held camera using a standard configuration of MonoSLAM [Bawj 2003; Davison
et al., 2007]. MonoSLAM uses the Extended Kalman Filter (EkdFincrementally
construct a probabilistic map of visual point features espnted by a single joint
Gaussian distribution as described in Chapter 3. At eachfrawe a subset of fea-
tures is selected for measurement based on whether theyealietpd to lie within the
camera’s field of view and whether the camera is predictee twithin a set of bounds
for each feature on motion (inducing scale changes and agrpvhere correlation
matching is expected to be possible. The innovation covegianatrixs is calculated
at every frame of during tracking with MonoSLAM as part of Hive feature match-
ing (data association) process so there is little additioamputational cost incurred
by our tree construction algorithm.

The following is an analysis of several single frames anémdéd sequences at
30Hz which draws attention to the behaviour of the algoritioninfer submap divi-
sions. While maintaining a full EKF map in MonoSLAM, we apgyr Information
Theoretic framework on a variety of tracking scenarios tmdestrate the generality
of the approach in providing an insight to the current mapcstire. Finally, we com-
pare the quality of submap partitions suggested via our Glhioveubmapping to the
Naive approach through a quantitative analysis.
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(a) Planar scene (b) Scene with different depths

Figure 6.7: Clustering features based on data obtained from a singieefr4a) is a typical
frame of the Keble College Sequence, tracking features emll. Since this is a planar
scene, the distribution of the mutual information betwesatdires, and therefore the clustering
result, is mostly according to image proximity. On the othand in (b) is a scene with more
interesting structure hence the clusters are also basdteatepth of features.

6.5.1 Single Frame Analysis

As a proof of the concept of the work in this chapter, we penied the simplest appli-
cation of our tree-based clustering; a Chow-Liu tree isthugsing data from a single
frame only.

Once the correlations between features have been setttbtharmap has con-
verged, then so have the mutual information links betweemthrherefore, by build-
ing the Chow-Liu tree we can infer clusters that are con@lyticonsistent. Figure
6.7 demonstrates the application of our methodology togaddeatures based on the
distribution of the pairwise MI links: while correlationratture is dominated by the
features’ proximity in image space in the case of a plananescile Ml links capture
some more interesting scene structure in the presenceroficamt difference in fea-
tures’ depth positions resulting to that distinction of kground/foreground clusters.

However, the main interest here is to infer meaningful andsistent submaps
through time, where features are constantly added, detsiddupdated in the map.
Hence in the following, we conduct an analysis on sequeniciaroes.

6.5.2 Sequence Analysis
Sideways Exploration

Here we analyse a segment of the image sequence of Clemeait¢28t07] taken by
a hand-held camera moving sideways around a large colleggdrapgle, moving at a
steady walking speed while observing a wall at approxingatehstant depth. We call
the sequence exploratory because the camera moves proeglseasd does not return
to previously visited positions in the segment (we do notsater large loop closure
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Figure 6.8: Discovering the map structure
of the sideways exploratory Keble College se-
quence (left). This hierarchy tree is build after
tracking for 2500 frames. At the root of the hi-
erarchy tree (top image) all features lie in a sin-
gle map. Moving deeper in the hierarchy each
map progressively splits into several submaps.
Here, the roughly uniform distribution of fea-
tures across the image and the constant speed
of the camera cause a uniform distribution of
MI links between features. Hence the forma-
tion of regular-sized submaps, as expected.

Figure 6.9: Submapping in a corridor se-
guence tracked with a forward-looking cam-
era (above). Here are two intermediate levels
of the hierarchy tree where features are visible
on both sides of the camera’s trajectory, so left
and right hand side features are grouped into
the same submap. The submaps formed here
have overlaps due to the covisibility of features
belonging to different submaps during track-
ing, in contrast to the Keble sequence clusters
illustrated in Figure 6.8 where submapping is
straightforward.

Note that the feature uncertainties are not displayed letaé sake of clarity.
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(a) Corridor Clusters in frame 184  (b) Corridor Clusters separate in frame 208

Figure 6.10: Typical clusters in the corridor sequence (note: in botlata) (b) the left image
corresponds to the camera view and on the right is the 3D pg&oceof the map). In this type
of sequence, the features on the walls closer to the cameraquickly in the image (and past
the camera) being observed from a wide baseline, hence et fjame their depth estimates
are much more accurate than the ones further away. Here, lthielkd of the features visible
in (a) hold them together into a single cluster (bright gleés the camera moves closer to the
end of the corridor, the depth estimates of the furthestfeatare gradually refined, causing
the break of this cluster into two separate ones in (b) — thiké point of ‘realisation’ that the
visible features no longer move coherently.

here). This sequence is of interest because its simpleenatakes the ‘ideal’ map

structure a clear case of approximately regular metricsitivi as implemented explic-
itly in [Clemente et al., 2007] by bounding the number of teas in each submap at a
fixed value.

Figure 6.8 shows the grouping of features at all levels ofthew-Liu tree forma-
tion; each feature belongs to a different submap at the $eaf/the hierarchical tree,
and then they gradually team-up to form a single map. Duedadhighly constant
speed of the camera and the regular presence of featuree ohgarved wall, the dis-
tribution of mutual information links is uniform and theoeé the clusters forming in
the intermediate levels of the hierarchy are fairly simitasize. This result agrees our
initial expectation, demonstrating the intuitive sounsmef this approach.

Forward Exploration

The next example is an exploratory sequence from a forwardirg hand-held cam-
era. The additional interest here is in the presence of feattiose to the centre of
expansion in the middle of the image which are very distadttherefore remain vis-
ible for long periods of time while the majority of featurasmards the edges of the
image quickly pass out of the field of view. This means thatgiven frame, the depth
estimates of the features on the walls closer to the camermare accurate (as they
have been moving more quickly in the image) in comparisoméoanes further away
— these in turn do become more certain when the camera mamses.cNow, since the
cluster memberships are purely a function of the corralatizetween features, unless
these correlations have converged the submaps will keemeigameaning.

Figure 6.10 shows an example where distant features neaettte of the image
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(a) Hierarchy Level 3 of 4

(b) Hierarchy Level 2 of 4

Figure 6.11: Discovering the scene structure of a loopy-browsing secgiém a cafeteria
with a window. (Note: left is camera view, right is the 3D mappeerceived by MonoSLAM at
the particular instant). Despite the apparent proximityringe space of all the visible features
in (a), their incoherent motion throughout the sequencetduke difference in parallax has
weakened some MI-links, leading to a clear distinction leetvbackground and foreground
features. In fact, itis evidentin (a) that image proximgywverpowered here by consistency of
motion. In (b) we see the same frame of this sequence, buteyegbthe clusters from a level
deeper in the hierarchy tree. Here, more cluster ‘grantylasiobservable, indicating regions
of even higher Ml density. Note here that features out of thelaw are also visible below the
level of the table.
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appear moving consistently in image space from the cameraipga), and therefore
they belong to the same cluster. As the camera moves clbsagxtra information has
refined the position and uncertainties of these featuresa Assult, some pairwise
correlations have changed causing a broken link right inntiddle of the cluster
separating the features on the left and right walls. Cleairlthis point, the Ml-links
reflect the fact that the two clusters no longer move cohremtd hence they get
clustered separately. Figure 6.9 is a full 3D-map view oftadl features tracked along
the corridor and the clusters formed. The difference wighrttap formed in the section
above is that features appear on both sides of the trajetiemy as the camera is
facing forward, and also there is overlap between clustestdte space due to their
covisibility in image space. In this scenario the ideal sapping solution is less clear
and the MI cues are truly helpful to uncover the scene stractu

Loopy Browsing of a Scene with Various Depths

Going back to the tricky cafeteria scenario used to explaimgethod in the beginning
of this chapter, here is an example of our clustering metippdied on a real cafeteria
sequence, which is indeed a scene with a substantial dispariepth. Figure 6.11
shows a typical frame of this sequence where both close-thyistant features are co-
visible from the same camera pose. Despite these two tydeatofes being covisible
and appearing close in image space from a single view, thiutghe sequence their
difference in depth causes them to move incoherently (irgenspace). Hence the
correlation between the two groups is gradually weakened time due to their dif-
ference in parallax and therefore they get clustered inragpaackground/foreground
submaps, as a human would very easily perceive. We considethis example high-
lights the true power of our method, since it demonstrateg the Chow-Liu tree of
the MI graph captures consistently the scene structuradagcount of a plethora of
interfering factors (i.e. camera movement, feature ddpthge proximity, etc) at the
same time.

Figure 6.12 demonstrates the clusters discovered in tvacanj hierarchy levels
which interestingly, seem to agree with the semantic megointhe features they
contain. As a future avenue of investigation, we would likeesmploy our submap
inference method described in this chapter, learn somdslétredifferent parts of the
SLAM map.

6.5.3 Quantitative Analysis

As a means of demonstrating the effect of selecting thearymstrtitions carefully, we
compare the results of Naive decisions to split the map withGhow-Liu tree based
inference method. The comparison is conducted for diftelerels of the clustering
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Hierarchy level 2 of 4 Hierarchy level 2 of 4

Hierarchy level 3 of 4
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Figure 6.12: Giving a semantic meaning to submaps. Here are two hierdest®ys of
clusters discovered while tracking the cafeteria sceneth®mop row, the structure of clusters
seems to agree with the semantic meaning of the type of Esathey contain, as suggested in
the manually added labels. On the bottom row, we can see hm& sbthese clusters joined
together to form bigger sets which again can be labelled awrshIn the future, we would
like to use the map-partitioning approach we propose heteam a semantic meaning of
clusters fusing appearance information in this proceste Mt in the camera view we only
project links shared between the features displayed, thowaye links have been active for the
discovery if these clusters.

hierarchy when tracking for 1000 frames in each of the secgseuiscussed in Sec-
tion 6.5.2. At the end of each sequence, we record the effgErtitioning the map
into an equal nhumber of submaps using both clustering scheidete that here we
use ‘Naive’ clustering to refer to the method of splittinge thhap into regular-sized
clusters of features, following the order that they wergafised into the system. The
result obtained following either approaches, comprisedusters within which all Ml
links between member features are preserved. Any linksdetvfeatures of different
clusters are ‘cut’ except from the strongest one, in ord@réserve some relationship
between clusters.

In essence, each scheme provides an approximation of thelesmjoint distri-
bution of the pairwise Ml links. As a means of comparing ther@ation structure



118 Inferring the Hierarchical Structure of Visual Maps

Hierarchy Level 2 of 3

Chow-Liu M| =2

Figure 6.13: Comparing the quality of our clustering method with Naivemapping. On
the left is the camera view with the features tracked in ttaae (colour depicts cluster mem-
bership) and on the right are the matrices of pairwise munfatmation links between all
features in the map built so far. Brighter pixels denotergjey mutual information links in
measurement space. The true matrix of all such links is aljgal in the blue box as the ‘Full
MI'. The other two matrices display approximations to thél Ml according to the submap-
ping scheme used. It is evident that our clustering methedquwes far more structure in the
distribution of Ml links rather than the Naive approach do¢hte careful selection of the clus-
ter partition. Here, splitting the map in two clusters witle tNaive approach we capture 55%
of all the links of the Full Ml whereas using our Chow-Liu tleased method we capture 81%.

preserved after the application of the two clustering s@®we superimpose the ra-
tio of the total pairwise MI preserved over the total paimvigl present before the
approximation, by summing the Ml links maintained in eachecaTable 6.1 shows
these ratios as percentages at each level of the hieraréhyubimg our clustering
approach.

For all three sequences, the highest hierarchy level qureis to all the features
lying in a single map preserving all pairwise Ml links, rasuy to no approximation
at all. In the lowest level of the hierarchy each feature caseg a different cluster.
However, since we are preserving the strongest Ml links betwany two clusters, the
result is the same, preserving again all of the pairwise Mddipresent in the initial Mi
graph. The results for the intermediate levels in the hignahowever demonstrate the
ability of the Chow-Liu based clustering scheme to captucstnof the Ml structure
and, as a consequence, most of the correlation structusergrim the full distribution.
In all cases of different sequences, the quality of the appration obtained using
the Naive scheme is inferior achieving lower percentagesmpftured MI. The biggest
difference between the two schemes is recorded when sglitti two the map built
for the scene with various depths: when submapping with thiweNapproach the
preserved MI links sum up to 51% of the total Ml present in thi&idl Ml graph,
whereas our approach preserves 85% of the initial distabutFigure 6.13 shows an
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Split in 4 submaps: Split in 3 submaps:

Chow-Liu MI

(a) Sideways exploration (b) Forward exploration

Figure 6.14: The distribution of pairwise Ml links before and after spfication using either
Naive or our Chow-Liu tree based clustering methods. In itieveays exploration sequence
the camera is constantly visiting new areas resulting tokbslike correlation of features within
the Full MI matrix as shown in (a). As expected, the Naive agpnation to the true distribu-
tion captures most of the map structure, however it doesgemimilar quality of results in the
forward exploration example in (b). There, the featuretdlised early in the sequence remain
visible for a long time, progressively building correlat®with features seen later on. Evi-
dently, our Chow-Liu based submapping approach capturesmore correlation structure
than the Naive case.

example frame of the sequence along with a visual repregamiaf the matrix of Ml
links before and after each approximation. The mostly egpdoy nature of the other
two sequences results in a sparser distribution of linkkiénnhap as demonstrated in
Figure 6.14 therefore the losses recorded for both appitidm schemes are smaller
in comparison to the ‘scene with various depths’ sequenddl, &en in the case
of the sideways exploration where our Chow Liu based approasults into regular-
sized clusters resembling the Naive scheme, the carefaldemation of where to place
the submap partitions results to a better quality approtionaas demonstrated in the
results of Table 6.1

6.6 Conclusion

The need for the capability of large-scale mapping and densg representations in
modern system pushes algorithms towards more efficientpukation of large data
sets. Motivated by the demand for sparsifying approxinmstiof the SLAM map by
current state-of-the-art systems, this chapter analyseddrrelations of features in a
monocular visual map with the aim of arriving to effectivepagximations. Apply-
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Pairwise MI captured in Approximation
Hierarchy Level No. Submaps Naive Chow-Liu-based
Scene with various depths
40f4 1 100 % 100 %
30f4 2 50.78 % 84.50 %
20f4 7 21.43% 35.67 %
lof4 38 100 % 100 %
Sideways exploration
40f4 1 100 % 100 %
30f4 4 74.70 % 93.83%
20f4 10 51.67 % 75.38 %
lof4 60 100 % 100 %
Forward exploration
40f4 1 100 % 100 %
3of4 3 74.51 % 85.47 %
20f4 18 33% 43.70%
1lof4 111 100 % 100 %

Table 6.1: Quantitative comparison of Naive and Chow-Lie based ctirgje Results here
are quoted as percentages of the total pairwise Ml presearitbdespect to the initial complete
graph of pairwise Ml links. The Naive scheme partitions thegrinto regular sized clusters,
where the number of these clusters is chosen to be equal tuthber of clusters identified
by the Chow-Liu based approach. At the top hierarchy levefeatures lie within a single
map, preserving 100% of the pairwise Ml links. Since we prestéhe strongest link between
clusters to approximate their relationship, in the bott@wel of the hierarchy where each
feature lies in a separate cluster, all links are presergiguhis scheme, resulting to the
full 100% percentage of total M| captured. The results inittermediate hierarchical levels,
demonstrate the power of our Chow-Liu based scheme to @aptast of the Ml structure in
the approximation.

ing our Information Theoretic framework we studied the ctine of pairwise feature
relationships in the Mutual Information space and our asialhas revealed that the
strength of ‘bonds’ between features is not only a functibrcaobservability, but
also coherency of motion within the image space. Via a ditiogvard calculation of
the Mutual Information of feature measurements followeddmporal averaging and
tree construction we can achieved a computationally efficreay of automatically
extracting the full, hierarchical correlation structufeacvisual map as it is built.

