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Appendix D: MATRIX CALCULUS D2

In this Appendix we collect some useful formulas of matrix calculus that often appear in finite
element derivations.

8D.1 THE DERIVATIVES OF VECTOR FUNCTIONS

Let x and y be vectors of orders n and m respectively:

Xy Y1
X Y.

x=| 21, y=|"7"]1. (D.1)
Xn Ym

where each component y; may be a function of all the x;, a fact represented by saying that y is a
function of x, or

y=yX. (D.2)

If n = 1, x reducesto ascalar, which we call x. If m = 1, y reduces to a scalar, which we call y.
Various applications are studied in the following subsections.

8D.1.1 Derivative of Vector with Respect to Vector

The derivative of the vector y with respect to vector x isthe n x m matrix

roy1 9Y2 . Ym T
X1  0Xg X1
5 Wy Y2 . Ym
W e | T, X %z (D.3)
X . .
a1 0¥2 . 0Ym
- aXn 8Xn axn -

8D.1.2 Derivative of a Scalar with Respect to Vector

If yisascaar,

a —7
Y & | x| (D.4)
X

8D.1.3 Derivative of Vector with Respect to Scalar

If X isascdar,

0 ot ray; Ay, Y,
X [8x aox 8>r<n] (D.5)
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REMARK D.1

Many authors, notably in statistics and economics, define the derivatives as the transposes of those given
above.! This has the advantage of better agreement of matrix products with composition schemes such as the
chain rule. Evidently the notation is not yet stable.

EXAMPLE D.1
Given
X1
y=[Y1] x=|x (D.6)
Y2 X5
and
Y1 =X — X D.7)
Y2 = X5 + 3%,
the partial derivative matrix dy/dx is computed as follows:
% %
X1 X1 2x; O
W _ | oy | |2, 3 (D.8)
X X2 0X2 0 2
M e °
0X3 0X3

8D.1.4 Jacobian of a Variable Transfor mation

Inmultivariate analysis, if x andy are of the same order, the determinant of the square matrix ax/dy,
that is
aX

is called the Jacobian of the transformation determined by y = y(x). The inverse determinant is

ay
0X

J7t= . (D.10)

L Oneauthor putsit thisway: “When one does matrix calculus, one quickly finds that there are two kinds of peoplein this
world: those who think the gradient is arow vector, and those who think it is a column vector.”

D-3



Appendix D: MATRIX CALCULUS D4
EXAMPLE D.2
The transformation from spherical to Cartesian coordinates is defined by

X =T sinf cosy, y=rsnésny, Z=r cosf (D.11)

wherer > 0,0 < 6 <7 and 0 < ¢ < 2. To obtain the Jacobian of the transformation, let

X = Xi, Yy = Xo, Z= X3
D.12
rEyl’ OEyZv ‘(//Ey3 ( )
Then ) ) )
ax SNy, COSYs Siny,Sinys CoSY,
J= ‘a—‘ = | Y100Sy,C0SYs  y100Sy,Sinys —y1Sny, D13
YI' | —yisiny,siny; y;siny,cosys 0 (D.13)

= y2siny, =r?siné.

The foregoing definitions can be used to obtain derivatives to many frequently used expressions,
including quadratic and bilinear forms.

EXAMPLE D.3

Consider the quadratic form
y = X" Ax (D.1%

where A isasquare matrix of order n. Using the definition (D.3) one obtains

dy

™ = AX +ATX (D.15)
and if A issymmetric,
% = 2AxX. (D.16)
We can of course continue the differentiation process:
%y 9 (dy T
W:&(&):MA, (D.17)
and if A issymmetric,
0%y
Pl 2A. (D.18)

The following table collects several useful vector derivative formulas.

ay

y X

AX AT

xTA A

XX 2X
xT Ax Ax + ATx
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8D.2 THE CHAIN RULE FOR VECTOR FUNCTIONS

Let
X1 Y1 Z;
X Y2 z
X = ,2 , y=1 . and z= ,2 (D.19)
Xn Vi Zm

where z isafunction of y, which isin turn afunction of x. Using the definition (D.2), we can write

9z 3z 9z
dXq X2 e dXn
T 9z, 37 9z
0z X1 IXa X
— ] = " (D.20)
X : : :
9Zm  3Zm 9Zm
X1 X2 e 9Xn

Each entry of this matrix may be expanded as

r .
3z 9z dyq i=1,2....m
L=y LS (D.21)
Xi gq=1 Yq 9Xj J=44...,
Then Yy omd 5 22 -
Yq 0X1 dyq X2 e 0Yq 0Xn
T 0925 %Yq 025 %Yq 92y 0%
0z 3Yq %1 Z ayq 0% T Z 3Yq 9%n
ax/) :
9z 0¥ 9Zm 0¥ Y oz 9%
- dyq X1 0yq OX2 "7 dYq 0%n -
0z 9z, 7 W W W1
ay1 > T v Xy X2 " OXn
I L) 7 R ) Xy I T X
0Zm  92Zm 9Zm W W
ayr Ay 7T Oy axg 9%z T X

