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1 Introduction 
This manual is for advanced programmers and software developers who want to make their 
software faster. It is assumed that the reader has a good knowledge of the C++ 
programming language and a basic understanding of how compilers work. The C++ 
language is chosen as the basis for this manual for reasons explained on page 7 below. 
 
This manual is based mainly on my study of how compilers and microprocessors work. The 
recommendations are based on the x86 family of microprocessors from Intel, AMD and VIA 
including the 64-bit versions. The x86 processors are used in the most common platforms 
with Windows, Linux, BSD and Mac OS X operating systems, though these operating 
systems can also be used with other microprocessors. Many of the advices may apply to 
other platforms and other compiled programming languages as well. 
 
This is the first in a series of five manuals: 
 

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac 
platforms. 
 

2. Optimizing subroutines in assembly language: An optimization guide for x86 
platforms. 
 

3. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for 
assembly programmers and compiler makers. 
 

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation 
breakdowns for Intel, AMD and VIA CPUs. 
 

5. Calling conventions for different C++ compilers and operating systems. 
 
The latest versions of these manuals are always available from www.agner.org/optimize. 
Copyright conditions are listed on page 160 below. 
 
Those who are satisfied with making software in a high-level language need only to read 
this first manual. The subsequent manuals are for those who want to go deeper into the 
technical details of instruction timing, assembly language programming, compiler 
technology, and microprocessor microarchitecture. A higher level of optimization can 
sometimes be obtained by the use of assembly language for CPU-intensive code, as 
described in the subsequent manuals. 
 

http://www.agner.org/optimize
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Please note that my optimization manuals are used by thousands of people. I simply don't 
have the time to answer questions from everybody. So please don't send your programming 
questions to me. You will not get any answer. Beginners are advised to seek information 
elsewhere and get a good deal of programming experience before trying the techniques in 
the present manual. There are various discussion forums on the Internet where you can get 
answers to your programming questions if you cannot find the answers in the relevant 
books and manuals. 
 
I want to thank the many people who have sent me corrections and suggestions for my 
optimization manuals. I am always happy to receive new relevant information. 
 

1.1 The costs of optimizing 
University courses in programming nowadays stress the importance of structured and 
object-oriented programming, modularity, reusability and systematization of the software 
development process. These requirements are often conflicting with the requirements of 
optimizing the software for speed or size. 
 
Today, it is not uncommon for software teachers to recommend that no function or method 
should be longer than a few lines. A few decades ago, the recommendation was the 
opposite: Don't put something in a separate subroutine if it is only called once. The reasons 
for this shift in software writing style are that software projects have become bigger and 
more complex, that there is more focus on the costs of software development, and that 
computers have become more powerful. 
 
The high priority of structured software development and the low priority of program 
efficiency is reflected, first and foremost, in the choice of programming language and 
interface frameworks. This is often a disadvantage for the end user who has to invest in 
ever more powerful computers to keep up with the ever bigger software packages and who 
is still frustrated by unacceptably long response times, even for simple tasks. 
 
Sometimes it is necessary to compromise on the advanced principles of software develop-
ment in order to make software packages faster and smaller. This manual discusses how to 
make a sensible balance between these considerations. It is discussed how to identify and 
isolate the most critical part of a program and concentrate the optimization effort on that 
particular part. It is discussed how to overcome the dangers of a relatively primitive 
programming style that doesn't automatically check for array bounds violations, invalid 
pointers, etc. And it is discussed which of the advanced programming constructs are costly 
and which are cheap, in relation to execution time. 
 
 

2 Choosing the optimal platform 

2.1 Choice of hardware platform 
The choice of hardware platform has become less important than it used to be. The 
distinctions between RISC and CISC processors, between PC's and mainframes, and 
between simple processors and vector processors are becoming increasingly blurred as the 
standard PC processors with CISC instruction sets have got RISC cores, vector processing 
instructions, multiple cores, and a processing speed exceeding that of yesterday's big 
mainframe computers. 
 
Today, the choice of hardware platform for a given task is often determined by 
considerations such as price, compatibility, second source, and the availability of good 
development tools, rather than by the processing power. Connecting several standard PC's 
in a network may be both cheaper and more efficient than investing in a big mainframe 
computer. Big supercomputers with massively parallel vector processing capabilities still 
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have a niche in scientific computing, but for most purposes the standard PC processors are 
preferred because of their superior performance/price ratio. 
 
The CISC instruction set (called x86) of the standard PC processors is certainly not optimal 
from a technological point of view. This instruction set is maintained for the sake of 
backwards compatibility with a lineage of software that dates back to around 1980 where 
RAM memory and disk space were scarce resources. However, the CISC instruction set is 
better than its reputation. The compactness of the code makes caching more efficient today 
where cache size is a limited resource. The CISC instruction set may actually be better than 
RISC in situations where code caching is critical. The worst problem of the x86 instruction 
set is the scarcity of registers. This problem has been alleviated in the new 64-bit extension 
to the x86 instruction set where the number of registers has been doubled. A register is a 
small piece of storage inside the CPU which can be accessed faster than RAM storage. 
 
Thin clients that depend on network resources are not recommended for critical applications 
because the response times for network resources cannot be controlled. 
 
This manual is based on the standard PC platform with an Intel, AMD or VIA processor and 
a Windows, Linux, BSD or Mac operating system running in 32-bit or 64-bit mode. Much of 
the advice given here may apply to other platforms as well, but the examples have been 
tested only on PC platforms. 

Graphics accelerators 
The choice of platform is obviously influenced by the requirements of the task in question. 
For example, a heavy graphics application is preferably implemented on a platform with a 
graphics coprocessor or graphics accelerator card. Some systems also have a dedicated 
physics processor for calculating the physical movements of objects in a computer game or 
animation. 
 
It is possible in some cases to use the high processing power of the processors on a 
graphics accelerator card for other purposes than rendering graphics on the screen. 
However, such applications are highly system dependent and therefore not recommended if 
portability is important. This manual does not cover graphics processors. 

Programmable logic devices 
A programmable logic device is a chip that can be programmed in a hardware definition 
language, such as VHDL or Verilog. Common devices are CPLDs and FPGAs. The 
difference between a software programming language, e.g. C++, and a hardware definition 
language is that the software programming language defines an algorithm of sequential 
instructions, where a hardware definition language defines hardware circuits consisting of 
digital building blocks such as gates, flip-flops, multiplexers, arithmetic units, etc. and the 
wires that connect them. The hardware definition language is inherently parallel because it 
defines electrical connections rather than sequences of operations. 
 
A complex digital operation can often be executed faster in a programmable logic device 
than in a microprocessor because the hardware can be wired for a specific purpose. 
 
It is possible to implement a microprocessor in an FPGA as a so-called softcore. Such a 
softcore is much slower than a dedicated microprocessor and therefore not advantageous 
by itself. But a solution where a softcore activates critical application-specific instructions 
that are coded in a hardware definition language in the same chip can be a very efficient 
solution in some cases. An even more powerful solution is the combination of a dedicated 
microprocessor core and an FPGA in the same chip. Such hybrid solutions are now used in 
some embedded systems. 
 
A look in my crystal ball reveals that similar solutions may some day be implemented in PC 
processors. The application program will be able to define application-specific instructions 
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that can be coded in a hardware definition language. Such a processor will have an extra 
cache for the hardware definition code in addition to the code cache and the data cache. 
 

2.2 Choice of microprocessor 
The benchmark performance of competing brands of microprocessors are very similar 
thanks to heavy competition. The Intel Pentium 4 and other processors with the Intel 
NetBurst architecture are good for memory-intensive applications but poor for CPU-
intensive applications. Intel Pentium M, Intel Core Duo and AMD Athlon and Opteron 
processors are better for CPU-intensive applications. The Intel Core 2 processor gives the 
best performance for code that uses vector operations. 
 
Processors with multiple cores are advantageous for applications that can be divided into 
multiple threads that run in parallel. 
 
Some systems have a graphics processing unit, usually on a graphics card. Such units can 
be used as coprocessors to take care of some of the heavy graphics calculations. In some 
cases it is possible to utilize the computational power of the graphics processing unit for 
other purposes than it is intended for. Some systems also have a physics processing unit 
intended for calculating the movements of objects in computer games. Such a coprocessor 
might also be used for other purposes. The use of coprocessors is beyond the scope of this 
manual. 
 

2.3 Choice of operating system 
The newest microprocessors in the x86 family can run in both 16-bit, 32-bit and 64-bit 
mode. 
 
16-bit mode is used in the old operating systems DOS and Windows 3.x. These systems 
use segmentation of the memory if the size of program or data exceeds 64 Kbytes. This is 
quite inefficient. The modern microprocessors are not optimized for 16-bit mode and some 
operating systems are not backwards compatible with 16-bit programs. It is not 
recommended to make 16-bit programs, except for small embedded systems. 
 
At the time of writing (2008), the 32-bit systems are dominating. Most processors sold now 
are 64-bit processors, but 64-bit operating systems are only slowly penetrating the market. 
There is no heavy marketing of 64-bit software yet. There is no doubt, however, that the 64-
bit systems will dominate in the future. 
 
The 64-bit systems can improve the performance by 5-10% for CPU-intensive applications 
with many function calls. If the bottleneck is elsewhere then there is no difference in 
performance between 32-bit and 64-bit systems. Applications that use large amounts of 
memory will benefit from the larger address space of the 64-bit systems. 
 
A software developer may choose to make memory-hungry software in two versions. A 32-
bit version for the sake of compatibility with existing systems and a 64-bit version for best 
performance. 
 
The Windows and Linux operating systems give almost identical performance for 32-bit 
software because the two operating systems are using the same function calling 
conventions. FreeBSD and Open BSD are identical to Linux in almost all respects relevant 
to software optimization. Everything that is said here about Linux also applies to BSD 
systems. 
 
The Intel-based Mac OS X operating system is based on BSD, but the compiler uses 
position-independent code and lazy binding by default, which makes it less efficient. The 
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performance can be improved by using static linking and by not using position-independent 
code (option -fno-pic). 
 
64 bit systems have several advantages over 32 bit systems: 
 

The number of registers is doubled. This makes it possible to store intermediate data 
and local variables in registers rather than in memory. 
 

Function parameters are transferred in registers rather than on the stack. This makes 
function calls more efficient. 
 

The size of the integer registers is extended to 64 bits. This is only an advantage in 
applications that can take advantage of 64-bit integers. 
 

The allocation and deallocation of big memory blocks is more efficient. 
 

The SSE2 instruction set is supported on all 64-bit CPUs and operating systems. 
 

The 64 bit instruction set supports self-relative addressing of data. This makes position-
independent code more efficient. 

 
64 bit systems have the following disadvantages compared to 32 bit systems: 
 

Pointers, references, and stack entries use 64 bits rather than 32 bits. This makes data 
caching slightly less efficient. 
 

Access to static or global arrays require a few extra instructions for address calculation 
in 64 bit mode if the image base is not guaranteed to be less than 231. This extra 
cost is seen in 64 bit Windows and Mac programs but rarely in Linux. 
 

Address calculation is more complicated in a large memory model where the combined 
size of code and data can exceed 2 Gbytes. This large memory model is hardly ever 
used, though. 
 

Some instructions are one byte longer in 64 bit mode than in 32 bit mode. 
 
In general, you can expect 64-bit programs to run a little faster than 32-bit programs if there 
are many function calls, if there are many allocations of large memory blocks, or if the 
program can take advantage of 64-bit integer calculations. It is necessary to use 64-bit 
systems if the program uses more than 2 gigabytes of data. 
 
The similarity between the operating systems disappears when running in 64-bit mode 
because the function calling conventions are different. 64-bit Windows allows only four 
function parameters to be transferred in registers, whereas 64-bit Linux, BSD and Mac allow 
up to fourteen parameters to be transferred in registers (6 integer and 8 floating point). 
There are also other details that make function calling more efficient in 64-bit Linux than in 
64-bit Windows (See page 49 and manual 5: "Calling conventions for different C++ 
compilers and operating systems"). An application with many function calls may run slightly 
faster in 64-bit Linux than in 64-bit Windows. The disadvantage of 64-bit Windows may be 
mitigated by making critical functions inline or static or by using a compiler that can do 
whole program optimization. 
 

2.4 Choice of programming language 
Before starting a new software project, it is important to decide which programming 
language is best suited for the project at hand. Low-level languages are good for optimizing 
execution speed or program size, while high-level languages are good for making clear and 
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well-structured code and for fast and easy development of user interfaces and interfaces to 
network resources, databases, etc. 
 
The efficiency of the final application depends on the way the programming language is 
implemented. The highest efficiency is obtained when the code is compiled and distributed 
as binary executable code. Most implementations of C++, Pascal and Fortran are based on 
compilers. 
 
Several other programming languages are implemented with interpretation. The program 
code is distributed as it is and interpreted line by line when it is run. Examples include 
JavaScript, PHP, ASP and UNIX shell script. Interpreted code is very inefficient because the 
body of a loop is interpreted again and again for every iteration of the loop. 
 
Some implementations use just-in-time compilation. The program code is distributed and 
stored as it is, and is compiled when it is executed. An example is Perl. 
 
Several modern programming languages use an intermediate code (byte code). The source 
code is compiled into an intermediate code, which is the code that is distributed. The 
intermediate code cannot be executed as it is, but must go through a second step of 
interpretation or compilation before it can run. Some implementations of Java are based on 
an interpreter which interprets the intermediate code by emulating the so-called Java virtual 
machine. The best Java machines use just-in-time compilation of the most used parts of the 
code. C#, managed C++, and other languages in Microsoft's .NET framework are based on 
just-in-time compilation of an intermediate code. 
 
The reason for using an intermediate code is that it is intended to be platform-independent 
and compact. The biggest disadvantage of using an intermediate code is that the user must 
install a large runtime framework for interpreting or compiling the intermediate code. This 
framework typically uses much more resources than the code itself. 
 
Another disadvantage of intermediate code is that it adds an extra level of abstraction which 
makes detailed optimization more difficult. On the other hand, a just-in-time compiler can 
optimize specifically for the CPU it is running on, while it is more complicated to make CPU-
specific optimizations in precompiled code. 
 
The history of programming languages and their implementations reveal a zigzag course 
that reflects the conflicting considerations of efficiency, platform independence, and easy 
development. For example, the first PC's had an interpreter for Basic. A compiler for Basic 
soon became available because the interpreted version of Basic was too slow. Today, the 
most popular version of Basic is Visual Basic .NET, which is implemented with an 
intermediate code and just-in-time compilation. Some early implementations of Pascal used 
an intermediate code like the one that is used for Java today. But this language gained 
remarkably in popularity when a genuine compiler became available. 
 
It should be clear from this discussion that the choice of programming language is a 
compromise between efficiency, portability and development time. Interpreted languages 
are out of the question when efficiency is important. A language based on intermediate code 
and just-in-time compilation may be a viable compromise when portability and ease of 
development are more important than speed. This includes languages such as C#, Visual 
Basic .NET and the best Java implementations. However, these languages have the 
disadvantage of a very large runtime framework that must be loaded every time the program 
is run. The time it takes to load the framework and compile the program are often much 
more than the time it takes to execute the program, and the runtime framework may use 
more resources than the program itself when running. Programs using such a framework 
sometimes have unacceptably long response times for simple tasks like pressing a button 
or moving the mouse. The .NET framework should definitely be avoided when speed is 
critical. 
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The fastest execution is no doubt obtained with a fully compiled code. Compiled languages 
include C, C++, D, Pascal, Fortran and several other less well-known languages. My 
preference is for C++ for several reasons. C++ is supported by some very good compilers 
and optimized function libraries. C++ is an advanced high-level language with a wealth of 
advanced features rarely found in other languages. But the C++ language also includes the 
low-level C language as a subset, giving access to low-level optimizations. Most C++ 
compilers are able to generate an assembly language output, which is useful for checking 
how well the compiler optimizes a piece of code. Furthermore, most C++ compilers allow 
assembly-like intrinsic functions, inline assembly or easy linking to assembly language 
modules when the highest level of optimization is needed. The C++ language is portable in 
the sense that C++ compilers exist for all major platforms. Pascal has many of the 
advantages of C++ but is not quite as versatile. Fortran is also quite efficient, but the syntax 
is very old-fashioned. 
 
Development in C++ is quite efficient thanks to the availability of powerful development 
tools. One popular development tool is Microsoft Visual Studio. This tool can make two 
different implementations of C++, directly compiled code and intermediate code for the 
common language runtime of the .NET framework. Obviously, the directly compiled version 
is preferred. 
 
An important disadvantage of C++ relates to security. There are no checks for array bounds 
violation, integer overflow, and invalid pointers. The absence of such checks makes the 
code execute faster than other languages that do have such checks. But it is the responsi-
bility of the programmer to make explicit checks for such errors in cases where they cannot 
be ruled out by the program logic. Some guidelines are provided below, on page 15. 
 
C++ is definitely the preferred programming language when the optimization of performance 
has high priority. The gain in performance over other programming languages can be quite 
substantial. This gain in performance can easily justify a possible minor increase in develop-
ment time when performance is important to the end user. 
 
There may be situations where a high level framework based on intermediate code is 
needed for other reasons, but part of the code still needs careful optimization. A mixed 
implementation can be a viable solution in such cases. The most critical part of the code 
can be implemented in compiled C++ or assembly language and the rest of the code, 
including user interface etc., can be implemented in the high level framework. The optimized 
part of the code can possibly be compiled as a dynamic link library (DLL) which is called by 
the rest of the code. This is not an optimal solution because the high level framework still 
consumes a lot of resources, and the transitions between the two kinds of code gives an 
extra overhead which consumes CPU time. But this solution can still give a considerable 
improvement in performance if the time-critical part of the code can be completely contained 
in a DLL. 
 
Another alternative worth considering is the D language. D has many of the features of Java 
and C# and avoids many of the drawbacks of C++. Yet, D is compiled to binary code and 
can be linked together with C or C++ code. Compilers and IDE's for D are not yet as well 
developed as C++ compilers. 
 

2.5 Choice of compiler 
There are several different C++ compilers to choose between. It is difficult to predict which 
compiler will do the best job optimizing a particular piece of code. Each compiler does some 
things very smart and other things very stupid. Some common compilers are mentioned 
below. 
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Microsoft Visual Studio 
This is a very user friendly compiler with many facilities, but also very expensive. A limited 
"express" edition is available for free. Visual Studio can build code for the .NET framework 
as well as directly compiled code. (Compile without the Common Language Runtime, CLR, 
to produce binary code). Supports 32-bit and 64-bit Windows. The integrated development 
environment (IDE) supports multiple programming languages, profiling and debugging. A 
command-line version of the C++ compiler is available for free in the Microsoft platform 
software development kit (SDK or PSDK). Supports the OpenMP directives for multi-core 
processing. Optimizes reasonably well. 

Borland/CodeGear/Embarcadero C++ builder 
Has an IDE with many of the same features as the Microsoft compiler. Supports only 32-bit 
Windows. Does not support the SSE and later instruction sets. Does not optimize as good 
as the Microsoft, Intel, Gnu and PathScale compilers. 

Intel C++ compiler 
This compiler does not have its own IDE. It is intended as a plug-in to Microsoft Visual 
Studio when compiling for Windows and to Eclipse when compiling for Linux. It can also be 
used as a stand alone compiler when called from a command line or a make utility. It 
supports 32-bit and 64-bit Windows and 32-bit and 64-bit Linux as well as Intel-based Mac 
OS and Itanium systems. 
 
The Intel compiler has a number of important optimization features: 
 

Very good support for vector operations using the single-instruction-multiple-data 
capabilities of the latest Intel instruction sets. This compiler can change simple code 
to vector code automatically (see page 105).  
 

Very good support for parallel processing on systems with multiple processors or multi-
core processors. Can do automatic parallelization or explicit parallelization using the 
OpenMP directives. 
 

Supports CPU dispatch to make multiple code versions for different CPUs. (See page 
129 for how to make this work on non-Intel processors). 
 

Comes with optimized math function libraries. 
 

Excellent support for inline assembly on all platforms and the possibility of using the 
same inline assembly syntax in both Windows and Linux. 

 
The most important disadvantage of the Intel compiler is that the compiled code may run 
with reduced speed or not at all on AMD processors. It is possible to avoid this problem by 
bypassing the so-called CPU-dispatcher that checks whether the code is running on an Intel 
CPU. See page 129 for details). 
  
The Intel compiler is a good choice for code that can benefit from its many optimization 
features and for code that is ported to multiple operating systems. 

Gnu 
This is one of the best optimizing compilers available, though less user friendly. It is free 
and open source. It comes with most distributions of Linux, BSD and Mac OS X, 32-bit and 
64-bit. Supports OpenMP. Supports vector intrinsics and automatic vectorization (see page 
105). Supports both AMD and Intel vector math libraries. Future support for CPU 
dispatching to make multiple code versions for different CPUs. The Gnu C++ compiler is 
available for many platforms, including 32-bit Windows but not 64-bit Windows. The 
Windows version is currently not fully up to date. The Gnu compiler is the first choice for all 
Unix platforms. 



 11

PathScale 
C++ compiler for 32- and 64-bit Linux. Has many good optimization options. Supports 
parallel processing, open MP and automatic vectorization. It is possible to insert 
optimization hints as pragmas in the code to tell the compiler e.g. how often a part of the 
code is executed. Optimizes very well. This compiler is a good choice for Linux platforms if 
the bias of the Intel compiler in favor of Intel CPUs cannot be tolerated. 

PGI 
C++ compiler for 32- and 64-bit Windows, Linux and Mac. Supports parallel processing, 
open MP and automatic vectorization. Optimizes reasonably well. Very poor performance 
for vector intrinsics. 

Digital Mars 
This is a cheap compiler for 32-bit Windows, including an IDE. Does not optimize well. 

Open Watcom 
Another open source compiler for 32-bit Windows. Does not, by default, conform to the 
standard calling conventions. Optimizes reasonably well. 

Codeplay VectorC 
A commercial compiler for 32-bit Windows. Integrates into the Microsoft Visual Studio IDE. 
Has not been updated since 2004. Can do automatic vectorization. Optimizes moderately 
well. Supports three different object file formats. 

Comments 
All of these compilers can be used as command-line versions without an IDE. Free trial 
versions are available for the commercial compilers. 
 
Mixing object files from different compilers is generally possible on Linux platforms, and in 
some cases on Windows platforms. The Microsoft and Intel compilers for Windows are fully 
compatible on the object file level, and the Digital Mars compiler is mostly compatible with 
these. The CodeGear, Codeplay and Watcom compilers are not compatible with other 
compilers at the object file level. 
 
My recommendation for good code performance is to use the Gnu, PathScale or Intel 
compiler for Unix applications and the Intel or Microsoft compiler for Windows applications.  
 
The choice of compiler may in some cases be determined by the requirements of 
compatibility with legacy code, specific preferences for the IDE, for debugging facilities, 
easy GUI development, database integration, web application integration, mixed language 
programming, etc. In cases where the chosen compiler doesn't provide the best optimization 
it may be useful to make the most critical modules with a different compiler. Object files 
generated by the Intel and PathScale compilers can in most cases be linked into projects 
made with Microsoft or Gnu compilers without problems if the necessary library files are also 
included. Combining the Borland compiler with other compilers or function libraries is more 
difficult. The functions must have extern "C" declaration and the object files need to be 
converted to OMF format. Alternatively, make a DLL with the best compiler and call it from a 
project built with another compiler. 
 

2.6 Choice of function libraries 
Some applications spend most of their execution time on executing library functions. Time-
consuming library functions often belong to one of these categories: 
 

• File input/output 
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• Graphics and sound processing 
   

• Memory and string manipulation 
   

• Mathematical functions 
   

• Encryption, decryption, data compression 
 
Most compilers include standard libraries for many of these purposes. Unfortunately, the 
standard libraries are not always fully optimized. 
 
Library functions are typically small pieces of code that are used by many users in many 
different applications. Therefore, it is worthwhile to invest more efforts in optimizing library 
functions than in optimizing application-specific code. The best function libraries are highly 
optimized, using assembly language and automatic CPU-dispatching (see page 123) for the 
latest instruction set extensions.  
 
If a profiling (see page 16) shows that a particular application uses a lot of CPU-time in 
library functions, or if this is obvious, then it may be possible to improve the performance 
significantly simply by using a different function library. If the application uses most of its 
time in library functions then it may not be necessary to optimize anything else than finding 
the most efficient library and economize the library function calls. It is recommended to try 
different libraries and see which one works best. 
 
Some common function libraries are discussed below. Many libraries for special purposes 
are also available. 

Microsoft 
Comes with Microsoft compiler. Some functions are optimized well, others are not. Supports 
32-bit and 64-bit Windows. 

Borland / CodeGear / Embarcadero 
Comes with the Borland C++ builder. Not optimized for SSE2 and later instruction sets. 
Supports only 32-bit Windows. 

Gnu 
Comes with the Gnu compiler. Not optimized as good as the compiler itself is. The 64-bit 
version is better than the 32-bit version. The Gnu compiler often inserts built-in code instead 
of the most common memory and string instructions. The built-in code is not optimal. Use 
option -fno-builtin to get library versions instead. The Gnu libraries support 32-bit and 
64-bit Linux and BSD. The Windows version is currently not up to date. 

Mac 
The libraries included with the Gnu compiler for Mac OS X (Darwin) are part of the Xnu 
project. Some of the most important functions are included in the operating system kernel in 
the so-called commpage. These functions are highly optimized for the Intel Core and later 
Intel processors. AMD processors and earlier Intel processors are not supported at all. Can 
only run on Mac platform. 

Intel 
The Intel compiler includes standard function libraries. Several special purpose libraries are 
also available, such as the "Intel Math Kernel Library" and "Integrated Performance 
Primitives". These function libraries are highly optimized for large data sets. However, the 
Intel libraries do not always work well on AMD processors. See page 129 for an explanation 
and possible workaround. Supports all x86 and x86-64 platforms. 
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AMD 
AMD Math core library contains highly optimized mathematical functions. Also works on 
Intel processors, but obviously without support for instruction set extensions that are not 
available on AMD processors yet. Supports 32- and 64-bit Windows and Linux. 

Asmlib 
My own function library. Available from www.agner.org/optimize/asmlib.zip. Currently 
includes optimized versions of the functions memcpy, memmove, memset, strlen, strcpy, 
strcat and random number generators. Faster than most other libraries when running on 
the newest processors. Supports all x86 and x86-64 platforms. 
 
 
Comparison of function libraries 
 

Test Processor
M

icrosoft 

C
odeG

ear 

Intel 

M
ac 

G
nu 32-bit 

G
nu 32-bit 

-fno-builtin 

G
nu 64 bit 

-fno-builtin 

A
sm

lib 

memcpy 16kB 
aligned operands 

Intel 
Core 2 

0.12 0.18 0.12 0.11 0.18 0.18 0.18 0.11 

memcpy 16kB 
unaligned op. 

Intel 
Core 2 

0.63 0.75 0.18 0.11 1.21 0.57 0.44 0.12 

memcpy 16kB 
aligned operands 

AMD 
Opteron K8 

0.24 0.25 0.24 n.a. 1.00 0.25 0.28 0.22 

memcpy 16kB 
unaligned op. 

AMD 
Opteron K8 

0.38 0.44 0.40 n.a. 1.00 0.35 0.29 0.28 

strlen 128 
bytes 

Intel 
Core 2 

0.77 0.89 0.40 0.30 4.5 0.82 0.59 0.27 

strlen 128 
bytes 

AMD 
Opteron K8 

1.09 1.25 1.61 n.a. 2.23 0.95 0.6 1.19 

Table 2.1. Comparing performance of different function libraries. 
Numbers in the table are core clock cycles per byte of data (low numbers mean good 
performance). Aligned operands means that source and destination both have addresses 
divisible by 16. 
Library versions tested: 
Microsoft Visual studio 2008, v. 9.0 
CodeGear Borland bcc, v. 5.5 
Mac: Darwin8 g++ v 4.0.1. 
Gnu: Glibc v. 2.7, 2.8. 
Asmlib: v. 2.00. 
Intel C++ compiler, v. 10.1.020. Functions _intel_fast_memcpy and 
__intel_new_strlen in library libircmt.lib. Function names are undocumented. 
 
The best optimized libraries use the largest available registers for moving data. These work 
faster on processors with 128-bit internal data paths (e.g. Intel Core 2, AMD K10) than on 
older processors with 64-bit internal data paths (e.g. Intel Pentium 4, AMD Opteron K8). 
Tests on AMD K10 have not been made yet. 
 

2.7 Choice of user interface framework 
Most of the code in a typical software project goes to the user interface. Applications that 
are not computationally intensive may very well spend more CPU time on the user interface 
than on the essential task of the program. 
 

http://www.agner.org/optimize/asmlib.zip
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Application programmers rarely program their own graphical user interfaces from scratch. 
This would not only be a waste of the programmers' time, but also inconvenient to the end 
user. Menus, buttons, dialog boxes, etc. should be as standardized as possible for usability 
reasons. The programmer can use standard user interface elements that come with the 
operating system or libraries that come with compilers and development tools. 
 
A popular user interface library for Windows and C++ is Microsoft Foundation Classes 
(MFC). A competing product is Borland's now discontinued Object Windows Library (OWL). 
Several graphical interface frameworks are available for Linux systems. The user interface 
library can be linked either as a runtime DLL or a static library. A runtime DLL takes more 
memory resources than a static library, except when several applications use the same DLL 
at the same time. 
 
A user interface library may be bigger than the application itself and take more time to load. 
A light-weight alternative is the Windows Template Library (WTL). A WTL application is 
generally faster and more compact than an MFC application. The development time for 
WTL applications can be expected to be higher due to poor documentation and lack of 
advanced development tools. 
 
The simplest possible user interface is obtained by dropping the graphical user interface 
and use a console mode program. The inputs for a console mode program are typically 
specified on a command line or an input file. The output goes to the console or to an output 
file. A console mode program is fast, compact, and simple to develop. It is easy to port to 
different platforms because it doesn't depend on system-specific graphical interface calls. 
The usability may be poor because it lacks the self-explaining menus of a graphical user 
interface. A console mode program is useful for calling from other applications such as a 
make utility. 
 
The conclusion is that the choice of user interface framework must be a compromise 
between development time, usability, program compactness, and execution time. No 
universal solution is best for all applications. 
 

2.8 Overcoming the drawbacks of the C++ language 
While C++ has many advantages when it comes to optimization, it does have some 
disadvantages that make developers choose other programming languages. This section 
discusses how to overcome these disadvantages when C++ is chosen for the sake of 
optimization. 

Portability 
C++ is fully portable in the sense that the syntax is fully standardized and supported on all 
major platforms. However, C++ is also a language that allows direct access to hardware 
interfaces and system calls. These are of course system-specific. In order to facilitate 
porting between platforms, it is recommended to put the user interface and other system-
specific parts of the code in a separate module, and put the task-specific part of the code, 
which supposedly is system-independent, in another module. 
 
The size of integers and other hardware-related details depend on the hardware platform 
and operating system. See page 29 for details.  

Development time 
Some developers feel that a particular programming language and development tool is 
faster to use than others. While some of the difference is simply a matter of habit, it is true 
that some development tools have powerful facilities that do much of the trivial programming 
work automatically. The development time and maintainability of C++ projects can be 
improved by consistent modularity and reusable classes. 
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Security 
The most serious problem with the C++ language relates to security. Standard C++ imple-
mentations have no checking for array bounds violations and invalid pointers. This is a 
frequent source of errors in C++ programs and also a possible point of attack for hackers. It 
is necessary to adhere to certain programming principles in order to prevent such errors in 
programs where security matters. 
 
Problems with invalid pointers can be avoided by using references instead of pointers, by 
initializing pointers to zero, by setting pointers to zero whenever the objects they point to 
become invalid, and by avoiding pointer arithmetics and pointer type casting. Linked lists 
and other data structures that typically use pointers may be replaced by more efficient 
container class templates, see page 91. Avoid the function scanf. 
 