Our experiments show that the resulting hierarchical airecdisplays charac-
teristics which agree with the expected behaviour in ‘obsiacases such as simple
exploration where regular division is appropriate, bubalaptures much more subtle
effects in scenes and camera motions with large ranges tf depevel of detail. Fu-
ture work involves developing a filter based on this submagppipproach for efficient
SLAM. Another intriguing prospect is to fuse appearancerimfation along with ge-
ometry to refine the definition of submaps as a means of pennagesrstanding the
semantic nature of each submap.



Scalable Feature Matching

Following the maturity of basic real-time monocular SLAMyatithms there is now
a rising trend towards more accurate performance. Thisiggoneed for bigger and
better solutions is fuelled by the increasing hardware loiéipas of modern systems
which provide the extra computational power much neededchwiamdling tens and
hundreds of features per frame. Brute-force matching #hgos like RANSAC con-
stitute the dominant, if not imperative choice at preserd ttutheir inherent ability
to efficiently manage large data sets in straightforwaresades. Aiming to bring se-
guential probabilistic solutions to the same basis of apfithns, this chapter discusses
ways of speeding-up the fully Bayesian framework of Activatbhing leading to fast
algorithms able to deliver real-time, multi-hypothesisisk matching.

In Chapter 5, we have seen that Active Matching clearly redube image pro-
cessing through guided search, but at the cost of a largbeaétin updating the prob-
ability distributions determining “where to look next”. He we present two variations
(‘FAM’ and ‘CLAM’) which aim to keep the sequential probaisiic search of Active
Matching but approximate the inference process to attaokpotational cost. While
the FAM approach has been proposed in [Chli and Davison, 80@3s the first time
the CLAM methodology is presented, which brings togetheritieas evolved in this

121
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thesis to achieve matching of a hundred features imgter frame. To our knowl-
edge is the best that a fully probabilistic method has eveiesed and we hope that
this method will scale much further still.

7.1 Introduction

Tracking several features from one frame to the next meatsrtbre evidence is avail-
able to check matching consensus hypotheses upon, antbtieavatlier rejection can
potentially be more robust. Moreover, the availability obma candidate measure-
ments means there can be greater reductions in uncertaugrgll leading to greater
accuracy of estimates. Indeed, as illustrated in Figurérdcking a few extra features
in a SLAM setup, the estimated camera trajectory becomesfisintly smoother
implying that consecutive pose estimates become more dibfgavith each other.
However, as pointed out earlier in this thesis, every exiratbincoming informa-
tion comes at the cost of processing time. As a result, theraafority of modern
monocular SLAM systems [Davison et al., 2007; Eade and Dranmin2006b, 2007]
are limited to matching a couple of tens of features per frawsricting their overall
performance in accuracy.

The stand-out exception exception is the work of Klein andrslyi[2007]. Their
approach to tracking and mapping allows searching for farenfieatures per frame
than all other similar works (also, these are run in sepapaeallel threads leaving
more computational time for individual processes). Theiarse-to-fine two-stage
tracking consists of a search for a set of map features (dr&0h on a low resolu-
tion image to compute the new camera pose and then reprgjaotaithousand other
patches on finer scales to complete matching. While RANSASEfter and Bolles,
1981] is employed during the initialisation of the systemring tracking they do not
use any clever data association technique which meansrtbwatably, outliers are
bound to be used into the map. The robustness of this metlied om bundle adjust-
ment to recover consistent pose estimates however, astti@sadmit, this approach
makes their system prone to repeated structure.

The rising programmability of the graphics processing (@iU) often available
in modern machines is bound to change the landscape of ngackipabilities. No-
table is the work of Sinha et al. [2007] who implemented a Gialded KLT tracker
[Lucas and Kanade, 1981; Tomasi and Kanade, 1991] recosgiegd-ups of a factor
of 20 allowing real-time tracking of a thousand featureswideer, GPUs are mostly
unavailable on embedded devices yet, limiting the appilitalof GPU-based imple-
mentations. Therefore, the general research interesitlifostised on cost-effective
CPU-programmable algorithms for more modest computatinad, with the prospect
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(b) Matching 40 features per frame

Figure 7.1: Trajectory smoothness as affected by the number of tradadrfes per frame.
In this example a hand-held camera is tracked while moviaggé corridor using 20 features
per frame in (a) and 40 in (b). As implied in this superpositid estimated trajectories, more
feature measurements provide stronger evidence aboutahehg camera moves from one
position to the next enforcing the robustness of outliezaipn. As a result, consecutive pose
estimates are more consistent with each other leading taatber trajectory. It is important
to note that the rate with which the trajectory becomes shyasg not linear with respect to the
number of features; matching 60 features for example woale la much smaller difference
with the trajectory in (b).

of faster performance once GPU platforms become widelbésieed.

Dense image matching and consensus resolution using RANE&€hler and
Bolles, 1981] is by far the dominant approach at presentinganeceived more than
3000 citations. This popularity is to be accredited to thepticity of the algorithm and
its low requirement for processing resources. With thatgtib adjust the maximum
number of iterations of the algorithm, the time to completean be adapted accord-
ingly to achieve a solution within prespecified limits, tigbuthe matching outcome
might not be the optimal one. However, it was soon realisatlttte combinatorial ex-
plosion of possible inlier choices to draw an initial hypegfs from (subject to voting
later) is very wasteful, so recent variants have been peapts cut down the number
of tested hypotheses [Nistér, 2003; Chum and Matas, 2008].

Attempts to fuse some probabilistic predictions in the Idop more informed



124 Scalable Feature Matching

decisions throughout matching have led to the branchingnother set of semi-
probabilistic variants like KALMANSAC [Vedaldi et al., 2@) and guided-MLESAC
[Tordoff and Murray, 2005]. Most recently, Civera et al. (2] proposed a 1-point
RANSAC method which looks for agreement with matches caisd within the
predictions’ initial innovation regions only shifted towds their EKF-updated means,
achieving online matching of around a hundred featuresrairid per second. Inspired
by the exploitation of the EKF correlations in Active Matabi[Chli and Davison,
2008a] they constrain the possible locations of featurechest based on the hypoth-
esis generated from the 1-point selection, though to cutndowsts they ignore the
reduction in the innovation regions of features upon an EigHate.

Fully probabilistic algorithms, despite eliminating theed to adjust problem-
specific thresholds (e.g. number of iterations to perfoarg,yet to prove their ability
to handle hundreds of matches in real-time. Their main balck is the cost involved
in processing all the available priors (correlations andewtainty) and input infor-
mation (matches). RANSAC and variants on the other handtrésdhe statistical
fairness of randomness to select which hypotheses to téstaept. As a result, these
methods gain ground on speed of processing while sacrificihged cues essential to
discover consensus robustly in the presence of a large gi@pof outliers.

Each supported by a solid probabilistic framework, JointnPatibility Branch and
Bound (JCBB) [Neira and Tardos, 2001] and Active Matchirgtzound to make more
knowledgeable choices during the resolution of consenSiiapter 5 has illustrated
how both methods successfully reject outliers in the presend different levels of
ambiguity and input priors. Our analysis in Section 5.6 heevdhas revealed that Ac-
tive Matching scales poorly with the number of features f&ufg similar difficulties
(though at smaller scales as suggested in Section 5.6) JEB&)nd to become “com-
putationally intractable when the number of matches groges m hundred”, quoting
Civera et al. [2009c].

More generally, the main distinction between conventianakching techniques
and Active Matching is this trade off between spending timihink’ of the bestway
to exploit the available information versus brute-forcéaxstive search for matches
first and resolution of consensus later (JCBB included). éwmahstrated in the analy-
sis of Section 5.6, carefully selecting where to conceatpabcessing resources leads
to less contaminated data boosting the odds of acceptirgpthect matching scenario,
albeit with the risk of exceeding the real-time limit. Thettteneck in JCBB on the
other hand is the growth of the interpretation tree which @satke task of searching
for consensus more time consuming. The objective of thiptehas to achieve a better
balance between thinking and acting in an attempt to imptioegrocessing speed of
Active Matching making it more adaptable to larger data,sathieving better perfor-
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mance than any other fully probabilistic matching techeiqu

Looking at ways of approximating the full solution of Actiwatching, Section
7.2 details an initial attempt leading to the emergence of Rative Matching (FAM)
as proposed in [Chli and Davison, 2009b]. At every matchitegp,sSFAM makes a
random preselection of measurement candidates to enteviieation of mutual-
informations (MIs) stage. Then, following the standard idetMatching procedure
of measuring the candidate with the highest Ml-efficiencg apdating the mixture
of Gaussians (MoG), all features are matched until a jointynpatible scenario is
achieved. Aiming for a fully probabilistic method, sectidr8 describes how the joint
probability distribution of features can be approximategdtive Chow-Liu tree in a
similar manner as introduced in Chapter 6, to achieve skeafarformance with our
newly-proposed Chow-Liu Active Matching (CLAM) algorithndpdates are propa-
gated via messages passed across this tree using the lesnaiBelief Propagation
described in Section 7.4 leading to dramatically reducediption and update timings
for the shape of the mixture in every matching step. Finakperiments and results
are presented in Section 7.5 for our CLAM algorithm, leadinghe conclusions in
Section 7.7.

7.2 Fast Active Matching

Chapter 5 discussed the methodology of Active Matching (Adiestablishing pair-
ings between predictions and sensor observations usingtanmof Gaussians to rep-
resent the search state at each instant throughout matcfiimg fully probabilistic
maintenance of this mixture permits the use of Informatidredretic measures to
guide the decisions of either continuing to explore a prowgisiypothesis or moving
on to check an alternative. Predicting the shape of the m&xfter a potential mea-
surement makes AM very selective in the areas it looks fochest and this really pays
off in terms of the number of mismatches encountered, aitfiagobust resolution of
ambiguity. The quality of the accepted scenario in JCBBIlik&M, is bound to be the
most compatible one irrespective of the proportion of ewlipresent as long as these
outliers do not jointly ‘agree’ in consensus which is highiglikely. RANSAC-like
techniques on the other hand are more prone to data conténimgpecially when a
limit is imposed on the number of iterations where convecgen the optimal solution
can be interrupted.

The process of estimating the Ml value eferypotential measurement in AM is
the main bottleneck of the algorithm driving performance oluthe bounds of the
real-time requirements when it comes to matching more thamna 20 features per
frame. Aiming to tackle this drawback, here we present amaiof the algorithm, first
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introduced in Chli and Davison [2009b]. Following the digdiperformance analysis
of full AM algorithm in Section 5.6, we have come to the corsodun that the first steps
of matching are indeed the most crucial in decreasing thaneg and resolving the
ambiguity in the new frame. The suggestion is thereforedp swvaluating Mls once
the maximum such score in the mixture drops below a thresfi@d the choice of
which feature to measure, becomes unimportant past thig)pdis demonstrated in
Figure 5.15 where the total Ml is shown to tail off relativedgrly during matching,
this approximation should have negligible effect on thersewf the algorithm.

Although aborting the evaluation of MlIs after a certain stagll have a big
impact on the computation time, if the goal is to track marstudiees this might not
be enough. The biggest source of delays then comes frormdeaith big matrices,
primarily during the evaluation of Mis (even after the fireiM steps) but also during
the update of the mixture alone. Therefore, to cut down thepgational costs
further Fast Active Matching (FAM) works by pre-selectingcartain number of
candidates to evaluate their Mis rather than evaluatingfathem. It is most likely
that we will no longer be able to discover thestcandidate to measure next, but
provided that the pre-selected candidates are evenlydpiass all Gaussians (one
can easily select a certain number of candidates from eackdize), the candidate
that gets selected for measurement should be a fairly gopdodmation to the
globally optimal choice. Within each Gaussian, the prec@n is random.

FASTACTIVEMATCHING(Go)

1 Mixture =[[1,Gg]] // each entry in the Mixture is a [weight, Gaussian] tuple
2 preselection = dravevenly spreadcandidate${preselection
I ‘preselection’ consists dfFeature, Gaussiariuples

3 [fc,G¢] = getmaxmi_efficiency candidate(preselection)

4 while (pair_.notyet measuret{Fc, G¢})

5 Matches = measuférc, G¢})

6 UPDATEMIXTURE (Mixture, ¢, Matches)

7 pruneinsignificantgaussian@vixture)

8 if (Ml max< Mlthreshold)

9 {F¢,Gc} = getmaxmi_efficiency.candidate(Mixture)
10 else
11 {F¢,G¢} = pick_-nextunmeasuredandidate(Mixture)
12 end if
13 end while

14 Gpest= find_-mostprobablegaussiatMixture)
15 return G pest
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Figure 7.2: Comparing Fast Active Matching (FAM) with JCBB. Correlaties usually a
dominant factor in both methods, but using FAM the numberigélg searched is reduced
significantly at low frame rates as demonstrated in (a),@wrplg the superior performance
of the algorithm. (b) shows the difference in mismatchesantered per feature matching
using either of the two methods. The larger proportion ofierg in JCBB is the main cause
of inflated timings to resolve consensus in JCBB. Despiteloarising the selection of the
candidate to measure, these figures suggest that FAM dtilicess search-regions enough to
encounter much fewer mismatches than JCBB.