T T T
-(5) (2= (2%)
ay X X oy

On transposing both sides, we finally obtain

0Z ay 0z
9z _ 9yoz (D.23)
oxX  IX oy
which isthe chain rule for vectors. If all vectors reduce to scalars,
0Z dy 0z 0Z 0
_ 9yoz _ y (D.24)

ax  axdy Ay ox
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which is the conventional chain rule of calculus. Note, however, that when we are dealing with
vectors, the chain of matrices builds “toward the left.” For example, if w isafunction of z, which
isafunction of y, which isafunction of x,

ow  0Jy 0z dw
— = —y——. (D.25)
dX  0Xay 0z

On the other hand, in the ordinary chain rule one can indistictly build the product to the right or to
the left because scalar multiplication is commutative.

8D.3 THE DERIVATIVE OF SCALAR FUNCTIONS OF A MATRIX
Let X = (x;;) beamatrix of order (m x n) and let

y = f(X), (D.26)

be a scalar function of X. The derivative of y with respect to X, denoted by

ay
-, D.27
™ ( )
is defined as the following matrix of order (m x n):
ay ay ay
m le U 0X1n
ay ay ay
% X Xz X ay ay
G = — = 2 2 n = o == E -, D28
X : : : |:8Xij Zj: IJBX”‘ ( )
Ay 9y oy
8Xml aXm2 T aXmn

where E;; denotes the elementary matrix* of order (m x n). This matrix G is also known as a
gradient matrix.

EXAMPLE D.4
Find the gradient matrix if y isthe trace of a square matrix X of order n, that is

n
y=t) = X (D.29)
i=1
Obviously all non-diagonal partials vanish whereas the diagonal partials equal one, thus
G= oy =1, (D.30)
X

where | denotes the identity matrix of order n.

* The elementary matrix Ej; of order m x n has all zero entries except for the (i, j) entry, whichisone.
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8D.3.1 Functionsof a Matrix Deter minant

An important family of derivatives with respect to a matrix involves functions of the determinant
of amatrix, for example y = |X| or y = |AX]. Suppose that we have amatrix Y = [y;;] whose

components are functions of a matrix X = [xs], that isyi; = fi;(X;s), and set out to build the
matrix v
Y]
—_ D.31
5 ( )

Using the chain rule we can write

0[Y] 9y
N Vij s

But

YI= " wjYij,
i

whereY; isthecofactor of theelement y;; in|Y|. SincethecofactorsYi, Yio, ...

of the element y;;, we have
Y|
ayij -

It follows that

1Y Vi
= Yij =L
0Xrs ZXJ: N 0Xrs
There is an aternative form of this result which is ocassionally useful. Define

o

aj =VYij, A=l[aj], bijzax, B = [by].
'S

Then it can be shown that
oY

Xrs

=tr(ABT) = tr(BTA).

EXAMPLE D.5
If X isanonsingular square matrix and Z = |X|X ! its cofactor matrix,

a|X] T
G=——=27".
aX
If X isalso symmietric,
Xt ) N
G= ™ =27 diag(Z').

(D.32)

(D.33)

areindependent

(D.34)

(D.35)

(D.36)

(D.37)

(D.38)

(D.39)
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8D.4 THE MATRIX DIFFERENTIAL

For ascalar function f (x), where x isan n-vector, the ordinary differential of multivariate calculus

is defined as .
of
df =3 —-dx. (D.40)

i=1 Xi

In harmony with this formula, we define the differential of an m x n matrix X = [x;;] to be

Xml dX12 e Xmn
dx dxzp ... dx

dX d:ef '21 .22 .2n ‘ (D41)
del de2 e den

This definition complies with the multiplicative and associative rules
d(aX) = adX, dX+Y)=dX+dY. (D.42)

If X and Y are product-conforming matrices, it can be verified that the differential of their product
IS
d(XY) = (dX)Y + X(dY). (D.43)

which is an extension of the well known rule d(xy) = y dx + x dy for scalar functions.

EXAMPLE D.6

If X = [x;;] is asquare nonsingular matrix of order n, and denote Z = |X|X*. Find the differential of the
determinant of X:

N _ CINT vy — e T
d|X|_i2j:Wijdxij _ZJ:X” dxij = tr((X|X~HT dX) = tr(Z" dX), (D.44)

where X;; denotes the cofactor of x;; in X.

EXAMPLE D.7

With the same assumptions as above, find d(X ). The quickest derivation follows by differentiating both
sides of theidentity X 21X = 1:

dX " HX +XtdXx =0, (D.45)
from which
dX 1 = =xtdx x 1. (D.46)
If X reducesto the scalar x we have
d <E> = _d_>2<. (D.47)
X X
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