Violation of array bounds is probably the most common cause of errors in C++ programs. 
Writing past the end of an array can cause other variables to be overwritten, and even 
worse, it can overwrite the return address of the function in which the array is defined. This 
can cause all kinds of strange and unexpected behaviors. Arrays are often used as buffers 
for storing text or input data. A missing check for buffer overflow on input data is a common 
error that hackers often have exploited. 
 
A good way to prevent such errors is to replace arrays by well-tested container classes. The 
standard template library (STL) is a useful source of such container classes. Unfortunately, 
many standard container classes use dynamic memory allocation in an inefficient way. See 
page and 89 for examples of how to avoid dynamic memory allocation. See page 91 for 
discussion of efficient container classes. An appendix to this manual at 
www.agner.org/optimize/cppexamples.zip contains examples of arrays with bounds 
checking and various efficient container classes. 
 
Text strings are particularly problematic because there may be no certain limit to the 
lengths. The old C-style method of storing strings in character arrays is fast and efficient, 
but not safe unless the length of each string is checked before storing. The standard 
solution to this problem is to use string classes, such as string or CString. This is safe 
and flexible, but quite inefficient in large applications. The string classes allocate a new 
memory block every time a string is created or modified. This can cause the memory to be 
fragmented and involve a high overhead cost of heap management and garbage collection. 
A more efficient solution that doesn't compromise safety is to store all strings in one memory 
pool. See the examples in the appendix at www.agner.org/optimize/cppexamples.zip for 
how to store strings in a memory pool. 
 
You may deviate from the above security advices in critical parts of the code where speed is 
important. This can be permissible only if the unsafe code is limited to well-tested functions, 
classes, templates or modules with a well-defined interface to the rest of the program. 
 
 

3 Finding the biggest time consumers 

3.1 How much is a clock cycle? 
In this manual, I am using CPU clock cycles rather than seconds or microseconds as a time 
measure. This is because computers have very different speeds. If I write that something 
takes 10 µs today, then it may take only 5 µs on the next generation of computers and my 
manual will soon be obsolete. But if I write that something takes 10 clock cycles then it will 
still take 10 clock cycles even if the CPU clock frequency is doubled. 
 
The length of a clock cycle is the reciprocal of the clock frequency. For example, if the clock 
frequency is 2 GHz then the length of a clock cycle is 

http://www.agner.org/optimize/cppexamples.zip
http://www.agner.org/optimize/cppexamples.zip
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ns.5.0
GHz2
1 =  

 
A clock cycle on one computer is not always comparable to a clock cycle on another 
computer. The Pentium 4 (NetBurst) CPU is designed for a higher clock frequency than 
other CPUs, but it uses more clock cycles than other CPUs for executing the same piece of 
code in general.  
 
Assume that a loop in a program repeats 1000 times and that there are 100 floating point 
operations (addition, multiplication, etc.) inside the loop. If each floating point operation 
takes 5 clock cycles, then we can roughly estimate that the loop will take 1000 * 100 * 5 * 
0.5 ns = 250 µs on a 2 GHz CPU. Should we try to optimize this loop? Certainly not! 250 µs 
is less than 1/50 of the time it takes to refresh the screen. There is no way the user can see 
the delay. But if the loop is inside another loop that also repeats 1000 times then we have 
an estimated calculation time of 250 ms. This delay is just long enough to be noticeable but 
not long enough to be annoying. We may decide to do some measurements to see if our 
estimate is correct or if the calculation time is actually more than 250 ms. If the response 
time is so long that the user actually has to wait for a result then we will consider if there is 
something that can be improved. 
 

3.2 Use a profiler to find hot spots 
Before you start to optimize anything, you have to identify the critical parts of the program. 
In some programs, more than 99% of the time is spent in the innermost loop doing 
mathematical calculations. In other programs, 99% of the time is spent on reading and 
writing data files while less than 1% goes to actually doing something on these data. It is 
very important to optimize the parts of the code that matters rather than the parts of the 
code that use only a small fraction of the total time. Optimizing less critical parts of the code 
will not only be a waste of time, it also makes the code less clear and more difficult to debug 
and maintain. 
 
Most compiler packages include a profiler that can tell how many times each function is 
called and how much time it uses. There are also third-party profilers such as AQtime, Intel 
VTune and AMD CodeAnalyst. 
 
There are several different profiling methods: 
 

Instrumentation: The compiler inserts extra code at each function call to count how 
many times the function is called and how much time it takes. 
 

Debugging. The profiler inserts temporary debug breakpoints at every function or every 
code line. 
   

Time-based sampling: The profiler tells the operating system to generate an interrupt, 
e.g. every millisecond. The profiler counts how many times an interrupt occurs in 
each part of the program. This requires no modification of the program under test, 
but is less reliable. 
 

Event-based sampling: The profiler tells the CPU to generate interrupts at certain 
events, for example every time a thousand cache misses have occurred. This makes 
it possible to see which part of the program has most cache misses, branch 
mispredictions, floating point exceptions, etc. Event-based sampling requires a CPU-
specific profiler. For Intel CPUs use Intel VTune, for AMD CPUs use AMD 
CodeAnalyst. 

 
Unfortunately, profilers are often unreliable. They sometimes give misleading results or fail 
completely because of technical problems. 
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Some common problems with profilers are: 
 

Coarse time measurement. If time is measured with millisecond resolution and the 
critical functions take microseconds to execute then measurements can become 
imprecise or simply zero. 
 

Execution time too small or too long. If the program under test finishes in a short time 
then the sampling generates too little data for analysis. If the program takes too long 
time to execute then the profiler may sample more data than it can handle. 
 

Waiting for user input. Many programs spend most of their time waiting for user input or 
network resources. This time is included in the profile. It may be necessary to modify 
the program to use a set of test data instead of user input in order to make profiling 
feasible. 
 

Interference from other processes. The profiler measures not only the time spent in the 
program under test but also the time used by all other processes running on the 
same computer, including the profiler itself. 
 

Function addresses are obscured in optimized programs. The profiler identifies any hot 
spots in the program by their address and attempts to translate these addresses to 
function names. But a highly optimized program is often reorganized in such a way 
that there is no clear correspondence between function names and code addresses. 
The names of inlined functions may not be visible at all to the profiler. The result will 
be misleading reports of which functions take most time. 
   

Uses debug version of the code. Some profilers require that the code you are testing 
contains debug information in order to identify individual functions or code lines. The 
debug version of the code is not optimized. 
   

Jumps between CPU cores. A process or thread does not necessarily stay in the same 
processor core on multi-core CPUs, but event-counters do. This results in 
meaningless event counts for threads that jump between multiple CPU cores. 
   

Poor reproducibility. Delays in program execution may be caused by random events that 
are not reproducible. Such events as task switches and garbage collection can occur 
at random times and make parts of the program appear to take longer time than 
normally. 

 
There are various alternatives to using a profiler. A simple alternative is to run the program 
in a debugger and press break while the program is running. If there is a hot spot that uses 
90% of the CPU time then there is a 90% chance that the break will occur in this hot spot. 
Repeating the break a few times may be enough to identify a hot spot. Use the call stack in 
the debugger to identify the circumstances around the hot spot. 
 
Sometimes, the best way to identify performance bottlenecks is to put measurement 
instruments into the code rather than using a ready-made profiler. This does not solve all 
the problems associated with profiling, but it often gives more reliable results. If you are not 
satisfied with the way a profiler works then you may put the desired measurement 
instruments into the program itself. You may add counter variables that count how many 
times each part of the program is executed. Furthermore, you may read the time before and 
after each of the most important or critical parts of the program to measure how much time 
each part takes. 
 
Your measurement code should have #if directives around it so that it can be disabled in 
the final version of the code. Inserting your own profiling instruments in the code itself is a 
very useful way of keeping track of the performance during the development of a program. 
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The time measurements may require a very high resolution if time intervals are short. In 
Windows, you can use the GetTickCount or QueryPerformanceCounter functions for 
millisecond resolution. A much higher resolution can be obtained with the time stamp 
counter in the CPU, which counts at the CPU clock frequency. The ReadTSC function in the 
function library at www.agner.org/optimize/asmlib.zip gives easy access to this counter. 
 
The time stamp counter becomes invalid if a thread jumps between different CPU cores. 
You may have to fix the thread to a specific CPU core during time measurements to avoid 
this. (In Windows, use SetThreadAffinityMask). 
 
The program should be tested with a realistic set of test data. The test data should contain a 
typical degree of randomness in order to get a realistic number of cache misses and branch 
mispredictions. 
 
When the most time-consuming parts of the program have been found, then it is important 
to focus the optimization efforts on the time consuming parts only. 
 
If a small piece of code is particularly critical then it may be useful to measure the number of 
cache misses, branch mispredictions, floating point exceptions, etc. in this piece of code. 
My test programs at www.agner.org/optimize/testp.zip are useful for this purpose. See page 
152 for details. 
 
A profiler is most useful for finding problems that relate to CPU-intensive code. But many 
programs use more time loading files or accessing network and other resources than doing 
arithmetic operations. The most common time-consumers are discussed in the following 
sections. 
 

3.3 Program installation 
The time it takes to install a program package is not traditionally considered a software 
optimization issue. But it is certainly something that can steal the user's time. The time it 
takes to install a software package and make it work cannot be ignored if the goal of 
software optimization is to save time for the user. With the high complexity of modern 
software, it is not unusual for the installation process to take more than an hour. Neither is it 
unusual that a user has to reinstall a software package several times in order to find and 
resolve compatibility problems. 
 
Software developers should take installation time and compatibility problems into account 
when deciding whether to base a software package on a complex framework requiring 
many files to be installed.  
 
The installation process should always use standardized installation tools. It should be 
possible to select all installation options at the start so that the rest of the installation 
process can proceed unattended. Uninstallation should also proceed in a standardized 
manner. 
 

3.4 Automatic updates 
Many software programs automatically download updates through the Internet at regular 
time intervals. Some programs search for updates every time the computer starts up, even if 
the program is never used. A computer with many such programs installed can take five 
minutes to start up, which is a total waste of the user's time. Other programs use time 
searching for updates each time the program starts. The user may not need the updates if 
the current version satisfies the user's needs. The search for updates should be optional 
and off by default unless there is a compelling security reason for updating. The process 
should run in a low priority thread, and only when the program is used. No program should 

http://www.agner.org/optimize/asmlib.zip
http://www.agner.org/optimize/testp.zip
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leave a background process running when it is not in use. The installation of downloaded 
program updates should be postponed until the program is shut down and restarted 
anyway. 
 

3.5 Program loading 
Often, it takes more time to load a program than to execute it. The load time can be 
annoyingly high for programs that are based on big runtime frameworks, intermediate code, 
interpreters, just-in-time compilers, etc., as is commonly the case with programs written in 
Java, C#, Visual Basic, etc. 
 
But program loading can be a time-consumer even for programs implemented in compiled 
C++. This typically happens if the program uses a lot of runtime DLL's (dynamically linked 
libraries, also called shared objects), resource files, configuration files, help files and 
databases. The operating system may not load all the modules of a big program when the 
program starts up. Some modules may be loaded only when they are needed, or they may 
be swapped to the hard disk if the RAM size is insufficient. 
 
The user expects immediate responses to simple actions like a key press or mouse move. It 
is unacceptable to the user if such a response is delayed for several seconds because it 
requires the loading of modules or resource files from disk. Memory-hungry applications 
force the operating system to swap memory to disk. Memory swapping is a frequent cause 
of unacceptably long response times to simple things like a mouse move or key press. 
 
Avoid an excessive number of DLLs, configuration files, resource files, help files etc. 
scattered around on the hard disk. A few files, preferably in the same directory as the .exe 
file, is acceptable. 
 

3.6 Dynamic linking and position-independent code 
Function libraries can be implemented either as static link libraries (*.lib, *.a) or dynamic 
link libraries, also called shared objects (*.dll, *.so). The mechanism of static linking is 
that the linker extracts the functions that are needed from the library file and copies them 
into the executable file. Only the executable file needs to be distributed to the end user. 
 
Dynamic linking works differently. The link to a function in a dynamic library is resolved at 
run time. Therefore, both the executable file and one or more DLLs are loaded into memory 
when the program is run. Both the executable file and all the DLLs need to be distributed to 
the end user. 
 
The advantages of using static linking rather than dynamic linking are: 
 

Static linking includes only the part of the library that is actually needed by the 
application, while dynamic linking makes the entire library (or at least a large part of 
it) load into memory even when just a single function is needed. 
 

All the code is included in a single executable file when static linking is used. Dynamic 
linking makes it necessary to load several files when the program is started. 
 

It takes longer time to call a function in a dynamic link library than in a static link library 
because it needs an extra jump through a pointer in an import table. 
 

The memory space becomes more fragmented when the code is distributed between 
multiple DLLs. The DLLs are always loaded at round memory addresses divisible by 
the memory page size (4096). This will make all DLLs contend for the same cache 
lines. This makes code caching and data caching less efficient. 
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DLLs are less efficient in some systems because of the needs of position-independent 
code, see below. 
 

Installing a second application that uses a newer version of the same DLL can change 
the behavior of the first application if dynamic linking is used, but not if static linking 
is used. 

 
The advantages of dynamic linking are: 
 

Multiple applications running simultaneously can share the same DLL without the need 
to load more than one instance of the DLL into memory. This is useful on servers 
that run many processes simultaneously. 
 

A DLL can be updated to a new version without the need to update the program that 
calls it. 
 

A DLL can be called from programming languages that do not support static linking. 
 

A DLL can be useful for making plug-ins that add functionality to an existing program. 
 
Weighing the above advantages of each method, it is clear that static linking is preferable in 
critical applications except for parts of the code that are rarely used. 
 
Many function libraries are available in both static and dynamic versions. It is recommended 
to use the static version if a performance gain can be expected. 
 
Some systems allow lazy binding of function calls. The principle of lazy binding is that the 
address of a linked function is not resolved when the program is loaded, but waits until the 
first time the function is called. Lazy binding can be useful if there is a low probability that 
the function will be called in a single session. But lazy binding definitely degrades 
performance if the function is called. A considerable delay comes when the function is 
called for the first time. This delay is caused by the need to load the dynamic linker, and in 
some cases from purging the code cache because of self-modifying code. 
 
The delay on lazy binding leads to a usability problem in interactive programs because the 
response time to e.g. a mouse click becomes inconsistent and sometimes unacceptably 
long. I will not recommend lazy binding where it can be avoided. 
 
The memory address at which a DLL is loaded cannot be determined in advance, because 
a fixed address might clash with another DLL requiring the same address. This problem is 
solved in Linux, BSD and Mac systems by using position-independent code. Unfortunately, 
this leads to a considerable extra overhead. There are two reasons for this overhead. The 
first reason is that the 32-bit instruction set has no support for self-relative addressing of 
data. The code needs to use an extra function call for setting up a register that points to the 
data. This is done in every function that needs access to global, static or constant data. The 
result is that a register is wasted and that an extra overhead is incurred after almost every 
function call. The second reason is that Linux systems access all static data through 
pointers stored in a global offset table when position-independent code is used. This leads 
to extra instructions for loading a pointer from the global offset table every time a global, 
static or constant data item is accessed. 
 
The 64-bit instruction set supports self-relative addressing of data. Therefore, there is less 
extra cost to position-independent code in 64-bit systems. Unfortunately, current compilers 
for 64-bit Linux still use a global offset table for position independent code although it would 
be possible to access the data without such a table. 
 
The Windows system uses a different method for allowing a DLL to be loaded at an arbitrary 
address. All addresses in the DLL are simply modified when the DLL is loaded if the 
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memory address is different from a predefined value. This process is known as relocation. A 
DLL may contain thousands of addresses to relocate, but the relocation process is 
nevertheless very fast because the address calculations are simple and are done only once. 
 
The conclusion is that there is a significant runtime cost for position-independent code when 
using dynamic linking (shared objects) in Linux, BSD and Mac systems. Critical CPU-
intensive code should never be stored in a shared object on these systems. 
 
Note that many compilers for Mac OS X make position-independent code and lazy binding 
by default, even when shared objects are not used. Be sure to specify static linking and no 
position-independent code (-fno-pic) for best performance when building code for the 
Mac system. 
 

3.7 File access 
Reading or writing a file on a hard disk often takes much more time than processing the 
data in the file, especially if the user has a virus scanner that scans all files on access. 
 
Sequential forward access to a file is faster than random access. Reading or writing big 
blocks is faster than reading or writing a small bit at a time. Do not read or write less than a 
few kilobytes at a time. 
 
You may mirror the entire file in a memory buffer and read or write it in one operation rather 
than reading or writing small bits in a non-sequential manner. 
 
It is usually much faster to access a file that has been accessed recently than to access it 
the first time. This is because the file has been copied to the disk cache. 
 
Files on remote or removable media such as floppy disks and USB sticks may not be 
cached. This can have quite dramatic consequences. I once made a Windows program that 
created a file by calling WritePrivateProfileString, which opens and closes the file 
for each line written. This worked sufficiently fast on a hard disk because of disk caching, 
but it took several minutes to write the file to a floppy disk. 
 
A big file containing numerical data is more compact and efficient if the data are stored in 
binary form than if the data are stored in ASCII form. A disadvantage of binary data storage 
is that it is not human readable and not easily ported to systems with big-endian storage. 
 
Optimizing file access is more important than optimizing CPU use in programs that have 
many file input/output operations. It can be advantageous to put file access in a separate 
thread if there is other work that the processor can do while waiting for disk operations to 
finish. 
 

3.8 System database 
It can take several seconds to access the system database in Windows. It is more efficient 
to store application-specific information in a separate file than in the big registration 
database in the Windows system. Note that the system may store the information in the 
database anyway if you are using functions such as GetPrivateProfileString and 
WritePrivateProfileString to read and write configuration files (*.ini files). 
 

3.9 Other databases 
Many software applications use a database for storing user data. A database can consume 
a lot of CPU time, RAM and disk space. It may be possible to replace a database by a plain 
old data file in simple cases. Database queries can often be optimized by using indexes, 
working with sets rather than loops, etc. Optimizing database queries is beyond the scope 
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of this manual, but you should be aware that there is often a lot to gain by optimizing 
database access. 
 

3.10 Graphics and other system resources 
Writes to the screen, printer, etc. should preferably be done in big blocks rather than a small 
piece at a time because each call to a driver involves a large overhead of switching to 
protected mode and back again. 
 
Accessing system devices and using advanced facilities of the operating system can be 
time consuming because it may involve the loading of several drivers, configuration files and 
system modules. 
 
Various graphics function libraries and drivers differ a lot in performance. I have no specific 
recommendation of which is best. 
 

3.11 Network access 
Some application programs use internet or intranet for automatic updates, remote help files, 
data base access, etc. The problem here is that access times cannot be controlled. The 
network access may be fast in a simple test situation but slow or completely absent in a use 
situation where the network is overloaded or the user is far from the server. 
 
These problems should be taken into account when deciding whether to store help files and 
other resources locally or remotely. If frequent updates are necessary then it may be 
optimal to mirror the remote data locally. 
 
Access to remote databases usually requires log on with a password. The log on process is 
known to be an annoying time consumer to many hard working software users. It is not 
uncommon for the log on process to take more than a minute if the network or database is 
heavily loaded. 
 

3.12 Memory access 
Accessing data from RAM memory can take quite a long time compared to the time it takes 
to do calculations on the data. This is the reason why all modern computers have memory 
caches. Typically, there is a level-1 data cache of 8 - 64 Kbytes and a level-2 cache of 256 
Kbytes to 2 Mbytes. There may also be a level-3 cache. 
 
If the combined size of all data in a program is bigger than the level-2 cache and the data 
are scattered around in memory or accessed in a non-sequential manner then it is likely that 
memory access is the biggest time-consumer in the program. Reading or writing to a 
variable in memory takes only 2-3 clock cycles if it is cached, but several hundred clock 
cycles if it is not cached. See page 26 about data storage and page 85 about memory 
caching. 
 

3.13 Context switches 
A context switch is a switch between different tasks in a multitasking environment, between 
different threads in a multithreaded program, or between different parts of a big program. 
Frequent context switches can reduce the performance because the contents of data cache, 
code cache, branch target buffer, branch pattern history, etc. may have to be renewed. 
 
Context switches are more frequent if the time slices allocated to each task or thread are 
smaller. The lengths of the time slices is determined by the operating system, not by the 
application program. 
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The number of context switches is smaller in a computer with multiple CPUs or a CPU with 
multiple cores. 
  

3.14 Dependency chains 
Modern microprocessors can do out-of-order execution. This means that if a piece of 
software specifies the calculation of A and then B, and the calculation of A is slow, then the 
microprocessor can begin the calculation of B before the calculation of A is finished. 
Obviously, this is only possible if the value of A is not needed for the calculation of B. 
 
In order to take advantage of out-of-order execution, you have to avoid long dependency 
chains. A dependency chain is a series of calculations, where each calculation depends on 
the result of the preceding one. This prevents the CPU from doing multiple calculations 
simultaneously or out of order. See page 101 for examples of how to break a dependency 
chain. 
 

3.15 Execution unit throughput 
There is an important distinction between the latency and the throughput of an execution 
unit. For example, it may take three clock cycles to do a floating point addition on a modern 
CPU. But it is possible to start a new floating point addition every clock cycle. This means 
that if each addition depends on the result of the preceding addition then you will have only 
one addition every three clock cycles. But if all the additions are independent then you can 
have one addition every clock cycle. 
 
The highest performance that can possibly be obtained in a computationally intensive 
program is achieved when none of the time-consumers mentioned in the above sections are 
dominating and there are no long dependency chains. In this case, the performance is 
limited by the throughput of the execution units rather than by the latency or by memory 
access. 
 
The execution core of modern microprocessors is split between several execution units. 
Typically, there are two or more integer units, one floating point addition unit, and one 
floating point multiplication unit. This means that it is possible to do an integer addition, a 
floating point addition, and a floating point multiplication at the same time. 
 
A code that does floating point calculations should therefore preferably have a balanced mix 
of additions and multiplications. Subtractions use the same unit as additions. Divisions take 
longer time and use the multiplication unit. It is possible to do integer operations in-between 
the floating point operations without reducing the performance because the integer 
operations use a different execution unit. For example, a loop that does floating point 
calculations will typically use integer operations for incrementing a loop counter, comparing 
the loop counter with its limit, etc. In most cases, you can assume that these integer 
operations do not add to the total computation time. 
 
 

4 Performance and usability 
A better performing software product is one that saves time for the user. Time is a precious 
resource for many computer users and much time is wasted on software that is slow, 
difficult to use, incompatible or error prone. All these problems are usability issues, and I 
believe that software performance should be seen in the broader perspective of usability. A 
list of literature on usability is given on page 160. 
 
This is not a manual on usability, but I think that it is necessary here to draw the attention of 
software programmers to some of the most common obstacles to efficient use of software. 
The following list points out some typical sources of frustration and waste of time for 
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software users as well as important usability problems that software developers should be 
aware of. 
 

Big runtime frameworks. The .NET framework and the Java virtual machine are 
frameworks that typically take much more resources than the programs they are 
running. Such frameworks are frequent sources of resource problems and 
compatibility problems and they waste a lot of time both during installation of the 
framework itself, during installation of the program that runs under the framework, 
during start of the program, and while the program is running. The main reason why 
such runtime frameworks are used at all is for the sake of cross-platform portability. 
Unfortunately, the cross-platform compatibility is not always as good as expected. I 
believe that the portability could be achieved more efficiently by better standardi-
zation of programming languages, operating systems, and API's. 
 

Memory swapping. Software developers typically have more powerful computers with 
more RAM than end users have. The developers may therefore fail to see the 
excessive memory swapping and other resource problems that cause the resource-
hungry applications to perform poorly for the end user. 
 

Installation problems. The procedures for installation and uninstallation of programs 
should be standardized and done by the operating system rather than by individual 
installation tools. 
 

Automatic updates. Automatic updating of software can cause problems if the network is 
unstable or if the new version causes problem that were not present in the old 
version. Updating mechanisms often disturb the users with nagging pop-up 
messages saying please install this important new update or even telling the user to 
restart the computer while he or she is busy concentrating on important work. The 
updating mechanism should never interrupt the user but only show a discrete icon 
signaling the availability of an update, or update automatically when the computer is 
restarted anyway. Software distributors are often abusing the update mechanism to 
advertise new versions of their software. This is annoying to the user. 
 

Compatibility problems. All software should be tested on different platforms, different 
screen resolutions, different system color settings and different user access rights. 
Software should use standard API calls rather than self-styled hacks and direct 
hardware access. Available protocols and standardized file formats should be used. 
Web systems should be tested in different browsers, different platforms, different 
screen resolutions, etc. Accessibility guidelines should be obeyed (See literature 
page 160). 
 

Copy protection. Some copy protection schemes are based on hacks that violate or 
circumvent operating system standards. Such schemes are frequent sources of 
compatibility problems and system breakdown. Many copy protection schemes are 
based on hardware identification. Such schemes cause problems when the 
hardware is updated. Most copy protection schemes are annoying to the user and 
prevent legitimate backup copying without effectively preventing illegitimate copying. 
The benefits of a copy protection scheme should be weighed against the costs in 
terms of usability problems and necessary support. 
 

Hardware updating. The change of a hard disk or other hardware often requires that all 
software be reinstalled and user settings are lost. It is not unusual for the 
reinstallation work to take a whole workday or more. Current operating systems need 
better support for hard disk copying. 
 

Security. The vulnerability of software with network access to virus attacks and other 
abuse is extremely costly to many users. 
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Background services. Many services that run in the background are unnecessary for the 
user and a waste of resources. Consider running the services only when activated 
by the user. 
 

Take user feedback seriously. User complaints should be regarded as a valuable source 
of information about bugs, compatibility problems, usability problems and desired 
new features. User feedback should be handled in a systematic manner to make 
sure the information is utilized appropriately. Users should get a reply about 
investigation of the problems and planned solutions. Patches should be easily 
available from a website. 

 
 

5 Choosing the optimal algorithm 
The first thing to do when you want to optimize a piece of CPU-intensive software is to find 
the best algorithm. The choice of algorithm is very important for tasks such as sorting, 
searching, and mathematical calculations. In such cases, you can obtain much more by 
choosing the best algorithm than by optimizing the first algorithm that comes to mind. In 
some cases you may have to test several different algorithms in order to find the one that 
works best on a typical set of test data. 
 
That being said, I must warn against overkill. Don't use an advanced and complicated 
algorithm if a simple algorithm can do the job fast enough. For example, some programmers 
use a hash table for even the smallest list of data. A hash table can improve search times 
dramatically for very large data bases, but there is no reason to use it for lists that are so 
small that a binary search, or even a linear search, is fast enough. A hash table increases 
the size of the program as well as the size of data files. This can actually reduce speed if 
the bottleneck is file access or cache access rather than CPU time. Another disadvantage of 
complicated algorithms is that it makes program development more expensive and more 
error prone. 
 
A discussion of different algorithms for different purposes is beyond the scope of this 
manual. You have to consult the general literature on algorithms and data structures for 
standard tasks such as sorting and searching, or the specific literature for more complicated 
mathematical tasks. 
 
Before you start to code, you may consider whether others have done the job before you. 
Optimized function libraries for many standard tasks are available from a number of 
sources. For example, the Boost collection contains well-tested libraries for many common 
purposes (www.boost.org). The "Intel Math Kernel Library" contains many functions for 
common mathematical calculations including linear algebra and statistics, and the "Intel 
Performance Primitives" library contains many functions for audio and video processing, 
signal processing, data compression and cryptography (www.intel.com). If you are using an 
Intel function library then make sure it works well on non-Intel processors, as explained on 
page 129. 
 
It is often easier said than done to choose the optimal algorithm before you start to program. 
Many programmers have discovered that there are smarter ways of doing things only after 
they have put the whole software project together and tested it. The insight you gain by 
testing and analyzing program performance and studying the bottlenecks can lead to a 
better understanding of the whole structure of the problem. This new insight can lead to a 
complete redesign of the program, for example when you discover that there are smarter 
ways of organizing the data. 
 
A complete redesign of a program that already works is of course a considerable job, but it 
may be quite a good investment. A redesign can not only improve the performance, it is also 
likely to lead to a more well-structured program that is easier to maintain. The time you 

http://www.boost.org/
http://www.intel.com/
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spend on redesigning a program may in fact be less than the time you would have spent 
fighting with the problems of the original, poorly designed program. 
 
 

6 Development process 
There is a considerable debate about which software development process and software 
engineering principles to use. I am not going to recommend any specific model. Instead, I 
will make a few comments about how the development process can influence the 
performance of the final product. 
 
It is good to do a thorough analysis of the data structure, data flow and algorithms in the 
planning phase in order to predict which resources are most critical. However, there may be 
so many unknown factors in the early planning stage that a detailed overview of the problem 
cannot easily be obtained. In the latter case, you may view the software development work 
as a learning process where the main feedback comes from testing. Here, you should be 
prepared for several iterations of redesign. 
 
Some software development models have a strict formalism that requires several layers of 
abstraction in the logical architecture of the software. You should be aware that there are 
inherent performance costs to such a formalism. The splitting of software into an excessive 
number of separate layers of abstraction is a common cause of reduced performance. 
 
Since most development methods are incremental or iterative in nature, it is important to 
have a strategy for saving a backup copy of every intermediate version. For one-man 
projects, it is sufficient to make a zip file of every version. For team projects, it is 
recommended to use a version control tool. 
 
 

7 The efficiency of different C++ constructs 
Most programmers have little or no idea how a piece of program code is translated into 
machine code and how the microprocessor handles this code. For example, many 
programmers do not know that double precision calculations are just as fast as single 
precision. And who would know that a template class is more efficient than a polymorphous 
class? 
 
This chapter is aiming at explaining the relative efficiency of different C++ language 
elements in order to help the programmer choosing the most efficient alternative. The 
theoretical background is further explained in the other volumes in this series of manuals. 
 

7.1 Different kinds of variable storage 
Variables and objects are stored in different parts of the memory, depending on how they 
are declared in a C++ program. This has influence on the efficiency of the data cache (see 
page 85). Data caching is poor if data are scattered randomly around in the memory. It is 
therefore important to understand how variables are stored. The storage principles are the 
same for simple variables, arrays and objects. 

Storage on the stack 
Variables declared with the keyword auto are stored on the stack. The keyword auto is 
practically never used because automatic storage is the default for all variables and objects 
that are declared inside any function. 
 
The stack is a part of memory that is organized in a first-in-last-out fashion. It is used for 
storing function return addresses (i.e. where the function was called from), function 
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parameters, local variables, and for saving registers that have to be restored before the 
function returns. Every time a function is called, it allocates the required amount of space on 
the stack for all these purposes. This memory space is freed when the function returns. The 
next time a function is called, it can use the same space for the parameters of the new 
function. 
 
The stack is the most efficient place to store data because the same range of memory 
addresses is reused again and again. If there are no big arrays, then it is almost certain that 
this part of the memory is mirrored in the level-1 data cache, where it is accessed quite fast. 
 
The lesson we can learn from this is that all variables and objects should preferably be 
declared inside the function in which they are used. 
 
It is possible to make the scope of a variable even smaller by declaring it inside {} brackets. 
However, most compilers do not free the memory used by a variable until the function 
returns even though it could free the memory when exiting the {} brackets in which the 
variable is declared. 

Global or static storage 
Variables that are declared outside of any function are called global variables. They can be 
accessed from any function. Global variables are stored in a static part of the memory. The 
static memory is also used for variables declared with the static keyword, for floating 
point constants, string constants, array initializer lists, switch statement jump tables, and 
virtual function tables. 
 