At the stage where enough measurements have been made ¢as#ethne total
Ml in the mixture sufficiently, any further Ml evaluation ofindidates is terminated.
In the case that matching has reached this state with a Gaudeminating in the
mixture (i.e. having high probability of being the true h¥fpesis) then this Gaussian
will have very low variance left (of the order of measurementertainty). The to-
tal Ml value comprised by the sum of the discrete and contisud! parts becomes
small when both addends are also small. More intuitivelg, dabsence of compet-
ing hypotheses means there is no ambiguity in the resulthwminimslates into a low
discrete-MI value but also the fact that a sufficiently lasgéset of features have been
measured enforcing the dominance of that Gaussian implgghe residual variance
in that hypothesis is is also low, hence a small continuolissllie. In image space,
this means that the search regions for any yet unmeasuraddgan that Gaussian
will have very small ellipses so fusing the nearest neighlmoatches with respect to
the predicted positions of these features, is guaranteeabe a compatible scenario.
This is also apparent when thinking in terms of the chi-sgdaompatibility test used
in JCBB: a match within the confidence limit imposed on theadise of the observa-
tion from the hypothesised feature position is compatikith the queried hypothesis.
Since this confidence limit describes a small ellipse (whsize is defined by the con-
fidence level) centred on the hypothesised feature positican easily be visualised
that a nearest neighbour match within that circle is bourtzktoonsistent with the rest
of the pairings in this hypothesis.
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Figure 7.3: Comparison of time needed per frame on average to perfortAtise Match-
ing and JCBB (note the difference in scale). (a) and (b) shmwireakdown for FAM and
JCBB respectively when tracking at 30Hz; the time spent adwetion of Mls here is signif-
icantly reduced maintaining almost constant overall tirdapding to the number of features
whereas the resolution of consensus in JCBB deterioratésrpeance with increasing number
of features. In (c) and (d) are the timings for tracking 6Qdieas at different frame rates where
it is evident that for lower frame rates, correlation is kg the most significant part of the
computation.

Testing FAM on the same setup and the (51284) image-sequences used in the
analysis of AM in Section 5.6, our aim is to perform a direatngarison with the orig-
inal AM, gradually increasing the number of tracked feadufor a constant frame rate
and vice versa. Figures 7.2 and 7.3 demonstrate how theggdpefinements can dra-
matically improve the computation time recorded for AM te #xtend FAM achieving
faster operation than JCBB. All the results shown in thigisachave been taken by
pre-selecting 15 random candidates evenly spread actdSawssians present in each
matching step. The evaluation of MIs aborts when the totepé feature drops below
0.5 bits. Moreover if there is a dominating Gaussian with m&ent70% probabil-
ity of being correct we accept it as the true scenario, fusirgnearest neighbour
matches to the remaining unmeasured features. Note tltat wi@ prune weak Gaus-
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sians throughout matching and renormalise the weights, s<En with probability
70% by the end of the matching is actually a lot more certain.

Observing the histograms in Figure 7.3, it is evident thgidsing a limit on the
number of candidates evaluated for their Mls before measemeis attempted bounds
the otherwise exploding time requirements of that step efdlyorithm. The time
spent in correlating patches to discover matches allowsliserver to see how FAM
manages to bound the correlation time when the frame ratepslewer than JCBB
for a constant number of features (note the difference itesafaFigures 7.2(c) and
(d)), by dramatically reducing the number of pixels seatchiint Compatibility on
the other hand struggles to resolve the consensus of iflegeasmbers of features
due to the extra mismatches it needs to consider.

A point to note here is that despite using the same test-biedsaestion 5.6, there is
some difference in the timings recorded for JCBB. The redmathis is that the tracker
is selecting different features to track in each experinfmtce there is a difference
in the level of ambiguity involved between two different suasing exactly the same
settings. However, the comparison of JCBB with AM in Chapter with FAM here
is based on exactly the same input data per frame.

In the future, we can go a step even further and stop measigétgres when the
Ml in the mixture becomes very low. This is expected make dgbefully adaptive
nature of AM and can prove particularly beneficial in highrfre rate tracking with a
lot of features. In such cases, the uncertainty in the campesa can be very small
leaving little room for ambiguities during matching. Algbe expected improvement
in accuracy when incorporating new measurements can siboff therefore, aborting
matching at that stage translates into reducing redundaitbypotentially big savings
in computation time.

7.3 Active Matching Using the Chow-Liu Tree

While FAM presented above proves much more cost efficiemt the AM of Chapter

5, the introduction of randomness in the loop of search foiseasus annihilates the
true, fully probabilistic power of the original method inging the need of application-
specific thresholds. Indeed, bounding the number of catefidavaluated for their Ml

achieves the reduction of the ‘thinking’ process as desitezligh this happens at the
expense of accuracy: the order by which features are mehsuespecially important

during the first few steps of matching where the variance amuiguity are expected to
reduce most. Due to the fact that once a Gaussian gets pmoradte mixture means
that this hypothesis can never be examined again, any saidiates made prematurely
or based on false evidence can be fatal. Of course measureamidates can be



130 Scalable Feature Matching

‘ranked’ according to their false-positive and true-pesitrates when evaluating their
expected Ml values (as explained in Section 5.4.2), but vitheall the members in the
subset preselected for Ml-evaluation are poor then evebdhcandidate selected for
measurement is likely to produce a false result. In essehisemeans that while the
semi-randomised preselection guarantees better timingakes the algorithm more
prone to data contamination, like most non-probabiligichhiques. This realization,
led to the observation of the problem of speeding up matctiong a different, fully
probabilistic perspective.

Chapter 6 has introduced the notion of the Chow-Liu tree eadifist lossy approx-
imation of a joint probability distribution by a singly-coacted tree. Inspired by the
power of this tree to capture the most representative atioel structure in the scene,
here we propose using it to represent the distribution oéetqul feature locations in-
put in AM, leading to the emergence of our new Chow-Liu Actitatching (CLAM)
algorithm. Since all processing in a matching scenario fsedene based on the data
of a single frame, it is only necessary to build the Chow-Leetout of this frame’s
MI graph. While in Chapter 6 the aim was to expose persistdationships between
features obtained across the sequence and therefore tigealph- of the whole map
was used, here we are only interested in the ‘local’ relatigus of the visible features
which will help us discover matching consensus. This imatedy means that the
time needed to build the Chow-Liu tree is now bounded by thaber of features we
are aiming to match per frame rather than the cardinalithefthole map. Moreover,
using a tree in the context of AM has many attractive propsréinalysed in the next
section allowing efficient processing while maintainingthlevels of accuracy.

7.4 Belief Propagation

The intermediate steps in AM involve propagating matchisgpaiations (during both
evaluation of MIs and update of the mixture) for each featarthe rest of the graph to
either obtain an updated or a predicted mixture by fusingsao@ation in the exam-
ined hypothesis. In Chapter 5, all such updates reducingatiance of the examined
Gaussian were made following the EKF-update rules whicblhire/the use of the in-
novation covariance matrix since the joint probabilitytdimition of feature positions
was a fully-connected, complete graph. Here however, #e is a much simpler
graph-structure allowing updates of ordemifi the number of features in the worst
case as the analysis in this section suggests.

Belief propagation (BP) is a method for efficient and exaétrience in a tree
structure with a tractable computational cost first proddsg Pearl [1988]. Given
observations for a subset of the graph, the algorithm coespuiarginals for all other
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A——®

(a) (b) (©)

Figure 7.4: Examples of graphical structures used as a reference foustimg the flow of
information in the BP methodology. An observation for nddia (a) can only yield an update
to nodeE following the pathA-B-C-E. This is done by sequentially forming the conditional
distributionsP(B|A), P(C|A) so thatP(E|A) can be calculated as outlined in Equation 7.2. The
tree in (c) is an approximation to the fully-connected grapfb).

variables by recursively propagating local messages dalomgdges of the tree. Ap-
pendix A gives a brief outline of the more general sum-prodlgorithm using parts
of the derivation of Bishop [2006] in an attempt to give a deramderstanding of how
this methodology works.

7.4.1 CLAM: Estimating Posteriors Upon a Successful Meas@ment

The key idea behind the BP methodology is the exhaustiveogapbn of the tree
structure and the properties of d-separation: there is onéypath between any two
nodes of the tree, hence an update-message originatingdnoobserved nodA is
bound to update the probability distributions of any intediate nodes in the way
until it reaches its final destination, noéefor the tree example of Figure 7.4(a). The
conditional distribution oP(E|A) can only be computed P(C|A) is available which
in turn is a function oP(B|A):

P(E|A) = P(E[C)x P(C|A) (7.1)
= P(E[C) x [P(C|B) x P(B|A)] (7.2)

Following the BP methodology, this computation can be pretied in terms of
messages: nodepasses its observed valueBpwhich sends off th&(B|A) message
towardsC (andD if the aim is to discover all conditionals), which in turn caow
computeP(C|A) to propagate té.

Considering now the nodes of this tree as features we aim tohméth CLAM,
we can say that every nodedescribes the Gaussian probability distribution of the
position of that feature in the image in terms of a mgand an associated innovation
covariance matrig;;. Relying on the Chow-Liu tree to pick out the edges of the MI-
graph that approximate it best, a link between natlaadK is described by a cross-
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covariance blocl§k and its transposgx; referring to the relationships &f(J|K) and
P(K|J), respectively. At the beginning of matching, these paramseare set to the
respective values input into the feature matcher. Strigjlyaking, when approximat-
ing the complete, joint distribution of features with a tthe uncertainty encoded in
eachSy; increases to reflect the effect of the approximation, but nex can directly
read out these values from the innovation covariance mainise the confidence of
the tracker (providing these values) is not affected bydbigroximation.

Using this notation we will evaluate each of the probalgititinvolved in Equation
7.2 for the special case where all distributions are Gansgs used in AM) to derive
the expressions for the BP-messages passed along the ésasfabur Chow-Liu tree
upon a successful measurement. However, we first analydeatiie rules of condi-
tioning in multivariate Gaussian distributions to derivgoeessions for posteriors in
tree-structured distributions, from first principles.

Mathematical Derivation of Conditionals in Gaussian Tree S$ructures

Let us consider the simple graph of Figure 7.4(b). The joistridution of P(A,B,C)
can be expressed as

P(A,B,C) = P(A) x P(B|A) x P(C|A,B) . (7.3)

Since we are interested in Gaussian distributions of viasalet this distribution
be described by a mean vecfostacking all vector, b, andé, and a corresponding
covariance matris. Explicitly,

p(X) = 1 g 2(x-RTSHx-R) (7.4)
(2m)> |9

where 31 is the dimension ok, n being the dimension of each af 6, andc. If
variable B is now observed with a value, we can obtain expressions for the pos-
terior mean and covariance BfA,C|B) by considering the quotient of distributions
P(A,B,C) over P(B) and rearranging in the form of Equation 7.4. The covariarice o
this conditional can be described using Schur’s complenviith briefly is the result
of applying Gaussian elimination to the rows and columnsesmonding td.

Schur’'s complement

P

R U
and nonsingular, then the Schur complemer® af T is (U — RP~1Q).

LetT be partitioned a¥ = { ] . Given that matrice$ andP are square
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Denoting the parameters of the conditional distributiorBamith the subscript g’ we
reorder and partitiors so that matrixP of the inset above corresponds to the innova-
tion covariance oB, Sgg. Applying Schur's complement we arrive at the posterior
innovation covariance of the distribution (conditionedtbe observed value &):

e Sacp [ Sw Sic S L
= - %B( Sa Sse >
A B | A & S !

_ Saa— SBS5SeA Sac— SaeSeaSec . (7.5)

| A SBS5aSeA Sco— SeBSsaSse

The expressions along the diagonal demonstrate how thedodi variances of nodes
A andC get reduced by the measuremenBofvhereas the off-diagonal blocks show
that the correlation-link between nodéandC also gets affected by this measurement.
The means vector can also be shown to obey:

Sa ) a-+SaSsa(b — b
_ T T B%f( 7). o
B C+SpSep(b—b)

o
W
ay»

O
w
o

These are the standard update equations used to evalugterémeeters of posteriors
in Gaussian joint probability distributions. If however waw consider approximating
the fully connected distribution of Figure 7.4(b) with thred of Figure 7.4(c), eval-
uating the terms in these expressions is no longer obviou#tinG the link between
nodesA andC means that we no longer have explicit values for the croa®lation
termsSyc andSa. The variables are still however correlated and in factphssted
by B: any information originating from noda has to pass througB to reachC and
vice versa. Once howevergets measured, then nodeandC become completely in-
dependent and uncorrelated. Therefore the off-diagoakblin equation 7.5 should
be equal to zero to enforce this independence:

Sace = 0= Sac — SaeS5Sec = 0= Sac = SneSeaSec - (7.7)

Similarly, we can find an expression f&:a or any other cross-correlation block in
longer tree paths in terms of known matrix blocks, using thee principles. At-
tempting to give an intuitive understanding of the expr@ssh equation 7.7 above,
we can see how the information leaving ndklbas to pass through the lifkB (using
the termSag) and be converted to the frame of referenc&dggimulating the effect of
this information orB’s variance withS;3) so that it can be passed on@q(via Sgc).
Supposing now that we have further obtained a measurenramvdeA, then applying
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Schur’s complement again the updated variandg will be:

ScaB = SccB — &)A\BS;;L\‘BSAC\B : (7.8)

This confirms that if the initial joint distribution is remented by the tree of Figure
7.4(c) then the measurement Afhas no further impact o€ (given thatB had al-
ready been measured) sirf§g g = Sap = 0. Therefore, cutting the direct linkC is
equivalent to settindccag ~ Scjp, Which reveals the effect of a tree approximation
of a fully-connected graph: the reduction in variance uponeasurement in the tree
approximated structure is bound to be less than or equaktoettiuction in the true,
fully-connected distribution.