The static data area is usually divided into three parts: one for constants that are never 
modified by the program, one for initialized variables that may be modified by the program, 
and one for uninitialized variables that may be modified by the program. 
 
The advantage of static data is that they can be initialized to desired values before the 
program starts. The disadvantage is that the memory space is occupied throughout the 
whole program execution, even if the variable is only used in a small part of the program. 
This makes data caching less efficient. 
 
Do not make variables global if you can avoid it. Global variables may be needed for 
communication between different threads, but that's about the only situation where they are 
unavoidable. It may be useful to make a variable global if it is accessed by several different 
functions and you want to avoid the overhead of transferring the variable as function 
parameter. But it may be a better solution to make the functions that access the saved 
variable members of the same class and store the shared variable inside the class. Which 
solution you prefer is a matter of programming style. 
 
It is often preferable to make a lookup-table static. Example: 
 

// Example 7.1 
float SomeFunction (int x) { 
   static float list[] = {1.1, 0.3, -2.0, 4.4, 2.5}; 
   return list[x]; 
} 

 
The advantage of using static here is that the list does not need to be initialized when the 
function is called. The values are simply put there when the program is loaded into memory. 
If the word static is removed from the above example, then all five values have to be put 
into the list every time the function is called. This is done by copying the entire list from 
static memory to stack memory. Copying constant data from static memory to the stack is a 
waste of time in most cases, but it may be optimal in special cases where the data are used 
many times in a loop where almost the entire level-1 cache is used in a number of arrays 
that you want to keep together on the stack. 
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String constants and floating point constants are stored in static memory. Example: 
 

// Example 7.2 
a = b * 3.5; 
c = d + 3.5; 

 
Here, the constant 3.5 will be stored in static memory. Most compilers will recognize that 
the two constants are identical so that only one constant needs to be stored. All identical 
constants in the entire program will be joined together in order to minimize the amount of 
cache space used for constants. 
 
Integer constants are usually included as part of the instruction code. You can assume that 
there are no caching problems for integer constants. 

Register storage 
A limited number of variables can be stored in registers instead of main memory. A register 
is a small piece of memory inside the CPU used for temporary storage. Variables that are 
stored in registers are accessed very fast. All optimizing compilers will automatically choose 
the most often used variables in a function for register storage. 
  
The number of registers is very limited. There are approximately six integer registers 
available for general purposes in 32-bit operating systems and fourteen integer registers in 
64-bit systems. 
 
Floating point variables use a different kind of registers. There are eight floating point 
registers available in 32-bit operating systems and sixteen in 64-bit operating systems. 
Some compilers have difficulties making floating point register variables in 32-bit mode 
without the SSE2 instruction set. 

Volatile 
The volatile keyword specifies that a variable cannot be stored in a register, not even 
temporarily. This is necessary for variables that are accessed by more than one thread. 
Volatile storage prevents the compiler from doing any kind of optimization on the variable. It 
is sometimes used for turning off optimization of a particular variable. 

Thread-local storage 
Most compilers can make thread-local storage of static and global variables by using the 
keyword __thread or __declspec(thread). Such variables have one instance for 
each thread. Thread-local storage is inefficient because it is accessed through a pointer 
stored in a thread environment block. Thread-local storage should be avoided, if possible, 
and replaced by storage on the stack (see above, p. 26). Variables stored on the stack 
always belong to the thread in which they are created. 

Far 
Systems with segmented memory, such as DOS and 16-bit Windows, allow variables to be 
stored in a far data segment by using the keyword far (arrays can also be huge). Far 
storage, far pointers, and far procedures are inefficient. If a program has too much data for 
one segment then it is recommended to use a different operating systems that allows bigger 
segments (32-bit or 64-bit systems). 

Dynamic memory allocation 
Dynamic memory allocation is done with the operators new and delete or with the 
functions malloc and free. These operators and functions consume a significant amount 
of time. A part of memory called the heap is reserved for dynamic allocation. The heap can 
easily become fragmented when objects of different sizes are allocated and deallocated in 
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random order. The heap manager can spend a lot of time cleaning up spaces that are no 
longer used and searching for vacant spaces. This is called garbage collection. Objects that 
are allocated in sequence are not necessarily stored sequentially in memory. They may be 
scattered around at different places when the heap has become fragmented. This makes 
data caching inefficient. 
 
Dynamic memory allocation also tends to make the code more complicated and error-prone. 
The program has to keep pointers to all allocated objects and keep track of when they are 
no longer used. It is important that all allocated objects are also deallocated in all possible 
cases of program flow. Failure to do so is a common source of error known as memory leak. 
An even worse kind of error is to access an object after it has been deallocated. The 
program logic may need extra overhead to prevent such errors. 
 
See page 89 for a further discussion of the advantages and drawbacks of using dynamic 
memory allocation. 
 
Some programming languages, such as Java, use dynamic memory allocation for all 
objects. This is of course inefficient. 

Variables declared inside a class 
Variables declared inside a class are stored in the order in which they appear in the class 
declaration. The type of storage is determined where the object of the class is declared. An 
object of a class, structure or union can use any of the storage methods mentioned above. 
An object cannot be stored in a register except in the simplest cases, but its data members 
can be copied into registers. 
 
A class member variable with the static modifier will be stored in static memory and will 
have one and only one instance. Non-static members of the same class will be stored with 
each instance of the class. 
 
Storing variables in a class or structure is a good way of making sure that variables that are 
used in the same part of the program are also stored near each other. See page 50 for the 
pros and cons of using classes. 
 

7.2 Integers variables and operators 

Integer sizes 
Integers can be different sizes, and they can be signed or unsigned. The following table 
summarizes the different integer types available. 
 
declaration size, bits minimum 

value 
maximum 

value 
comments 

char 8 -128 127  
short int 16 -32768 32767 in 16-bit systems: int 
int 32 -231 231-1 in 16-bit systems: long int 
__int64 64 -263 263-1 in Windows: __int64 

in 32-bit Linux: long long 
in 64-bit Linux: long int 

unsigned char 8 0 255  
unsigned short 
int 

16 0 65535 in 16-bit systems: 
unsigned  int 

unsigned int 32 0 232-1 in 16-bit systems: 
unsigned long 

unsigned 64 0 264-1 Windows: 
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__int64 unsigned __int64 
32-bit Linux: 
unsigned long long 
64-bit Linux: 
unsigned long int 

Table 7.1. Sizes of different integer types 

 
Unfortunately, the way of declaring an integer of a specific size is different for different 
platforms. Some compilers support the keywords __int8, __int16, __int32 and 
__int64 for integers of a specific size. On other systems, it is customary to define types 
like INT32 in a header file. 
 
Integer operations are fast in most cases, regardless of the size. However, it is inefficient to 
use an integer size that is larger than the largest available register size. In other words, it is 
inefficient to use 32-bit integers in 16-bit systems or 64-bit integers in 32-bit systems, 
especially if the code involves multiplication or division. 
 
The compiler will always select the most efficient integer size if you declare an int, without 
specifying the size. Integers of smaller sizes (char, short int) are only slightly less 
efficient. In most cases, the compiler will convert these types to integers of the default size 
when doing calculations, and then use only the lower 8 or 16 bits of the result. You can 
assume that the type conversion takes zero or one clock cycle. In 64-bit systems, there is 
only a minimal difference between the efficiency of 32-bit integers and 64-bit integers, as 
long as you are not doing divisions. 
 
It is recommended to use the default integer size in cases where the size doesn't matter, 
such as simple variables, loop counters, etc. In large arrays, it may be preferred to use the 
smallest integer size that is big enough for the specific purpose in order to make better use 
of the data cache. Bit-fields of sizes other than 8, 16, 32 and 64 bits are less efficient. 
 
In 64-bit systems, you may use 64-bit integers if the application can make use of the extra 
bits. There is no automatic overflow check for integer operations. 

Signed versus unsigned integers 
In most cases, there is no difference in speed between using signed and unsigned integers. 
But there are a few cases where it matters: 
 

Division by a constant: Unsigned is faster than signed when you divide an integer with a 
constant (see page 140). This also applies to the modulo operator %. 
 

Conversion to floating point is faster with signed than with unsigned integers (see page 
145). 

 
The conversion between signed and unsigned integers is costless. It is simply a matter of 
interpreting the same bits differently. A negative integer will be interpreted as a very large 
positive number when converted to unsigned. 
 

// Example 7.3. Signed and unsigned integers 
int a, b;  
double c; 
b = (unsigned int)a / 10;    // Convert to unsigned for fast division 
c = a * 2.5;                 // Use signed when converting to double 

 
In example 7.3 we are converting a to unsigned in order to make the division faster. Of 
course, this works only if it is certain that a will never be negative. The last line is implicitly 
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converting a to double before multiplying with the constant 2.5, which is double. Here we 
prefer a to be signed. 
 
Be sure not to mix signed and unsigned integers in comparisons, such as <. The result of 
comparing signed with unsigned integers is ambiguous and may produce undesired results. 

Integer operators 
Integer operations are generally very fast. Simple integer operations such as addition, 
subtraction, comparison, bit operations and shift operations take only one clock cycle on 
most microprocessors. 
 
Multiplication and division take longer time. Integer multiplication takes 11 clock cycles on 
Pentium 4 processors, and 3 - 4 clock cycles on most other microprocessors. Integer 
division takes 40 - 80 clock cycles, depending on the microprocessor. Integer division is 
faster the smaller the integer size on AMD processors, but not on Intel processors. Details 
about instruction latencies are listed in manual 4: "Instruction tables". Tips about how to 
speed up multiplications and divisions are given on page 139 and 140, respectively. 

Increment and decrement operators 
The pre-increment operator ++i and the post-increment operator i++ are as fast as 
additions. When used simply to increment an integer variable, it makes no difference 
whether you use pre-increment or post-increment. The effect is simply identical. For 
example, 
for (i=0; i<n; i++) is the same as for (i=0; i<n; ++i). But when the result of 
the expression is used, then there may be a difference in efficiency. For example, 
x = array[i++] is more efficient than x = array[++i] because in the latter case, 
the calculation of the address of the array element has to wait for the new value of i which 
will delay the availability of x for approximately two clock cycles. Obviously, the initial value 
of i must be adjusted if you change pre-increment to post-increment. 
 
There are also situations where pre-increment is more efficient than post-increment. For 
example, in the case a = ++b; the compiler will recognize that the values of a and b are 
the same after this statement so that it can use the same register for both, while the 
expression a = b++; will make the values of a and b different so that they cannot use the 
same register. 
 
Everything that is said here about increment operators also applies to decrement operators 
on integer variables. 
 

7.3 Floating point variables and operators 
Modern microprocessors in the x86 family have two different types of floating point registers 
and correspondingly two different types of floating point instructions. Each type has 
advantages and disadvantages. 
 
The original method of doing floating point operations involves eight floating point registers 
organized as a register stack. These registers have long double precision (80 bits). The 
advantages of using the register stack are: 
 

All calculations are done with long double precision. 
 

Conversions between different precisions take no extra time. 
 

There are intrinsic instructions for mathematical functions such as logarithms and 
trigonometric functions. 
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The code is compact and takes little space in the code cache. 
 
The register stack also has disadvantages: 
 

It is difficult for the compiler to make register variables because of the way the register 
stack is organized. 
 

Floating point comparisons are slow unless the Pentium-II or later instruction set is 
enabled. 
 

Conversions between integers and floating point numbers is inefficient. 
 

Division, square root and mathematical functions take more time to calculate when long 
double precision is used. 

 
A newer method of doing floating point operations involves eight or sixteen so-called XMM 
registers which can be used for multiple purposes. Floating point operations are done with 
single or double precision, and intermediate results are always calculated with the same 
precision as the operands. The advantages of using the XMM registers are: 
 

It is easy to make floating point register variables. 
 

Vector operations are available for doing parallel calculations on vectors of two double-
precision or four single-precision variables (see page 103). 

 
Disadvantages are: 
 

Long double precision is not supported. 
 

The calculation of expressions where operands have mixed precision require precision 
conversion instructions which can be quite time-consuming (see page 143). 
 

Mathematical functions must use a function library, but this is often faster than the 
intrinsic hardware functions. 

 
The floating point stack registers are available in all systems that have floating point 
capabilities (except in device drivers for 64-bit Windows). The XMM registers are available 
in 64-bit systems and in 32-bit systems when the SSE2 or later instruction set is enabled 
(single precision requires only SSE). See page 123 for how to test for the availability of the 
SSE or SSE2 instruction set. 
 
Most compilers will use the XMM registers for floating point calculations whenever they are 
available, i.e. in 64-bit mode or when the SSE2 instruction set is enabled. Few compilers 
are able to mix the two types of floating point operations and choose the type that is optimal 
for each calculation. 
 
In most cases, double precision calculations take no more time than single precision. When 
the floating point registers are used, there is simply no difference in speed between single 
and double precision. Long double precision takes only slightly more time. Single precision 
division, square root and mathematical functions are calculated faster than double precision 
when the XMM registers are used, while the speed of addition, subtraction, multiplication, 
etc. is still the same regardless of precision on most processors (when vector operations are 
not used). 
 
You may use double precision without worrying too much about the costs if it is good for the 
application. You may use single precision if you have big arrays and want to get as much 
data as possible into the data cache. Single precision is good if you can take advantage of 
vector operations in the XMM registers, as explained on page 103. 
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Floating point addition takes 3 - 6 clock cycles, depending on the microprocessor. 
Multiplication takes 4 - 8 clock cycles. Division takes 32 - 45 clock cycles. Floating point 
comparisons are inefficient when the floating point stack registers are used. Conversions of 
float or double to integer takes a long time when the floating point stack registers are used.  
 
Do not mix single and double precision when the XMM registers are used. See page 143. 
 
Avoid conversions between integers and floating point variables, if possible. See page 144. 
 
Applications that generate floating point underflow in XMM registers can benefit from setting 
the flush-to-zero mode rather than generating denormal numbers in case of underflow: 
 

// Example 7.4. Set flush-to-zero mode (SSE): 
#include <xmmintrin.h> 
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); 

 
It is strongly recommended to set the flush-to-zero mode unless you have special reasons 
to use denormal numbers. You may, in addition, set the denormals-are-zero mode if SSE2 
is available: 
 

// Example 7.5. Set flush-to-zero and denormals-are-zero mode (SSE2): 
#include <xmmintrin.h> 
_mm_setcsr(_mm_getcsr() | 0x8040); 

 
See page 148 and 120 for more information about mathematical functions. 
 

7.4 Enums 
An enum is simply an integer in disguise. Enums are exactly as efficient as integers. 
 

7.5 Booleans 

The order of Boolean operands 
The operands of the Boolean operators && and || are evaluated in the following way. If the 
first operand of && is false, then the second operand is not evaluated at all because the 
result is known to be false regardless of the value of the second operand. Likewise, if the 
first operand of || is true, then the second operand is not evaluated, because the result is 
known to be true anyway. 
 
It may be advantageous to put the operand that is most often true last in an && expression, 
or first in an || expression. Assume, for example, that a is true 50% of the time and b is 
true 10% of the time. The expression a && b needs to evaluate b when a is true, which is 
50% of the cases. The equivalent expression b && a needs to evaluate a only when b is 
true, which is only 10% of the time. This is faster if a and b take the same time to evaluate 
and are equally likely to be predicted by the branch prediction mechanism. See page 43 for 
an explanation of branch prediction. 
 
If one operand is more predictable than the other, then put the most predictable operand 
first.  
 
If one operand is faster to calculate than the other then put the operand that is calculated 
the fastest first. 
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However, you must be careful when swapping the order of Boolean operands. You cannot 
swap the operands if the evaluation of the operands has side effects or if the first operand 
determines whether the second operand is valid. For example: 
 

// Example 7.6 
unsigned int i;  const int ARRAYSIZE = 100;  float list[ARRAYSIZE]; 
if (i < ARRAYSIZE && list[i] > 1.0) { ... 

 
Here, you cannot swap the order of the operands because the expression list[i] is 
invalid when i is not less than ARRAYSIZE. Another example: 
 

// Example 7.7 
if (handle != INVALID_HANDLE_VALUE && WriteFile(handle, ...)) { ... 

 
Here you cannot swap the order of the Boolean operands because you should not call 
WriteFile if the handle is invalid. 

Boolean variables are overdetermined 
Boolean variables are stored as 8-bit integers with the value 0 for false and 1 for true. 
 
Boolean variables are overdetermined in the sense that all operators that have Boolean 
variables as input check if the inputs have any other value than 0 or 1, but operators that 
have Booleans as output can produce no other value than 0 or 1. This makes operations 
with Boolean variables as input less efficient than necessary. Take the example: 
 

// Example 7.8a 
bool a, b, c, d; 
c = a && b; 
d = a || b; 

 
This is typically implemented by the compiler in the following way: 
 

bool a, b, c, d; 
if (a != 0) { 
   if (b != 0) { 
      c = 1; 
   } 
   else { 
      goto CFALSE; 
   } 
} 
else { 
   CFALSE: 
   c = 0; 
} 
if (a == 0) { 
   if (b == 0) { 
      d = 0; 
   } 
   else { 
      goto DTRUE; 
   } 
} 
else { 
   DTRUE: 
   d = 1; 
} 

 
This is of course far from optimal. The branches may take a long time in case of 
mispredictions (see page 43). The Boolean operations can be made much more efficient if it 
is known with certainty that the operands have no other values than 0 and 1. The reason 
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why the compiler doesn't make such an assumption is that the variables might have other 
values if they are uninitialized or come from unknown sources. The above code can be 
optimized if a and b have been initialized to valid values or if they come from operators that 
produce Boolean output. The optimized code looks like this: 
 

// Example 7.8b 
char a = 0, b = 0, c, d; 
c = a & b; 
d = a | b; 

 
Here, I have used char (or int) instead of bool in order to make it possible to use the 
bitwise operators (& and |) instead of the Boolean operators (&& and ||). The bitwise 
operators are single instructions that take only one clock cycle. The OR operator (|) works 
even if a and b have other values than 0 or 1. The AND operator (&) and the EXCLUSIVE 
OR operator (^) may give inconsistent results if the operands have other values than 0 and 
1. 
 
Note that there are a few pitfalls here. You cannot use ~ for NOT. Instead, you can make a 
Boolean NOT on a variable which is known to be 0 or 1 by XOR'ing it with 1: 
 

// Example 7.9a 
bool a, b; 
b = !a; 

 
can be optimized to: 
 

// Example 7.9b 
char a = 0, b; 
b = a ^ 1; 

 
You cannot replace a && b with a & b if b is an expression that should not be 
evaluated if a is false. Likewise, you cannot replace a || b with a | b if b is an 
expression that should not be evaluated if a is true. 
 
The trick of using bitwise operators is more advantageous if the operands are variables than 
if the operands are comparisons, etc. For example: 
 

// Example 7.10 
bool a; float x, y, z; 
a = x > y && z != 0; 

 
This is optimal in most cases. Don't change && to & unless you expect the && expression to 
generate many branch mispredictions. 

Boolean vector operations 
An integer may be used as a Boolean vector. For example, if a and b are 32-bit integers, 
then the expression y = a & b; will make 32 AND-operations in just one clock cycle. 
The operators &, |, ^, ~ are useful for Boolean vector operations. 
 

7.6 Pointers and references 

Pointers versus references 
Pointers and references are equally efficient because they are in fact doing the same thing. 
Example: 
 

// Example 7.11 
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void FuncA (int * p) { 
   *p = *p + 2; 
} 
 
void FuncB (int & r) { 
   r = r + 2; 
} 

 
These two functions are doing the same thing and if you look at the code generated by the 
compiler you will notice that the code is exactly identical for the two functions. The 
difference is simply a matter of programming style. The advantages of using pointers rather 
than references are: 
 

When you look at the function bodies above, it is clear that p is a pointer, but it is not 
clear whether r is a reference or a simple variable. Using pointers makes it more 
clear to the reader what is happening. 
 

It is possible to do things with pointers that are impossible with references. You can 
change what a pointer points to and you can do arithmetic operations with pointers. 

 
The advantages of using references rather than pointers are: 
 

The syntax is simpler when using references. 
 

References are safe to use because they always point to a valid address, while pointers 
can be invalid and cause fatal errors if they are uninitialized, if pointer arithmetic 
calculations go outside the bounds of valid addresses, or if pointers are type-casted 
to a wrong type. 
 

References are useful for copy constructors and overloaded operators. 
 

Function parameters that are declared as constant references accept expressions as 
arguments while pointers and non-constant references require a variable. 

Efficiency 
Accessing a variable or object through a pointer or reference may be just as fast as 
accessing it directly. The reason for this efficiency lies in the way microprocessors are 
constructed. All non-static variables and objects declared inside a function are stored on the 
stack and are in fact addressed relative to the stack pointer. Likewise, all non-static 
variables and objects declared in a class are accessed through the implicit pointer known in 
C++ as 'this'. We can therefore conclude that most variables in a well-structured C++ 
program are in fact accessed through pointers in one way or another. Therefore, micro-
processors have to be designed so as to make pointers efficient, and that's what they are. 
 
However, there are disadvantages of using pointers and references. Most importantly, it 
requires an extra register to hold the value of the pointer or reference. Registers are a 
scarce resource, especially in 32-bit mode. If there are not enough registers then the pointer 
has to be loaded from memory each time it is used and this will make the program slower. 
Another disadvantage is that the value of the pointer is needed a few clock cycles before 
the time the variable pointed to can be accessed. 

Pointer arithmetic 
A pointer is in fact an integer that holds a memory address. Pointer arithmetic operations 
are therefore as fast as integer arithmetic operations. When an integer is added to a pointer 
then its value is multiplied by the size of the object pointed to. For example: 
 

// Example 7.12 
struct abc {int a; int b; int c;}; 
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abc * p; int i; 
p = p + i; 

 
Here, the value that is added to p is not i but i*12, because the size of abc is 12 bytes. 
The time it takes to add i to p is therefore equal to the time it takes to make a multiplication 
and an addition. If the size of abc is a power of 2 then the multiplication can be replaced by 
a shift operation which is much faster. In the above example, the size of abc can be 
increased to 16 bytes by adding one more integer to the structure. 
 
Incrementing or decrementing a pointer does not require a multiplication but only an 
addition. Comparing two pointers requires only an integer comparison, which is fast. 
Calculating the difference between two pointers requires a division, which is slow unless the 
size of the type of object pointed to is a power of 2 (See page 140 about division). 
 
The object pointed to can be accessed approximately two clock cycles after the value of the 
pointer has been calculated. Therefore, it is recommended to calculate the value of a 
pointer well before the pointer is used. For example, x = *(p++) is more efficient than 
x = *(++p) because in the latter case the reading of x must wait until a few clock cycles 
after the pointer p has been incremented, while in the former case x can be read before p is 
incremented. See page 31 for more discussion of the increment and decrement operators. 
 

7.7 Function pointers 
Calling a function through a function pointer typically takes a few clock cycles more than 
calling the function directly if the target address can be predicted. The target address is 
predicted if the value of the function pointer is the same as last time the statement was 
executed. If the value of the function pointer has changed then the target address is likely to 
be mispredicted, which causes a long delay. See page 43 about branch prediction. A 
Pentium M processor may be able to predict the target if the changes of the function pointer 
follows a simple regular pattern, while Pentium 4 and AMD processors are sure to make a 
misprediction every time the function pointer has changed. 
 

7.8 Member pointers 
In simple cases, a data member pointer simply stores the offset of a data member relative to 
the beginning of the object, and a member function pointer is simply the address of the 
member function. But there are special cases such as multiple inheritance where a much 
more complicated implementation is needed. These complicated cases should definitely be 
avoided. 
 
A compiler has to use the most complicated implementation of member pointers if it has 
incomplete information about the class that the member pointer refers to. For example: 
 

// Example 7.13 
class c1; 
int c1::*MemberPointer; 

 
Here, the compiler has no information about the class c1 other than its name at the time 
MemberPointer is declared. Therefore, it has to assume the worst possible case and 
make a complicated implementation of the member pointer. This can be avoided by making 
the full declaration of c1 before MemberPointer is declared. Avoid multiple inheritance, 
virtual functions, and other complications that make member pointers less efficient. 
 
Most C++ compilers have various options to control the way member pointers are 
implemented. Use the option that gives the simplest possible implementation if possible, 
and make sure you are using the same compiler option for all modules that use the same 
member pointer. 
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7.9 Smart pointers 
A smart pointer is an object that behaves like a pointer. It has the special feature that the 
object it points to is deleted when the pointer is deleted. Smart pointers are used only for 
objects stored in dynamically allocated memory, using new. The purpose of using smart 
pointers is to make sure the object is deleted properly and the memory released when the 
object is no longer used. A smart pointer may be considered a container that contains only a 
single element. 
 
The most common implementations of smart pointers are auto_ptr and shared_ptr.  
auto_ptr has the feature that there is always one, and only one, auto_ptr that owns the 
allocated object, and ownership is transferred from one auto_ptr to another by 
assignment. shared_ptr allows multiple pointers to the same object. 
 
There is no extra cost to accessing an object through a smart pointer. Accessing an object 
by *p or p->member is equally fast whether p is a simple pointer or a smart pointer. But 
there is an extra cost whenever a smart pointer is created, deleted, copied or transferred 
from one function to another. These costs are higher for shared_ptr than for auto_ptr. 
 
Smart pointers can be useful in the situation where the logic structure of a program dictates 
that an object must be dynamically created by one function and later deleted by another 
function and these two functions are unrelated to each other (not member of the same 
class). If the same function or class is responsible for creating and deleting the object then 
you don't need a smart pointer. 
 
If a program uses many small dynamically allocated objects with each their smart pointer 
then you may consider if the cost of this solution is too high. It may be more efficient to pool 
all the objects together into a single container, preferably with contiguous memory. See the 
discussion of container classes on page 91. 
 

7.10 Arrays 
An array is implemented simply by storing the elements consecutively in memory. No 
information about the dimensions of the array is stored. This makes the use of arrays in C 
and C++ faster than in other programming languages, but also less safe. This safety 
problem can be overcome by defining a container class that behaves like an array with 
bounds checking, as illustrated in this example: 
 

// Example 7.14a. Array with bounds checking 
template <typename T, unsigned int N> class SafeArray { 
protected: 
   T a[N];                      // Array with N elements of type T 
public: 
   SafeArray() {                // Constructor 
      memset(a, 0, sizeof(a));  // Initialize to zero 
   } 
   int Size() {                 // Return the size of the array 
      return N; 
   } 
   T & operator[] (unsigned int i) { // Safe [] array index operator 
      if (i >= N) { 
         // Index out of range. The next line provokes an error. 
         // You may insert any other error reporting here: 
         return *(T*)0;   // Return a null reference to provoke error 
      } 
      // No error 
      return a[i];     // Return reference to a[i] 
   } 
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}; 
 
More examples of container classes are given in www.agner.org/optimize/cppexamples.zip. 
 
An array using the above template class is declared by specifying the type and size as 
template parameters, as example 7.14b below shows. It is accessed with a square brackets 
index, just as a normal array. The constructor sets all elements to zero. You may remove 
the memset line if you don't want this initialization, or if the type T is a class with a default 
constructor that does the necessary initialization. The compiler may report that memset is 
deprecated. This is because it can cause errors if the size parameter is wrong, but it is still 
the fastest way to set an array to zero. The [] operator will detect an error if the index is out 
of range (see page 137 on bounds checking). An error message is provoked here in a 
rather unconventional manner by returning a null reference. This is sure to provoke an error 
message in a protected operating system, and this error is easy to trace with a debugger. 
You may replace this line by any other form of error reporting. For example, in Windows, 
you may write FatalAppExitA(0,"Array index out of range"); or better, make 
your own error message function. 
 
The following example illustrates how to use SafeArray: 
 

// Example 7.14b 
SafeArray <float, 100> list;            // Make array of 100 floats 
for (int i = 0; i < list.Size(); i++) { // Loop through array 
   cout << list[i] << endl;             // Output array element 
} 

 
An array initialized by a list should preferably be static, as explained on page 27. An array 
can be initialized to zero by using memset: 
 

// Example 7.15 
float list[100]; 
memset(list, 0, sizeof(list)); 

 
A multidimensional array should be organized so that the last index changes fastest: 
 

// Example 7.16 
const int rows = 20, columns = 50; 
float matrix[rows][columns]; 
int i, j;  float x; 
   for (i = 0; i < rows; i++) 
      for (j = 0; j < columns; j++) 
         matrix[i][j] += x; 

 
This makes sure that the elements are accessed sequentially. The opposite order of the two 
loops would make the access non-sequential which makes the data caching less efficient. 
 
The size of all but the first dimension may preferably be a power of 2 if the rows are indexed 
in a non-sequential order in order to make the address calculation more efficient: 
 

// Example 7.17 
int FuncRow(int);  int FuncCol(int); 
const int rows = 20, columns = 32; 
float matrix[rows][columns]; 
int i;  float x; 
for (i = 0; i < 100; i++) 
   matrix[FuncRow(i)][FuncCol(i)] += x; 

 
Here, the code must compute (FuncRow(i)*columns + FuncCol(i)) * 
sizeof(float) in order to find the address of the matrix element. The multiplication by 

http://www.agner.org/optimize/cppexamples.zip
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columns in this case is faster when columns is a power of two. In the preceding example, 
this is not an issue because an optimizing compiler can see that the rows are accessed 
consecutively and can calculate the address of each row by adding the length of a row to 
the address of the preceding row.  
 
The same advice applies to arrays of structure or class objects. The size (in bytes) of the 
objects should preferably be a power of 2 if the elements are accessed in a non-sequential 
order. 
 
The advice of making the number of columns a power of 2 does not always apply to arrays 
that are bigger than the level-1 data cache and accessed non-sequentially because it may 
cause cache contentions. See page 85 for a discussion of this problem. 
 

7.11 Type conversions 
The C++ syntax has several different ways of doing type conversions: 
 

// Example 7.18 
int i;  float f; 
f = i;                      // Implicit type conversion 
f = (float)i;               // C-style type casting 
f = float(i);               // Constructor-style type casting 
f = static_cast<float>(i);  // C++ casting operator 

 
These different methods have exactly the same effect. Which method you use is a matter of 
programming style. The time consumption of different type conversions is discussed below. 

Signed / unsigned conversion 
 

// Example 7.19 
int i; 
if ((unsigned int)i < 10) { ... 

 
Conversions between signed and unsigned integers simply makes the compiler interpret the 
bits of the integer in a different way. There is no checking for overflow, and the code takes 
no extra time. These conversions can be used freely without any cost in performance. 

Integer size conversion 
 

// Example 7.20 
int i;  short int s; 
i = s; 

 
An integer is converted to a longer size by extending the sign-bit if the integer is signed, or 
by extending with zero-bits if unsigned. This typically takes one clock cycle if the source is 
an arithmetic expression. The size conversion often takes no extra time if it is done in 
connection with reading the value from a variable in memory, as in example 7.21. 
 

// Example 7.21 
short int a[100];  int i, sum = 0; 
for (i=0; i<100; i++) sum += a[i]; 

 
Converting an integer to a smaller size is done simply by ignoring the higher bits. There is 
no check for overflow. Example: 
 

// Example 7.22 
int i;  short int s; 
s = (short int)i; 
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This conversion takes no extra time. It simply stores the lower 16 bits of the 32-bit integer. 

Floating point precision conversion 
Conversions between float, double and long double take no extra time when the 
floating point register stack is used. It takes between 2 and 15 clock cycles (depending on 
the processor) when the XMM registers are used. See page 31 for an explanation of 
register stack versus XMM registers. Example: 
 

// Example 7.23 
float a; double b; 
a += b; 

 
In this example, the conversion is costly if XMM registers are used. a and b should be of the 
same type to avoid this. See page 143 for further discussion. 