Evaluation of Messages Passed In Gaussian Tree Structures

Having obtained expressions for the parameters of comditidistributions we now go
back to our initial example of Figure 7.4(a), aiming to ewtuthe messages passed
along the links of that tree upon a successful measurememade within the context
of CLAM. Supposing that an image-search for featdrieas yielded the match, the
new distribution conditioned on this measurement will hdageposition ofA assigned

to this match with its innovation covariance set to measergmoise. From then on,
the parameters of any neighboursfotan be directly updated using update rules of
equations 7.5 and 7.6. Since h&és the only neighbour of:

ba = b+SeaSir(a—2) (7.9)
Ssea = SBB— SeASaASee - (7.10)

Given that nodeB is now updated it can disseminate information regardingnbka-
surement ofA to all of its neighbours (excluding). Considering nod€ and using the
equation 7.7 to expreSSic andXa,

Ca = C+SeShp(SaSm(a—d)) (7.12)
Sca = Soo— SoSss (SeaSaaSe) SsaSec - (7.12)

Comparing the updated parametersCofin Equations 7.11, 7.12) with the updated
parameters oB (in Equations 7.9, 7.10), it is evident that the influence othkithe
mean and variance @ is a function of the influence the measurement hadBpn
indicating the recursion which is to become more evident agvaluate expressions
for variables deeper in the tree. In a similar manner, thetgatparameters of node
are:
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da = d+SoeSss (SeaSan(a—2)) (7.13)
Soa = Sop— oeSas (SerSaaSee) SeaSen - (7.14)

Lastly, the updated node can now issue a message to updatélsing the update
rules of equation 7.5 and the rationale used to derive empuati’:

Sep = SE— SEASUSE (7.15)
= See— (SecSiSen) San (Sacice) (7.16)

= St (SecSc (SceSeaen)) San ((SweSaSec) Secee) - (7:17)
In a similar manner, it can be shown that:
8 =8+ SEcKe (SceSes (SeaSm(a—2a))) - (7.18)

Based on this brief derivation of the expressions used tatepthe nodes of the tree
in Figure 7.4(a) upon an observation of a hode, we can nowesatimore general BP
rules for updating and message-passing in trees.

BP Messages and Update Rules in Gaussian Tree Structures

Given an observation of some nodenodeK lying on the same tree gets updated upon
the receipt of mean and covariance messagessd;—k and Snsgi—k respectively)
from its direct neighbour, nodgby:

~

ke = k + Ak ,where Ak = ScMmsga—k (7.19)
Sk = Sk —A%k , where Ak = Sc3Snsgi—k Sk - (7.20)

Once updated, nod€ can issue similar messages as below for all its other neigsbo
M such thatv #£ J:

Mmsgk—M = SZ}%AR (7.21)
Snsgk—M = SkkASckSki - (7.22)

Starting off withAd = a— aandAS\a = Saa and passing messages formed as in Equa-
tions 7.21 and 7.22 along the links of the tree of Figure 7,4¢a can derive the same
expressions for conditional distributions of all nodeslaeva in a recursive manner.

If only one node is ever observed in the tree, then the upddeés of Equations
7.19, 7.20 and the messages in 7.21, 7.22 are enough to gessixms for the con-
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ditioned marginals of the variables in the tree. If howevssther variable is further
observed then our expressions will no longer be valid becawgshave not taken into
account the updated values of the conditioned cross-@nwaiterms (corresponding
to the correlation-links between variables) which are @wlaffected upon a measure-
ment as suggested in our mathematical derivation in Equati®. Since in our match-
ing paradigm we are obtaining observations for featuresesgénlly, we also need to
carry link messages (as well as the mean and covariance ges$ga update these
cross-covariance terms. Using the same notation and adgias before, when nodie
receives BP messages franand gets updated, then their lidK is also updated by:

SUF = S lmsgi—k (7.23)
SkF = Lmsgi—k Sk - (7.24)

Then, along with outgoing messages for the mean and variaockeK also issues
link messages for its neighbouv.

Lmsg KoL =1— SZ&AS(K ) (7-25)

wherel in the above expression refers to the identity matrix.

Given that these updates can be done recursively, we norloreg to carry
around the big innovation covariance matrix in every newdtlgpsis formed to repre-
sent the search state of the matching procedure (as wassaec@s AM). Therefore,
every Gaussian in CLAM now consists of a linked-list of theam& and innovation
covariance sub-blocks representing the marginal digtabwf each predicted feature
position, along with the off-diagonal sub-blocks of the @o&nce matrix correspond-
ing to the links preserved in the tree structure.

Once the measurement of a feature (node) yields a set of estttte new Gaus-
sians spawned from it (each to represent the hypothesesfahese matches is the
true feature) will inherit a copy of the linked-list of the @ssian just measured, only
isolating the measured feature so that any links conneotédvill be cut (since there
can be no more information passed though them once the éetabserved). This
means that over the course of matching, the initial tree ripgrall features present
in the frame is progressively thinned depending on the niagcresults of features.
Hence in the worst case, an update upon a measurement iof®{d in the number
of nodes.

7.4.2 CLAM: Computing MlIs

Following the derivation of the update rules and messagsinm@i CLAM, here we
derive expressions for efficiently computing the Mutualohmfiation that each mea-
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surement is expected to provide. Once again, the d-sepanatoperties of the tree
allow for short-cuts in this otherwise explosive computati Considering again the
tree example of Figure 7.4(a) we aim to find expressions Mhthat a node is pre-
dicted to give aiming to gain a general understanding to twe d@f information in the
tree so that we can expand this to a more general tree stuctur

Using the basic rules of Mutual Information introduced ina@ter 4, let us con-
sider the information value of a supposed measurement & Aod

I(B,C,D,E;A) = H(B,C,D,E)—H(B,C,D,E|A)
: P(B,C,D,E|A)

% PB.EDE d(A,....E). (7.26)

The division inside the logarithm can be simplified usingfamtorised expression for
probability distribution of the tree:

P(A,B,C,D,E) = P(A) x P(BJA) x P(C|B) x P(D|B) x P(E[C).. (7.27)

Therefore, using Bayes'’ rule and equation 7.27,

P(B,C,D,E[A)  P(AB,C,D,E)

P(B,C,D,E)  P(A)P(B,C,D,E)
P(A)P(B|A)P(C|B)P(D|B)P(EIC)
P(A)P(B)P(C|B)P(D|B)P(EIC)

_ P(BA)
= P@E) (7.28)
Hence, substituting now Equation 7.28 into 7.26:
I(B,C,D,E;A) — / P(AB.C.D,E)log, "E™ A . E)
A, P(B)
_ / P(AB)log, BN G B =1(BA) . (7.29)
AB P(B)

In words, the MI that nodd is predicted to provide to the rest of the tree is equivalent
to the Ml it is expected to provide to nod®alone. Considering instead a possible
measurement of nod®

I(AC,D,E;B) = H(AC,D,E)—H(AC,D,E|B)
P(A,C,D,E|B)

pACDE) (A HE). (730

_ / P(A,B,C,D,E)log,
A..E

The division inside the logarithm can again be simplifiechgs different factorisation



138 Scalable Feature Matching

A A A B

C C C

(a) Initial state (b) Ais observed (c) Bis observed

A
C C
| E _E
)
(d) Cis observed (e) D is observed (f) E is observed

Figure 7.5: Visualising the entropies of variables in the tree of Figlik{a) and their pairwise
relationships. Supposing each variable has an entropypiopal to the area of the rectangle
used to represent it, then the total entropy of the distidlbLP(A, B,C,D, E) is equivalent to
the area enclosed in the outer, bold border of (a). Figures (f depict the effect that each
possible measurement has on the marginal and conditiotrapées of the distribution.

for the tree distribution:

P(AC,D,E[B) P(AB,C,D,E)

P(A.C,D,E)  P(B)P(AC,D,E)
P(B)P(A/B)P(C|B)P(D|B)P(E|C)

P(B) [ P(B)P(AB)P(C|B)P(D|B)P(E|C)dB
- Haco @3
Substituting now back in equation 7.30:
I(A,C,D,E;B) = /AMEP(A,B,C,D,E)lo%%dm,...,E)
= /A . P(A,B,C,D)Iogz%{:%ﬁ;)d(A,B,C,D)
= I(AC,D;B). (7.32)

Equation 7.32 states that the Ml that nd8lés predicted to give to the rest of the
tree is equivalent to the Ml it is predicted to give to its rfdigurs alone, analogously
to the conclusion for the MI of nodA. Deriving expressions for every other node
in a similar manner and also considering the case of more lepnqee structures, it
can be shown that this observation is indeed general: tbhention gain that a node
is predicted to give to the rest of the variables in a tree isvedent to the Ml it is
expected to give to its immediate neighbours alone. Corisigi¢he way updates are
propagated across the tree upon the observation of one obthes, one can under-
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stand that a measurement for a particular nikdeill cause progressive, breadth-first
updates, first updating its immediate neighbours, followgdipdates of their neigh-
bours and so on. Therefore, any information flowing from tiisleK reaching an
indirectly linked node~ in the tree is bound to be less than or equal to the information
passed on t&’s immediate neighbour.

In an attempt to give a deeper understanding of informatiow fh a tree, Fig-
ure 7.5 depicts a visualisation of the information sharevben the variables of the
tree of Figure 7.4(a). All relationships between varialdas be derived in the same
way as above, though we chose to illustrate them visuallyite g better intuition.
On the assumption that a measurement of a given node causesr zmsitive reduc-
tion to the variances of the rest of the variables, we canysedpresent marginal and
conditional entropy in terms of area [Mackay, 2003]. Withtass of generality, the
entropy of each variable in this tree is depicted by the anebosed in the correspond-
ing rectangle in Figure 7.5(a). There is of course overlagvéen these rectangles
representing the shared information content between nddesarrangement of these
overlaps however is very significant because it is choseefteat the effect of each
measurement to the rest of the distribution. Given that tiea anclosed inside the
outline of this composition of rectangles (shown with a leoltine), corresponds to
the total entropy of the distribution, we now consider a aiggol observation of each
of the variables and discuss their effect on every otheritiond! distribution:

e Alis observed:the posterior entropies conditioned on the observatioA cdin
be visualised as cutting’s marginal entropy out of the composition as shown
in (b). As expected, all other marginal and conditional epigs are reduced
following this measurement, including the total entropyha tree.

e Bis observed:the updated distribution conditioned on this observatwshtown
in Figure 7.5(c) reflects the properties of d-separatiorakirg the tree in two
so that node\ becomes completely disjoint from the 4&,D,E} sinceB was
the pathway ofA to propagate any information to the rest of the tree and vice
versa.

e Cis observed:this is a similar case as above, ollys now the nhode completely
separated out from the rest of the variables as suggeste8(af).7

e D is observed: nodeD being a leaf in the tree, it did not d-separate any sets
of variables in the first place so the remaining variables stdhshare infor-
mation between them as suggested in Figure 7.5(e). Cosgjdidne posterior
tree structure, a measurement for n@éherefore makes redundant only links
coming out of it, and finally:
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e E is observed:again, a measurement of this leaf node preserves someecorrel
tion between the rest of the variables as shown in 7.5(fughdheir correlation
is reduced depending on how correlated they were with Boidethe first place.

The key result of this analysis is that:

The Ml gain that a node is predicted to provide to the rest efdistribution upon successful
measurement isquivalentto the Ml it is predicted to give to its neighbours alone.

This follows from the fact that the information content thhis node has in com-
mon with the rest of the variables is exactly equal to thermfation it shares with
its immediate neighbours. As a result, the evaluation of MIELAM becomes triv-
ial: the costly manipulation of the full covariance matras(was necessary in AM)
gets replaced by a few fast message-passing operationis Withsub-tree spanning
the candidate node and its immediate neighbours only. Merethe tree represen-
tation allows for further short-cuts in evaluating the ngddls: due to the fact that
upon successful measurements some links become redunmhtiieatree breaks into
smaller sub-trees, not only update operations are thennashfiithin the sub-tree a
measurement is made, but also the Ml values of any featutdseen updated within
a particular matching step can be carried forward to the aegtsince they will still
be valid.

7.5 Experimental Results

In order to demonstrate the power of this fully probabitisidaptation of Ac-
tive Matching this section discusses assessment expesnpemformed using the
MonoSLAM system. The quality of matching is tightly coupledth the quality of

features selected for tracking used as discussed earfibisithesis which in turn de-
pends on the feature detector and descriptor used. In ardentain consistent with
the rest of the results presented in this thesis, here wehiseo®asi features [Shi and

Tomasi, 1994] saving the X111 patch surrounding the detected peak as their descrip-

tor. However, in order to achieve both high numbers of Shirdsi peaks in the image
while also achieving patches of acceptable quality to traekhave increased the res-
olution of images used to 1024768. This indeed makes searching for matches more
costly since more pixels ¢4 more) correspond to the same uncertainty region for each
feature, meaning that more normalised cross-correlatfmrations have to be per-
formed in order to discover matches. However, in case ardiffedetector-descriptor
combination can provide high numbers of features in a lowsolution image, then
all the timings presented in this section (for all the suppised matching algorithms)
will be reduced by a significant amount, improving the ovespéed of performance.
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7.5.1 CLAM: A Step-By-Step Example

Our CLAM algorithm, which is mainly based on the AM algorithofi Chapter 5,

follows the same principles but as described in detail prgsly in this chapter, the
difference is the approximation of the joint distributiohwsible features with the
Chow-Liu tree factorisation as introduced in Chapter 6.sThee factorisation allows
speed-ups in the time needed for both updating the tree ahdeding the Ml that each
feature is predicted to give.

Figure 7.6 illustrates a step-by-step example of the waywEhio Active Match-
ing works within a given frame. The tracker provides the rhatcwith the means
vector and the dense innovation covariance matrix desgitiie joint distribution of
the features predicted to be visible in the new image. Coimguatll the pairwise Ml
links between features based on the innovation covarianse&eg, we can form the
complete MI graph which is then sparsified so that the linkenfog the Chow-Liu
tree can be identified. Figure 7.6(a) shows this tree in ec@ypnatching example
while tracking in an office scene. As discussed in Chaptehd Ghow-Liu tree has
the power of capturing the most representative correlattacture in the scene, pre-
serving links between strongly correlated features. Ademiin the example of Figure
7.6(a), features that have been tracked consistently anegdrapherently throughout
the sequence share strong correlations hence they lie aosach other in the tree
space (e.g. the features on the checker-board), whereasde®lated features lie
more ‘steps’ away in the tree (e.g. features on the left gatiimage with features
on the right).

According to the correlation structure preserved in thewthau tree and the pre-
dicted Mlis of each of feature, the hub-like feature in the dfecof the image is esti-
mated to provide the biggest MI gain per pixel searched. &yafing the successful
measurement result of this feature along the branches dfdkecauses reductions
in uncertainty of different magnitude to all other featuneghe image: the features
directly connected to it become more certain than the restalthe fact that by con-
struction of the tree, these features share stronger atime$ with the one measured.