Integer to float conversion 
Conversion of a signed integer to a float or double takes 4 - 16 clock cycles, depending 
on the processor and the type of registers used. Conversion of an unsigned integer takes 
longer time. It is faster to first convert the unsigned integer to a signed integer if there is no 
risk of overflow: 
 

// Example 7.24 
unsigned int u;  double d; 
d = (double)(signed int)u;  // Faster, but risk of overflow 

 
Integer to float conversions can sometimes be avoided by replacing an integer variable by a 
float variable. Example: 
 

// Example 7.25a 
float a[100];  int i; 
for (i = 0;  i < 100;  i++) a[i] = 2 * i; 

 
The conversion of i to float in this example can be avoided by making an additional floating 
point variable: 
 

// Example 7.25b 
float a[100];  int i;  float i2; 
for (i = 0, i2 = 0;  i < 100;  i++, i2 += 2.0f) a[i] = i2; 

Float to integer conversion 
Conversion of a floating point number to an integer takes a very long time unless the SSE2 
or later instruction set is enabled. Typically, the conversion takes 50 - 100 clock cycles. The 
reason is that the C/C++ standard specifies truncation so the floating point rounding mode 
has to be changed to truncation and back again.  
 
If there are floating point-to-integer conversions in the critical part of a code then it is 
important to do something about it. Possible solutions are: 
 

Avoid the conversions by using different types of variables. 
 

Move the conversions out of the innermost loop by storing intermediate results as 
floating point. 
 

Use 64-bit mode or enable the SSE2 instruction set (requires a microprocessor that 
supports this). 
 

Use rounding instead of truncation and make a round function using assembly 
language. See page 144 for details about rounding. 
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Pointer type conversion 
A pointer can be converted to a pointer of a different type. Likewise, a pointer can be 
converted to an integer, or an integer can be converted to a pointer. It is important that the 
integer has enough bits for holding the pointer. 
 
These conversions do not produce any extra code. It is simply a matter of interpreting the 
same bits in a different way or bypassing syntax checks. 
 
These conversions are not safe, of course. It is the responsibility of the programmer to 
make sure the result is valid. 

Re-interpreting the type of an object 
It is possible to make the compiler treat a variable or object as if it had a different type by 
type-casting its address: 
 

// Example 7.26 
float x; 
*(int*)&x |= 0x80000000;   // Set sign bit of x 

 
The syntax may seem a little odd here. The address of x is type-casted to a pointer to an 
integer, and this pointer is then de-referenced in order to access x as an integer. The 
compiler does not produce any extra code for actually making a pointer. The pointer is 
simply optimized away and the result is that x is treated as an integer. But the & operator 
forces the compiler to store x in memory rather than in a register. The above example sets 
the sign bit of x by using the | operator which otherwise can only be applied to integers. It is 
faster than x = -abs(x);.  
 
There are a number of dangers to be aware of when type-casting pointers: 
 

• The trick violates the strict aliasing rule of standard C, specifying that two pointers of 
different types cannot point to the same object (except for char pointers). An 
optimizing compiler might store the floating point and integer representations in two 
different registers. You need to check if the compiler does what you want it to. It is 
safer to use a union, as in example 14.23 page 146. 

• The trick will fail if the object is treated as bigger than it actually is. This above code 
will fail if an int uses more bits than a float. (Both use 32 bits in x86 systems). 

• If you access part of a variable, for example 32 bits of a 64-bit double, then the code 
will not be portable to platforms that use big endian storage. 

• If you access a variable in parts, for example if you write a 64-bit double 32 bits at a 
time, then the code is likely to execute slower than intended because of a store 
forwarding delay in the CPU (See manual 3: "The microarchitecture of Intel, AMD 
and VIA CPUs"). 

Const cast 
The const_cast operator is used for relieving the const restriction from a pointer. It has 
some syntax checking and is therefore more safe than the C-style type-casting without 
adding any extra code. Example: 
 

// Example 7.27 
class c1 { 
   const int x;       // constant data 
   public: 
   c1() : x(0) {};    // constructor initializes x to 0 
   void xplus2() {    // this function can modify x 
      *const_cast<int*>(&x) += 2;}  // add 2 to x 
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}; 
 
The effect of the const_cast operator here is to remove the const restriction on x. It is a 
way of relieving a syntax restriction, but it doesn't generate any extra code and doesn't take 
any extra time. This is a useful way of making sure that one function can modify x, while 
other functions can not. 

Static cast 
The static_cast operator does the same as the C-style type-casting. It is used, for 
example, to convert float to int. 

Reinterpret cast 
The reinterpret_cast operator is used for pointer conversions. It does the same as C-
style type-casting with a little more syntax check. It does not produce any extra code. 

Dynamic cast 
The dynamic_cast operator is used for converting a pointer to one class to a pointer to 
another class. It makes a runtime check that the conversion is valid. For example, when a 
pointer to a base class is converted to a pointer to a derived class, it checks whether the 
original pointer actually points to an object of the derived class. This check makes 
dynamic_cast more time-consuming than a simple type casting, but also safer. It may 
catch programming errors that would otherwise go undetected. 

Converting class objects 
Conversions involving class objects (rather than pointers to objects) are possible only if the 
programmer has defined a constructor, an overloaded assignment operator, or an over-
loaded type casting operator that specifies how to do the conversion. The constructor or 
overloaded operator is as efficient as a member function. 
 

7.12 Branches and switch statements 
The high speed of modern microprocessors is obtained by using a pipeline where 
instructions are fetched and decoded in several stages before they are executed. However, 
the pipeline structure has one big problem. Whenever the code has a branch (e.g. an if-else 
structure), the microprocessor doesn't know in advance which of the two branches to feed 
into the pipeline. If the wrong branch is fed into the pipeline then the error is not detected 
until 10 - 20 clock cycles later and the work it has done by fetching, decoding and perhaps 
speculatively executing instructions during this time has been wasted. The consequence is 
that the microprocessor wastes several clock cycles whenever it feeds a branch into the 
pipeline and later discovers that it has chosen the wrong branch. 
 
Microprocessor designers have gone to great lengths to reduce this problem. The most 
important method that is used is branch prediction. Modern microprocessors are using 
advanced algorithms to predict which way a branch will go based on the past history of that 
branch and other nearby branches. The algorithms used for branch prediction are different 
for each type of microprocessor. These algorithms are described in detail in manual 3: "The 
microarchitecture of Intel, AMD and VIA CPUs". 
 
A branch instruction takes typically 0 - 2 clock cycles in the case that the microprocessor 
has made the right prediction. The time it takes to recover from a branch misprediction is 
approximately 12 clock cycles for AMD and Pentium M microprocessors, 15 clock cycles on 
Core2 and more than 25 clock cycles for Pentium 4. This is called the branch misprediction 
penalty. 
 
Branches are relatively cheap if they are predicted most of the time, but expensive if they 
are often mispredicted. A branch that always goes the same way is predicted well, of 
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course. A branch that goes one way most of the time and rarely the other way is 
mispredicted only when it goes the other way. A branch that goes many times one way, 
then many times the other way is mispredicted only when it changes. A branch that follows 
a simple periodic pattern can also be predicted quite well if it is inside a loop with few or no 
other branches. A simple periodic pattern can be, for example, to go one way two times and 
the other way three times. Then again two times the first way and three times the other way, 
etc. The worst case is a branch that goes randomly one way or the other with a 50-50 
chance of going either way. Such a branch will be mispredicted 50% of the time. 
 
A for-loop or while-loop is also a kind of branch. After each iteration it decides whether to 
repeat or to exit the loop. The loop-branch is usually predicted well if the repeat count is 
small and always the same. The maximum loop count that can be predicted perfectly is 64 
for Pentium M, 17 for Pentium 4, and 9 for AMD Athlon and Opteron. Nested loops are 
predicted well only on Pentium M. A loop that contains several branches is not predicted 
well on Pentium 4. A loop that contains several branches is predicted well on AMD 
processors only if the branches inside the loop always go the same way. 
 
A switch statements is a kind of branch that can go more than two ways. Switch statements 
are most efficient if the case labels follow a sequence where each label is equal to the 
preceding label plus one, because it can be implemented as a table of jump targets. A 
switch statement with many labels that have values far from each other is inefficient 
because the compiler must convert it to a branch tree. 
 
On AMD and Pentium 4 processors, a switch statement with sequential labels is simply 
predicted to go the same way as last time it was executed. It is therefore certain to be 
mispredicted whenever it goes another way than last time. The Pentium M and Core2 
processors are sometimes able to predict a switch statement if it follows a simple periodic 
pattern or if it is correlated with preceding branches. 
 
The number of branches and switch statements should preferably be kept small in the 
critical part of a program, especially if the branches are poorly predictable. It may be useful 
to roll out a loop if this can eliminate branches, as explained in the next paragraph. 
 
The target of branches and function calls are saved in a special cache called the branch 
target buffer. Contentions in the branch target buffer can occur if a program has many 
branches or function calls. The consequence of such contentions is that branches can be 
mispredicted even if they otherwise would be predicted well. Even function calls can be 
mispredicted for this reason. The branch target buffer is particularly small in the Pentium M 
processor. A program with many branches and function calls in the critical part of the code 
can therefore suffer from mispredictions, especially on a Pentium M processor. 
 
In some cases it is possible to replace a poorly predictable branch by a table lookup. For 
example: 
 

// Example 7.28a 
float a;  bool b; 
a = b ? 1.5f : 2.6f; 

 
The ?: operator here is a branch. If it is poorly predictable then replace it by a table lookup: 
 

// Example 7.28b 
float a;  bool b = 0; 
static const float lookup[2] = {2.6f, 1.5f}; 
a = lookup[b]; 

 
If a bool is used as an array index then it is important to make sure it is initialized or comes 
from a reliable source so that it can have no other values than 0 or 1. See page 34. 
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The examples on page 137 and 138 show various ways of reducing the number of 
branches. 
 
Manual 3: "The microarchitecture of Intel, AMD and VIA CPUs" gives more details on 
branch predictions in the different microprocessors. 
 

7.13 Loops 
The efficiency of a loop depends on how well the microprocessor can predict the loop 
control branch. See the preceding paragraph and manual 3: "The microarchitecture of Intel, 
AMD and VIA CPUs" for an explanation of branch prediction. A loop with a small and fixed 
repeat count and no branches inside can be predicted perfectly. As explained above, the 
maximum loop count that can be predicted is 64 for Pentium M, 17 for Pentium 4, and 9 for 
AMD Athlon and Opteron. Nested loops are predicted well only on Pentium M. A loop with a 
high repeat count is mispredicted only when it exits. For example, if a loop repeats a 
thousand times then the loop control branch is mispredicted only one time in thousand so 
the misprediction penalty is only a negligible contribution to the total execution time. 

Loop unrolling 
In some cases it can be an advantage to unroll a loop. Example: 
 

// Example 7.29a 
int i; 
for (i = 0; i < 20; i++) { 
   if (i % 2 == 0) { 
      FuncA(i); 
   } 
   else { 
      FuncB(i); 
   } 
   FuncC(i); 
} 

 
This loop repeats 20 times and calls alternately FuncA and FuncB, then FuncC. Unrolling 
the loop by two gives: 
 

// Example 7.29b 
int i; 
for (i = 0; i < 20; i += 2) { 
   FuncA(i); 
   FuncC(i); 
   FuncB(i+1); 
   FuncC(i+1); 
} 

 
This has three advantages: 
 

The i<20 loop control branch is executed 10 times rather than 20. 
 

The fact that the repeat count has been reduced from 20 to 10 means that it can be 
predicted perfectly on a Pentium 4. 
 

The if branch is eliminated. 
 
Loop unrolling also has disadvantages: 
 

The unrolled loop may take up more space in the code cache. 
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The Core2 processor performs better on very small loops (less than 65 bytes of code). 
 

If the repeat count is odd and you unroll by two then there is an extra iteration that has 
to be done outside the loop. In general, you have this problem when the repeat 
count is not certain to be divisible by the unroll factor. 

 
Loop unrolling should only be used if there are specific advantages that can be obtained. If 
a loop contains floating point calculations and the loop counter is an integer, then you can 
generally assume that the overall computation time is determined by the floating point code 
rather than by the loop control branch. There is nothing to gain by unrolling the loop in this 
case. 
 
Compilers will usually unroll a loop automatically if this appears to be profitable (see page 
68). The programmer does not have to unroll a loop manually unless there is a specific 
advantage to obtain, such as eliminating the if-branch in example 7.29b. 

The loop control condition 
The most efficient loop control condition is a simple integer counter. A microprocessor with 
out-of-order capabilities (see page 101) will be able to evaluate the loop control statement 
several iterations ahead. 
 
It is less efficient if the loop control branch depends on the calculations inside the loop. The 
following example converts a zero-terminated ASCII string to lower case: 
 

// Example 7.30a 
char string[100], *p = string; 
while (*p != 0) *(p++) |= 0x20; 

 
If the length of the string is already known then it is more efficient to use a loop counter: 
 

// Example 7.30b 
char string[100], *p = string;  int i, StringLength; 
for (i = StringLength; i > 0; i--) *(p++) |= 0x20; 

 
A common situation where the loop control branch depends on calculations inside the loop 
is in mathematical iterations such as Taylor expansions and Newton-Raphson iterations. 
Here the iteration is repeated until the residual error is lower than a certain tolerance. The 
time it takes to calculate the absolute value of the residual error and compare it to the 
tolerance may be so high that it is more efficient to determine the worst-case maximum 
repeat count and always use this number of iterations. The advantage of this method is that 
the microprocessor can execute the loop control branch ahead of time and resolve any 
branch misprediction long before the floating point calculations inside the loop are finished. 
This method is advantageous if the typical repeat count is near the maximum repeat count 
and the calculation of the residual error for each iteration is a significant contribution to the 
total calculation time. 
  
A loop counter should preferably be an integer. If a loop needs a floating point counter then 
make an additional integer counter. Example: 
 

// Example 7.31a 
double x, n, factorial = 1.0; 
for (x = 2.0; x <= n; x++) factorial *= x; 

 
This can be improved by adding an integer counter and using the integer in the loop control 
condition: 
 

// Example 7.31b 
double x, n, factorial = 1.0;  int i; 
for (i = (int)n - 2, x = 2.0; i >= 0; i--, x++) factorial *= x; 
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Note the difference between commas and semicolons in a loop with multiple counters, as in 
example 7.31b. A for-loop has three clauses: initialization, condition, and increment. The 
three clauses are separated by semicolons, while multiple statements within each clause 
are separated by commas. There should be only one statement in the condition clause. 
 
Comparing an integer to zero is sometimes more efficient than comparing it to any other 
number. Therefore, it is slightly more efficient to make a loop count down to zero than 
making it count up to some positive value, n. But not if the loop counter is used as an array 
index. The data cache is optimized for accessing arrays forwards, not backwards. 

Copying or clearing arrays 
It may not be optimal to use a loop for trivial tasks such as copying an array or setting an 
array to all zeroes. Example: 
 

// Example 7.32a 
const int size = 1000;  int i; 
float a[size], b[size]; 
// set a to zero 
for (i = 0; i < size; i++) a[i] = 0.0; 
// copy a to b 
for (i = 0; i < size; i++) b[i] = a[i]; 

 
It is often faster to use the functions memset and memcpy: 
 

// Example 7.32b 
const int size = 1000; 
float a[size], b[size]; 
// set a to zero 
memset(a, 0, sizeof(a)); 
// copy a to b 
memcpy(b, a, sizeof(b)); 

 
Most compilers will automatically replace such loops by calls to memset and memcpy, at 
least in simple cases. The explicit use of memset and memcpy is unsafe because serious 
errors can happen if the size parameter is bigger than the destination array. But the same 
errors can happen with the loops if the loop count is too big. 
 

7.14 Functions 
Function calls may slow down a program for the following reasons: 
 

The function call makes the microprocessor jump to a different code address and back 
again. This may take up to 4 clock cycles. In most cases the microprocessor is able 
to overlap the call and return operations with other calculations to save time. 
 

The code cache works less efficiently if the code is fragmented and scattered around in 
memory. 
 

Function parameters are stored on the stack in 32-bit mode. Storing the parameters on 
the stack and reading them again takes extra time. The delay is significant if a 
parameter is part of a critical dependency chain, especially on the Pentium 4 
processor. 
 

Extra time is needed for setting up a stack frame, saving and restoring registers, and 
possibly save exception handling information. 
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Each function call statement occupies a space in the branch target buffer (BTB). 
Contentions in the BTB can cause branch mispredictions if the critical part of a 
program has many calls and branches. 

 
The following methods may be used for reducing the time spent on function calls in the 
critical part of a program. 

Avoid unnecessary functions 
Some programming textbooks recommend that every function that is longer than a few lines 
should be split up into multiple functions. I disagree with this rule. Splitting up a function into 
multiple smaller functions only makes the program less efficient. Splitting up a function just 
because it is long does not make the program more clear unless the function is doing 
multiple logically distinct tasks. A critical innermost loop should preferably be kept entirely 
inside one function, if possible. 

Use inline functions 
An inline function is expanded like a macro so that each statement that calls the function is 
replaced by the function body. A function is inlined if the inline keyword is used or if its 
body is defined inside a class definition. Inlining a function is advantageous if the function is 
small or if it is called only from one place in the program. Small functions are often inlined 
automatically by the compiler. On the other hand, the compiler may in some cases ignore a 
request for inlining a function if the inlining causes technical problems. 

Avoid nested function calls in the innermost loop 
A function that calls other functions is called a frame function, while a function that doesn't 
call any other function is called a leaf function. Leaf functions are more efficient than frame 
functions for reasons explained on page 61. If the critical innermost loop of a program 
contains calls to frame functions then the code can probably be improved by inlining the 
frame function or by turning the frame function into a leaf function by inlining all the 
functions that it calls. 

Use macros instead of functions 
A macro declared with #define is certain to be inlined. But beware that macro parameters 
are evaluated every time they are used. Example: 

 
// Example 7.33a. Use macro as inline function 
#define max(a,b) (a > b ? a : b) 
y = max(sin(x), cos(x)); 
 

In this example, sin(x) or cos(x) is calculated twice because the macro is referencing it 
twice. You can avoid this by using an inline function instead of a macro. If you want the 
function to work with any type of parameters then make it a template: 
 

// Example 7.33b. Replace macro by template 
template <typename T> 
static inline T max(T const & a, T const & b) { 
   return a > b ? a : b; 
} 

Use fastcall functions 
The keyword __fastcall changes the function calling method in 32-bit mode so that the 
first two (three on CodeGear compiler) integer parameters are transferred in registers rather 
than on the stack. This can improve the speed of functions with integer parameters. 
 
Floating point parameters are not affected by __fastcall. The implicit 'this' pointer in 
member functions is also treated like a parameter, so there may be only one free register 
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left for transferring additional parameters. Therefore, make sure that the most critical integer 
parameter comes first when you are using __fastcall. Function parameters are 
transferred in registers by default in 64-bit mode. Therefore, the __fastcall keyword is 
not recognized in 64-bit mode. 

Make functions static 
It is recommended to add the keyword static to all non-member functions that are not 
needed outside the module in which they are defined. The static declaration restricts the 
scope of the function to the current module (i.e. the current .cpp file). This enables the 
compiler to optimize across function calls. You cannot use this optimization for class 
member functions, because the keyword static has a different meaning for member 
functions. 

Use whole program optimization 
Some compilers have an option for whole program optimization or for combining multiple 
.cpp files into a single object file. This enables the compiler to optimize register allocation 
and parameter transfer across all .cpp modules that make up a program. Whole program 
optimization cannot be used for function libraries distributed as object or library files. 

Use 64-bit mode 
Parameter transfer is more efficient in 64-bit mode than in 32-bit mode, and more efficient in 
64-bit Linux than in 64-bit Windows. In 64-bit Linux, the first six integer parameters and the 
first eight floating point parameters are transferred in registers, totaling up to fourteen 
register parameters. In 64-bit Windows, the first four parameters are transferred in registers, 
regardless of whether they are integers or floating point numbers. Therefore, 64-bit Linux is 
more efficient than 64-bit Windows if functions have more than four parameters. There is no 
difference between 32-bit Linux and 32-bit Windows in this respect. 
 

7.15 Function parameters 
Function parameters are transferred by value in most cases. This means that the value of 
the parameter is copied to a local variable. This is efficient for simple types such as int, 
float, double, bool, enum as well as pointers and references. 
 
Arrays are always transferred as pointers unless they are wrapped into a class or structure. 
 
The situation is more complex if the parameter has a composite type such as a structure or 
class. The transfer of a parameter of composite type is most efficient if all of the following 
conditions are met: 
 

• the object is so small that it fits into a single register 
• the object has no copy constructor and no destructor 
• the object has no virtual member 
• the object does not use runtime type identification (RTTI)  

 
If any of these conditions is not met then it is usually faster to transfer a pointer or reference 
to the object. If the object is large then it obviously takes time to copy the entire object. Any 
copy constructor must be called when the object is copied to the parameter, and the 
destructor, if any, must be called before the function returns. 
 
The preferred method for transferring composite objects to a function is by a const 
reference. A const reference makes sure that the original object is not modified. Unlike a 
pointer or a non-const reference, a const reference allows the function argument to be an 
expression or an anonymous object. The compiler can easily optimize away a const 
reference if the function is inlined. 
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An alternative solution is to make the function a member of the object's class or structure. 
This is equally efficient. 
 
Simple function parameters are transferred on the stack in 32-bit systems, but in registers in 
64-bit systems. The latter is more efficient. 64-bit Windows allows a maximum of four 
parameters to be transferred in registers. 64-bit Unix systems allow up to fourteen 
parameters to be transferred in registers (8 float or double plus 6 integer, pointer or 
reference parameters). The this pointer in member functions counts a one parameter. 
Further details are given in manual 5: "Calling conventions for different C++ compilers and 
operating systems". 
 

7.16 Function return types 
The return type of a function should preferably be a simple type, a pointer, a reference, or 
void. Returning objects of a composite type is more complex and often inefficient. 
 
Objects of a composite type can be returned in registers only in the simplest cases. See 
manual 5: "Calling conventions for different C++ compilers and operating systems" for 
details on when objects can be returned in registers. 
 
Except for the simplest cases, composite objects are returned by copying them into a place 
indicated by the caller through a hidden pointer. The copy constructor, if any, is usually 
called in the copying process, and the destructor is called when the original is destroyed. In 
simple cases, the compiler may be able to avoid the calls to the copy constructor and the 
destructor by constructing the object on its final destination, but don't count on it. 
 
Instead of returning a composite object, you may consider the following alternatives: 
 

• Make the function a constructor for the object. 
   

• Make the function modify an existing object rather than making a new one. The 
existing object can be made available to the function through a pointer or reference, 
or the function could be a member of the object's class. 
   

• Make the function return a pointer or reference to a static object defined inside the 
function. This is efficient, but risky. The returned pointer or reference is valid only 
until the next time the function is called and the local object is overwritten, possibly in 
a different thread. If you forget to make the local object static then it becomes invalid 
as soon as the function returns. 
   

• Make the function construct an object with new and return a pointer to it. This is 
inefficient because of the costs of dynamic memory allocation. This method also 
involves the risk of memory leaks if you forget to delete the object. 

 

7.17 Structures and classes 
Nowadays, programming textbooks recommend object oriented programming as a means 
of making software more clear and modular. The so-called objects are instances of 
structures and classes. The object oriented programming style has both positive and 
negative impacts on program performance. The positive effects are: 
 

Variables that are used together are also stored together if they are members of the 
same structure or class. This makes data caching more efficient. 
 

Variables that are members of a class need not be passed as parameters to a class 
member function. The overhead of parameter transfer is avoided for these variables. 
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The negative effects of object oriented programming are: 
 

Non-static member functions have a 'this' pointer which is transferred as an implicit 
parameter to the function. The overhead of parameter transfer for 'this' is incurred 
on all non-static member functions. 
 

The 'this' pointer takes up one register. Registers are a scarce resource in 32-bit 
systems. 
 

Virtual member functions are less efficient (see page 53). 
 
No general statement can be made about whether the positive or the negative effects of 
object oriented programming are dominating. At least, it can be said that the use of classes 
and member functions is not expensive. You may use an object oriented programming style 
if it is good for the logical structure and clarity of the program as long as you avoid an 
excessive number of function calls in the most critical part of the program. The use of 
structures (without member functions) has no negative effect on performance. 
 

7.18 Class data members (properties) 
The data members of a class or structure are stored consecutively in the order in which they 
are declared whenever an instance of the class or structure is created. There is no 
performance penalty for organizing data into classes or structures. Accessing a data 
member of a class or structure object takes no more time than accessing a simple variable. 
 
Most compilers will align data members to round addresses in order to optimize access, as 
given in the following table. 
 
Type size, bytes alignment, bytes 

bool 1 1 
char, signed or unsigned 1 1 
short int, signed or unsigned 2 2 
int, signed or unsigned 4 4 
64-bit integer, signed or unsigned 8 8 
pointer or reference, 32-bit mode 4 4 
pointer or reference, 64-bit mode 8 8 
float 4 4 
double 8 8 
long double 8, 10, 12 or 16 8 or 16 
Table 7.2. Alignment of data members. 

 
This alignment can cause holes of unused bytes in a structure or class with members of 
mixed sizes. For example: 
 

// Example 7.34a 
struct S1 { 
   short int a;  // 2 bytes. first byte at  0, last byte at  1 
                 // 6 unused bytes 
   double b;     // 8 bytes. first byte at  8, last byte at 15 
   int d;        // 4 bytes. first byte at 16, last byte at 19 
                 // 4 unused bytes 
}; 
S1 ArrayOfStructures[100]; 

 
Here, there are 6 unused bytes between a and b because b has to start at an address 
divisible by 8. There are also 4 unused bytes in the end. The reason for this is that the next 
instance of S1 in the array must begin at an address divisible by 8 in order to align its b 
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member by 8. The number of unused bytes can be reduced to 2 by putting the smallest 
members last: 
 

// Example 7.34b 
struct S1 { 
   double b;     // 8 bytes. first byte at  0, last byte at  7 
   int d;        // 4 bytes. first byte at  8, last byte at 11 
   short int a;  // 2 bytes. first byte at 12, last byte at 13 
                 // 2 unused bytes 
}; 
S1 ArrayOfStructures[100]; 

 
This reordering has made the structure 8 bytes smaller and the array 800 bytes smaller. 
 
Structure and class objects can often be made smaller by reordering the data members. If 
the class has at least one virtual member functions then there is a pointer to a virtual table 
before the first data member or after the last member. This pointer is 4 bytes in 32-bit 
systems and 8 bytes in 64-bit systems. If you are in doubt how big a structure or each of its 
members are then you may make some tests with the sizeof operator. 
 
The code for accessing a data member is more compact if the offset of the member relative 
to the beginning of the structure or class is less than 128. Example: 
 

// Example 7.35 
class S2 { 
   public: 
   int a[100];  // 400 bytes. first byte at   0, last byte at 399 
   int b;       // 4 bytes.   first byte at 400, last byte at 403 
   int ReadB() {return b;} 
}; 

 
The offset of b is 400 here. Any code that accesses b through a pointer or a member 
function such as ReadB needs to add a 4-bytes offset to the pointer. If a and b are swapped 
then both can be accessed with a 1-byte signed integer as offset. This makes the code 
more compact so that the code cache is used more efficiently. It is therefore recommended 
that big arrays and other big objects come last in a structure or class declaration. If it is not 
possible to contain all data members within the first 128 bytes then put the most used 
members in the first 128 bytes. 
 

7.19 Class member functions (methods) 
Each time a new object of a class is declared or created it will generate a new instance of 
the data members. But each member function has only one instance. The function code is 
not copied because the same code can be applied to all instances of the class. 
 
Calling a member function is as fast as calling a simple function with a pointer or reference 
to a structure. For example: 
 

// Example 7.36 
class S3 { 
   public: 
   int a; 
   int b; 
   int Sum1() {return a + b;} 
}; 
int Sum2(S3 * p) {return p->a + p->b;} 
int Sum3(S3 & r) {return  r.a +  r.b;} 

 
The three functions Sum1, Sum2 and Sum3 are doing exactly the same thing and they are 
equally efficient. If you look at the code generated by the compiler, you will notice that some 
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compilers will make exactly identical code for the three functions. Sum1 has an implicit 
'this' pointer which does the same thing as p and r in Sum2 and Sum3. Whether you want 
to make the function a member of the class or give it a pointer or reference to the class or 
structure is simply a matter of programming style. Some compilers make Sum1 slightly more 
efficient than Sum2 and Sum3 in 32-bit Windows by transferring 'this' in a register rather 
than on the stack. 
 
A static member function cannot access any non-static data members or non-static 
member functions. A static member function is faster than a non-static member function 
because it doesn't need the 'this' pointer. You may make member functions faster by 
making them static if they don't need any non-static access. 
 

7.20 Virtual member functions 
Virtual functions are used for implementing polymorphic classes. Each instance of a 
polymorphic class has a pointer to a table of pointers to the different versions of the virtual 
functions. This so-called virtual table is used for finding the right version of the virtual 
function at runtime. Polymorphism is one of the main reasons why object oriented programs 
can be less efficient than non-object oriented programs. If you can avoid virtual functions 
then you can obtain most of the advantages of object oriented programming without paying 
the performance costs. 
 
The time it takes to call a virtual member function is a few clock cycles more than it takes to 
call a non-virtual member function, provided that the function call statement always calls the 
same version of the virtual function. If the version changes then you may get a misprediction 
penalty of 10 - 20 clock cycles. The rules for prediction and misprediction of virtual function 
calls is the same as for switch statements, as explained on page 44. 
 
The dispatching mechanism can be bypassed when the virtual function is called on an 
object of known type, but you cannot always rely on the compiler bypassing the dispatch 
mechanism even when it would be obvious to do so. See page 72. 
 
Runtime polymorphism is needed only if it cannot be known at compile time which version 
of a polymorphic member function is called. If virtual functions are used in a critical part of a 
program then you may consider whether it is possible to obtain the desired functionality 
without polymorphism or with compile-time polymorphism. 
 
It is sometimes possible to obtain the desired polymorphism effect with templates instead of 
virtual functions. The template parameter should be a class containing the functions that 
have multiple versions. This method is faster because the template parameter is always 
resolved at compile time rather than at runtime. Example 7.42 on page 57 shows an 
example of how to do this. Unfortunately, the syntax is so kludgy that it may not be worth 
the effort. 
 

7.21 Runtime type identification (RTTI) 
Runtime type identification adds extra information to all class objects and is not efficient. If 
the compiler has an option for RTTI then turn it off and use alternative implementations. 
 

7.22 Inheritance 
An object of a derived class is implemented in the same way as an object of a simple class 
containing the members of both parent and child class. Members of parent and child class 
are accessed equally fast. In general, you can assume that there is hardly any performance 
penalty to using inheritance. 
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There may be a slight degradation in code caching for the following reasons: 
 

The size of the parent class data members is added to the offset of the child class 
members. The code that accesses data members with a total offset bigger than 127 
bytes is slightly less compact. See page 52. 
 

The member functions of parent and child are typically stored in different modules. This 
may cause a lot of jumping around and less efficient code caching. This problem can 
be solved by making sure that functions which are called near each other are also 
stored near each other. See page 87 for details. 

 
Inheritance from multiple parent classes in the same generation can cause complications 
with member pointers and virtual functions or when accessing an object of a derived class 
through a pointer to one of the base classes. You may avoid multiple inheritance by making 
objects inside the derived class:  
 

// Example 7.37a. Multiple inheritance 
class B1; class B2; 
class D : public B1, public B2 { 
public: 
   int c; 
}; 

 
Replace with: 
 

// Example 7.37b. Alternative to multiple inheritance 
class B1; class B2; 
class D : public B1 { 
public: 
   B2 b2; 
   int c; 
}; 

 

7.23 Constructors and destructors 
A constructor is implemented as a member function which returns a reference to the object. 
The allocation of memory for a new object is rarely done by the constructor itself. 
Constructors are therefore as efficient as any other member functions. This applies to 
default constructors, copy constructors, and any other constructors. 
 