As illustrated in Figure 7.6(b), conditioning the distritmn on the measurement
result of (a) not only has an effect on the variance of eactufeeut also the tree
structure itself: since measuring the feature has pinneahdis exact position to the
obtained match, then all information that could be passedgh this node has already
been disseminated to its neighbours upon the update of $hébdtion, so these links
have now become redundant. Cutting these links as showrb{b)7he problem of
matching is now essentially partitioned in sub-trees @poading to different parts of
the image, which are highly intercorrelated. Yet anotherceasful measurement in
(b) causes further disappearance of links in (c) and a vegiaeduction only for the
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— : CL-AM, 15657 pixels
:JCBB, 72777 pixels

(e) Updated state ) Superposition of searched areas

Figure 7.6: Matching using CLAM within a frame while tracking an officeese. In (a)
is the initial state of matching, illustrating the varianmieeach of the 97 features and their
joint distribution as the Chow-Liu tree. The arrow pointstat feature predicted to provide
the most Ml per pixel searched. Propagating the succes&asorement of (a) in (b) cuts any
links directly connected to it and reduces the variance lobthler features. The successful
measurement in (b) yields updates in (c) for that subtreg. oml (c) however, the selected
feature yields no match preserving the same search stateegnstructure. The match in (d)
causes new divisions into subtrees in (e), partitioningtiedlem of matching further. Finally
(f) demonstrates that CLAM searched almost 5 times fewezlpithan JCBB in this frame.
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features that were part of the subtree where the measurtddeaas lying. In (c)
however, the feature searched for did not yield a successditith which causes nei-
ther reduction in uncertainty nor changes in the tree siractAs detailed in Chapter
5, a failed match has an effect only on the distribution ofghies in the mixture. The
matching scenario of Figure 7.6, however, has been choskee $traightforward for
the sake of clarity: since matches occur mostly right at tieelipted locations of fea-
tures, each new Gaussian spawned upon a successful matdksinfiost of its parent’s
weight. As a result, the parent (measured) Gaussian getegaut of the mixture (this
is true for the search state of all images displayed, howawee Gaussians have been
live during the course of matching in this frame). In effebe mixture of Gaussians
in (c) contains a single live Gaussian hence a failed matsmbaeffect on the search
state (aside from removing this ellipse from the candididemeasurement).

Figure 7.6(d) shows how the successful measurement of @nbttb-like feature
yields great uncertainty reduction and breaks the problematching down even more
in (e). Finally, Figure (f) illustrates a superposition atas searched for until all
features have been matched using CLAM as opposed to coomahtget matches
first, resolve later’ techniques like JCBB. More specifigalh this example CLAM
searched almost 5 times fewer pixels than JCBB. A minor contiisethat some fea-
tures have not returned any successful matches, so anysef fisgtures sharing a link
in the initial Chow-Liu tree, they continue to share it urtie end of matching.

7.5.2 Sequence Results

Testing the capabilities of the CLAM algorithm, we genedagetest-bed of sequences
to span different frame rates by progressively subsamplmgffice sequence captured
at 3Hz Since the resolution of all captured and generated seqadacd 024 768
not only more pixels have to be searched per feature as medttmefore but also more
mismatches are likely to occur rendering these sequengagicantly hard to track.
A point to note for the figures presented in this section i$ the comparisons made
between the different matching techniques used are basemhsmising the exact same
tracking settings, however the choices made in each runficmhafeatures to track can
differ though this should have a negligible effect on theorded results.

Area Searched for Matches

Tracking at low frame rates, the ‘blind’ interval in betweftames becomes larger
allowing for more unpredictable behaviour hence there isenumcertainty in the es-
timated position of the camera and each feature measurech r@sult, the search
region for each feature increases with decreasing franeeamtsuggested in Figure
7.7. Chapter 5 discussed how AM outperforms JCBB when tnacki lower frame



144 Scalable Feature Matching

5.0 E+04 T T T T 2500

C—Jam
4.5 E+04 I CLAM
4.0 E+04| 2000
1500 -

1000 -

No PIXELS PER FEATURE

1.0 E+04 | 500

0.5 E+04 -

0.0 E+04

3.75

75 15 30 375 75
FRAME RATE (Hz) FRAME RATE (Hz)

(a) Searched area per feature (b) Isolating AM-based methods

Figure 7.7: Comparison of the number of pixels searched per feature wiaeking the
office sequence. In (a) is a comparison to scale of the nunab@izels searched when using
either the original AM, CLAM or JCBB. It is evident that bothMbased methods search
significantly fewer pixels so for the sake of clarity (b) #luates the same data only for these
two methods. As expected, as CLAM is an approximation of Akiibits less reduction in
search-areas however, the difference becomes less obwidigher frame rates. In essence,
the variance reduction to scale as shown in (a) suggestappeabximating the joint distribution
of features with the Chow-Liu tree indeed captures the nigeificant correlation structure.

rates since it achieves large reductions in search regiasidiag further confusion
of the matcher with unnecessary mismatches. Here, Figdfa)7demonstrates that
despite CLAM being an approximation of AM it still reduce®tbearched areas sig-
nificantly with respect to the initial search regions (nsegg to search when matching
with any conventional matching method like RANSAC).

During the derivation of the BP messages passed along the-Chrtree branches
in section 7.4.1, it became apparent that approximatingpthedistribution of features
with a tree will lead to less reduction in variance upon a easful measurement.
Figure 7.7(b) demonstrates exactly this statement, alggesting that the difference
in variance reduction becomes less apparent with incrgdsiime rate. This is due
to the fact that as we are moving towards higher frame rabesuncertainty ellipse
of each feature becomes smaller (bound to reach measurementt minimum) as
the predictions become more and more accurate, therefere ikinot much room for
further reduction then. However, when observing this ver@areduction to scale (i.e.
with respect to the initial search regions as shown in Figuréa)) it is evident that
using CLAM search regions are still reduced dramaticallycivin a way demonstrates
the good quality of the approximation: the Chow-Liu treesplte an approximation
preserves the most dominant correlation structure (ifitlsis not the case, then search
regions wouldn’t reduce as much).
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Figure 7.8: Breakdown of computation time for CLAM and FAM when trackithg office
sequence. Both figures (a) and (b) here are shown on the satadathe sake of comparison.
Observing (a) it is evident that CLAM maintains a better balabetween the main stages of
the algorithm as opposed to the original AM where evaluahitig the dominant and limiting
factor of the algorithm. While FAM seems to perform margindletter than CLAM, the
robustness and accuracy that CLAM provides makes it a batteon.

Time Requirements

As interpreted before, Figure 7.8 illustrates the breakdofvcomputation time con-
sumed within each step of the matching procedure on avepgegdrame. Observing
the histogram bars in 7.8(a) it is evident that the use ofréeto evaluate Mls and up-
date the mixture in CLAM achieves the maintenance of a betitance of resources
between the different parts of the algorithm. As the numbdeatures tracked in-
creases, the time consumed by each procedure also incthasgh it a dramatically
better rate than the original AM algorithm. Still this ragea little worse than linear,
however we can match 100 features per frame in less thamdp@ér frame. While
Civera et al. [2009c] do not mention explicitly the time neddor matching alone,
however they record tracking timings of 1 frame per secomdtfe same number of
features and much lower resolution of images (320) which in principle makes
the task of identifying matches a lot faster.

Figure 7.8(b) superimposes the timings of Fast Active Matghor increasing
numbers of features per frame for the same office sequencele Wdrrelation is a
more costly process in FAM, overall the timings recordedraegginally better than
those of CLAM. However, as discussed later on FAM proves tgibgificantly less
robust and accurate than CLAM which in the end makes CLAM almmaigre attractive
approach to fast matching.

As a means of comparison between all the different methosisugsed in this
chapter, Table 7.1 below illustrates the breakdown of thee ttconsumed per frame
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METHOD | CORRELATION RESOLVE CONSENSUS TOTAL
Evaluate MIs| Update MoG| CL-tree
JCBB 136.2ns 23786.6ns 23.%
AM 19.7ms 22531.Ims 2653.4ns - 25.%
FAM 83.1Ims 2.5ms 15.6ms - 101.2ns
CLAM 22.2ms 45.9ms 49.5ms 4.4ms | 122.0ms

Table 7.1:Time needed by each method to complete matching of 100 fssatora typical
frame of the office sequence. Note the difference in unitbede figures.

when tracking a typical frame of the office sequence with 1&tures (notice the
difference in the measurement units in some cases).

Albeit achieving the lowest correlation time due to its @pito reduce search re-
gions most, the original AM algorithm takes a ridiculoushngy time to discover the
matching consensus for 100 features and the main factorigvhluation of Mls,
taking almost 28 per frame. While it is the guiding force in AM, the evaluatioh
Mls comprises a huge bottleneck which we specifically tatkigth FAM. Indeed,
randomising the choice of candidates to evaluate, redectming of this step dras-
tically in FAM while it loses from the reduction in the seamggions leading to longer
correlation time. The fully probabilistic approximatioh@LAM on the other hand se-
lects more carefully which relationships between feattmgseserve, achieving lower
correlation timings though taking a little longer to contpleJoint Compatibility, as
expected, has the longest correlation time but its mairdvattk is the resolution of
consensus rendering it well out of real-time bounds, whiledme frames it requires
significantly longer time than recorded here (the timingelae shown on a basis of
a small portion of the sequence in an attempt to give a genadsdrstanding of how
the processing times compare).

Comparing Trajectories

While outstanding time performance is a very significaneafizat a matching algo-
rithm has to have, accuracy is equally important. So thetmregs what can each
algorithm achieve within the time it takes to complete? Heérean attempt to assess
the quality of the matching outcome of each technique, wersmpose the estimated
trajectories when tracking both the captured office seqri@mcl a more challenging
sequence of an outdoor walkway for different numbers otiest

Since ground truth is not available, here we critique thdityuaf matching with
respect to the trajectory estimated while tracking usingooiginal AM algorithm. We
assume that this method will provide the most consisteinagts given the current
tracking settings and available information. This assuompis made on the grounds
that despite taking a long time to complete, AM’s fully prbbistic way of discovering
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consensus makes it resilient to significant presence deosithnd moreover, it uses all
available prior information.

Figure 7.9 superimposes the estimated trajectories @utaitnen tracking the cap-
tured office sequence with different settings. TrackinggdiO0 features per frame we
expect to get the best of every matching technique due torimepce of significant
amounts of data upon which a hypothesised matching scecanide checked. In-
deed looking at Figures (c) and (d) for CLAM and FAM respedlifywe can see that
the trajectories obtained are generally very similar tes¢hobtained using AM in (a).
However, looking more closely at (d) we can see that the nexsint camera pose es-
timates do not seem very consistent leading to a jerky enddontrasts the smooth-
ness throughout the trajectories of AM and CLAM in (a) andrégpectively. This
suggests that FAM fuses some outliers in the system estint@td at this time in the
sequence are generated by mismatched features lying eithitie carpet or outside
the window where patch-correlation is likely to fail or pramk multiple matches. As
a result, despite achieving the fastest performance, FAMgw less robust to outliers
than CLAM.

Looking at Figure 7.9(b) which illustrates the trajectofytained while tracking
40 features per frame using CLAM, it seems that despite tlaively low number
of features, CLAM still performs very well. Despite the fabat it is indeed an ap-
proximation of AM, these figures suggest that this is an aygpration worth making
since the quality of tracking is not put at risk while the tiperformance improves
drastically.

Pushing the algorithm to the limits, we tested the qualitiratking on the outdoor
walkway sequence. This is a particularly challenging segedo track since lower-
ing the Shi-Tomasi thresholds to allow for tracking a huddieatures leads to many
Shi-Tomasi peaks occurring on edge-like patches, sincesedre a very dominant
structure in the obtained images. Edge features are a nm@joces of outliers when
matching using normalised cross correlation since theyvesy easily slide along
the edge producing multiple similar matches, making robesblution of consensus a
very hard task even to the human eye. In fact, FAM really failgack this sequence
as illustrated in Figure 7.10 where the estimated trajgaloes not resemble at all the
roughly straight path of the hand-held camera.

Due to the fact that the quality of Shi-Tomasi features detéin this sequence
is very limited, tracking is generally not advised usingstbhoice of feature detector
and descriptor. For this reason and due to the fact that FAS! tfa produce consis-
tent estimates, the statistical results presented in #isich so far, have solely been
based on the test-bed generated for the office sequence.vEliower objective here
is to demonstrate the quality of approximation of CLAM, #fere in Figure 7.11 we



148 Scalable Feature Matching

(a) AM tracking 100
features per frame | .
used as the model tra-§&
jectory for this se-
guence.

(b) CLAM track-
ing 40 features per
frame: even with
much lower number |
of features, the algo- fis
rithm achieves con-
sistent estimates re-
sulting to a trajectory
very similar to (a).

(c) CLAM tracking
100 features per |
frame: despite an §
approximation of |
AM, the obtained
trajectory is almost
the same as in (a).

(d) FAM tracking

100 features per
frame: trajectory be- | %
comes jerky towards § @
the end which is a
sign of some mis-
matches incorporated
in the system.

Figure 7.9: Comparison of trajectories using different matching téghes to track the

office sequence. Images on the left correspond to the canievaand images on the

right display the camera trajectory with the accumulateceatainty in the camera position.
Note: absolute scale is not estimated here, so differemci iscale of trajectories are a matter of display.
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Figure 7.10: Tracking the outdoor walkway sequence using FAM with 10Guess per
frame. The multiple edge-like features selected for tnagldroduce a high number of outliers
which FAM is not able to cope with as demonstrated in the edtihtrajectory which deviates
significantly from the actual straight path followed by ttend-held camera.

compare the quality of trajectories obtained using AM and\®Lwhile tracking the
outdoor walkway sequence.

Figure 7.11(a) which illustrates the trajectory obtaindtew matching 40 features
per frame using AM, suggests that the bad quality of feathassaffected the quality
of tracking leading to a slight curve in the estimated canpath. It is important to
note here that in order to isolate the effect of the approtionaof AM with CLAM,
the capability of both algorithms to handle features withialzle false-positive and
true-positive rates has been switched off, essentiallyragg) that all features share
the same matching characteristics. Looking at Figure B)2ich depicts the tra-
jectory obtained for matching 40 features with CLAM, it iddent that the estimates
that the tracker has made are very similar to the case of ingtcising AM with the
same number of features as shown in (a): despite the higlrcdatamination, the ap-
proximation in CLAM maintains the same quality of tracking/AaM at a much lower
computational budget.

When raising the number of tracked features per frame to dredrhowever, the
quality of tracking is improved achieving straight trajmigs for both AM and CLAM
as illustrated in Figures (c) and (d). Despite the signitigaesence of outliers, both
methods manage to recover what seems to be a very closeasiatian of the true
camera trajectory, due to the presence of extra data to amat&hing hypotheses
upon.
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(a) AM tracking 40
features per frame
the estimated trajec- .}
tory has a slight curve &
due to mismatched
features.

(b) CLAM tracking
40 features per
frame: a similarly
shaped trajectory for &
the approximated
feature distribution.

gy

(c) AM tracking 100
features per frame t
. [
denser matching al- |
lows better rejection S
of outliers, achieving
a straight trajectory.

(d) CLAM tracking
100 features per
frame: approximat- (‘&
ing the distribution
still  achieves a
straight trajectory.

Figure 7.11: Comparison of trajectories obtained for the walkway seqaetaken
with a hand-held camera. This is a particularly challenggegjuence at high reso-
lution since many features snap on to edges which are a majorces of outliers.

Note that all features have been assumed to share the sact@ngatharacteristics.
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(b) CLAM (c) FAM

Figure 7.12: The matches obtained with each of the AM-based methods wikien guery-
patches covering 3% of the area enclosed in the original legmpatches (i.e. usingx4
pixels patches). In this frame, AM’s matches deviate i fixels from the reference matches
(shown in yellow crosses) on average while CLAM’s matcheslakan error of 09 pixels and
FAM'’s matches a corresponding error o8Jixels.

7.6 Quantitative Results

Following the qualitative analysis above, this sectiorspras a quantitative compatri-
son of AM, FAM and CLAM against the output of an independerfiémence matcher
which employs sophisticated state-of-the art techniqoeghieve very high accuracy
performance albeit at high computational cost. Runnindniwia keyframe optimi-
sation framework which follows very much the design of PTAKAdin and Murray,
2007], the reference matcher works by performing denseaftow as proposed by
Pock et al. [2008] between the current and the last framertgpote an initial guess for
the camera pose. This pose is then used to guide matchinggcting the bundle-
adjusted B feature positions in image space and updating their predli@ppearance
by warping the feature patches accordingly. The matchespsed in this scheme
(referred to as ‘reference matches’ hereafter) corresporiie patches scoring the
highest response within a small fixed-size window centreglaah projected feature
location.

In order to assess the performance of our AM-based algasithgainst the refer-
ence matcher we construct the innovation covariance maioix every frame as this
is not explicitly maintained in keyframe optimisation tkay frameworks. This com-
putation turns out to be straightforward in this particidatup as at every instant the
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Figure 7.13: Assessing the performance of our AM-based algorithms wepect to a
high-quality reference matcher. This figure illustrates #verage distance of the obtained
matches from the reference matches for variable-sized templates (note that the templates
are square patches). AM achieves the lowest match erroreong the power of the algorithm
to robustly reject outliers. CLAM'’s performance is closerAM than FAM which indicates
that CLAM is a more accurate approximation to AM.

pose of the previous frame has already been optimised wsient to the B map.
Hence only the relative uncertainty between the previowsthe current fram@&rce')
will have an effect on the feature predictions; this undetyas essentially equal to the
process noiseq) of the camera motion model. Hence, using the notation dinired

in Chapter 3 we can evaluate:

oh(y1n) P(rel) dh(yin) '

g =
Oxe  © 0%

4R, (7.33)

whereh denotes the measurement model of all map featyrddote that the resulting
S is dense even though the inter-feature covariances coraly $mm motion uncer-
tainty.

The keyframe-based tracker (which incorporates the neéerenatcher) is run once
on a 400-frame sequence to gather all the data necessahefquantitative analysis:
on every frame, we store the 2424 patches of the features expected to be visible
along with their predicted image locations and associatecviation covariance matrix
S. Following the completion of feature matching, we also esthie reference matches
encountered on every frame.

During testing, each AM-based algorithm is evaluated ors#me video sequence
and on every frame it is fed with the data corresponding toféla¢ures for which
a reference match exists. Before processing a new frameeeeed the distance of
the matches discovered with respect to the positions ofd@ference matches. This
score is then averaged over the whole sequence of framegtthgimatch error’ for
each of AM, FAM and CLAM. In an attempt to assess the relatigdviour of these
algorithms with increasing ambiguity, we also run testsngtiee input feature-patches
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correspond only to a sub-region of the original templatespiging off equal blocks
of pixels from each side of the original 2424 template patch). Patches at smaller
sizes are less individually distinctive and as a result,seasus matching becomes
increasingly important then, imposing a greater chall@ngwutlier rejection.

Figure 7.12 illustrates the matches obtained using alktimethods for the case
of matching 4x 4 patches using each of the AM-based algorithms on a typiaaid,
whereas Figure 7.13 summarises the results over all tast-rAs expected, the dis-
tance of the matches obtained with respect to the referemadehes, AM seems to be
the most accurate of the three methods achieving the lowatsthnerror in all cases.
CLAM follows very closely the performance of AM whereas FAMhbits larger de-
viations and bigger match errors confirming that CLAM is adreapproximation to
AM than FAM.

7.7 Conclusions

Imagine that a tracking system had all the time in the worlgeixdorm matching, what
would be the best method of discovering matching consensois the reception of a
new image?

One could argue that the answer is to attempt matching oy ewegle pixel of the
previous image with the new one employing all available ngrtogether with proba-
bilistic inference, resembling the philosophy behind cgitflow techniques. However,
due to the very high costs involved, real-time solutions wmapproximate this pro-
cedure. The key then is in the balance between the qualityota is prepared to
sacrifice and the time consumed to completion. While supasé& matching is yet
far from real-time (Zach et al. [2007] record around 30fpsZ66 x 256 images on a
GPU implementation, however this would be many times slame€PU), RANSAC-
based techniques are dominating the landscape of modesieanatching algorithms
at present. Their reliance on statistical fairness howeveoth the reason for their
speedy performance but also the source of tracking failurehallenging scenarios.
Approaching the problem of matching from a fully probabhitigperspective, more in-
formed choices can be made on the course of matching baséeé pridr information
available. This can lead to more robust solutions, suffehiowever from poor scaling
with expanding data sets. The purpose of this chapter hastbégckle this problem in
an attempt to bring probabilistic techniques a step clasdense real-time matching.

Using the fully probabilistic framework of Active Matchings a basis, the first
attempt has been to attack the most time consuming part aldgloeithm: substituting
part of the processing of available priors with randomndssisions within matching
have been made less informed which in a way is similar to th&8AC philoso-
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phy. This semi-randomised Fast Active Matching algoritimeheied proved much more
cost effective than Active Matching but our experimentgdatemonstrated how this
randomness can significantly affect the quality of tracking

Taking a different route to approximating the procedure ofive Matching, this
chapter discussed how the notion of the Chow-Liu tree cansee to sparsify the
joint distribution of predicted features while preservihg most important correlation
structure, leading to the emergence of the Chow-Liu Activegdfling (CLAM) algo-
rithm. Exploiting the benefits of the tree structure, CLAMsisown to accomplish
both high tracking quality and competitive timings.

While CLAM is indeed a breakthrough in fully probabilistiese matching, there
remains yet a lot to be done to reach the optimal, online demestehing solution.
Following the same path of probabilistic inference and imfation Theory, in the
future we aim to look deeper into quality approximations tod full solution to the
problem of pixel-by-pixel matching using more general iafece techniques.



Conclusion

8.1 Summary of Contributions

This thesis has explored the application of an Informatidredretic framework to
guiding efficient and robust estimation within the contekiShAM. Driven by the
demand for agile manipulation of data in current state oftiaystems, this research
has employed Information Theory to direct decision-makingards more effective
approximations to the full SLAM problem. The analysis of theerent relationships
between the members of a SLAM map from an Information Theogstrspective
provides a transparent understanding of the scene steustuich in turn is key to the
development of powerful algorithms.

8.1.1 Active Matching

Addressing one of the major sources of errors during tragkime have presented
a novel Bayesian algorithm for step-by-step active seanchdata association in im-
ages. Our Active Matching methodology gets to the hearteirtiportance of priors in
maintaining consistency, engaging them in an Informatibedretic manner to guide
search for matching consensus. Essentially, the algotitmmesses the fact that corre-
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lations between different candidate feature measurenesictsde the expected impact
of each measurement in achieving a globally consistenboutc A dynamic mixture
of Gaussians represents the uncertain search-state dfintatt each instant and is
maintained in a fully probabilistic manner to account fag thultiple hypotheses nat-
urally arising in real images. Information Theory then usedombine the influence
of a candidate measurement on both the convergence to & $ipgbthesis and the
achievement of high precision within that hypothesis. Upompletion, the algorithm
gives a list of matching scenarios surviving the consistesteeck, along with their
estimated probabilities of reflecting the true solution.

Our experimental analysis has demonstrated the robusbhéggive Matching to
variable camera dynamics, and different levels of inputrgrand ambiguity. The se-
guential evaluation of ‘where to look next’ not only reduaFamatically the number
of pixels searched for matches, but most importantly eefresilience to repetitive
structure; the matcher is guided towards more promisingsaresulting to the en-
counter of fewer false positives than traditional matchighniques. With the aim of
revealing the strengths and weaknesses of the algorithrmsegeesented an exten-
sive performance analysis varying both the frame rate amdimber of features being
tracked. While across the span of the scenarios tested¢besay of the algorithm has
not been compromised, the computational scaling to inargasumbers of features,
comprises a significant limitation to the applicability bf¢ methodology. However,
studying the evolution of the Mutual Information of candielaneasurements through-
out matching has opened up the route to explore more scatailehing algorithms.

8.1.2 Map Management for Large Data Sets

In the context of effective manipulation of data for incredsersatility of solutions, we
have proposed an automatic and efficient methodology to théehierarchical struc-
ture of visual maps. Following the need for bigger and densagss, researchers have
long been using map-sparsification techniques to apprdeirtiee otherwise fully-
connected graph of feature relations, aiming for reducedagement costs. However,
while submapping criteria have most often been based onetyaf implementation-
specific thresholds, we have demonstrated how our Infoomatheoretic framework
can be employed to dynamically guide quality partitionifgraps. We have illus-
trated the application of our method on the particularly ptax case of visual maps,
where the infinite range of the camera makes the ‘ideal’ sphdnasions less clear.
Translating the probabilistic priors available in seqisntracking into Mutual
Information, we have showed how we can quantify the inforomatontent shared
between individual entries in a general SLAM map, as peetkihrough a camera
lens. Studying the correlation-links into the Informatispace, we illustrated how
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we can progressively identify regions of high Mutual Infation density, suggesting
strong correlation structure. Our experiments have detraies how this fairly simple
analysis can provide meaningful clusters of features @garating foreground from
background) for different types of scene and camera matiditis comprehensive
insight into the hierarchy of relationships inherent inuasSLAM maps we believe
has great potential in enhancing the quality of performaneeodern systems.

8.1.3 Scalable Feature Matching

Following the understanding gained by the detailed perémre analysis of Active
Matching and the study of approximations of the map stractue have presented a
new, fully probabilistic feature-matching algorithm albeachieve online matching in
dense tracking scenarios. While fast data association famga number of features
has previously been made possible with random-samplirtgnigees, our Chow-Liu
Active Matching (CLAM) algorithm aims to bring the robusssepromised by fully
probabilistic approaches to the applications. By makingigiens solely based on
concrete probabilistic estimates and Information Theonmeteasures, CLAM defies
the need for implementation-specific thresholds and thenet on randomness.

CLAM essentially comprises an approximation to the probéeliressed in Active
Matching, only approximated enough to permit online perfance while preserving
the precision of the outcome at the same time. Approachiagtior probability dis-
tribution of visible features from an Information Theoogpierspective, we have shown
how this can be approximated with a tree in Mutual Informatpace. Belief Propa-
gation is employed to propagate predicted or observed mes@tross the branches of
this tree. As a result, exploiting the computational shdg@nd complexity benefits
of this tree structure, we have demonstrated how the roésstaf Active Matching
can be achieved in a much more efficient way.

8.2 Future directions

The extensive Information Theoretic analysis of the refahips between SLAM es-
timates discussed within the body of this thesis leads tmadunderstanding of the
problem we are trying to solve. The generality of this inigeggion suggests that it can
be applied to the wide variety of SLAM estimation implemdiatas currently in the
literature, providing an insight into the effectivenesshef approximations performed.
With the ultimate goal of high performance and generallyliapple algorithms, this
work has been a small contribution along a longer chain afanesh towards practical
and theoretically justified methods.

We believe that Information Theory still has many answersffier on the primary
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trade-off of ‘quality versus cost’ challenging today’s ®ms. Is it worth matching
every single pixel in the image? Will a keyframes-approaocbv@ more beneficial
than traditional filtering given this tracking scenario? ll&wing the general accep-
tance of probabilistic techniques in manipulating reaHdalata, Information Theory
can provide the complementary framework to guide dynamaisa-making. Either
offline or at runtime, these decisions can provide the keyé¢ogoal performance of
our algorithms.

Getting to the heart of the estimation problem in SLAM, oungral aim is to gain
deep understanding of the complexity involved and the [msiog resources available.
With the target of fully adaptable algorithms, below we giv@ore specific description
of future research directions following from the conclusia@rawn in this thesis.

8.2.1 Understanding the Graphical Representations of the bfld

Filtering approaches have brought implementations a loag providing good es-
timates for small-scale environments while requiring sifging approximations for
larger amounts of data. Keyframes solutions on the othed hane been more suc-
cessful in dense maps. Moreover, the recent trend towaldsvesrepresentations
and bundle adjustment methods on selected sets of nodesteemimgest improved
overall timings. It would be interesting to investigate #teengths and weaknesses of
each representation with the dual aim of identifying thet lbpsion given a particular
tracking scenario, and also revealing avenues for imprevem

8.2.2 Quality and Speed in Frame to Frame Processing

Our investigation of feature matching has revealed the pofv/thinking’ how to pro-
cess the input data to achieve robustness and efficiencycah tootion estimation.
However, we have seen that the overhead involved in thissisent can take a signif-
icant part of the available processing time. Moreover, /hilformation Theory has
indicated successful approximations towards scalabterfeanatching, we would like
to investigate further simplifications of the frame-estiimra process with the goal of
really dense matching. A more practical analysis of the agatfonal costs involved
within every individual assessment and estimation procassprovide a measure of
the effort implied by the employment of a particular apptoad/e believe that through
this investigation estimation algorithms can potentile the ability to dynamically
assess the stability and effectiveness of the approximatoiggested and adapt the
computation process accordingly.