A class doesn't need a constructor. A default constructor is not needed if the object doesn't 
need initialization. A copy constructor is not needed if the object can be copied simply by 
copying all data members. A simple constructor may be inlined for improved performance. 
 
A destructor is as efficient as a member function. Do not make a destructor if it is not 
necessary. A virtual destructor is as efficient as a virtual member function. See page 53. 
 

7.24 Unions 
A union is a structure where data members share the same memory space. A union can be 
used for saving memory space by allowing two data members that are never used at the 
same time to share the same piece of memory. See page 88 for an example. 
 
A union can also be used for accessing the same data in different ways. Example: 
 

// Example 7.38 
union { 
   float f; 
   int i; 
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} x; 
x.f = 2.0f; 
x.i |= 0x80000000;  // set sign bit of f 
cout << x.f;        // will give -2.0 

 
In this example, the sign bit of f is set by using the bitwise OR operator, which can only be 
applied to integers. 
 

7.25 Bitfields 
Bitfields may be useful for making data more compact. Accessing a member of a bitfield is 
less efficient than accessing a member of a structure. The extra time may be justified in 
case of large arrays if it can save cache space or make files smaller. 
 
It is faster to compose a bitfield by the use of << and | operations than to write the 
members individually. Example: 
 

// Example 7.39a 
struct Bitfield { 
   int a:4; 
   int b:2; 
   int c:2; 
}; 
Bitfield x; 
int A, B, C; 
x.a = A; 
x.b = B; 
x.c = C; 

 
Assuming that the values of A, B and C are too small to cause overflow, this code can be 
improved in the following way: 
 

// Example 7.39b 
union Bitfield { 
   struct { 
      int a:4; 
      int b:2; 
      int c:2; 
   }; 
   char abc; 
}; 
Bitfield x; 
int A, B, C; 
x.abc = A | (B << 4) | (C << 6); 

 
Or, if protection against overflow is needed: 
 

// Example 7.39c 
x.abc = (A & 0x0F) | ((B & 3) << 4) | ((C & 3) <<6 ); 

 

7.26 Overloaded functions 
The different versions of an overloaded function are simply treated as different functions. 
There is no performance penalty for using overloaded functions. 
 

7.27 Overloaded operators 
An overloaded operator is equivalent to a function. Using an overloaded operator is exactly 
as efficient as using a function that does the same thing. 
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An expression with multiple overloaded operators will cause the creation of temporary 
objects for intermediate results, which may be undesired. Example: 
 

// Example 7.40a 
class vector {                                // 2-dimensional vector 
public: 
   float x, y;                                // x,y coordinates 
   vector() {}                                // default constructor 
   vector(float a, float b) {x = a; y = b;}   // constructor 
   vector operator + (vector const & a) {     // sum operator 
      return vector(x + a.x, y + a.y);}       // add elements 
}; 
 
vector a, b, c, d; 
a = b + c + d;         // makes intermediate object for (b + c) 

 
The creation of a temporary object for the intermediate result (b+c) can be avoided by 
joining the operations: 
 

// Example 7.40b 
a.x = b.x + c.x + d.x; 
a.y = b.y + c.y + d.y; 

 
Fortunately, most compilers will do this optimization automatically in simple cases. 
 

7.28 Templates 
A template is similar to a macro in the sense that the template parameters are replaced by 
their values before compilation. The following example illustrates the difference between a 
function parameter and a template parameter: 
 

// Example 7.41 
int Multiply (int x, int m) { 
   return x * m;} 
 
template <int m> 
int MultiplyBy (int x) { 
   return x * m;} 
 
int a, b; 
a = Multiply(10,8); 
b = MultiplyBy<8>(10); 

 
a and b will both get the value 10 * 8 = 80. The difference lies in the way m is transferred to 
the function. In the simple function, m is transferred at runtime from the caller to the called 
function. But in the template function, m is replaced by its value at compile time so that the 
compiler sees the constant 8 rather than the variable m. The advantage of using a template 
parameter rather than a function parameter is that the overhead of parameter transfer is 
avoided. The disadvantage is that the compiler needs to make a new instance of the 
template function for each different value of the template parameter. If MultiplyBy in this 
example is called with many different factors as template parameters then the code can 
become very big. 
 
In the above example, the template function is faster than the simple function because the 
compiler knows that it can multiply by a power of 2 by using a shift operation. x*8 is 
replaced by x<<3, which is faster. In the case of the simple function, the compiler doesn't 
know the value of m and therefore cannot do the optimization unless the function can be 
inlined. (In the above example, the compiler is able to inline and optimize both functions and 
simply put 80 into a and b. But in more complex cases it might not be able to do so). 
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A template parameter can also be a type. The example on page 38 shows how you can 
make arrays of different types with the same template. 
 
Templates are efficient because the template parameters are always resolved at compile 
time. Templates make the source code more complex, but not the compiled code. In 
general, there is no cost in terms of execution speed to using templates. 
 
Two or more template instances will be joined into one if the template parameters are 
exactly the same. If the template parameters differ then you will get one instance for each 
set of template parameters. A template with many instances makes the compiled code big 
and uses more cache space. 
 
Excessive use of templates makes the code difficult to read. If a template has only one 
instance then you may as well use a #define, const or typedef instead of a template 
parameter. 
 
Templates may be used for metaprogramming, as explained at page 149. 

Using templates for polymorphism 
A template class can be used for implementing a compile-time polymorphism, which is more 
efficient than the runtime polymorphism that is obtained with virtual member functions. The 
following example shows first the runtime polymorphism: 
 

// Example 7.42a. Runtime polymorphism with virtual functions 
class CHello { 
public: 
   void NotPolymorphic();    // Non-polymorphic functions go here 
   virtual void Disp();      // Virtual function 
   void Hello() { 
      cout << "Hello "; 
      Disp();                // Call to virtual function 
   } 
}; 
 
class C1 : public CHello { 
   public: 
   virtual void Disp() { 
      cout << 1; 
   } 
}; 
 
class C2 : public CHello { 
   public: 
   virtual void Disp() { 
      cout << 2; 
   } 
}; 
 
void test () { 
   C1 Object1;  C2 Object2; 
   CHello * p; 
   p = &Object1; 
   p->NotPolymorphic();      // Called directly 
   p->Hello();               // Writes "Hello 1" 
   p = &Object2; 
   p->Hello();               // Writes "Hello 2" 
} 

 
The dispatching to C1::Disp() or C2::Disp() is done at runtime here if the compiler 
doesn't know what class of object p points to (see page 72). Current compilers are not very 
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good at optimizing away p and inlining the call to Object1.Hello(), though future 
compilers may be able to do so. 
 
If it is known at compile-time whether the object belongs to class C1 or C2, then we can 
avoid the inefficient virtual function dispatch process. This can be done with a special trick 
which is used in the Active Template Library (ATL) and Windows Template Library (WTL): 
 

// Example 7.42b. Compile-time polymorphism with templates 
 
// Place non-polymorphic functions in the grandparent class: 
class CGrandParent { 
public: 
   void NotPolymorphic(); 
}; 
 
// Any function that needs to call a polymorphic function goes in the 
// parent class. The child class is given as a template parameter: 
template <typename MyChild> 
class CParent : public CGrandParent { 
public: 
   void Hello() { 
      cout << "Hello "; 
      // call polymorphic child function: 
      (static_cast<MyChild*>(this))->Disp(); 
   } 
}; 
 
// The child classes implement the functions that have multiple 
// versions: 
class CChild1 : public CParent<CChild1> { 
   public: 
   void Disp() { 
      cout << 1; 
   } 
}; 
 
class CChild2 : public CParent<CChild2> { 
   public: 
   void Disp() { 
      cout << 2; 
   } 
}; 
 
void test () { 
   CChild1 Object1;  CChild2 Object2; 
   CChild1 * p1; 
   p1 = &Object1; 
   p1->Hello();              // Writes "Hello 1" 
   CChild2 * p2; 
   p2 = &Object2; 
   p2->Hello();              // Writes "Hello 2" 
} 

 
Here CParent is a template class which gets information about its child class through a 
template parameter. It can call the polymorphic member of its child class by type-casting its 
'this' pointer to a pointer to its child class. This is only safe if it has the correct child class 
name as template parameter. In other words, you must make sure that the declaration 
 

class CChild1 : public CParent<CChild1> { 
 
has the same name for the child class name and the template parameter. 
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The order of inheritance is now as follows. The first generation class (CGrandParent) 
contains any non-polymorphic member functions. The second generation class 
(CParent<>) contains any member functions that need to call a polymorphic function. The 
third generations classes contain the different versions of the polymorphic functions. The 
second generation class gets information about the third generation class through a 
template parameter. 
 
No time is wasted on runtime dispatch to virtual member functions if the class of the object 
is known. This information is contained in p1 and p2 having different types. A disadvantage 
is that CParent::Hello() has multiple instances that take up cache space. 
 
The syntax in example 7.42b is admittedly very kludgy. The few clock cycles that we may 
save by avoiding the virtual function dispatch mechanism is rarely enough to justify such a 
complicated code that is difficult to understand and therefore difficult to maintain. If the 
compiler is able to do the devirtualization (see page 72) automatically then it is certainly 
more convenient to rely on compiler optimization than to use this complicated template 
method. 
 

7.29 Threads 
Threads are used for doing two or more jobs simultaneously or seemingly simultaneously. If 
the computer has only one CPU core then it is not possible to do two jobs simultaneously. 
Each thread will get time slices of typically 30 ms for foreground jobs and 10 ms for 
background jobs. The context switches after each time slice are quite costly because all 
caches have to adapt to the new context. It is possible to reduce the number of context 
switches by making longer time slices. This will make applications run faster at the cost of 
longer response times for user input. (In Windows you can increase the time slices to 120 
ms by selecting optimize performance for background services under advanced system 
performance options. I don't know if this is possible in Linux). 
 
Threads are useful for assigning different priorities to different tasks. For example, in a word 
processor the user expects an immediate response to pressing a key or moving the mouse. 
This task must have a high priority. Other tasks such as spell-checking and repagination are 
running in other threads with lower priority. If the different tasks were not divided into 
threads with different priorities then the user might experience unacceptably long response 
times to keyboard and mouse inputs when the program is busy doing the spell checking. 
 
Any task that takes a long time, such as heavy mathematical calculations, should be 
scheduled in a separate thread if the application has a graphical user interface. Otherwise 
the program will be unable to respond quickly to keyboard or mouse input. 
 
It is possible to make a thread-like scheduling in an application program without invoking the 
overhead of the operating system thread scheduler. This can be accomplished by doing the 
heavy background calculations piece by piece in a function that is called from the message 
loop of a graphical user interface (OnIdle in Windows MFC). This method may be faster 
than making a separate thread in systems with only one CPU core, but it requires that the 
background job can be divided into small pieces of a suitable duration. 
 
The best way to fully utilize systems with multiple CPU cores is to divide the job into multiple 
threads. Each thread can then run on its own CPU core. 
 
There are four kinds of costs to multithreading that we have to take into account when 
optimizing multithreaded applications: 
 

• The cost of starting and stopping threads. Don't put a task into a separate thread if it 
is short in duration compared with the time it takes to start and stop the thread. 
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• The cost of task switching. This cost is minimized if the number of threads with the 
same priority is no more than the number of CPU cores. 
 

• The cost of synchronizing and communicating between threads. The overhead of 
semaphores, mutexes, etc. is considerable. If two threads are often waiting for each 
other in order to get access to the same resource then it may be better to join them 
into one thread. A variable that is shared between multiple threads must be declared 
volatile. This prevents the compiler from doing optimizations on that variable. 
 

• The different threads need separate storage. No function or class that is used by 
multiple threads should rely on static or global variables. The threads have each 
their stack. This can cause cache contentions if the threads share the same cache. 

 
Multithreaded programs must use thread-safe functions. A thread-safe function should 
never use static variables. 
 
See chapter 10 page 99 for further discussion of the techniques of multithreading. 
 

7.30 Exceptions and error handling 
Exception handling is intended for detecting errors that seldom occur and recovering from 
an error condition in a graceful way. You may think that exception handling takes no extra 
time as long as the error doesn't occur, but unfortunately this is not true. The program has to 
do a lot of bookkeeping in order to know how to recover in the rare event of an exception. 
The following example explains this: 
 

// Example 7.43 
class C1 { 
   public: 
   ... 
   ~C1(); 
}; 
 
void F1() { 
   C1 x; 
   ... 
} 
 
void F0() {    
   try { 
      F1(); 
   } 
   catch (...) { 
   ... 
   } 
} 

 
The function F1 is supposed to call the destructor for the object x when it returns. But what 
if an exception occurs somewhere in F1? Then we are breaking out of F1 without returning. 
F1 is prevented from cleaning up because it has been brutally interrupted. Now it is the 
responsibility of the exception handler to call the destructor of x. This is only possible if F1 
has saved all information about the destructor to call or any other cleanup that may be 
necessary. If F1 calls another function which in turn calls another function, etc., and if an 
exception occurs in the innermost function, then the exception handler needs all information 
about the chain of function calls and it needs to follow the track backwards though the 
function calls to check for all the necessary cleanup jobs to do. This is called stack 
unwinding. 
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All functions have to save some information for the exception handler, even if no exception 
ever happens. This is the reason why exception handling is expensive. If exception handling 
is not necessary for your application then you should disable it in order to make the code 
smaller and more efficient. You can disable exception handling for the whole program by 
turning off the exception handling option in the compiler. You can disable exception 
handling for a single function by adding throw() to the function prototype: 
 

void F1() throw(); 
 
This tells the compiler not to save recovery information for function F1. It is recommended to 
add throw() to functions that are critical to program performance. 
 
The compiler makes a distinction between leaf functions and frame functions. A frame 
function is a function that calls at least one other function. A leaf function is a function that 
doesn't call any other function. A leaf function is simpler than a frame function because the 
stack unwinding information can be left out if exceptions can be ruled out or if there is 
nothing to clean up in case of an exception. A frame function can be turned into a leaf 
function by inlining all the functions that it calls. The best performance is obtained if the 
critical innermost loop of a program contains no calls to frame functions. 
 
In some cases, it is optimal to use exception handling even in the most critical part of a 
program. This is the case if alternative implementations are less efficient and you want to be 
able to recover from errors. The following example illustrates such a case: 
 

// Example 7.44 
// Portability note: This example is specific to Microsoft compilers. 
#include <excpt.h> 
#include <float.h> 
#include <math.h> 
#define EXCEPTION_FLT_OVERFLOW  0xC0000091L 
 
void MathLoop() { 
   const int arraysize = 1000;  unsigned int dummy; 
  double  a[arraysize], b[arraysize], c[arraysize]; 
 
   // Enable exception for floating point overflow: 
  _controlfp_s(&dummy, 0, _EM_OVERFLOW);  
   // _controlfp(0, _EM_OVERFLOW); // if above line doesn't work 
  
  int i = 0;   // Initialize loop counter outside both loops 
   // The purpose of the while loop is to resume after exceptions: 
   while (i < arraysize) { 
      // Catch exceptions in this block:   
      __try { 
         // Main loop for calculations: 
        for ( ; i < arraysize; i++) { 
 
            // Overflow may occur in multiplication here: 
            a[i] = log (b[i] * c[i]); 
         } 
      } 
      // Catch floating point overflow but no other exceptions: 
      __except (GetExceptionCode() == EXCEPTION_FLT_OVERFLOW 
      ? EXCEPTION_EXECUTE_HANDLER : EXCEPTION_CONTINUE_SEARCH) { 
         // Floating point overflow has occurred. 
         // Reset floating point status: 
         _fpreset(); 
         _controlfp_s(&dummy, 0, _EM_OVERFLOW);  
         // _controlfp(0, _EM_OVERFLOW); // if above doesn't work 
 
         // Re-do the calculation in a way that avoids overflow: 
         a[i] = log(b[i]) + log(c[i]); 
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         // Increment loop counter and go back into the for-loop: 
         i++; 
      } 
   } 
} 
 

Assume that the numbers in b[i] and c[i] are so big that overflow can occur in the 
multiplication b[i]*c[i], though this only happens rarely. The above code will catch an 
exception in case of overflow and redo the calculation in a way that takes more time but 
avoids the overflow. Taking the logarithm of each factor rather than the product makes sure 
that no overflow can occur, but the calculation time is doubled. 
 
The time it takes to make support for the exception handling is negligible because there is 
no try block or function call (other than log) inside the critical innermost loop. log is a 
library function which we assume is optimized. We cannot change its possible exception 
handling support anyway. The exception is costly when it occurs, but this is not a problem 
since we are assuming that the occurrence is rare. 
 
Testing for the overflow condition inside the loop does not cost anything here because we 
are relying on the microprocessor hardware for raising an exception in case of overflow. The 
exception is caught by the operating system which redirects it to the exception handler in 
the program if there is a try block. 
 
There is a portability issue to catching hardware exceptions. The mechanism relies on non-
standardized details in both compiler, operating system and CPU hardware. Porting such an 
application to a different platform is likely to require modifications in the code. 
 
Let's look at the possible alternatives to exception handling in this example. We might check 
for overflow by checking if b[i] and c[i] are too big before multiplying them. This would 
require two floating point comparisons, which are relatively costly because they must be 
inside the innermost loop. Another possibility is to always use the safe formula a[i] = 
log(b[i]) + log(c[i]);. This would double the number of calls to log, and 
logarithms take a long time to calculate. If there is a way to check for overflow outside the 
loop without checking all the array elements then this might be a better solution. It might be 
possible to do such a check before the loop if all the factors are generated from the same 
few parameters. Or it might be possible to do the check after the loop if the results are 
combined by some formula into a single result. An uncaught overflow condition will generate 
the value infinity, and this value will propagate through the calculations so that the final 
result will be infinity or NAN (Not A Number) if an overflow or another error has occurred 
anywhere in the calculations. The program can check the final result to see if it is a valid 
number (e.g. with _finite()) and redo the calculations in a safe way in case of error. The 
calculations may take more time than normal on some microprocessors when an operand is 
infinity or NAN. 

Avoiding the cost of exception handling 
Exception handling is not necessary when no attempt is made to recover from errors. If you 
just want the program to issue an error message and stop the program in case of an error 
then there is no reason to use try, catch, and throw. It is more efficient to define your 
own error-handling function that simply prints an appropriate error message and then calls 
exit. 
 
Calling exit may not be safe if there are allocated resources that need to be cleaned up, 
as explained below. There are other possible ways of handling errors without using 
exceptions. The function that detects an error can return with an error code which the calling 
function can use for recovering or for issuing an error message.  
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It is recommended to use a systematic and well thought-through approach to error handling. 
You have to distinguish between recoverable and non-recoverable errors; make sure 
allocated resources are cleaned up in case of an error; and make appropriate error 
messages to the user. 

Making exception-safe code 
Assume that a function opens a file in exclusive mode, and an error condition terminates the 
program before the file is closed. The file will remain locked after the program is terminated 
and the user will be unable to access the file until the computer is rebooted. To prevent this 
kind of problems you must make your program exception safe. In other words, the program 
must clean up everything in case of an exception or other error condition. Things that may 
need to be cleaned up include: 
 

• Memory allocated with new or malloc. 
   

• Handles to windows, graphic brushes, etc. 
   

• Locked mutexes. 
   

• Open database connections. 
   

• Open files and network connections. 
   

• Temporary files that need to be deleted. 
   

• User work that needs to be saved. 
   

• Any other allocated resource. 
 
The C++ way of handling cleanup jobs is to make a destructor. A function that reads or 
writes a file can be wrapped into a class with a destructor that makes sure the file is closed. 
The same method can be used for any other resource, such as dynamically allocated 
memory, windows, mutexes, database connections, etc. 
 
The C++ exception handling system makes sure that all destructors for local objects are 
called. The program is exception safe if there are wrapper classes with destructors to take 
care of all cleanup of allocated resources. 
 
If you make your own error handling system instead of using exception handling then you 
cannot be sure that all destructors are called and resources cleaned up. If an error handler 
calls exit(), abort(), _endthread(), etc. then there is no guarantee that all 
destructors are called. The safe way to handle an unrecoverable error without using 
exceptions is to return from the function. The function may return an error code if possible, 
or the error code may be stored in a global object. The calling function must then check for 
the error code. If the latter function also has something to clean up then it must return to its 
own caller, and so on. 
 

7.31 Other cases of stack unwinding 
The preceding paragraph described a mechanism called stack unwinding that is used by 
exception handlers for cleaning up and calling any necessary destructors after jumping out 
of a function in case of an exception without using the normal return route. This mechanism 
is also used in two other situations: 
 
The stack unwinding mechanism may be used when a thread is terminated. The purpose is 
to detect if any objects declared in the thread have a destructor that needs to be called. It is 
recommended to return from functions that require cleanup before terminating a thread. You 
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cannot be certain that a call to _endthread() cleans up the stack. This behaviour is 
implementation dependent. 
 
The stack unwinding mechanism is also used when the function longjmp is used for 
jumping out of a function. Avoid the use of longjmp if possible. Don't rely on longjmp in 
time-critical code. 
 

7.32 Preprocessing directives 
Preprocessing directives (everything that begins with #) are costless in terms of program 
performance because they are resolved before the program is compiled. 
 
#if directives are useful for supporting multiple platforms or multiple configurations with the 
same source code. #if is more efficient than if because #if is resolved at compile time 
while if is resolved at runtime. 
 
#define directives are equivalent to const definitions when used for defining constants. 
For example, #define ABC 123 and static const int ABC = 123; are equally 
efficient because, in most cases, an optimizing compiler can replace an integer constant 
with its value. However, the const int declaration may in some cases take memory 
space where a #define directive never takes memory space. A floating point constant 
always takes memory space, even when it has not been given a name. 
 
#define directives when used as macros are sometimes more efficient than functions. 
See page 48 for a discussion. 
 

7.33 Namespaces 
There is no cost in terms of execution speed to using namespaces. 
 
 

8 Optimizations in the compiler 

8.1 How compilers optimize 
Modern compilers can do a lot of modifications to the code in order to improve performance. 
It is useful for the programmer to know what the compiler can do and what it can not do. 
The following sections describe some of the compiler optimizations that it is relevant for the 
programmer to know about. 

Function inlining 
The compiler can replace a function call by the body of the called function. Example: 
 

// Example 8.1a 
float square (float a) { 
   return a * a;} 
 
float parabola (float x) { 
   return square(x) + 1.0f;} 

 
The compiler may replace the call to square by the code inside square: 
 

// Example 8.1b 
float parabola (float x) { 
   return x * x + 1.0f;} 
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The advantages of function inlining are:  
The overhead of call and return and parameter transfer are eliminated. 
Code caching will be better because the code becomes contiguous. 
The code becomes smaller if there is only one call to the inlined function. 
Function inlining can open the possibility for other optimizations, as explained below. 

 
The disadvantage of function inlining is that the code becomes bigger if there is more than 
one call to the inlined function and the function is big. The compiler is more likely to inline a 
function if it is small or if it is called from only one or a few places. 

Constant folding and constant propagation 
An expression or subexpression containing only constants will be replaced by the calculated 
result. Example: 
 

// Example 8.2a 
double a, b; 
a = b + 2.0 / 3.0; 

 
The compiler will replace this by 
 

// Example 8.2b 
a = b + 0.666666666666666666667; 

 
This is actually quite convenient. It is easier to write 2.0/3.0 than to calculate the value 
and write it with many decimals. It is recommended to put a parenthesis around such a 
subexpression to make sure the compiler recognizes it as a subexpression. For example, 
b*2.0/3.0 will most likely be calculated as (b*2.0)/3.0 rather than as b*(2.0/3.0) 
unless you put a parenthesis around the constant subexpression. 
 
A constant can be propagated through a series of calculations: 
 

// Example 8.3a 
float parabola (float x) { 
   return x * x + 1.0f;} 
 
float a, b; 
a = parabola (2.0f); 
b = a + 1.0f; 

 
The compiler may replace this by 
 

// Example 8.3b 
a = 5.0f; 
b = 6.0f; 

 
Constant folding and constant propagation is not possible if the expression contains a 
function which cannot be inlined or cannot be calculated at compile time. For example: 
 

// Example 8.4 
double a = sin(0.8); 

 
The sin function is defined in a separate function library and you cannot expect the 
compiler to be able to inline this function and calculate it at compile time. Some compilers 
are able to calculate the most common math functions such as sqrt and pow at compile-
time, but not the more complicated functions like sin. 

Pointer elimination 
A pointer or reference can be eliminated if the target pointed to is known. Example: 
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// Example 8.5a 
void Plus2 (int * p) { 
   *p = *p + 2;} 
 
int a; 
Plus2 (&a); 

 
The compiler may replace this by 
 

// Example 8.5b 
a += 2; 

Common subexpression elimination 
If the same subexpression occurs more than once then the compiler may calculate it only 
once. Example: 
 

// Example 8.6a 
int a, b, c; 
b = (a+1) * (a+1); 
c = (a+1) / 4; 

 
The compiler may replace this by 
 

// Example 8.6b 
int a, b, c, temp; 
temp = a+1; 
b = temp * temp; 
c = temp / 4; 

Register variables 
The most commonly used variables are stored in registers (see page 28).  
 
The maximum number of integer register variables is approximately six in 32-bit systems 
and fourteen in 64-bit systems. 
 
The maximum number of floating point register variables is eight in 32-bit systems and 
sixteen in 64-bit systems. Some compilers have difficulties making floating point register 
variables in 32-bit systems unless the SSE2 (or later) instruction set is enabled. 
 
The compiler will choose the variables that are used most for register variables. This 
includes pointers and references, which can be stored in integer registers. Typical 
candidates for register variables are temporary intermediates, loop counters, function 
parameters, pointers, references, 'this' pointer, common subexpressions, and induction 
variables (see below). 
 
A variable cannot be stored in a register if its address is taken, i.e. if there is a pointer or 
reference to it. Therefore, you should avoid making any pointer or reference to a variable 
that could benefit from register storage. 

Live range analysis 
The live range of a variable is the range of code in which the variable is used. An optimizing 
compiler can use the same register for more than one variable if their live-ranges do not 
overlap or if they are sure to have the same value. This is useful when the number of 
available registers is limited. Example: 
 

// Example 8.7 
int SomeFunction (int a, int x[]) { 
   int b, c; 
   x[0] = a; 
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   b = a + 1; 
   x[1] = b; 
   c = b + 1; 
   return c; 
} 
 

In this example, a, b and c can share the same register because their live ranges do not 
overlap. If c = b + 1 is changed to c = a + 2 then a and b cannot use the same 
register because their live ranges now overlap. 
 
Compilers do not normally use this principle for objects stored in memory. It will not use the 
same memory area for different objects even when their live ranges do not overlap. See 
page 88 for an example of how to make different objects share the same memory area. 

Join identical branches 
The code can be made more compact by joining identical pieces of code. Example: 
 

// Example 8.8a 
double x, y, z;  bool b; 
if (b) { 
   y = sin(x); 
   z = y + 1.; 
} 
else { 
   y = cos(x); 
   z = y + 1.; 
} 

 
The compiler may replace this by 
 

// Example 8.8b 
double x, y;  bool b; 
if (b) { 
   y = sin(x); 
} 
else { 
   y = cos(x); 
} 
z = y + 1.; 

 

Eliminate jumps 
Jumps can be avoided by copying the code that it jumps to. Example: 
 

// Example 8.9a 
int SomeFunction (int a, bool b) { 
   if (b) { 
      a = a * 2; 
   } 
   else { 
      a = a * 3; 
   } 
   return a + 1; 
} 

 
This code has a jump from a=a*2; to return a+1;. The compiler can eliminate this jump 
by copying the return statement: 
 

// Example 8.9b 
int SomeFunction (int a, bool b) { 
   if (b) { 
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      a = a * 2; 
      return a + 1; 
   } 
   else { 
      a = a * 3; 
      return a + 1; 
   } 
} 

 
A branch can be eliminated if the condition can be reduced to always true or always false: 
 

// Example 8.10a 
if (true) { 
   a = b; 
} 
else { 
   a = c; 
} 

 
Can be reduced to: 
 

// Example 8.10b 
a = b; 

 
A branch can also be eliminated if the condition is known from a previous branch. Example: 
 

// Example 8.11a 
int SomeFunction (int a, bool b) { 
   if (b) { 
      a = a * 2; 
   } 
   else { 
      a = a * 3; 
   } 
   if (b) { 
      return a + 1; 
   } 
   else { 
      return a - 1; 
   } 
} 

 
The compiler may reduce this to: 
 

// Example 8.11b 
int SomeFunction (int a, bool b) { 
   if (b) { 
      a = a * 2; 
      return a + 1; 
   } 
   else { 
      a = a * 3; 
      return a - 1; 
   } 
} 

Loop unrolling 
Some compilers will unroll loops if a high degree of optimization is requested. See page 45. 
This may be advantageous if the loop body is very small or if it opens the possibility for 
further optimizations. Loops with a very low repeat count may be completely unrolled to 
avoid the loop overhead. Example: 
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// Example 8.12a 
int i, a[2]; 
for (i = 0; i < 2; i++) a[i] = i+1; 

 
The compiler may reduce this to: 
 

// Example 8.12b 
int a[2]; 
a[0] = 1; a[1] = 2; 

 
Unfortunately, some compilers unroll too much. Excessive loop unrolling is not optimal 
because it takes too much space in the code cache and it fills up the loop buffer that some 
microprocessors have. In some cases it can be useful to turn off the loop unroll option in the 
compiler. 

Loop invariant code motion 
A calculation may be moved out of a loop if it is independent of the loop counter. Example: 
 

// Example 8.13a 
int i, a[100], b; 
for (i = 0; i < 100; i++) { 
   a[i] = b * b + 1; 
} 

 
The compiler may change this to: 
 

// Example 8.13b 
int i, a[100], b, temp; 
temp = b * b + 1; 
for (i = 0; i < 100; i++) { 
   a[i] = temp; 
} 

Induction variables 
An expression that is a linear function of a loop counter can be calculated by adding a 
constant to the previous value. Example: 
 

// Example 8.14a 
int i, a[100]; 
for (i = 0; i < 100; i++) { 
   a[i] = i * 9 + 3; 
} 

 
The compiler may avoid the multiplication by changing this to: 
 

// Example 8.14b 
int i, a[100], temp; 
temp = 3; 
for (i = 0; i < 100; i++) { 
   a[i] = temp; 
   temp += 9; 
} 

 
Induction variables are often used for calculating the addresses of array elements. Example: 
 

// Example 8.15a 
struct S1 {double a; double b;}; 
S1 list[100];  int i; 
for (i = 0; i < 100; i++) { 
   list[i].a = 1.0; 
   list[i].b = 2.0; 
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} 
 
In order to access an element in list, the compiler must calculate its address. The 
address of list[i] is equal to the address of the beginning of list plus i*sizeof(S1). 
This is a linear function of i which can be calculated by an induction variable. The compiler 
can use the same induction variable for accessing list[i].a and list[i].b. It can also 
eliminate i and use the induction variable as loop counter when the final value of the 
induction variable can be calculated in advance. This reduces the code to: 
 

// Example 8.15b 
struct S1 {double a; double b;}; 
S1 list[100], *temp; 
for (temp = &list[0]; temp < &list[100]; temp++) { 
   temp->a = 1.0; 
   temp->b = 2.0; 
} 

 
The factor sizeof(S1) = 16 is actually hidden behind the C++ syntax in example 8.15b. 
The integer representation of &list[100] is (int)(&list[100]) = 
(int)(&list[0]) + 100*16, and temp++ actually adds 16 to the integer value of 
temp. 
 