Appendix

A.1 The Sum-Product Algorithm

Following the notation of Bishop [2006] we consider the jginobability distribution
x. Computing the marginal of a particular variaklgwvolves a summation of the joint
distribution over all variables except

pX) = T P(X) - (A1)

The distributionp(x) can be expressed as a product of ‘local’ functions desgithie
relationships (factors) of member-variables or ‘nodeséwionsidering the diagram-
matic representation of the distribution. This is knownlashipartitefactor graphin
the literature of graphical models. In tuno(x) can be expressed in terms of groups of
factorsFs(x, Xs) such that each group contains the factors relating the setd#sXs

in the subgraph neighbouring nogas illustrated in Figure A.1(a). Hence né&Xx) is
the set of factor nodes neighbouring witlve can write:

p(x) = |_| Fs(%, Xs) - (A.2)

sengx)
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My () @

(a) Evaluating p(x) (b) Evaluating p,—x(X)

Figure A.1l: The nested nature of messages passed in the sum-produdthalgo(a) is a
visualisation of the factorisation of the marginalx) in terms of factor messages, .x(x)
as defined in Equation A.3. Each factor message coming frombg@raph neighbouring with
nodex is evaluated in a recursive manner as suggested in (b) whelase-up of one such
subgraph is depicted. Any factég can only propagate a messagextance it has collected all
other node messaggs, . i.(Xm) as defined in equation A.7.

Substituting Equation A.2 into A.1 and interchanging thedurct and sum operators,
the marginal of can be re-written as:

pPx) = T] [;FS(X,XS)] = [] Ht—x(¥), (A.3)
sengx) | Xs sengx)

where eachur_.x(x) stands for the message passed from factor nigde nodex
defined to be:

Hi—x(X) = ;Fs(x> Xs) . (A.4)

Now in order to see how these messages get evaluated we himak toleeper’ into
each subgraph as depicted in Figure A.1(b). Bacheing a group of factors, itself
can be factorised in terms df and sub-groups of factoiGm(Xm, Xsm). In order to
motivate recursion, each, (which by definition is a member o) is chosen so that
it is an immediate neighbour df. Therefore,

Fs(X, Xs) = fs(X,X1,...,Xm) I_l Gm(Xm, Xsm) (A.5)
meng(fs)/ x

whereXsm comprises the set of nodesXg relating with the rest of the graph through
Xm. Having definedrs we can now evaluate the factor message.x(x). Given that
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Xs={X1,...,Xm, Xs1,- - -, Xsm}, We expand the summation in A.4 and substituteFor

—x(X) = oy fs(XXg,. .0, % Gm(Xm, X,
HUs x() Z z;ﬂ % s( 1 M)menel(_fls)/x m( sm)

X1 XM

= Y fs(XXg, .0 Xm) Gm(Xm, Xsm)
; % menel(_fls)/ X %1

= Zz fs(X, X1, .., %m) |_| U £ (Xm) (A.6)
X1 XM meng(fs)/ x

wherepy, .1, (Xm) is the message issued from noggto factor fs, defined to be equal
to:

Hx— fs(xm) = ; Gm(xm7 Xsm) . (A.?)

Equation A.6 demonstrates the recursive nature of the atiafuof messages passed
along the branches of the tree. A factor ndd&vishing to issue a message for node
collects the node-messages coming from all other neighbodesx,, each evaluated
recursively and in the same manner based on the subgrapt-geparate from the rest
of the graph. Messages are initially issued from the leafdkseograph and are then
progressively propagated to the root of the tree (here Rpaessentially marginalising
variables one-by-one so that by the time the root has reteivessages from all its
variables, the summation of Equation A.1 will have beenadd.

Given now that a set of nodes is observed and the goal is to wenpe new
marginal distribution of every other node in the tree, we adritrarily designate a
root-node and propagate messages from the leaves to thanddiack, so that ev-
ery node will have efficiently received updates from all iSghbours. In the special
case where only one node is observed, this process can besemenore efficient by
issuing outward messages directly from that node towaldts aleighbours until up-
dates reach the ends of the tree. This is immediately ajdica our Active Matching
paradigm where only one feature is matched at every matshépg Note that although
discrete probability distributions have been assumedigdérivation, the methodol-
ogy is general and can easily be adapted to continuoudgkdited variables, by es-
sentially replacing the summation operators by integnatids a side note, while the
sum-product algorithm provides exact inference in treecsiires, researchers have
been using it also for graphs containing cycles (loops)iteptb the emergence of
Loopy Belief Propagation (LBP). However, since here we ainuge the Chow-Liu
tree, LBP is out of the scope of this chapter.



162 Appendix




Bibliography

M. Agrawal, K. Konolige, and M. R. Blas. CenSurE: Center sund extremas for re-
altime feature detection and matching.Rroceedings of the European Conference
on Computer Vision (ECCY2008.

D. Alspach and H. Sorenson. Nonlinear bayesian estimasorgugaussian sum ap-
proximations.IEEE Transactions on Automatic Contrdl7(4):439-448, 1972.

A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast andremental method for
loop-closure detection using bags of visual wortlSEE Transactions on Robotics
(T-RO) 24(5):1027-1037, 2008.

A. Azarbayejani and A. P. Pentland. Recursive estimatiomofion, structure, and
focal length. IEEE Transactions on Pattern Analysis and Machine Intekige
(PAMI), 17(6):562-575, 1995.

T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. s&stancy of the EKF-
SLAM algorithm. InProceedings of the IEEE/RSJ Conference on Intelligent 8obo
and Systems (IROS)006a.

T. Bailey, J. Nieto, and E. Nebot. Consistency of the Fast8LaAgorithm. InPro-
ceedings of the IEEE International Conference on RoboticsAutomation (ICRA)
2006b.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speegetbhust features.
Computer Vision and Image Understanding (CVJI)0(3):346—359, 2008.

C. M. Bishop.Pattern Recognition and Machine Learnirfgpringer-Verlag New York,
Inc., 2006.

M. Bosse and J. Roberts. Histogram matching and globadlizitition for laser-only
SLAM in large unstructured environments. Rroceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA07.

163



164 BIBLIOGRAPHY

M. Bosse, P. Newman, J. J. Leonard, M. Soika, W. Feiten, antelr. An atlas
framework for scalable mapping. Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICR2()03.

M. Bosse, P. Newman, J. J. Leonard, and S. Teller. Simultenkocalisation And
Mapping in Large-scale Cyclic Environments using the ABaamework.Interna-
tional Journal of Robotics Research (IJRR$(12):1113-1139, 2004.

T. J. Broida, S. Chandrashekhar, and R. Chellappa. ReeuBsi¥ motion estimation
from a monocular image sequentgEE Transactions on Aerospace and Electronic
Systems26:639—-656, 1990.

M. Brown and D. G. Lowe. Recognising panoramas.Pceedings of the Interna-
tional Conference on Computer Vision (ICCZP03.

M. Bryson and S. Sukkarieh. An information-theoretic aggioto autonomous nav-
igation and guidance of an uninhabited aerial vehicle imamkn environments. In
Proceedings of the IEEE/RSJ Conference on Intelligent Babul Systems (IRQS)
2005.

P. Bunnun and W. W. Mayol. OutlinAR: an assisted interactivael building system
with reduced computational effort. Proceedings of the International Symposium
on Mixed and Augmented Reality (ISMARages 61—-64, 2008.

J. Campbell, R. Sukthankar, and I. Nourbakhsh. Techniques/gluating optical flow
for visual odometry in extreme terrain. Rroceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems (IRCZE)04.

D. Capel and A. Zisserman. Automated mosaicing with sugsoiution zoom. In
Proceedings of the IEEE Conference on Computer Vision atigffaRecognition
(CVPR) 1998.

R. O. Castle, D. J. Gawley, G. Klein, and D. W. Murray. Videxerrecognition and
localization for wearable cameras. Rroceedings of the British Machine Vision
Conference (BMVGRO007.

D. Chekhlov, M. Pupilli, W. W. Mayol, and A. Calway. Real-timvand robust monoc-
ular slam using predictive multi-resolution descriptofs.Proceedings of the 2nd
International Symposium on Visual Computi2g06.

A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure frortian@ausally integrated
over time.IEEE Transactions on Pattern Analysis and Machine Inteltige (PAMI)
24(4):523-535, 2002.



BIBLIOGRAPHY 165

M. Chliand A. J. Davison. Active Matching. IRroceedings of the European Confer-
ence on Computer Vision (ECC\2008a.

M. Chli and A. J. Davison. Automatically and efficiently imfng the hierarchical
structure of visual maps. IRroceedings of the IEEE International Conference on
Robotics and Automation (ICRAJ009a.

M. Chli and A. J. Davison. Active Matching for visual trackin Robotics and Au-
tonomous Systems7(12):1173 — 1187, 2009b. Special Issue ‘Inside Data &sso
ation’.

M. Chli and A. J. Davison. Efficient data association in imggsing active match-
ing. InRobotics: Science and Systems (RSS) Workshop on Insidé\Bseiation
2008b.

K. S. Chong and L. Kleeman. Feature-based mapping in regé &cale environments
using an ultrasonic arraynternational Journal of Robotics Research (IJREJ(2):
3-19, January 1999.

C. K. Chow and C. N. Liu. Approximating discrete probabilijstributions with
dependence treeEEE Transactions on Information Theoi4(3):462—-467, 1968.

O. Chum and J. Matas. Optimal randomized RANSHEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMB0(8):1472—-1482, 2008.

J. Civera, D. R. Bueno, A. J. Davison, and J. M. M. Montiel. @aanself-calibration
for sequential bayesian structure from motionPhoceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICR809a.

J. Civera, A. J. Davison, J. A. Magallon, and J. M. M. Montletift-free real-time mo-
saicing. International Journal of Computer Vision (1JC\M§1(2):128-137, 2009b.

J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Montiel. oirpRANSAC for
EKF-based structure from motion. Rroceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems (IRQZ)09c.

L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. dardMapping large loops
with a single hand-held camera. Broceedings of Robotics: Science and Systems
(RSS)2007.

A. l. Comport, E. Malis, and P. Rives. Accurate quadri-foratking for robust 3D
visual odometry. IrProceedings of the IEEE International Conference on RaBoti
and Automation (ICRAR0O07.



166 BIBLIOGRAPHY

T. M. Cover and J. A. Thomag£lements of Information ThearyViley-Interscience,
second edition, 2006.

M. Cummins and P. Newman. Probabilistic appearance basddatian and loop
closing. InProceedings of the IEEE International Conference on Rabkoéind
Automation (ICRA)2007.

M. Cummins and P. Newman. FAB-MAP: Probabilistic localiaatand mapping in
the space of appearandaternational Journal of Robotics Research (IJRRJ(6):
647-665, 2008.

M. Cummins and P. Newman. Highly scalable appearance-doNVs— FAB-MAP
2.0. InProceedings of Robotics: Science and Systems (RS®.

A. J. Davison. Real-time simultaneous localisation andpirapwith a single camera.
In Proceedings of the International Conference on Computsioki(ICCV) 2003.

A. J. Davison. Active search for real-time vision. Pmoceedings of the International
Conference on Computer Vision (ICG\2P05.

A. J. Davison and N. Kita. Sequential localisation and majtding in computer
vision and robotics. IfProceedings of the 2nd Workshop on Structure from Multiple
Images of Large Scale Environments (SMILE), in conjunctigth ECCV 2000
Springer-Verlag LNCS, 2000.

A. J. Davison and D. W. Murray. Mobile robot localisation nggiactive vision. In
Proceedings of the European Conference on Computer ViEGCY{) 1998.

A. J. Davison, W. W. Mayol, and D. W. Murray. Real-time loaaliion and mapping
with wearable active vision. IProceedings of the International Symposium on
Mixed and Augmented Reality (ISMARDOS.

A. J. Davison, N. D. Molton, I. Reid, and O. Stasse. MonoSLAR&al-time single
camera SLAM. IEEE Transactions on Pattern Analysis and Machine Inteltige
(PAMI), 29(6):1052-1067, 2007.

F. Dellaert. Square root SAM. IRroceedings of Robotics: Science and Systems (RSS)
2005.

H. Durrant-Whyte and T. Bailey. Simultaneous Localisatéomd Mapping (SLAM):
Part | The Essential AlgorithmdEEE Robotics and Automation Magazirie(2):
99-110, 2006.

E. Eade.Monocular Simultaneous Localisation and MappiihD thesis, University
of Cambridge, 2008.



BIBLIOGRAPHY 167

E. Eade and T. Drummond. Edge landmarks in monocular SLAMRrerceedings of
the British Machine Vision Conference (BMV@P06a.

E. Eade and T. Drummond. Unified loop closing and recoverydaltime monocular
SLAM. In Proceedings of the British Machine Vision Conference (BY\2008.

E. Eade and T. Drummond. Scalable monocular SLAMPltaceedings of the IEEE
Conference on Computer Vision and Pattern Recognition &)E06b.

E. Eade and T. Drummond. Monocular SLAM as a graph of coatbebservations.
In Proceedings of the International Conference on Computsipii(ICCV) 2007.

E. Eade and T. Drummond. Edge landmarks in monocular SLANage and Vision
Computing 27(5):588 — 596, 2009. Special Issue for the 17th Britisicivilze
Vision Conference (BMVC 2006).

C. Estrada, J. Neira, and J. D. Tardbs. Hierarchical SLAR&aIRime accurate map-
ping of large environmentsEEE Transactions on Robotics (T-RQ@)L(4):588-596,
2005.

R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparseyddistate filters. IRro-
ceedings of the IEEE International Conference on RobotickAutomation (ICRA)
2005a.

R. M. Eustice, H. Singh, J. J. Leonard, M. Walter, and R. Bdll&/isually navigating
the RMS titanic with SLAM information filters. IRroceedings of Robotics: Science
and Systems (RSZ005b.

R. M. Eustice, H. Singh, J. J. Leonard, and M. R Walter. Visualapping the RMS
titanic: Conservative covariance estimates for SLAM infation filters. Interna-
tional Journal of Robotics Research (IJRR)(12):1223-1242, 2006.

O. D. Faugeras. What can be seen in three dimensions withcatibmated stereo rig?
In Proceedings of the European Conference on Computer ViEGCY) 1992.

M. A. Fischler and R. C. Bolles. Random sample consensusradiggn for model
fitting with applications to image analysis and automatetbgaaphy.Communica-
tions of the ACM24(6):381-395, 1981.