The compiler doesn't need induction variables to calculate the addresses of array elements 
of simple types because the CPU has hardware support for calculating the address of an 
array element if the address can be expressed as a base address plus a constant plus an 
index multiplied by a factor of 1, 2, 4 or 8, but not any other factor. If a and b in example 
8.15a were float instead of double, then sizeof(S1) would be 8 and no induction 
variable would be needed because the CPU has hardware support for multiplying the index 
by 8. 
 
The compilers I have studied do not make induction variables for floating point expressions 
or more complex integer expressions. See page 78 for an example of how to use induction 
variables for calculating a polynomial. 

Scheduling 
A compiler may reorder instructions for the sake of parallel execution. Example: 
 

// Example 8.16 
float a, b, c, d, e, f, x, y; 
x = a + b + c; 
y = d + e + f; 

 
The compiler may interleave the two formulas in this example so that a+b is calculated first, 
then d+e, then c is added to the first sum, then f is added to the second sum, then the first 
result is stored in x, and last the second result is stored in y. The purpose of this is to help 
the CPU doing multiple calculations in parallel. Modern CPUs are actually able to reorder 
instructions without help of the compiler (see page 101), but the compiler can make this 
reordering easier for the CPU. 

Algebraic reductions 
Most compilers can reduce simple algebraic expressions using the fundamental laws of 
algebra. For example, a compiler may change the expression -(-a)  to a.  
 
I don't think that programmers write expressions like -(-a)  very often, but such 
expressions may occur as a result of other optimizations such as function inlining. 
Reducible expressions also occur quite often as a result of macro expansions. 
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Programmers do, however, often write expressions that can be reduced. This may be 
because the non-reduced expression better explains the logic behind the program or 
because the programmer hasn't thought about the possibility of algebraic reduction. For 
example, a programmer may prefer to write if(!a && !b) rather than the equivalent 
if(!(a || b)) even though the latter has one operator less. Fortunately, all compilers 
are able to do the reduction in this case. 
 
You cannot expect a compiler to reduce complicated algebraic expressions. For example, 
only one of the compilers I have tested were able to reduce (a*b*c)+(c*b*a) to 
a*b*c*2. It is quite difficult to implement the many rules of algebra in a compiler. Some 
compilers can reduce some types of expressions and other compilers can reduce other 
types of expressions, but no compiler I have ever seen can reduce them all. In the case of 
Boolean algebra, it is possible to implement a universal algorithm (e.g. Cline-McCluskey or 
Espresso) that can reduce any expression, but none of the compilers I have tested seem to 
do so. 
 
The compilers are better at reducing integer expressions than floating point expressions, 
even though the rules of algebra are the same in both cases. This is because algebraic 
manipulations of floating point expressions may have undesired effects. This effect can be 
illustrated by the following example: 
 

// Example 8.17 
char a = -100, b = 100, c = 100, y; 
y = a + b + c; 

 
Here, y will get the value -100+100+100 = 100. Now, according to the rules of algebra, we 
may write: 
 

y = c + b + a; 
 
This may be useful if the subexpression c+b can be reused elsewhere. In this example, we 
are using 8-bit integers which range from -128 to +127. An integer overflow will make the 
value wrap around. Adding 1 to 127 will generate -128, and subtracting 1 from -128 
generates 127. The calculation of c+b will generate an overflow and give the result -56 
rather than 200. Next, we are adding -100 to -56 which will generate an underflow and give 
the result 100 rather than -156. Surprisingly, we end up with the correct result because the 
overflow and underflow neutralize each other. This is the reason why it is safe to use 
algebraic manipulations on integer expressions (except for the <, <=, > and >= operators). 
 
The same argument does not apply to floating point expressions. Floating point variables do 
not wrap around on overflow and underflow. The range of floating point variables is so large 
that we do not have to worry much about overflow and underflow except in special mathe-
matical applications. But we do have to worry about loss of precision. Let's repeat the above 
example with floating point numbers: 
 

// Example 8.18 
float a = -1.0E8, b = 1.0E8, c = 1.23456, y; 
y = a + b + c; 

 
The calculation here gives a+b=0, and then 0+1.23456 = 1.23456. But we will not get 
the same result if we change the order of the operands and add b and c first. b+c = 
100000001.23456. The float type holds a precision of approximately seven significant 
digits, so the value of b+c will be rounded to 100000000. When we add a to this number 
we get 0 rather than 1.23456. 
 
The conclusion to this argument is that the order of floating point operands cannot be 
changed without the risk of losing precision. The compilers will not do so unless you specify 
an option that allows less precise floating point calculations. Even with all relevant 
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optimization options turned on, the compilers will not do such obvious reductions as 0/a = 
0 because this would be invalid if a was zero or infinity or NAN (not a number). Different 
compilers behave differently because there are different opinions on which imprecisions 
should be allowed and which not. 
 
You cannot rely on the compiler to do any algebraic reductions on floating point code and 
you can rely on only the most simple reductions on integer code. It is more safe to do the 
reductions manually. I have tested the capability to reduce various algebraic expressions on 
seven different compilers. The results are listed in table 8.1 below. 

Devirtualization 
An optimizing compiler can bypass the virtual table lookup for a virtual function call if it is 
known which version of the virtual function is needed. Example: 
 

// Example 8.19. Devirtualization 
class C0 { 
   public: 
   virtual void f(); 
}; 
 
class C1 : public C0 { 
   public: 
   virtual void f(); 
}; 
 
void g() { 
   C1 obj1; 
   C0 * p = & obj1; 
   p->f();               // Virtual call to C1::f 
} 

 
Without optimization, the compiler needs to look up in a virtual table to see whether the call 
p->f() goes to C0::f or C1::f. But an optimizing compiler will see that p always points 
to an object of class C1, so it can call C1::f directly without using the virtual table. 
Unfortunately, few compilers are able to do this optimization. 
 

8.2 Comparison of different compilers 
I have made a series of experiments on seven different brands of C++ compilers to see 
whether they were able to do different kinds of optimizations. The results are summarized in 
table 8.1. The table shows whether the different compilers succeeded in applying the 
various optimization methods and algebraic reductions in my test examples.  
 
The table can give some indication of which optimizations you can expect a particular 
compiler to do and which optimizations you have to do manually. 
 
It must be emphasized that the compilers may behave differently on different test examples. 
You cannot expect a compiler to always behave according to the table. 
 

Optimization method 

M
icrosoft 

B
orland 

Intel 

G
nu 

PathScale 

PG
I 

D
igital 

M
ars 

W
atcom

 

C
odeplay 

Function inlining x - x x x x - - x 
Constant folding x x x x x x x x x 
Constant propagation x - x x x x - - x 
Pointer elimination x x x x x x x x x 
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Common subexpression elimin., integer x (x) x x x x x x x 
Common subexpression elimin., float x - x x x x - x x 
Register variables, integer x x x x x x x x x 
Register variables, float x - x x x x - x x 
Live range analysis x x x x x x x x x 
Join identical branches x - - x - - - x - 
Eliminate jumps x x x x x x - x x 
Eliminate branches x - x x x x - - - 
Remove branch that is always true/false x - x x x x x x x 
Loop unrolling x - x x x x - - x 
Loop invariant code motion x - x x x x x x x 
Induction variables for array elements x x x x x x x x x 
Induction variables for other integer 
expressions 

x - x x x - x x x 

Induction variables for float expressions - - - - - - - - - 
Automatic vectorization - - x x x x - - x 
Devirtualization - - - x - - - - - 
Profile-guided optimization x - x x x x - - - 
Whole program optimization x - x x x - - - - 
          
Integer algebra reductions:          

a+b = b+a x (x) x x x x - x x 
a*b = b*a x (x) x x x x - x x 
(a+b)+c = a+(b+c) x - x x - - x x - 
a+b+c = c+b+a x - - x - - - - - 
a+b+c+d = (a+b)+(c+d) - - x x - - - - - 
a*b+a*c = a*(b+c) x - x x x - - - x 
a*x*x*x + b*x*x + c*x + d = 
((a*x+b)*x+c)*x+d 

x - x x x - - - x 

x*x*x*x*x*x*x*x = ((x2) 2) 2 - - x - - - - - - 
a+a+a+a = a*4 x - x x - - - - x 
-(-a) = a x - x x x x x x - 
a-(-b) = a+b x - x x x x - x - 
a-a = 0 x - x x x x x x x 
a+0 = a x x x x x x x x x 
a*0 = 0 x x x x x x x - x 
a*1 = a x x x x x x x x x 
(-a)*(-b) = a*b x - x x x - - - - 
a/a = 1 - - - - x - - - x 
a/1 = a x x x x x x x x x 
0/a = 0 - - - x - - - x x 
(-a == -b) = (a == b) - - - x x - - - - 
(a+c == b+c) = (a == b) - - - - x - - - - 
!(a < b) = (a >= b) x x x x x x x x x 
(a<b && b<c && a<c) = (a<b && b<c) - - - - - - - - - 
Multiply by constant = shift and add x x x x - x x x - 
Divide by constant = multiply and shift x - x x x (-) x - - 
          
Floating point algebra reductions:          

a+b = b+a x - x x x x - - x 
a*b = b*a x - x x x x - - x 
a+b+c = a+(b+c) x - x x - - - - - 
(a+b)+c = a+(b+c) - - x x - - - - - 
a*b*c = a*(b*c) x - - x - - - - - 
a+b+c+d = (a+b)+(c+d) - - - x - - - - - 
a*b+a*c = a*(b+c) x - - - x - - - x 



 74

a*x*x*x + b*x*x + c*x + d = 
((a*x+b)*x+c)*x+d 

x - x x x - - - - 

x*x*x*x*x*x*x*x = ((x2) 2) 2 - - - x - - - - - 
a+a+a+a = a*4 x - - x x - - - - 
-(-a) = a - - x x x x x x - 
a-(-b) = a+b - - - x x x - x - 
a+0 = a x - x x x x x x - 
a*0 = 0 - - x x x x - x x 
a*1 = a x - x x x x x - x 
(-a)*(-b) = a*b - - - x x x - - - 
a/a = 1 - - - - - - - - x 
a/1 = a x - x x x - x - - 
0/a = 0 - - - x x - - x x 
(-a == -b) = (a == b) - - - x x - - - - 
(-a > -b) = (a < b) - - - x x - - - x 
Divide by constant = multiply by 
reciprocal 

x x - x x - - x - 

          
Boolean algebra reductions:          

!(!a) = a x - x x x x x x x 
(a&&b) || (a&&c) = a&&(b||c) x - x x x - - - - 
!a && !b = !(a || b) x x x x x x x x x 
a && !a = false, a || !a = true x - x x x x - - - 
a && true = a, a || false = a x x x x x x x x - 
a && false = false, a || true = true x - x x x x x x - 
a && a = a x - x x x x - - - 
(a&&b) || (a&&!b) = a x - - x x - - - - 
(a&&b) || (!a&&c) = a ? b : c x - x x - - - - - 
(a&&b) || (!a&&c) || (b&&c) = a ? b : c x - - x - - - - - 
(a&&b) || (a&&b&&c) = a&&b x - - x x - - - - 
(a&&b) || (a&&c) || (a&&b&&c) = 
a&&(b||c) 

x - - x x - - - - 

(a&&!b) || (!a&&b) = a XOR b - - - - - - - - - 
          
Bit vector algebra reductions:          

~(~a) = a x - x x x x x - - 
(a&b)|(a&c) = a&(b|c) x - x x x x - - x 
(a|b)&(a|c) = a|(b&c) x - x x x x - - x 
~a & ~b = ~(a | b) - - x x x x - - - 
a & a = a x - - x x x - - x 
a & ~a = 0 - - x x x x - - - 
a & -1 = a,  a | 0 = a x - x x x x x x x 
a & 0 = 0,  a | -1 = -1 x - x x x x x x x 
(a&b) | (~a&c) | (b&c) = (a&b) | (~a&c) - - - - - - - - - 
a&b&c&d = (a&b)&(c&d) - - - x - - - - - 
a ^ 0 = a x x x x x - x x x 
a ^ -1 = ~a x - x x x - x x - 
a ^ a = 0 x - x x x x - x x 
a ^ ~a = -1 - - - x x x - - - 
(a&~b) | (~a&b) = a ^ b - - - - - - - - - 
~a ^ ~b = a ^ b - - - x x - - - - 
a<<b<<c = a<<(b+c) x - x x x - - x x 
          
Integer XMM (vector) reductions:          

Common subexpression elimination x n.a. x x x - n.a. n.a. x 
Constant folding - n.a. - x - - n.a. n.a. - 
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a+b = b+a, a*b = b*a - n.a. - x - - n.a. n.a. x 
(a+b)+c = a+(b+c) - n.a. - - - - n.a. n.a. - 
a*b+a*c = a*(b+c) - n.a. - - - - n.a. n.a. - 
x*x*x*x*x*x*x*x = ((x2) 2) 2 - n.a. - - - - n.a. n.a. - 
a+a+a+a = a*4 - n.a. - - - - n.a. n.a. - 
-(-a) = a - n.a. - - - - n.a. n.a. - 
a-a = 0 - n.a. x - - - n.a. n.a. - 
a+0 = a - n.a. - - - - n.a. n.a. - 
a*0 = 0 - n.a. - x - - n.a. n.a. - 
a*1 = a - n.a. - x - - n.a. n.a. - 
(-a)*(-b) = a*b - n.a. - - - - n.a. n.a. - 
!(a < b) = (a >= b) - n.a. - - - - n.a. n.a. - 
          
Floating point XMM (vector) 
reductions: 

         

a+b = b+a,  a*b = b*a x n.a. - x - - n.a. n.a. x 
a+b+c = a+(b+c) - n.a. - - - - n.a. n.a. - 
a*b+a*c = a*(b+c) - n.a. - - - - n.a. n.a. - 
-(-a) = a - n.a. - - - - n.a. n.a. - 
a-a = 0 - n.a. - x - - n.a. n.a. - 
a+0 = a - n.a. x - - - n.a. n.a. - 
a*0 = 0 - n.a. x - - - n.a. n.a. - 
a*1 = a - n.a. - x - - n.a. n.a. - 
a/1 = a - n.a. - x - - n.a. n.a. - 
0/a = 0 - n.a. x x - - n.a. n.a. - 
Divide by constant = multiply by 
reciprocal 

- n.a. - - - - n.a. n.a. - 

          
Boolean XMM (vector) reductions:          

~(~a) = a - n.a. - - - - n.a. n.a. - 
(a&b)|(a&c) = a&(b|c) - n.a. - - - - n.a. n.a. - 
a & a = a,  a | a = a - n.a. x x - - n.a. n.a. - 
a & ~a = 0 - n.a. - x - - n.a. n.a. - 
a & -1 = a,  a | 0 = a - n.a. - - - - n.a. n.a. - 
a & 0 = 0 - n.a. - x - - n.a. n.a. - 
a | -1 = -1 - n.a. - - - - n.a. n.a. - 
a ^ a = 0 - n.a. x x - - n.a. n.a. - 
andnot(a,a) = 0 - n.a. - x - - n.a. n.a. - 
a<<b<<c = a<<(b+c) - n.a. - - - - n.a. n.a. - 
Table 8.1. Comparison of optimizations in different C++ compilers 

The tests were carried out with all relevant optimization options turned on, including relaxed 
floating point precision. The following compiler versions were tested: 
Microsoft C++ Compiler v. 14.00 for 80x86 / x64 (Visual Studio 2005). 
Borland C++ 5.82 (Embarcadero/CodeGear/Borland C++ Builder 5, 2009). 
Intel C++ Compiler v. 11.1 for IA-32/Intel64, 2009. 
Gnu C++ v. 4.1.0, 2006 (Red Hat). 
PathScale C++ v. 3.1, 2007. 
PGI C++ v. 7.1-4, 2008. 
Digital Mars Compiler v. 8.42n, 2004. 
Open Watcom C/C++ v. 1.4, 2005. 
Codeplay VectorC v. 2.1.7, 2004. 
No differences were observed between the optimization capabilities for 32-bit and 64-bit code for 
the Microsoft, Intel, Gnu and PathScale compilers.  
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8.3 Obstacles to optimization by compiler 
There are several factors that can prevent the compiler from doing the optimizations that we 
want it to do. It is important for the programmer to be aware of these obstacles and to know 
how to avoid them. Some important obstacles to optimization are discussed below. 

Pointer aliasing 
When accessing a variable through a pointer or reference, the compiler may not be able to 
completely rule out the possibility that the variable pointed to is identical to some other 
variable in the code. Example: 
 

// Example 8.20 
void Func1 (int a[], int * p) { 
   int i; 
   for (i = 0; i < 100; i++) { 
      a[i] = *p + 2; 
   } 
} 
 
void Func2() { 
   int list[100]; 
   Func1(list, &list[8]); 
} 

 
Here, it is necessary to reload *p and calculate *p+2 a hundred times because the value 
pointed to by p is identical to one of the elements in a[] which will change during the loop. 
It is not permissible to assume that *p+2 is a loop-invariant code that can be moved out of 
the loop. Example 8.20 is indeed a very contrived example, but the point is that the compiler 
cannot rule out the theoretical possibility that such contrived examples exist. Therefore the 
compiler is prevented from assuming that *p+2 is a loop-invariant expression that it can 
move outside the loop. 
 
Most compilers have an option for assuming no pointer aliasing (/Oa). The easiest way to 
overcome the obstacle of possible pointer aliasing is to turn on this option. This requires that 
you analyze all pointers and references in the code carefully to make sure that no variable 
or object is accessed in more than one way in the same part of the code. It is also possible 
to tell the compiler that a specific pointer does not alias anything by using the keyword 
__restrict or __restrict__, if supported by the compiler. 
 
We can never be sure that the compiler takes the hint about no pointer aliasing. The only 
way to make sure that the code is optimized is to do it explicitly. In example 8.20, you could 
calculate *p+2 and store it in a temporary variable outside the loop if you are sure that the 
pointer does not alias any elements in the array. This method requires that you can predict 
where the obstacles to optimization are. 

Cannot optimize across modules 
The compiler doesn't have information about functions in other modules than the one it is 
compiling. This prevents it from making optimizations across function calls. Example: 
 

// Example 8.21 
module1.cpp 
int Func1(int x) { 
   return x*x + 1; 
} 
 
module2.cpp 
int Func2() { 
   int a = Func1(2); 
   ... 
} 
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If Func1 and Func2 were in the same module then the compiler would be able do function 
inlining and constant propagation and reduce a to the constant 5. But the compiler doesn't 
have the necessary information about Func1 when compiling module2.cpp. 
 
The simplest way to solve this problem is to combine the multiple .cpp modules into one by 
means of #include directives. This is sure to work on all compilers. Some compilers have 
a feature called whole program optimization, which will enable optimizations across 
modules (See page 80). 

Pure functions 
A pure function is a function that has no side-effects and its return value depends only on 
the values of its arguments. This closely follows the mathematical notion of a "function". 
 
Multiple calls to a pure function with the same arguments are sure to produce the same 
result. A compiler can eliminate common subexpressions that contain pure function calls 
and it can move out loop-invariant code containing pure function calls. Unfortunately, the 
compiler cannot know that a function is pure if the function is defined in a different module 
or a function library. 
 
Therefore, it is necessary to do optimizations such as common subexpression elimination, 
constant propagation, and loop-invariant code motion manually when it involves pure 
function calls. 
 
The Gnu compiler and the Intel compiler for Linux have an attribute which can be applied to 
a function prototype to tell the compiler that this is a pure function. Example: 
 

// Example 8.22 
#ifdef __GNUC__ 
#define pure_function  __attribute__((const)) 
#else 
#define pure_function 
#endif 
 
double Func1(double) pure_function ; 
 
double Func2(double x) { 
   return Func1(x) * Func1(x) + 1.; 
} 

 
Here, the Gnu compiler will make only one call to Func1, while other compilers will make 
two. 
 
Some other compilers (Microsoft, Intel) know that standard library functions like sqrt, pow 
and log are pure functions, but unfortunately there is no way to tell these compilers that a 
user-defined function is pure. 

Algebraic reduction 
Most compilers can do simple algebraic reductions such as -(-a) = a, but they are not able to 
do more complicated reductions. Algebraic reduction is a complicated process which is 
difficult to implement in a compiler. 
 
Many algebraic reductions are not permissible for reasons of mathematical purity. In many 
cases it is possible to construct obscure examples where the reduction would cause 
overflow or loss of precision, especially in floating point expressions (see page 71). The 
compiler cannot rule out the possibility that a particular reduction would be invalid in a 
particular situation, but the programmer can. It is therefore necessary to do the algebraic 
reductions explicitly in many cases. 



 78

 
Integer expressions are less susceptible to problems of overflow and loss of precision for 
reasons explained on page 71. It is therefore possible for the compiler to do more 
reductions on integer expressions than on floating point expressions. Most reductions 
involving integer addition, subtraction and multiplication are permissible in all cases, while 
many reductions involving division and relational operators (e.g. '>') are not permissible for 
reasons of mathematical purity. For example, compilers cannot reduce the integer 
expression -a > -b to a < b because of a very obscure possibility of overflow. 
 
Table 8.1 (page 75) shows which reductions the compilers are able to do, at least in some 
situations, and which reductions they cannot do. All the reductions that the compilers cannot 
do must be done manually by the programmer. 

Floating point induction variables 
Compilers cannot make floating point induction variables for the same reason that they 
cannot make algebraic reductions on floating point expressions. It is therefore necessary to 
do this manually. This principle is useful whenever a function of a loop counter can be 
calculated more efficiently from the previous value than from the loop counter. Any 
expression that is an n'th degree polynomial of the loop counter can be calculated by n 
additions and no multiplications. The following example shows the principle for a 2'nd order 
polynomial: 
 

// Example 8.23a. Loop to make table of polynomial 
const double A = 1.1, B = 2.2, C = 3.3; // Polynomial coefficients 
double Table[100];                      // Table 
int x;                                  // Loop counter 
for (x = 0; x < 100; x++) { 
   Table[x] = A*x*x + B*x + C;          // Calculate polynomial 
} 

 
The calculation of this polynomial can be done with just two additions by the use of two 
induction variables: 
 

// Example 8.23b. Calculate polynomial with induction variables 
const double A = 1.1, B = 2.2, C = 3.3; // Polynomial coefficients 
double Table[100];                      // Table 
int x;                                  // Loop counter 
const double A2 = A + A;                // = 2*A 
double Y = C;                           // = A*x*x + B*x + C 
double Z = A + B;                       // = Delta Y 
for (x = 0; x < 100; x++) { 
   Table[x] = Y;                        // Store result 
   Y += Z;                              // Update induction variable Y 
   Z += A2;                             // Update induction variable Z 
} 

 
The loop in example 8.23b has two loop-carried dependency chains, namely the two 
induction variables Y and Z. Each dependency chain has a latency which is the same as the 
latency of a floating point addition. This is small enough to justify the method. A longer loop-
carried dependency chain would make the induction variable method unfavorable, unless 
the value is calculated from a value that is two or more iterations back. 
 
The method of induction variables can also be vectorized if you take into account that each 
value is calculated from the value that lies r places back in the sequence, where r is the 
number of elements in a vector or the loop unroll factor. A little math is required for finding 
the right formula in each case. 
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Inlined functions have a non-inlined copy 
Function inlining has the complication that the same function may be called from another 
module. The compiler has to make a non-inlined copy of the inlined function for the sake of 
the possibility that the function is also called from another module. This non-inlined copy is 
dead code if no other modules call the function. This fragmentation of the code makes 
caching less efficient. 
 
There are various ways around this problem. If a function is not referenced from any other 
module then add the keyword static to the function definition. This tells the compiler that 
the function cannot be called from any other module. The static declaration makes it 
easier for the compiler to evaluate whether it is optimal to inline the function, and it prevents 
the compiler from making an unused copy of an inlined function. The static keyword also 
makes various other optimizations possible because the compiler doesn't have to obey any 
specific calling conventions for functions that are not accessible from other modules. You 
may add the static keyword to all local non-member functions. 
 
Unfortunately, this method doesn't work for class member functions because the static 
keyword has a different meaning for member functions. You can force a member function to 
be inlined by declaring the function body inside the class definition. This will prevent the 
compiler from making a non-inlined copy of the function, but it has the disadvantage that the 
function is always inlined even when it is not optimal to do so (i.e. if the member function is 
big and is called from many different places). 
 
Some compilers have an option (Windows: /Gy, Linux: -ffunction-sections) which 
allows the linker to remove unreferenced functions. It is recommended to turn on this option. 
  

8.4 Obstacles to optimization by CPU 
Modern CPUs can do a lot of optimization by executing instructions out of order. Long 
dependency chains in the code prevent the CPU from doing out-of-order execution, as 
explained on page 23. 
 
Avoid long dependency chains, especially loop-carried dependency chains with long 
latencies. 
 

8.5 Compiler optimization options 
All C++ compilers have various optimization options that you can turn on and off. It is 
important to study the available options for the compiler you are using and turn on all 
relevant options. 
 
Many optimization options are incompatible with debugging. A debugger can execute a 
code one line at a time and show the values of all variables. Obviously, this is not possible 
when parts of the code have been reordered, inlined, or optimized away. It is common to 
make two versions of a program executable: a debug version with full debugging support 
which is used during program development, and a release version with all relevant 
optimization options turned on. Most IDE's (Integrated Development Environments) have 
facilities for making a debug version and a release version of object files and executables. 
Make sure to distinguish these two versions and turn off debugging and profiling support in 
the optimized version of the executable. 
 
Most compilers offer the choice between optimizing for size and optimizing for speed. 
Optimizing for size is relevant when the code is fast anyway and you want the executable to 
be as small as possible or when code caching is critical. Optimizing for speed is relevant 
when CPU access and memory access are critical time consumers. Choose the strongest 
optimization option available. 
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Some compilers offer profile-guided optimization. This works in the following way. First you 
compile the program with profiling support. Then you make a test run with a profiler which 
determines the program flow and the number of times each function and branch is 
executed. The compiler can then use this information to optimize the code and put the 
different functions in the optimal order. 
 
Some compilers have support for whole program optimization. This works by compiling in 
two steps. All source files are first compiled to an intermediate file format instead of the 
usual object file format. The intermediate files are then linked together in the second step 
where the compilation is finished. Register allocation and function inlining is done at the 
second step. The intermediate file format is not standardized. It is not even compatible with 
different versions of the same compiler. It is therefore not possible to distribute function 
libraries in this format. 
 
Other compilers offer the possibility of compiling multiple .cpp files into a single object file. 
This enables the compiler to do cross-module optimizations when interprocedural 
optimization is enabled. A more primitive, but efficient, way of doing whole program 
optimization is to join all source files into one by means of #include directives and declare 
all functions static or inline. This will enable the compiler to do interprocedural optimizations 
of the whole program. 
 
During the history of CPU development, each new generation of CPUs increased the 
available instruction set. The newer instruction sets enable the compiler to make more 
efficient code, but this makes the code incompatible with old CPUs. The Pentium Pro 
instruction set makes floating point comparisons more efficient. This instruction set is 
supported by all modern CPUs. The SSE2 instruction set is particularly interesting because 
it makes floating point code more efficient in some cases and it makes it possible to use 
vector instructions (see page 103). Using the SSE2 instruction set is not always optimal, 
though. In some cases the SSE2 instruction set makes floating point code slower, especially 
when the code mixes float and double (see page 143). The SSE2 instruction set is 
supported by most CPUs and operating systems available today. 
 
You may choose a newer instruction set when compatibility with old CPUs is not needed. 
Even better, you may make multiple versions of the most critical part of the code to support 
different CPUs. This method is explained on page 123. 
 
The code becomes more efficient when there is no exception handling. It is recommended 
to turn off support for exception handling unless the code relies on structured exception 
handling and you want the code to be able to recover from exceptions. See page 60. 
 
It is recommended to turn off support for runtime type identification (RTTI). See page 53. 
 
It is recommended to enable fast floating point calculations or turn off requirements for strict 
floating point calculations unless the strictness is required. See page 71 and 71 for 
discussions. 
 
Turn on the option for "function level linking" if available. See page 79 for an explanation of 
this option. 
 
Use the option for "assume no pointer aliasing" if you are sure the code has no pointer 
aliasing. See page 76 for an explanation. (The Microsoft compiler supports this option only 
in the Professional and Enterprise editions). 
 
Do not turn on correction for the "FDIV bug". The FDIV bug is a minor error in the oldest 
Pentium CPUs which may cause slight imprecision in some rare cases of floating point 
division. Correction for the FDIV bug causes floating point division to be slower. 
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Many compilers have an option for "standard stack frame" or "frame pointer". The standard 
stack frame is used for debugging and exception handling. Omitting the standard stack 
frame makes function calls faster and makes an extra register available for other purposes. 
This is advantageous because registers is a scarce resource. Do not use a stack frame 
unless your program relies on exception handling. 
 

8.6 Optimization directives 
Some compilers have many keywords and directives which are used for giving specific 
optimization instructions at specific places in the code. Many of these directives are 
compiler-specific. You cannot expect a directive for a Windows compiler to work on a Linux 
compiler, or vice versa. But most of the Microsoft directives work on the Intel compiler for 
Windows and the Gnu compiler for Windows, while most of the Gnu directives work on the 
PathScale and Intel compilers for Linux. 

Keywords that work on all C++ compilers 
The register keyword can be added to a variable declaration to tell the compiler that you 
want this to be a register variable. The register keyword is only a hint and the compiler may 
not take the hint, but it can be useful in situations where the compiler is unable to predict 
which variables will be used most. 
 
The opposite of register is volatile. The volatile keyword makes sure that a 
variable is never stored in a register, not even temporarily. This is intended for variables that 
are shared between multiple threads, but it can also be used for turning off all optimizations 
of a variable for test purposes. 
 
The const keyword tells that a variable is never changed. This will allow the compiler to 
optimize away the variable in many cases. For example: 
 

// Example 8.24. Integer constant 
const int ArraySize = 1000; 
int List[ArraySize]; 
... 
for (int i = 0; i < ArraySize; i++) List[i]++; 

 
Here, the compiler can replace all occurrences of ArraySize by the value 1000. The loop 
in example 8.24 can be implemented in a more efficient way if the value of the loop count 
(ArraySize) is constant and known to the compiler at compile time. No memory will be 
allocated for an integer constant, unless the address of it (&ArraySize) is taken. 
 
A const pointer or const reference cannot change what it points to. A const member 
function cannot modify data members. It is recommended to use the const keyword 
wherever appropriate to give the compiler additional information about a variable, pointer or 
member function because this may improve the possibilities for optimization. For example, 
the compiler can safely assume that the value of a class data member is unchanged across 
a call to a const function that is member of the same class. 
 
The static keyword has several meanings depending on the context. The keyword 
static, when applied to a non-member function, means that the function is not accessed 
by any other modules. This makes inlining more efficient and enables interprocedural 
optimizations. See page 79. 
 
The keyword static, when applied to a global variable means that it is not accessed by 
any other modules. This enables interprocedural optimizations. 
 
The keyword static, when applied to a local const variable means that it is initialized 
only the first time the function is called. Example: 
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// Example 8.25 
void Func () { 
   static const double log2 = log(2.0); 
   ... 
} 

 
Here, log(2.0) is only calculated the first time Func is executed. Without static, the 
logarithm would be re-calculated every time Func is executed. This has the disadvantage 
that the function must check if it has been called before. This is faster than calculating the 
logarithm again, but it would be even faster to make log2 a global const variable or 
replace it with the calculated value. 
 
The keyword static, when applied to a class member function means that it cannot 
access any non-static data members or member functions. A static member function is 
called faster than a non-static member function because it doesn't need a 'this' pointer. It 
is recommended to make member functions static where appropriate. 

Compiler-specific keywords 
Fast function calling. __fastcall or __attribute__((fastcall)). The fastcall 
modifier can make function calls faster in 32-bit mode. The first two integer parameters are 
transferred in registers rather than on the stack (three parameters on CodeGear compiler). 
Fastcall functions are not compatible across compilers. Fastcall is not needed in 64-bit 
mode where the parameters are transferred in registers anyway. 
 
Pure function. __attribute__((const))  (Linux only). Specifies a function to be pure. 
This allows common subexpression elimination and loop-invariant code motion. See page 
77. 
 
Assume no pointer aliasing. __declspec(noalias) or __restrict or 
#pragma optimize("a",on). Specifies that pointer aliasing does not occur. See page 
76 for an explanation. Note that these directives do not always work. 
 
Data alignment. __declspec(align(16)) or __attribute__((aligned(16))). 
Specifies alignment of arrays and structures. Useful for vector operations, see page 103. 
 

8.7 Checking what the compiler does 
It can be very useful to study the code that a compiler generates to see how well it 
optimizes the code. Sometimes the compiler does quite ingenious things to make the code 
more efficient, and sometimes it does incredibly stupid things. Looking at the compiler 
output can often reveal things that can be improved by modifications of the source code, as 
the example below shows. 
 
The best way to check the code that the compiler generates is to use a compiler option for 
assembly language output. On most compilers you can do this by invoking the compiler 
from the command line with all the relevant optimization options and the options -S or /Fa 
for assembly output. The assembly output option is also available from the IDE on some 
systems. If the compiler doesn't have an assembly output option then use an object file 
disassembler. 
 
Note that the Intel compiler has an option for source annotation in the assembly output 
(/FAs or -fsource-asm). This option makes the assembly output more readable but 
unfortunately it prevents certain optimizations. Do not use the source annotation option if 
you want to see the result of full optimization. 
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It is also possible to see the compiler-generated code in the disassembly window of a 
debugger. However, the code that you see in the debugger is not the optimized version 
because the debugging options prevent optimization. The debugger cannot set a breakpoint 
in the fully optimized code because it doesn't have the line number information. It is often 
possible to insert a fixed breakpoint in the code with an inline assembly instruction for 
interrupt 3. The code is __asm int 3; or __asm ("int 3"); or __debugbreak();. 
If you run the optimized code (release version) in the debugger then it will break at the 
interrupt 3 breakpoint and show a disassembly, probably without information about function 
names and variable names. Remember to remove the interrupt 3 breakpoint again. 
 
The following example shows what the assembly output of a compiler can look like and how 
you can use it for improving the code. 
 

// Example 8.26a 
void Func(int a[], int & r) { 
   int i; 
   for (i = 0; i < 100; i++) { 
      a[i] = r + i/2; 
   } 
} 

 
The Intel compiler generates the following assembly code from example 8.26a (32-bit 
mode): 
 

; Example 8.26a compiled to assembly: 
ALIGN     4                                ; align by 4 
PUBLIC ?Func@@YAXQAHAAH@Z                  ; mangled function name 
?Func@@YAXQAHAAH@Z PROC NEAR              ; start of Func 
; parameter 1: 8 + esp                     ; a 
; parameter 2: 12 + esp                    ; r 
$B1$1:                                     ; unused label 
        push      ebx                      ; save ebx on stack 
        mov       ecx, DWORD PTR [esp+8]   ; ecx = a 
        xor       eax, eax                 ; eax = i = 0 
        mov       edx, DWORD PTR [esp+12]  ; edx = r 
$B1$2:                                     ; top of loop 
        mov       ebx, eax                 ; compute i/2 in ebx 
        shr       ebx, 31                  ; shift down sign bit of i 
        add       ebx, eax                 ; i + sign(i) 
        sar       ebx, 1                   ; shift right = divide by 2 
        add       ebx, DWORD PTR [edx]     ; add what r points to 
        mov       DWORD PTR[ecx+eax*4],ebx ; store result in array 
        add       eax, 1                   ; i++ 
        cmp       eax, 100                 ; check if i < 100 
        jl        $B1$2                    ; repeat loop if true 
$B1$3:                                     ; unused label 
        pop       ebx                      ; restore ebx from stack 
        ret                                ; return 
        ALIGN     4                        ; align 
?Func@@YAXQAHAAH@Z ENDP                    ; mark end of procedure 

 
Most of the comments generated by the compiler have been replaced by my comments, in 
green. It takes some experience to get used to read and understand compiler-generated 
assembly code. Let me explain the above code in details. The funny looking name 
?Func@@YAXQAHAAH@Z is the name of Func with a lot of added information about the 
function type and its parameters. This is called name mangling. The characters '?', '@' and 
'$' are allowed in assembly names. The details about name mangling are explained in 
manual 5: "Calling conventions for different C++ compilers and operating systems". The 
parameters a and r are transferred on the stack at address esp+8 and esp+12 and loaded 
into ecx and edx, respectively. (In 64-bit mode, the parameters would be transferred in 
registers rather than on the stack). ecx now contains the address of the first element of the 
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array a and edx contains the address of the variable that r points to. A reference is the 
same as a pointer in assembly code. Register ebx is pushed on the stack before it is used 
and popped from the stack before the function returns. This is because the register usage 
convention says that a function is not allowed to change the value of ebx. Only the registers 
eax, ecx and edx can be changed freely. The loop counter i is stored as a register 
variable in eax. The loop initialisation i=0; has been translated to the instruction 
xor eax,eax. This is a common way of setting a register to zero that is more efficient than 
mov eax,0. The loop body begins at the label $B1$2:. This is just an arbitrary name that 
the compiler has chosen for the label. It uses ebx as a temporary register for computing 
i/2+r. The instructions mov ebx,eax / shr ebx,31 copies the sign bit of i into the 
least significant bit of ebx. The next two instructions add ebx, eax / sar ebx,1 adds 
this to i and shifts one place to the right in order to divide i by 2. The instruction add 
ebx, DWORD PTR [edx] adds, not edx but the variable whose address is in edx, to ebx. 
The square brackets mean use the value in edx as a memory pointer. This is the variable 
that r points to. Now ebx contains i/2+r. The next instruction mov DWORD PTR 
[ecx+eax*4],ebx stores this result in a[i]. Note how efficient the calculation of the 
array address is. ecx contains the address of the beginning of the array. eax holds the 
index, i. This index must be multiplied by the size (in bytes) of each array element in order 
to calculate the address of element number i. The size of an int is 4. So the address of 
array element a[i] is ecx+eax*4. The result ebx is then stored at address 
[ecx+eax*4]. This is all done in a single instruction. The CPU supports this kind of 
instructions for fast access to array elements. The instruction add eax,1 is the loop 
increment i++. cmp eax, 100 / jl $B1$2 is the loop condition i < 100. It compares 
eax with 100 and jumps back to the $B1$2 label if i < 100. pop ebx restores the value 
of ebx that was saved in the beginning. ret returns from the function. 
 
The assembly listing reveals three things that can be optimized further. The first thing we 
notice is that it does some funny things with the sign bit of i in order to divide i by 2. The 
compiler has not noticed that i can never be negative so that we don't have to care about 
the sign bit. We can tell it this by making i an unsigned int or by type-casting i to 
unsigned int before dividing by 2 (See page 140). 
 
The second thing we notice is that the value pointed to by r is re-loaded from memory a 
hundred times. This is because we forgot to tell the compiler to assume no pointer aliasing 
(see page 76). Adding the compiler option "assume no pointer aliasing" (if valid) can 
possibly improve the code. 
 
The third thing that can be improved is that r+i/2 could be calculated by an induction 
variable because it is a staircase function of the loop index. The integer division prevents 
the compiler from making an induction variable unless the loop is rolled out by 2. (See page 
69). 
 
The conclusion is that we can help the compiler optimize example 8.26a by rolling out the 
loop by two and making an explicit induction variable. (This eliminates the need for the first 
two suggested improvements). 
 

// Example 8.26b  
void Func(int a[], int & r) { 
   int i; 
   int Induction = r; 
   for (i = 0; i < 100; i += 2) { 
      a[i] = Induction; 
      a[i+1] = Induction; 
      Induction++; 
   } 
} 
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The compiler generates the following assembly code from example 8.26b: 
 

; Example 8.26b compiled to assembly: 
ALIGN     4                                ; align by 4 
PUBLIC ?Func@@YAXQAHAAH@Z                  ; mangled function name 
?Func@@YAXQAHAAH@Z PROC NEAR              ; start of Func 
; parameter 1: 4 + esp                     ; a 
; parameter 2: 8 + esp                     ; r 
$B1$1:                                     ; unused label 
        mov       eax, DWORD PTR [esp+4]   ; eax = address of a 
        mov       edx, DWORD PTR [esp+8]   ; edx = address in r 
        mov       ecx, DWORD PTR [edx]     ; ecx = Induction 
        lea       edx, DWORD PTR [eax+400] ; edx = point to end of a 
$B2$2:                                     ; top of loop 
        mov       DWORD PTR [eax], ecx     ; a[i] = Induction; 
        mov       DWORD PTR [eax+4], ecx   ; a[i+1] = Induction; 
        add       ecx, 1                   ; Induction++; 
        add       eax, 8                   ; point to a[i+2] 
        cmp       edx, eax                 ; compare with end of array 
        ja        $B2$2                    ; jump to top of loop  
$B2$3:                                     ; unused label 
        ret                                ; return from Func 
        ALIGN     4 
; mark_end; 
?Func2@@YAXQAHAAH@Z ENDP 

 
This solution is clearly better. The loop body now contains only six instructions rather than 
nine, even though it is doing two iterations in one. The compiler has replaced i by a second 
induction variable (eax) which contains the address of the current array element. Rather 
than comparing i with 100 in the loop control it compares the array pointer eax to the 
address of the end of the array, which it has calculated in advance and stored in edx. 
Furthermore, this solution is using one register less so that it doesn't have to push and pop 
ebx. 
 
 

9 Optimizing memory access 

9.1 Caching of code and data 
A cache is a proxy for the main memory in a computer. The proxy is smaller and closer to 
the CPU than the main memory and therefore it is accessed much faster. There may be two 
or three levels of cache for the sake of fastest possible access to the most used data. 
 
The speed of CPUs is increasing faster than the speed of RAM memory. Efficient caching is 
therefore becoming more and more important. 
 

9.2 Cache organization 
It is useful to know how a cache is organized if you are making programs that have big data 
structures with non-sequential access and you want to prevent cache contention. You may 
skip this section if you are satisfied with more heuristic guidelines.  
 
Most caches are organized into lines and sets. Let me explain this with an example. My 
example is a cache of 8 kb size with a line size of 64 bytes. Each line covers 64 consecutive 
bytes of memory. One kilobyte is 1024 bytes, so we can calculate that the number of lines is 
8*1024/64 = 128. These lines are organized as 32 sets × 4 ways. This means that a 
particular memory address cannot be loaded into an arbitrary cache line. Only one of the 32 
sets can be used, but any of the 4 lines in the set can be used. We can calculate which set 
of cache lines to use for a particular memory address by the formula: (set) = (memory 
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address) / (line size) % (number of sets). Here, / means integer division with truncation, and % 
means modulo. For example, if we want to read from memory address a = 10000, then we 
have (set) = (10000 / 64) % 32 = 28. This means that a must be read into one of the four 
cache lines in set number 28. The calculation becomes easier if we use hexadecimal 
numbers because all the numbers are powers of 2. Using hexadecimal numbers, we have a 
= 0x2710 and (set) = (0x2710 / 0x40) % 0x20 = 0x1C. Reading or writing a variable from 
address 0x2710 will cause the cache to load the entire 64 or 0x40 bytes from address 
0x2700 to 0x273F into one of the four cache lines from set 0x1C. If the program afterwards 
reads or writes to any other address in this range then the value is already in the cache so 
we don't have to wait for another memory access. 
 
Assume that a program reads from address 0x2710 and later reads from addresses 
0x2F00, 0x3700, 0x3F00 and 0x4700. These addresses all belong to set number 0x1C. 
There are only four cache lines in each set. If the cache always chooses the least recently 
used cache line then the line that covered the address range from 0x2700 to 0x273F will be 
evicted when we read from 0x4700. Reading again from address 0x2710 will cause a cache 
miss. But if the program had read from different addresses with different set values then the 
line containing the address range from 0x2700 to 0x273F would still be in the cache. The 
problem only occurs because the addresses are spaced a multiple of 0x800 apart. I will call 
this distance the critical stride. Variables whose distance in memory is a multiple of the 
critical stride will contend for the same cache lines. The critical stride can be calculated as 
(critical stride) = (number of sets) × (line size) = (total cache size) / (number of ways). 
 
If a program contains many variables and objects that are scattered around in memory then 
there is a risk that several variables happen to be spaced by a multiple of the critical stride 
and cause contentions in the data cache. The same can happen in the code cache if there 
are many functions scattered around in program memory. If several functions that are used 
in the same part of the program happen to be spaced by a multiple of the critical stride then 
this can cause contentions in the code cache. The subsequent sections describe various 
ways to avoid these problems. 
 
More details about how caches work can be found in Wikipedia under CPU cache 
(en.wikipedia.org/wiki/L2_cache). 
 
Table 9.1 lists the cache organization of some common CPUs. 
 

Level 1 
code cache 

Level 1 
data cache 

Level 2 
combined cache 

Main 
memo-
ry 

Pro-
cessor 

Cache 
line 
size 

size ways size 
kb 

ways access 
time 

size 
kb 

ways access 
time 

access 
time 

P3 32 16 kb 4 16 4 3 256 8 8 140 
P4 64 12k 

uops 
8 8 4 2 512 8 19 350 

PM 64 32 kb 8 32 8 3 2048 8 10 80 
Core2 64 32 kb 8 32 8 3 4096 16 14 185 
Opte-
ron 

64 64 kb 2 64 2 3 1024 16 13 100 

Table 9.1. Examples of cache organization of various microprocessors 

Note that the numbers can vary. There are different versions of the microprocessors with 
different sizes of the level 2 cache. The access times are measured in clock cycles. The 
access time for main memory can vary a lot depending on the external hardware. 
 

http://en.wikipedia.org/wiki/L2_cache
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9.3 Functions that are used together should be stored together 
The code cache works most efficiently if functions that are used near each other are also 
stored near each other in the code memory. The functions are usually stored in the order in 
which they appear in the source code. It is therefore a good idea to collect the functions that 
are used in the most critical part of the code together near each other in the same source 
file. Keep often used functions separate from seldom used functions, and put seldom used 
branches such as error handling in the end of a function or in a separate function. 
 
Sometimes, functions are kept in different source files for the sake of modularity. For 
example, it may be convenient to have the member functions of a parent class in one 
source file and the derived class in another source file. If the member functions of parent 
class and derived class are called from the same critical part of the program then it can be 
advantageous to keep the two modules contiguous in program memory. This can be done 
by controlling the order in which the modules are linked together. The link order is usually 
the order in which the modules appear in the project window or makefile. You can check the 
order of functions in memory by requesting a map file from the linker. The map file tells the 
address of each function relative to the beginning of the program. The map file includes the 
addresses of library functions linked from static libraries (.lib or .a), but not dynamic 
libraries (.dll or .so). There is no easy way to control the addresses of dynamically linked 
library functions. 
 

9.4 Variables that are used together should be stored together 
Cache misses are very expensive. A variable can be fetched from the cache in just a few 
clock cycles, but it can take more than a hundred clock cycles to fetch the variable from 
RAM memory if it is not in the cache. Some examples of fetch times are given in table 9.1 
above. 
 
The cache works most efficiently if pieces of data that are used together are stored near 
each other in memory. Variables and objects should preferably be declared in the function 
in which they are used. Such variables and objects will be stored on the stack, which is very 
likely to be in the level-1 cache. The different kinds of variable storage are explained on 
page 26. Avoid global and static variables if possible, and avoid dynamic memory allocation 
(new and delete). 
 
Object oriented programming can be an efficient way of keeping data together. Data 
members of a class (also called properties) are always stored together in an object of the 
class. Data members of a parent class and a derived class are stored together in an object 
of the derived class (see page 50). 
 
The order in which data are stored can be important if you have big data structures. For 
example, if a program has two arrays, a and b, and the elements are accessed in the order 
a[0], b[0], a[1], b[1], ... then you may improve the performance by organizing the data 
as an array of structures: 
 

// Example 9.1a 
int Func(int); 
const int size = 1024; 
int a[size], b[size], i; 
... 
for (i = 0; i < size; i++) { 
   b[i] = Func(a[i]); 
} 

 
The data in this example can be accessed sequentially in memory if organized as follows: 
 

// Example 9.1b 
int Func(int); 
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const int size = 1024; 
struct Sab {int a; int b;}; 
Sab ab[size]; 
int i; 
... 
for (i = 0; i < size; i++) { 
   ab[i].b = Func(ab[i].a); 
} 

 
There will be no extra overhead in the program code for making the structure in example 
9.1b. On the contrary, the code becomes simpler because it needs only calculate element 
addresses for one array rather than two. 
 
Some compilers will use different memory spaces for different arrays even if they are never 
used at the same time. Example: 
 

// Example 9.2a 
void F1(int   x[]); 
void F2(float x[]); 
 
void F3(bool y) {    
   if (y) { 
      int a[1000]; 
      F1(a); 
   } 
   else { 
      float b[1000]; 
      F2(b); 
   } 
} 

 
Here it is possible to use the same memory area for a and b because their live ranges do 
not overlap. You can save a lot of cache space by joining a and b in a union: 
 

// Example 9.2b 
void F3(bool y) {    
   union { 
      int   a[1000]; 
      float b[1000]; 
   }; 
   if (y) { 
      F1(a); 
   } 
   else { 
      F2(b); 
   } 
} 

 
Using a union is not a safe programming practice, of course, because you will get no 
warning from the compiler if the uses of a and b overlap. You should use this method only 
for big objects that take a lot of cache space. Putting simple variables into a union is not 
optimal because it prevents the use of register variables. 
 

9.5 Alignment of data 
A variable is accessed most efficiently if it is stored at a memory address which is divisible 
by the size of the variable. For example, a double takes 8 bytes of storage space. It should 
therefore preferably be stored at an address divisible by 8. The size should always be a 
power of 2. Objects bigger than 16 bytes should be stored at an address divisible by 16. 
You can generally assume that the compiler takes care of this alignment automatically. 
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The alignment of structure and class members may cause a waste of cache space, as 
explained in example 7.34 page 51. 
 
You may choose to align large objects and arrays by the cache line size, which is typically 
64 bytes. This makes sure that the beginning of the object or array coincides with the 
beginning of a cache line. Some compilers will align large static arrays automatically but you 
may as well specify the alignment explicitly by writing: 
 

__declspec(align(64)) int BigArray[1024]; // Windows syntax 
 
or 
 

int BigArray[1024] __attribute__((aligned(64))); // Linux syntax 
 
See page 94 and 122 for discussion of aligning dynamically allocated memory. 
 

9.6 Dynamic memory allocation 
Objects and arrays can be allocated dynamically with new and delete, or malloc and 
free. This can be useful when the amount of memory required is not known at compile 
time. Four typical uses of dynamic memory allocation can be mentioned here: 
 

A large array can be allocated dynamically when the size of the array is not known at 
compile time. 
 

A variable number of objects can be allocated dynamically when the total number of 
objects is not known at compile time.  
 

Text strings and similar objects of variable size can be allocated dynamically. 
   

Arrays that are too large for the stack can be allocated dynamically. 
 
The advantages of dynamic memory allocation are: 
 

Gives a more clear program structure in some cases. 
 

Does not allocate more space than needed. This makes data caching more efficient 
than when a fixed-size array is made very big in order to cover the worst case 
situation of the maximum possible memory requirement. 
 

Useful when no reasonable upper limit to the required amount of memory space can be 
given in advance. 

 
The disadvantages of dynamic memory allocation are: 
 

The process of dynamic allocation and deallocation of memory takes much more time 
than other kinds of storage. See page 26. 
 

The heap space becomes fragmented when objects of different sizes are allocated and 
deallocated in random order. This makes data caching inefficient. 
 

An allocated array may need to be resized in the event that it becomes full. This may 
require that a new bigger memory block is allocated and the entire contents copied 
to the new block. Any pointers to data in the old block then become invalid. 
   

The heap manager will start garbage collection when the heap space has become too 
fragmented. This garbage collection may start at unpredictable times and cause 
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delays in the program flow at inconvenient times when a user is waiting for 
response. 
 

It is the responsibility of the programmer to make sure that everything that has been 
allocated is also deallocated. Failure to do so will cause the heap to be filled up. This 
is a common programming error known as memory leaks. 
 

It is the responsibility of the programmer to make sure that no object is accessed after it 
has been deallocated. Failure to do so is also a common programming error. 
 

The allocated memory may not be optimally aligned. See page 122 for how to align 
dynamically allocated memory. 
 

A matrix or multidimensional array is less efficient when the row length is not known at 
compile time because of the extra work needed for calculating row addresses at 
each access. The compiler may not be able to optimize this with induction variables. 

 
It is important to weigh the advantages over the disadvantages when deciding whether to 
use dynamic memory allocation. There is no reason to use dynamic memory allocation 
when the size of an array or the number of objects is known at compile time or a reasonable 
upper limit can be defined. 
 
The cost of dynamic memory allocation is negligible when the number of allocations is 
limited. Dynamic memory allocation can therefore be advantageous when a program has 
one or a few arrays of variable size. The alternative solution of making the arrays very big to 
cover the worst case situation is a waste of cache space. A situation where a program has 
several large arrays and where the size of each array is a multiple of the critical stride (see 
above, page 85) is likely to cause contentions in the data cache. 
 
If the number of elements in an array grows during program execution then it is preferable 
to allocate the final array size right from the beginning rather than allocating more space 
step by step. In most systems, you cannot increase the size of a memory block that has 
already been allocated. If the final size cannot be predicted or if the prediction turns out to 
be too small, then it is necessary to allocate a new bigger memory block and copy the 
contents of the old memory block into the beginning of the new bigger memory block. This is 
inefficient, of course, and causes the heap space to become fragmented. An alternative is to 
keep multiple memory blocks, either in the form of a linked list or with an index of memory 
blocks. A method with multiple memory blocks makes the access to individual array 
elements more complicated and time consuming. 
 
A collection of a variable number of objects is often implemented as a linked list. Each 
element in a linked list has its own memory block and a pointer to the next block. A linked 
list is less efficient than a linear array for the following reasons: 
 

Each object is allocated separately. The allocation, deallocation and garbage collection 
takes a considerable amount of time. 
 

The objects are not stored contiguously in the memory. This makes data caching less 
efficient. 
 

Extra memory space is used for the link pointers and for information stored by the heap 
manager for each allocated block. 
 

Walking through a linked list takes more time than looping through a linear array. No link 
pointer can be loaded until the previous link pointer has been loaded. This makes a 
critical dependency chain which prevents out-of-order execution. 

   



 91

It is often more efficient to allocate one big block of memory for all the objects (memory 
pooling) than to allocate a small block for each object. 
 
A little-known alternative to using new and delete is to allocate variable-size arrays with 
alloca. This is a function that allocates memory on the stack rather than the heap. The 
space is automatically deallocated when returning from the function in which alloca was 
called. There is no need to deallocate the space explicitly when alloca is used. The 
advantages of alloca over new and delete or malloc and free are: 
 

There is very little overhead to the allocation process because the microprocessor has 
hardware support for the stack. 
 

The memory space never becomes fragmented thanks to the first-in-last-out nature of 
the stack. 
 

Deallocation has no cost because it goes automatically when the function returns. There 
is no need for garbage collection. 
 

The allocated memory is contiguous with other objects on the stack, which makes data 
caching very efficient. 

 
The following example shows how to make a variable-size array with alloca: 
 

// Example 9.3 
#include <malloc.h> 
 
void SomeFunction (int n) { 
   if (n > 0) { 
      // Make dynamic array of n floats: 
      float * DynamicArray = (float *)alloca(n * sizeof(float)); 
      // (Some compilers use the name _alloca) 
      for (int i = 0; i < n; i++) { 
         DynamicArray[i] = WhateverFunction(i); 
         // ... 
      } 
   } 
}  

 
Obviously, a function should never return any pointer or reference to anything it has 
allocated with alloca, because it is deallocated when the function returns. alloca may 
not be compatible with structured exception handling. See the manual for your compiler for 
restrictions on using alloca. 
 

9.7 Container classes 
Whenever dynamic memory allocation is used, it is recommended to wrap the allocated 
memory into a container class. The container class must have a destructor to make sure 
everything that is allocated is also de-allocated. This is the best way to prevent memory 
leaks and other common programming errors associated with dynamic memory allocation. 
 
Container classes can also be convenient for adding bounds-checking to an array and for 
more advanced data structures with First-In-First-Out or First-In-Last-Out access, sort and 
search facilities, binary trees, hash maps etc. 
 
It is common to make container classes in the form of templates where the type of objects 
they contain is provided as a template parameter. There is no performance cost to using 
templates. 
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Ready made container class templates are available for many different purposes. The most 
commonly used set of containers is the Standard Template Library (STL) which comes with 
most modern C++ compilers. The advantage of using ready made containers is that you 
don't have to reinvent the wheel. The containers in the STL are universal, flexible, well 
tested, and very useful for many different purposes. 
 
However, the STL is designed for generality and flexibility, while execution speed, memory 
economy, cache efficiency and code size have got low priority. Especially the memory 
allocation is unnecessarily wasteful in the STL. Some STL templates, such as list, set 
and map are prone to even allocate more memory blocks than there are objects in the 
container. STL deque (doubly ended queue) allocates one memory block for every four 
objects. STL vector stores all the objects in the same memory block, but this memory 
block is re-allocated every time it is filled up, which happens quite often because the block 
size grows by only 50% or less each time. An experiment where 10 elements were inserted, 
one by one, into an STL vector turned up to cause seven memory allocations of sizes 1, 2, 
3, 4, 6, 9 and 13 objects, respectively (MS Visual Studio 2008 version). This wasteful 
behavior can be prevented by calling vector::reserve with a prediction or estimate of 
the final size needed before adding the first object to the vector. The other STL containers 
do not have such a feature for reserving memory in advance. 
 
The frequent allocation and de-allocation of memory with new and delete (or malloc and 
free) causes the memory to become fragmented and caching becomes inefficient. There is 
a large overhead cost to memory management and garbage collection, as mentioned 
above. 
 
The generality of the STL also costs in terms of code size. In fact, the STL has been 
criticized for code bloat and complexity (en.wikipedia.org/wiki/Standard_Template_Library). 
The objects stored in an STL container are allowed to have constructors and destructors. 
The copy constructors and destructors of each object are called every time an object is 
moved, which may happen quite often. This is necessary if the objects stored are containers 
themselves. But implementing a matrix in STL as a vector of vectors, as is often seen, is 
certainly not the most efficient solution. 
 
Many containers use linked lists. A linked list is a convenient way of making the container 
expandable, but it is very inefficient. Linear arrays are faster than linked lists in most cases.  
 
The so-called iterators that are used in STL for accessing container elements are 
cumbersome to use for many programmers and they are not necessary if you can use a 
linear list with a simple index. A good compiler can optimize away the extra overhead of the 
iterator in some cases, but not all. 
 
Fortunately, there are more efficient alternatives that can be used where execution speed, 
memory economy and small code size has higher priority than code generality. The most 
important remedy is memory pooling. It is more efficient to store many objects together in 
one big memory block than to store each object in its own allocated memory block. A large 
block containing many objects can be copied or moved with a single call to memcpy rather 
than moving each object separately if there are no copy constructors and destructors to call. 
 
I have implemented a collection of example container classes that use these methods to 
improve efficiency. These are available as an appendix to this manual at 
www.agner.org/optimize/cppexamples.zip containing container classes and templates for 
several different purposes. All these examples are optimized for execution speed and for 
minimizing memory fragmentation. Bounds checking is included for the sake of security, but 
may be removed after debugging if required for performance reasons. Use these example 
containers in cases where the performance of the STL is not satisfactory. 
 

http://en.wikipedia.org/wiki/Standard_Template_Library
http://www.agner.org/optimize/cppexamples.zip
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The following considerations should be taken into account when choosing a container for a 
specific purpose: 
 

• Contain one or multiple elements? If the container is to hold only one element then 
use a smart pointer (see page 38). 
   

• Is the size known at compile time? If the number of elements is known at compile 
time or a not-too-big upper limit can be set then the optimal solution is a fixed size 
array or container without dynamic memory allocation. Dynamic memory allocation 
may be needed, however, if the array or container is too big for the stack. 
   

• Is the size known before the first element is stored? If the total number of elements 
to store is known before the first element is stored (or if a reasonable estimate can 
be made) then it is preferred to use a container that allows you to reserve the 
amount of memory needed in advance rather than allocating piecewise or re-
allocating when a memory block turns out to be too small. 
   

• Are objects numbered consecutively? If objects are identified by consecutive indices 
or by keys within a limited range then a simple array is the most efficient solution. 
   

• Is a multidimensional structure needed? A matrix or multidimensional array should 
be stored in one contiguous memory block. Do not use one container for each row or 
column. The access is faster if the number of elements per row is a constant known 
at compile time. 
     

• Are objects accessed in a FIFO manner? If objects are accessed on a First-In-First-
Out (FIFO) basis then use a queue. It is more efficient to implement a queue as a 
circular buffer than as a linked list. 
   

• Are objects accessed in a FILO manner? If objects are accessed on a First-In-Last-
Out (FILO) basis then use a linear array with a top-of-stack index. 
 

• Are objects identified by a key? If the key values are confined to a narrow range then 
a simple array can be used. If the number of objects is high then the most efficient 
solution may be a binary tree or a hash map.  
   

• Is searching needed after all objects have been added? If search facilities are 
needed, but only after all objects have been stored in the container, then the most 
efficient solution is to use a linear array. Sort the array after all elements have been 
added and then use binary search for finding elements. 
   

• Is searching needed before all objects have been added? If search facilities are 
needed, and new objects can be added at any time, then the solution is more 
complicated. If the total number of elements is small then a sorted list is the most 
efficient solution because of its simplicity. But a sorted list can be very inefficient if 
the list is large because the insertion of a new element in the list causes all 
subsequent elements in the sequence to be moved. A binary tree or a hash map is 
needed in this case. A binary tree may be used if elements have a natural order and 
there are search requests for elements in a specific interval. A hash map can be 
used if elements have no specific order but are identified by a unique key. 
   

• Do objects have mixed types or sizes? It is possible to store objects of different 
types or strings of different lengths in the same memory pool. See 
www.agner.org/optimize/cppexamples.zip. If the number and types of elements is 
known at compile time then there is no need to use a container or memory pool. 
   

http://www.agner.org/optimize/cppexamples.zip


 94

• Alignment? Some applications require that data are aligned at round addresses. 
Especially the use of intrinsic vectors requires alignment to addresses divisible by 
16. Alignment of data structures to addresses divisible by the cache line size 
(typically 64) can improve performance in some cases. 
   

• Multiple threads? Container classes are generally not thread safe if multiple threads 
can add, remove or modify objects simultaneously. In multithreaded applications it is 
much more efficient to have separate containers for each thread than to temporarily 
lock a container for exclusive access by each thread. 
   

• Pointers to contained objects? It may not be safe to make a pointer to a contained 
object because the container may move the object in case memory re-allocation is 
needed. Objects inside containers should be identified by their index or key in the 
container rather than by pointers or references. It is OK, however, to pass a pointer 
or reference to such an object to a function that doesn't add or remove any objects if 
no other threads have access to the container. 
   

• Can the container be recycled? There is a large cost to creating and deleting 
containers. If the program logic allows it, it may be more efficient to re-use a 
container than to delete it and create a new one. 

  
I have provided several examples of suitable containers class templates in 
www.agner.org/optimize/cppexamples.zip. These may be used as alternatives to the 
standard template library (STL) if the full generality and flexibility of the STL containers is 
not needed. You may write your own container classes or modify the ones that are available 
to fit specific needs. 
 