A. W. Fitzgibbon and A. Zisserman. Automatic camera recp¥er closed or open
image sequences. RProceedings of the European Conference on Computer Vision
(ECCV) pages 311-326. Springer-Verlag, June 1998.

U. Frese. Treemap: A@(logn) algorithm for indoor simultaneous localization and
mapping.Autonomous Robqt21(2):103-122, 2006.



168 BIBLIOGRAPHY

U. Frese, P. Larsson, and T. Duckett. A multilevel relaxatidgorithm for simul-
taneous localisation and mappinEEE Transactions on Robotics (T-RQJL(2):
196-207, 2005.

W. E. L. Grimson. Object Recognition by Computer: The Role of Geometric Con-
straints Cambridge, MA: MIT Press, 1990.

J. E. Guivant and E. M. Nebot. Optimization of the simultarelcalization and map-
building algorithm for real-time implementationEEE Transactions on Robotics
and Automationl17(3):242-257, 2001.

M. Habbecke and L. Kobbelt. A surface-growing approach tdtimiew stereo recon-
struction. InProceedings of the IEEE Conference on Computer Vision arigiPa
Recognition (CVPRR007.

C. G. Harris. Tracking with rigid models. In A. Blake and A.iNe, editors,Active
Vision MIT Press, Cambridge, MA, 1992.

R. Hartley and A. Zissermamultiple View Geometry in Computer VisioBambridge
University Press, second edition, 2004.

S. Holmes, G. Sibley, G. Klein, and D. W. Murray. A relativarre representation
for fixed-time bundle adjustment in SFM. Rroceedings of the IEEE International
Conference on Robotics and Automation (ICR2909.

M. Isard and A. Blake. Contour tracking by stochastic prai@m of conditional
density. InProceedings of the European Conference on Computer VIEQCY)
1996.

M. Kaess, A. Ranganathan, and F. Dellaert. iISAM: Incrememteoothing and map-
ping. IEEE Transactions on Robotics (T-R@)}(6):1365-1378, 2008.

J. H. Kim and S. Sukkarieh. Real-time implementation of @ine inertial-SLAM.
Robotics and Autonomous Systebt1):62—71, 2007.

J. H. Kim, S. Sukkarieh, and S. Wishart. Real-time navigatmguidance, and control
of a UAV using low-cost sensors. Field and Service Robotics, Recent Advances
in Research and Applications (FSRP03.

G. Klein and D. W. Murray. Improving the agility of keyfransed SLAM. In
Proceedings of the European Conference on Computer ViEGC{) 2008.

G. Klein and D. W. Murray. Parallel tracking and mapping foradl AR workspaces.
In Proceedings of the International Symposium on Mixed andvanded Reality
(ISMAR) 2007.



BIBLIOGRAPHY 169

K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustiné real-time
visual mapping|EEE Transactions on Robotics (T-R@}:1066-1077, 2008.

K. Konolige, M. Agrawal, and J. Sola. Large scale visualroétry for rough terrain.
In Proceedings of the International Symposium on Roboticedrels 2007.

J. J. Leonard, H. Durrant-Whyte, and I. J. Cox. Dynamic maifdimg for an au-
tonomous mobile robotinternational Journal of Robotics Research (IJRR)(4):
286—298, 1992.

V. Lepetit and P. Fua. Keypoint recognition using randomizees|EEE Transactions
on Pattern Analysis and Machine Intelligence (PAN23(9):1465-1479, 2006.

R. Lienhart and J. Maydt. An extended set of Haar-like festor rapid object de-
tection. InProceedings of the IEEE International Conference on Image&ssing
(ICIP), 2002.

D. G. Lowe. Distinctive image features from scale-invatikeypoints. International
Journal of Computer Vision (IJCY$0(2):91-110, 2004.

F. Lu and E. Milios. Globally consistent range scan alignnfenenvironment map-
ping. Autonomous Robaqtg(4):333—349, 1997.

B. D. Lucas and T. Kanade. An iterative image registratiainméque with an appli-
cation to stereo vision. IfProceedings of the International Joint Conference on
Artificial Intelligence (IJCAI) 1981.

D. Mackay. Information Theory, Inference and Learning Algorithm&€ambridge
University Press, 2003.

J. Manyika.An Information-Theoretic Approach to Data Fusion and Sehdanage-
ment PhD thesis, University of Oxford, 1993.

C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient horapby-based track-
ing and 3-D reconstruction for single-viewpoint sensot&EE Transactions on
Robotics (T-RQ)24(6):1352-1364, 2008.

C. Mei, G. Sibley, M. Cummins, P. Newman, and |. Reid. A constane efficient
stereo SLAM system. IfProceedings of the British Machine Vision Conference
(BMVC), 20009.

Live Labs Microsofe. Photosyntf, 2008. URLhttp://www.photosynth.
net .



170 BIBLIOGRAPHY

N. D. Molton, A. J. Davison, and |. Reid. Locally planar pafelatures for real-time
structure from motion. IfProceedings of the British Machine Vision Conference
(BMVC), 2004.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fast342R.0: An improved
particle filtering algorithm for simultaneous localizatiand mapping that provably
converges. IProceedings of the International Joint Conference on Aitfilntel-
ligence (IJCAI) 2003.

J. M. M. Montiel, J. Civera, and A. J. Davison. Unified invedspth parametrization
for monocular SLAM. InProceedings of Robotics: Science and Systems (RSS)
2006.

E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P.&dayeal-time localiza-
tion and 3D reconstruction. IRroceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPRD06.

P. Moutarlier and R. Chatila. Stochastic multisensory fiag@on for mobile robot lo-
cation and environement modelling. Pmoceedings of the International Symposium
on Robotics Research989.

A. G. O. MutambaraDecentralized Estimation and Control for Multisensor 8ys$
CRC Press, Inc., 1998.

J. Neira and J. D. Tardbs. Data association in stochastipimg using the joint com-
patibility test. IEEE Transactions on Robotics and Automatidr?(6):890-897,
2001.

J. Neira, M. |. Ribeiro, and J. D. Tard6s. Mobile robot lasation and map building
using monocular vision. IRProceedings of the International Symposium on Intelli-
gent Robotics Systenk997.

P. Newman, D. Cole, and K. Ho. Outdoor SLAM using visual apaeee and laser
ranging. InProceedings of the IEEE International Conference on Ralsoéind
Automation (ICRA)2006.

D. Nistér. Preemptive RANSAC for live structure and motesiimation. InProceed-
ings of the International Conference on Computer VisiorQ\G, 2003.

D. Nistér, O. Naroditsky, and J. Bergen. Visual odometmnyfPtoceedings of the IEEE
Conference on Computer Vision and Pattern Recognition &)\Z004.

E. Olson, J. J. Leonard, and S. Teller. Fast iterative algmtrof pose graphs with poor
initial estimates. IrProceedings of the IEEE International Conference on RaBoti
and Automation (ICRAR006.



BIBLIOGRAPHY 171

M. A. Paskin. Thin junction tree filters for simultaneousdbzation and mapping. In
Proceedings of the International Joint Conference on Aisfilntelligence (IJCAI)
pages 1157-1164, 2003.

L. M. Paz, P. Jensfelt, J. D. Tardbs, and J. Neira. EKF SLAMates in O(n) with
divide and conquer SLAM. IfProceedings of the IEEE International Conference
on Robotics and Automation (ICRA007a.

L. M. Paz, J.Guivant, J. D. Tardbs, and J. Neira. Data aagoniinO(n)for divide and
conquer SLAM. InProceedings of Robotics: Science and Systems (R8Gjb.

J. PearlProbabilistic reasoning in intelligent systems: netwookplausible inference
Morgan Kaufmann, 1988.

P. Pinieés.SLAM in Large Environments with Wearable Sens®sD thesis, Universi-
dad de Zaragoza (Spain), 2009.

P. Pinies and J. D. Tardos. Large scale SLAM building camaiitlly independent local
maps: Application to monocular visiotEEE Transactions on Robotics (T-RQ}%
(5):2094-1106, 2008.

T. Pock, M. Unger, D. Cremers, and H. Bischof. Fast and exalcttisn of total
variation models on the GPU. IRroceedings of the CVPR Workshop on Visual
Computer Vision on GPU,22008.

C. J. Poelman and T. Kanade. A paraperspective factonzatiethod for shape and
motion recovery. Technical report, Computer Science Qiapant, Carnegie Mellon
University, 1993.

M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration amétric reconstruction
in spite of varying and unknown internal camera parameter®roceedings of the
International Conference on Computer Vision (ICC1998.

M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Malvdi, B. Clipp, C. Engels,
D. Gallup, S. J. Kim, P. Merrell, C. Salmi, S. Sinha, B. TaltbtnWang, Q. Yang,
H. Stewénius, R. Yang, G. Welch, and H. Towles. Detailed-tiege urban 3D
reconstruction from video.International Journal of Computer Vision (IJCVJ8
(2-3):143-167, 2008.

D. Ribas, P. Ridao, J.D. Tard6s, and J. Neira. Underwat&\sln man-made struc-
tured environmentsJournal of Field Robotigs25(11-12):898-921, 2008.

E. Rosten and T. Drummond. Machine learning for high-speeder detection. In
Proceedings of the European Conference on Computer ViEGCY) 2006.



172 BIBLIOGRAPHY

E. Rosten and T. Drummond. Fusing points and lines for higfopaance tracking.
In Proceedings of the International Conference on Computsioki(ICCV) 2005.

D. Scaramuzza and R. Siegwart. Appearance guided monaxnulsdirectional visual
odometry for outdoor ground vehiclesEEE Transactions on Robotics (T-RO),
Special Issue on Visual SLAI4(5), 2008.

J. Shiand C. Tomasi. Good features to trackPtaceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPEP4.

G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relativmdiie adjustment. In
Proceedings of Robotics: Science and Systems (R8&).

S. N. Sinha, J. M. Frahm, M. Pollefeys, and Y. Genc. Feataeking and matching
in video using programmable graphics hardwarachine Vision and Applications
2007.

J. Sivic and A. Zisserman. Video Google: A text retrieval @agh to object match-
ing in videos. InProceedings of the International Conference on ComputsioN(|
(ICCV), 2003.

P. Smith, I. Reid, and A. J. Davison. Real-time single-car®&tAM with straight
lines. InProceedings of the British Machine Vision Conference (BY\2006.

R. Smith, M. Self, and P. Cheeseman. Estimating uncertatiadgelationships in
robotics. InUncertainty in Artificial Intelligencepages 435—-461. Elsevier, 1988a.

R. Smith, M. Self, and P. Cheeseman. A stochastic map fortaicespatial relation-
ships. InProceedings of the International Symposium on RoboticedRels pages
467-474, 1988b.

N. Shavely, S. M. Seitz, and R. Szeliski. Photo tourism: Bspld photo collections
in 3D. In ACM Transactions on Graphics (SIGGRAREDO06.

R. Szeliski and S. B. Kang. Recovering 3D shape and motiom froage streams
using non-linear least squares. Technical report, Robattitude, 1993.

R. Szeliski and H. Y. Shum. Creating full view panoramic iragosaics and envi-
ronment maps. IMCM Transactions on Graphics (SIGGRARHY97.

J. D. Tardés, J. Neira, P. Newman, and J. J. Leonard. Rotaspimg and localization
in indoor environments using sonar ddtaernational Journal of Robotics Research
(MRR) 21(4):311-330, 2002.



BIBLIOGRAPHY 173

C. J. Taylor, D.J. Kriegman, and P. Adandan. Structure antiomdn two dimen-
sions from multiple images: a least squares approactrdneedings of the IEEE
workshop on Visual Motigr991.

S. Thrun and M. Montemerlo. The graphSLAM algorithm with Bgations to large-
scale mapping of urban structurednternational Journal of Robotics Research
(MRR) 25(5-6):403—-429, 2006.

S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, andYANg. Simultaneous
mapping and localization with sparse extended informatfiieers. In Proceedings
of the Fifth International Workshop on Algorithmic Founidais of Robotics2002.

S. Thrun, W. Burgard, and D. FoxProbabilistic Robotics Cambridge: MIT Press,
2005.

C. Tomasi and T. Kanade. Shape and motion from image streadss orthography:
A factorization approachinternational Journal of Computer Vision (IJC\9(2):
137-154, 1992.

C. Tomasi and T. Kanade. Detection and tracking of poinufegt Technical report,
Technical Report CMU-CS-91-132, Carnegie Mellon Univgrsiool.

B. J. Tordoff and D. W. Murray. Guided-MLESAC: Faster imaggnsform estimation
by using matching priors.IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI)27(10):1523-1535, 2005.

P. H. S. Torr and A. Zisserman. MLESAC: a new robust estimaithr application to
estimating image geometrgomputer Vision and Image Understanding (CV,IZ8
(1):238-156, 2000.

A. Vedaldi, H. Jin, P. Favaro, and S. Soatto. KALMANSAC: Rebfiltering by con-
sensus. IfProceedings of the International Conference on ComputEpKki(ICCV)
2005.

T. Vidal-Calleja, A. J. Davison, J. Andrade-Cetto, and D.Mvrray. Active control
for single camera SLAM. IfProceedings of the IEEE International Conference on
Robotics and Automation (ICRAJ006. URLhttp://www.doc.ic.ac.uk/
~ajd/Publications/vidal_etal icra2006.pdf

G. Vogiatzis, C. H. Esteban, P. H. S. Torr, and R. Cipolla. tMiglw stereo via vol-
umetric graph-cuts and occlusion robust photo-consigteli€EE Transactions on
Pattern Analysis and Machine Intelligence (PAMID(12):2241-2246, 2007.



174 BIBLIOGRAPHY

J. Weingarten and R. Siegwart. EKF-based 3D SLAM for stmactuenvironment
reconstruction. IrProceedings of the IEEE/RSJ Conference on Intelligent Robo
and Systems (IROS)005.

B. Williams, G. Klein, and I. Reid. Real-time SLAM relocaison. InProceedings of
the International Conference on Computer Vision (ICC007.

S. B. Williams and |I. Mahon. Simultaneous localisation anapping on the great
barrier reef. InProceedings of the IEEE International Conference on Rabsatind
Automation (ICRA)2004.

S. B. Williams, G. Dissanayake, and H. Durrant-Whyte. Ancédfit approach to
the simultaneous localisation and mapping problem Pioceedings of the IEEE
International Conference on Robotics and Automation (I;RB02.

C. Zach, T. Pock, and H. Bischof. A duality based approachefaltime TV-L1 optical
flow. In Proceedings of the DAGM Symposium on Pattern RecognRiay? .