9.8 Strings 
Text strings typically have variable lengths that are not known at compile time. The storage 
of text strings in classes like string, wstring or CString uses new and delete to 
allocate a new memory block every time a string is created or modified. This can be quite 
inefficient if a program creates or modifies many strings. The old C-style character arrays 
are much more efficient, but unfortunately also unsafe in case the string is longer than the 
array. To improve speed without jeopardizing safety, you may store all strings in a memory 
pool, as explained above. Examples are provided in an appendix to this manual at 
www.agner.org/optimize/cppexamples.zip. 
 

9.9 Access data sequentially 
A cache works most efficiently when the data are accessed sequentially. It works somewhat 
less efficiently when data are accessed backwards and much less efficiently when data are 
accessed in a random manner. This applies to reading as well as writing data. 
 
Multidimensional arrays should be accessed with the last index changing in the innermost 
loop. This reflects the order in which the elements are stored in memory. Example: 
 

// Example 9.4 
const int NUMROWS = 100, NUMCOLUMNS = 100; 
int matrix[NUMROWS][NUMCOLUMNS]; 
int row, column; 
for (row = 0; row < NUMROWS; row++) 
   for (column = 0; column < NUMCOLUMNS; column++)  
      matrix[row][column] = row + column; 

 
Do not swap the order of the two loops (except in Fortran where the storage order is 
opposite). 
 

http://www.agner.org/optimize/cppexamples.zip
http://www.agner.org/optimize/cppexamples.zip
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9.10 Cache contentions in large data structures 
It is not always possible to access a multidimensional array sequentially. Some applications 
(e.g. in linear algebra) require other access patterns. This can cause severe delays if the 
distance between rows in a big matrix happen to be equal to the critical stride, as explained 
on page 86. This will happen if the size of a matrix line (in bytes) is a high power of 2. 
 
The following example illustrates this. My example is a function which transposes a 
quadratic matrix, i.e. each element matrix[r][c] is swapped with element 
matrix[c][r]. 
 

// Example 9.5a 
const int SIZE = 64;          // number of rows/columns in matrix 
 
void transpose(double a[SIZE][SIZE]) { // function to transpose matrix 
   // define a macro to swap two array elements: 
   #define swapd(x,y) {temp=x; x=y; y=temp;} 
 
   int r, c;  double temp; 
   for (r = 1; r < SIZE; r++) {        // loop through rows 
      for (c = 0; c < r; c++) {        // loop columns below diagonal 
         swapd(a[r][c], a[c][r]);      // swap elements 
      } 
   } 
} 
 
void test () { 
   __declspec(__align(64))       // align by cache line size 
   double matrix[SIZE][SIZE];    // define matrix 
   transpose(matrix);            // call transpose function 
} 

 
Transposing a matrix is the same as reflecting it at the diagonal. Each element 
matrix[r][c] below the diagonal is swapped with element matrix[c][r] at its mirror 
position above the diagonal. The c loop in example 9.5a goes from the leftmost column to 
the diagonal. The elements at the diagonal remain unchanged.  
 
The problem with this code is that if the elements matrix[r][c] below the diagonal are 
accessed row-wise, then the mirror elements matrix[c][r] above the diagonal are 
accessed column-wise. 
 
Assume now that we are running this code with a 64×64 matrix on a Pentium 4 computer 
where the level-1 data cache is 8 kb = 8192 bytes, 4 ways, with a line size of 64. Each 
cache line can hold 8 double's of 8 bytes each. The critical stride is 8192 / 4 = 2048 bytes 
= 4 rows. 
 
Let's look at what happens inside the loop, for example when r = 28. We take the elements 
from row 28 below the diagonal and swap these elements with column 28 above the 
diagonal. The first eight elements in row 28 share the same cache line. But these eight 
elements will go into eight different cache lines in column 28 because the cache lines follow 
the rows, not the columns. Every fourth of these cache lines belong to the same set in the 
cache. When we reach element number 16 in column 28, the cache will evict the cache line 
that was used by element 0 in this column. Number 17 will evict number 1. Number 18 will 
evict number 2, etc. This means that all the cache lines we used above the diagonal have 
been lost at the time we are swapping column 29 with line 29. Each cache line has to be 
reloaded eight times because it is evicted before we need the next element. I have 
confirmed this by measuring the time it takes to transpose a matrix using example 9.5a on a 
Pentium 4 with different matrix sizes. The results of my experiment are given below. The 
time unit is clock cycles per array element. 
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Matrix size Total kilobytes Time per element 

63×63 31 11.6 
64×64 32 16.4 
65×65 33 11.8 

127×127 126 12.2 
128×128 128 17.4 
129×129 130 14.4 
511×511 2040 38.7 
512×512 2048 230.7 
513×513 2056 38.1 

Table 9.2. Time for transposition of different size matrices, 
clock cycles per element. 

 
The table shows that it takes 40% more time to transpose the matrix when the size of the 
matrix is a multiple of the level-1 cache size. This is because the critical stride is a multiple 
of the size of a matrix line. The delay is less than the time it takes to reload the level-1 
cache from the level-2 cache because the out-of-order execution mechanism can prefetch 
the data. 
 
The effect is much more dramatic when contentions occur in the level-2 cache. The level-2 
cache is 512 kb, 8 ways. The critical stride for the level-2 cache is 512 kb / 8 = 64 kb. This 
corresponds to 16 lines in a 512×512 matrix. My experimental results in table 9.2 show that 
it takes six times as long time to transpose a matrix when contentions occur in the level-2 
cache as when contentions do not occur. The reason why this effect is so much stronger for 
level-2 cache contentions than for level-1 cache contentions is that the level-2 cache cannot 
prefetch more than one line at a time. 
 
A simple way of solving the problem is to make the rows in the matrix longer than needed in 
order to avoid that the critical stride is a multiple of the matrix line size. I tried to make the 
matrix 512×520 and leave the last 8 columns unused. This removed the contentions and the 
time consumption was down to 36. 
 
There may be cases where it is not possible to add unused columns to a matrix. For 
example, a library of math functions should work efficiently on all sizes of matrices. An 
efficient solution in this case is to divide the matrix into smaller squares and handle one 
square at a time. This is called square blocking or tiling. This technique is illustrated in 
example 9.5b. 
 

// Example 9.5b 
void transpose(double a[SIZE][SIZE]) { 
   // Define macro to swap two elements: 
   #define swapd(x,y) {temp=x; x=y; y=temp;} 
   // Check if level-2 cache contentions will occur: 
   if (SIZE > 256 && SIZE % 128 == 0) { 
      // Cache contentions expected. Use square blocking: 
      int r1, r2, c1, c2; double temp; 
      // Define size of squares: 
      const int TILESIZE = 8;   // SIZE must be divisible by TILESIZE 
      // Loop r1 and c1 for all squares: 
      for (r1 = 0; r1 < SIZE; r1 += TILESIZE) { 
         for (c1 = 0; c1 < r1; c1 += TILESIZE) { 
            // Loop r2 and c2 for elements inside sqaure: 
            for (r2 = r1; r2 < r1+TILESIZE; r2++) { 
               for (c2 = c1; c2 < c1+TILESIZE; c2++) { 
                  swapd(a[r2][c2],a[c2][r2]); 
               } 
            } 
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         } 
         // At the diagonal there is only half a square. 
         // This triangle is handled separately: 
         for (r2 = r1+1; r2 < r1+TILESIZE; r2++) { 
            for (c2 = r1; c2 < r2; c2++) { 
               swapd(a[r2][c2],a[c2][r2]); 
            } 
         } 
      } 
   } 
   else { 
      // No cache contentions. Use simple method. 
      // This is the code from example 9.5a: 
      int r, c;  double temp; 
      for (r = 1; r < SIZE; r++) {    // loop through rows 
         for (c = 0; c < r; c++) {    // loop columns below diagonal 
            swapd(a[r][c], a[c][r]);  // swap elements 
         } 
      } 
  } 
} 

 
This code took 50 clock cycles per element for a 512×512 matrix in my experiments. 
 
Contentions in the level-2 cache are so expensive that it is very important to do something 
about them. You should therefore be aware of situations where the number of columns in a 
matrix is a high power of 2. Contentions in the level-1 cache are less expensive. Using 
complicated techniques like square blocking for the level-1 cache may not be worth the 
effort. 
 
Square blocking and similar methods are further described in the book "Performance 
Optimization of Numerically Intensive Codes", by S. Goedecker and A. Hoisie, SIAM 2001. 
 

9.11 Explicit cache control 
Microprocessors with the SSE and SSE2 instruction sets have certain instructions that allow 
you to manipulate the data cache. These instructions are accessible from compilers that 
have support for intrinsic functions (i.e. Microsoft, Intel and Gnu). Other compilers need 
assembly code to access these instructions.  
 

Function Assembly name Intrinsic function name Instruction 
set 

Prefetch PREFETCH _mm_prefetch SSE 
Store 4 bytes without cache MOVNTI _mm_stream_si32 SSE2 
Store 8 bytes without cache MOVNTQ _mm_stream_pi SSE 
Store 16 bytes without cache MOVNTPS _mm_stream_ps SSE 
Store 16 bytes without cache MOVNTPD _mm_stream_pd SSE2 
Store 16 bytes without cache MOVNTDQ _mm_stream_si128 SSE2 
Table 9.3. Cache control instructions. 

 
There are other cache control instructions than the ones mentioned in table 9.3, such as 
flush and fence instructions, but these are hardly relevant to optimization. 

Prefetching data 
The prefetch instruction can be used for fetching a cache line that we expect to use later in 
the program flow. However, this did not improve the execution speed in any of the examples 
I have tested on a Pentium 4 processor. The reason is that modern processors prefetch 
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data automatically thanks to out-of-order execution and advanced prediction mechanisms. It 
can be expected that future microprocessors will be able to automatically prefetch data for 
regular access patterns containing one or two streams with different strides. Therefore, you 
don't have to prefetch data explicitly if data access can be arranged in regular patterns with 
fixed strides. 

Uncached memory store 
An uncached write is more expensive than an uncached read because the write causes an 
entire cache line to be read and written back. 
 
The so-called nontemporal write instructions (MOVNT) are designed to solve this problem. 
These instructions write directly to memory without loading a cache line. This is 
advantageous in cases where we are writing to uncached memory and we do not expect to 
read from the same or a nearby address again before the cache line would be evicted. Don't 
mix nontemporal writes with normal writes or reads to the same memory area. 
 
The nontemporal write instructions are not suitable for example 9.5 because we are reading 
and writing from the same address so a cache line will be loaded anyway. If we modify 
example 9.5 so that it writes only, then the effect of nontemporal write instructions becomes 
noticeable. The following example transposes a matrix and stores the result in a different 
array. 
 

// Example 9.6a 
const int SIZE = 512; // number of rows and columns in matrix 
 
// function to transpose and copy matrix 
void TransposeCopy(double a[SIZE][SIZE], double b[SIZE][SIZE]) { 
   int r, c;  
   for (r = 0; r < SIZE; r++) { 
      for (c = 0; c < SIZE; c++) { 
         a[c][r] = b[r][c]; 
      } 
   } 
} 

 
This function writes to matrix a in a column-wise manner where the critical stride causes all 
writes to load a new cache line in both the level-1 and the level-2 cache. Using the 
nontemporal write instruction prevents the level-2 cache from loading any cache lines for 
matrix a: 
 

// Example 9.6b. 
#include "xmmintrin.h"  // header for intrinsic functions 
 
// This function stores a double without loading a cache line: 
static inline void StoreNTD(double * dest, double const & source) { 
   _mm_stream_pi((__m64*)dest, *(__m64*)&source);  // MOVNTQ 
   _mm_empty();                                    // EMMS 
} 
 
const int SIZE = 512; // number of rows and columns in matrix 
// function to transpose and copy matrix 
void TransposeCopy(double a[SIZE][SIZE], double b[SIZE][SIZE]) { 
   int r, c;  
   for (r = 0; r < SIZE; r++) { 
      for (c = 0; c < SIZE; c++) { 
         StoreNTD(&a[c][r], b[r][c]); 
      } 
   } 
} 
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The execution times per matrix cell for different matrix sizes were measured on a Pentium 4 
computer. The measured results were as follows: 
 

Matrix size Time per element 
Example 9.6a 

Time per element 
Example 9.6b 

64×64 14.0 80.8 
65×65 13.6 80.9 

512×512 378.7 168.5 
513×513 58.7 168.3 

Table 9.4. Time for transposing and copying different size 
matrices, clock cycles per element. 

 
As table 9.4 shows, the method of storing data without caching is advantageous if, and only 
if, a level-2 cache miss can be expected. The 64×64 matrix size causes misses in the level-
1 cache. This has hardly any effect on the total execution time because the cache miss on a 
store operation doesn't delay the subsequent instructions. The 512×512 matrix size causes 
misses in the level-2 cache. This has a very dramatic effect on the execution time because 
the memory bus is saturated. This can be ameliorated by using nontemporal writes. If the 
cache contentions can be prevented in other ways, as explained in chapter 9.10, then the 
nontemporal write instructions are not optimal. 
 
There are certain restrictions on using the instructions listed in table 9.3. All these 
instructions require that the microprocessor has the SSE or SSE2 instruction set, as listed in 
the table. The 16-byte instructions MOVNTPS, MOVNTPD and MOVNTDQ require that the 
operating system has support for XMM registers; see page 123.  
 
The Intel compiler can insert nontemporal writes automatically in vectorized code when the  
#pragma vector nontemporal is used. However, this does not work in example  9.6b. 
 
The MOVNTQ instruction must be followed by an EMMS instruction before any floating point 
instructions. This is coded as _mm_empty() as shown in example 9.6b. The MOVNTQ 
instruction cannot be used in 64-bit device drivers for Windows. 
 
 

10 Multithreading 
The clock frequency of the CPU is limited by physical factors. The way to increase the 
throughput of CPU-intensive programs when the clock frequency is limited is to do multiple 
things at the same time. There are three ways to do things in parallel: 
 

• Using multiple CPUs or multi-core CPUs, as described in this chapter. 
 

• Using the out-of-order capabilities of modern CPUs, as described in chapter 11. 
 

• Using the vector operations of modern CPUs, as described in chapter 12. 
 
It is important to distinguish between coarse-grained parallelism and fine-grained parallelism 
when deciding whether it is advantageous to do things in parallel. Coarse-grained 
parallelism refers to the situation where a long sequence of operations can be carried out 
independently of other tasks that are running in parallel. Fine-grained parallelism is the 
situation where a task can be divided into many small subtasks, but it is not possible to work 
for very long on a particular subtask before coordination with other subtasks is necessary. 
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Most modern CPUs have two or more cores, and it can be expected that the number of 
cores will grow in the future. The use of multiple CPU cores is useful for coarse-grained 
parallelism but not for fine-grained parallelism because communication and synchronization 
between the different cores is slow. The methods described in chapter  11 and 12 are more 
useful for fine-grained parallelism. 
 
The way to use multiple CPU cores is to divide the work into multiple threads. The use of 
threads is discussed on page 59. We should preferably have no more threads with the 
same priority than the number of cores or logical processors available in the system. The 
number of logical processors available can be determined by a system call (e.g. 
GetProcessAffinityMask in Windows). 
 
There are several ways to divide the workload between multiple CPU cores: 
 

• Define multiple threads and put an equal amount of work into each thread. This 
method works with all compilers. 
 

• Use automatic parallelization. The Gnu, Intel and PathScale compilers can 
automatically detect opportunities for parallelization in the code and divide it into 
multiple threads. 
 

• Use OpenMP directives. OpenMP is a standard for specifying parallel processing in 
C++ and Fortran. These directives are supported by Microsoft, Intel, PathScale and 
Gnu compilers. See www.openmp.org and the compiler manual for details. 
 

• Use function libraries with internal multi-threading, e.g. Intel Math Kernel Library. 
 
The multiple CPU cores or logical processors usually share the same cache, at least at the 
last cache level, and possibly even the same level-1 cache. The advantage of sharing the 
same cache is that communication between threads becomes faster and that threads can 
share the same code and read-only data. The disadvantage is that the cache will be filled 
up if the threads use different memory areas, and there will be cache contentions if the 
threads write to the same memory areas. 
 
A CPU with multiple cores or a system with multiple CPUs is very useful for running multiple 
tasks in parallel. A CPU-intensive program with possibilities for coarse-grained parallelism 
can benefit very much from dividing the calculations into multiple threads. The workload 
should preferably be divided evenly between the threads. Multithreading may not be 
advantageous for fine-grained parallelism because the communication and synchronization 
between threads consume a considerable amount of extra resources. 
 
Data that are read only can be shared between multiple threads, while data that are 
modified should be separate for each thread. Avoid having two threads writing to the same 
cache line, because they will invalidate each other's caches and cause large delays. The 
easiest way to make thread-specific data is to declare it locally in the thread function so that 
it is stored on the stack. Each thread has its own stack. Alternatively, you may define a 
structure or class for containing thread-specific data and make one instance for each 
thread. This structure or class should be aligned by at least the cache line size in order to 
avoid multiple threads writing to the same cache line. The cache line size is typically 64 
bytes on contemporary processors. The cache line size may possibly be more (128 or 256 
bytes) on future processors. 
 
Running multiple threads on a system with only one logical processor is not an advantage if 
the threads are competing for the same resources. But it can be a good idea to put time-
consuming calculations into a separate thread with lower priority than the user interface. It is 
also useful to put file access and network access in separate threads so that one thread can 
do calculations while another thread is waiting for response from a hard disk or network. 

http://www.openmp.org/
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Various development tools for supporting multi-threaded software are available from Intel. 
See Intel Technology Journal Vol. 11, Iss. 4 (www.intel.com/technology/itj/). 
 

10.1 Hyperthreading 
Some versions of Intel microprocessors are able to run two threads in each core. For 
example, a Core i7 processor with four cores can run eight threads simultaneously. This 
processor has four physical processors but eight logical processors. 
 
Hyperthreading is Intel's term for running multiple threads in the same processor core. Two 
threads running in the same core will always compete for the same resources, such as 
cache and execution units. If any of the shared resources are limiting factors for the 
performance then there is no advantage to using hyperthreading. On the contrary, each 
thread may run at less than half speed because of cache evictions and other resource 
conflicts. But if a large fraction of the time goes to cache misses, branch misprediction, or 
long dependency chains then each thread will run at more than half the single-thread speed. 
In this case there is an advantage to using hyperthreading, but the performance is not 
doubled. A thread that shares the resources of the core with another thread will always run 
slower than a thread that runs alone in the core. 
 
It is often necessary to do experiments in order to determine whether it is advantageous to 
use hyperthreading or not in a particular application. 
 
If hyperthreading is not advantageous then it is necessary to query certain operating system 
functions (e.g. GetLogicalProcessorInformation in Windows) to determine if the 
processor has hyperthreading. If so, then you can avoid hyperthreading by using only the 
even-numbered logical processors (0, 2, 4, etc.). Older operating systems lack the 
necessary functions for distinguishing between the number of physical processors and the 
number of logical processors. 
 
There is no way to tell a hyperthreading processor to give higher priority to one thread than 
another. Therefore, it can often happen that a low-priority thread steals resources from a 
higher-priority thread running in the same core. It is the responsibility of the operating 
system to avoid running two threads with widely different priority in the same processor 
core. Unfortunately, contemporary operating systems are not always avoiding this. 
 
The Intel compiler is capable of making two threads where one thread is used for 
prefetching data for the other thread. However, in most cases you can rely on automatic 
prefetching so this feature is rarely needed. 
 
 

11 Out of order execution 
Modern x86 CPUs can execute instructions out of order or do more than one thing at the 
same time. The following example shows how to take advantage of this capability: 
 

// Example 11.1a 
float a, b, c, d, y; 
y = a + b + c + d; 

 
This expression is calculated as ((a+b)+c)+d. This is a dependency chain where each 
addition has to wait for the result of the preceding one. You can improve this by writing: 
 

// Example 11.1b 
float a, b, c, d, y; 
y = (a + b) + (c + d); 

http://www.intel.com/technology/itj/
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Now the two parentheses can be calculated independently. The CPU will start to calculate 
(c+d) before it has finished the calculation of (a+b). This can save several clock cycles. 
You cannot assume that an optimizing compiler will change the code in example 11.1a to 
11.1b automatically, although it appears to be an obvious thing to do. The reason why 
compilers do not make this kind of optimizations is that it may cause a loss of precision, as 
explained on page 71. You have to set the parentheses manually. 
 
The effect of dependency chains is stronger when they are long. This is often the case in 
loops. Consider the following example, which calculates the sum of 100 numbers: 
 

// Example 11.2a 
const int size = 100; 
float list[size], sum = 0;  int i; 
for (i = 0; i < size; i++) sum += list[i]; 

 
This has a long dependency chain. If a floating point addition takes 5 clock cycles, then this 
loop will take approximately 500 clock cycles. You can improve the performance 
dramatically by unrolling the loop and splitting the dependency chain in two: 
 

// Example 11.2b 
const int size = 100; 
float list[size], sum1 = 0, sum2 = 0;  int i; 
for (i = 0; i < size; i += 2) { 
   sum1 += list[i]; 
   sum2 += list[i+1];} 
sum1 += sum2; 

 
If the microprocessor is doing an addition to sum1 from time T to T+5, then it can do another 
addition to sum2 from time T+1 to T+6, and the whole loop will take only 256 clock cycles. 
 
Calculations in a loop where each iteration needs the result of the preceding one is called a 
loop-carried dependency chain. Such dependency chains can be very long and very time-
consuming. There is a lot to gain if such dependency chains can be broken up. The two 
summation variables sum1 and sum2 are called accumulators. The optimal number of 
accumulators for floating point addition and multiplication is three or four. Current CPUs 
have only one floating point addition unit, but this unit is pipelined, as explained above, so 
that it can start a new addition before the preceding addition is finished. 
 
Unrolling a loop becomes a little more complicated if the number of iterations is not divisible 
by the unroll factor. For example, if the number of elements in list in example 11.2b was 
an odd number then we would have to add the last element outside the loop or add an extra 
dummy element to list and make this extra element zero. 
 
It is not necessary to unroll a loop and use multiple accumulators if there is no loop-carried 
dependency chain. A microprocessor with out-of-order capabilities can overlap the iterations 
and start the calculation of one iteration before the preceding iteration is finished. Example: 
 

// Example 11.3 
const int size = 100;  int i; 
float a[size], b[size], c[size]; 
float register temp; 
for (i = 0; i < size; i++) { 
   temp = a[i] + b[i]; 
   c[i] = temp * temp; 
} 

 
Microprocessors with out-of-order capabilities are very smart. They can detect that the value 
of register temp in one iteration of the loop in example 11.3 is independent of the value in 
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the previous iteration. This allows it to begin calculating a new value of temp before it is 
finished using the previous value. It does this by assigning a new physical register to temp 
even though the logical register that appears in the machine code is the same. This is called 
register renaming. The CPU can hold many renamed instances of the same logical register. 
 
This advantage comes automatically. There is no reason to unroll the loop and have a 
temp1 and temp2. All modern CPUs are capable of register renaming and doing multiple 
calculations in parallel if certain conditions are satisfied. The conditions that make it possible 
for the CPU to overlap the calculations of loop iterations are: 
 

No loop-carried dependency chain. Nothing in the calculation of one iteration should 
depend on the result of the previous iteration (except for the loop counter, which is 
calculated fast if it is an integer). 
 

All intermediate results should be saved in registers, not in memory. The renaming 
mechanism works only on registers, not on variables in memory or cache. Most 
compilers will make temp a register variable in example 11.3 even without the 
register keyword. The CodeGear compiler cannot make floating point register 
variables, but will save temp in memory. This prevents the CPU from overlapping 
calculations. 
 

The loop branch should be predicted. This is no problem if the repeat count is large or 
constant. If the loop count is small and changing then the CPU may occasionally 
predict that the loop exits, when in fact it does not, and therefore fail to start the next 
calculation. However, the out-of-order mechanism allows the CPU to increment the 
loop counter ahead of time so that it may detect the misprediction before it is too 
late. You should therefore not be too worried about this condition. 

 
In general, the out-of-order execution mechanism works automatically. However, there are a 
couple of things that the programmer can do to take maximum advantage of out-of-order 
execution. The most important thing is to avoid long dependency chains. Another thing that 
you can do is to mix different kinds of operations in order to divide the work evenly between 
the different execution units in the CPU. It can be advantageous to mix integer and floating 
point calculations as long as you don't need conversions between integers and floating point 
numbers. It can also be advantageous to mix floating point addition with floating point 
multiplication, to mix simple integer with vector integer operations, and to mix mathematical 
calculations with memory access. 
 
 

12 Using vector operations 
Today's microprocessors have vector instructions that make it possible to do operations on 
all elements of a vector simultaneously. This is also called Single-Instruction-Multiple-Data 
(SIMD) operations or MMX, XMM and YMM instructions. 
 
Vector operations are useful when doing calculations on large data sets where the same 
operation is performed on multiple data elements and the program logic allows parallel 
calculations. Examples are image processing, sound processing, and mathematical 
operations on vectors and matrixes. Algorithms that are inherently serial, such as most 
sorting algorithms, are not suited for vector operations. Algorithms that rely heavily on table 
lookup or require a lot of data shuffling, such as many encryption algorithms, cannot easily 
be implemented as vector operations. 
 
The vector operations use a set of special vector registers called XMM registers. Each XMM 
register is 128 bits wide. This register can be organized as a vector of sixteen 8-bit integers, 
eight 16-bit integers, four 32-bit integers, two 64-bit integers, four float's or two double's. 
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For example, you can add two vectors of four float's each in one operation. This is four 
additions in one. 
 
The older MMX registers that are 64 bits wide may be considered obsolete. The MMX 
registers can be used only in code that has no floating point operations because the MMX 
registers are aliased upon the floating point registers. It is not recommended to use these 
64-bit registers. 
 
In most cases the vector operations require that the SSE2 or later instruction set is enabled 
in both the compiler, the CPU, and the operating system. See page 123 for how to check 
this. Vectors must be aligned by 16, i.e. stored at a memory address that is divisible by 16 
(see below). 
 
Vector operations are particularly fast on processors with full 128-bit execution units, such 
as the Intel Core 2 and the AMD K10 processors. These processors can calculate a vector 
just as fast as a scalar (Scalar means not a vector). Earlier processors are using a 64-bit 
execution unit twice for calculating a 128-bit vector. There is hardly any advantage in 
making a vector of two double precision floats on processors with 64-bit units when the time 
it takes to calculate a vector is double the time it takes to calculate each of the two scalars. 
 
The use of vector operations is more advantageous the smaller the data elements are. For 
example, it takes the same time to add two vectors of four float's and two vectors of two 
double's. With float's you get four additions in the same time that it takes to do two 
additions with double's. It is almost always advantageous to use vector operations on 
contemporary CPUs if the data fit nicely into the vector registers. It may not be 
advantageous on older processors with 64-bit execution units or if a lot of data manipulation 
is required for making the data fit into the vector registers. 
 

12.1 AVX instruction set and YMM registers 
The 128-bit XMM registers will be extended to 256-bit registers and named YMM in the 
future AVX instruction set. Microprocessors with AVX support are expected to be available 
from Intel and AMD in 2011. The main advantage of the AVX instruction set is that it allows 
larger floating point vectors. There are also other advantages that may improve the 
performance somewhat. 
 
Code that is compiled for the AVX instruction set can run only if supported by the operating 
system. AVX is supported in Windows 7 and Windows Server 2008 R2 as well as in Linux 
kernel version 2.6.30 and later. 
 
The AVX instruction set is supported in Intel compiler version 11. AVX support in other 
compilers can be expected soon. 
 
There is a problem when mixing code compiled with and without AVX support. There is a 
performance penalty when going from AVX code to non-AVX code because of a change in 
the YMM register state. This penalty should be avoided by calling the intrinsic function 
_mm256_zeroupper() before any transition from AVX code to non-AVX code. This can 
be necessary in the following cases: 
 

• If part of a program is compiled with AVX support and another part of the program is 
compiled without AVX support then call _mm256_zeroupper() before leaving the 
AVX part. 
   

• If a function is compiled in multiple versions with and without AVX using CPU 
dispatching then call _mm256_zeroupper() before leaving the AVX part. 
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• If a piece of code compiled with AVX support calls a function in a library other than 
the library that comes with the compiler, and the library has no AVX support, then 
call _mm256_zeroupper() before calling the library function. 

 
You may use _mm256_zeroall() instead of _mm256_zeroupper() except in 64-bit 
Windows systems. 
 

12.2 Automatic vectorization 
The best compilers can use vector operations automatically in cases where the parallelism 
is obvious. See the compiler documentation for detailed instructions. 
 
Example: 
 

// Example 12.1a 
// Use Intel compiler f. Windows with options /Ox /QxB 
// or  Intel compiler f. Linux with options -O2 -xB 
 
const int size = 100; 
 
void AddTwo(float aa[size], float bb[size]) { 
   #pragma vector aligned       // assume aa and bb are aligned by 16 
   #pragma ivdep                // assume no pointer aliasing 
   for (int i = 0; i < size; i++) { 
      aa[i] = bb[i] + 2.0f; 
   } 
} 
 
void CallAddTwo() { 
   __declspec (align(16))       // arrays must be aligned by 16 
   float a[size], b[size];      // define two arrays 
   AddTwo(a, b);                // call AddTwo function 
} 

 
The vector operations require that arrays a and b be aligned by 16, i.e. stored at an address 
divisible by 16. Here, the #pragma vector aligned tells the Intel compiler that aa and 
bb are properly aligned. The compiler cannot assume this because the function AddTwo 
could be called with unaligned arrays as parameters. The #pragma ivdep tells the Intel 
compiler to assume that there is no pointer aliasing (see page 76). The syntax for the 
pragmas may be different for different compilers. An alternative way of giving the compiler 
this information is to use the __restrict__ keyword to tell the compiler that there is no 
pointer aliasing, and use the __assume_aligned directive to tell the compiler that the 
arrays are aligned by 16: 
 

// Example 12.1b 
void AddTwo(float * __restrict__ aa, float * __restrict__ bb) { 
   // Tell Intel compiler that pointers are aligned: 
   __assume_aligned(aa,16); __assume_aligned(bb,16); 
   for (int i = 0; i < size; i++) { 
      aa[i] = bb[i] + 2.0f; 
   } 
} 

 
Example 12.1a and 12.1b are equivalent. Here, the compiler will use the vector instructions 
to do four additions at a time. This will increase the execution speed by a factor two or 
more. 
 
The automatic vectorization works optimally if the following conditions are satisfied: 
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1. Use a compiler that supports automatic vectorization, such as Gnu, Intel or 
PathScale. 
 

2. Use appropriate compiler options to enable the desired instruction set (/Ox /QxB for 
Windows, -O2 -xB for Linux) 
 

3. Align arrays and structures by 16. 
 

4. If the alignment is not visible in the scope of the function where you want 
vectorization then it is necessary to tell the compiler that data are aligned. 
 

5. If the arrays or structures are accessed through pointers or references then tell the 
compiler explicitly that pointers do not alias, if appropriate. 
 

6. The loop count should preferably be a constant that is divisible by the number of 
elements in a vector. 

 
The compiler can vectorize the code if only conditions 1 - 3 are satisfied, but the code will 
be more efficient if conditions 4 - 6 are also satisfied. If conditions 4 or 5 are not satisfied 
then the compiler will generate two versions of the code and check the data addresses at 
runtime. If data addresses are misaligned or overlapping then it will use the non-vectorized 
version of the code. If condition 6 is not satisfied then the compiler will generate extra code 
to take care of the possible remaining data (The number of remaining data is the remainder 
of the loop count divided by the number of elements in a vector). These extra runtime 
checks is a waste of time and the extra code is a waste of cache space. You should 
therefore make sure that condition 4 - 6 are satisfied if possible. 
 
The Intel compiler tells when it has vectorized a loop. The output says "remark: LOOP WAS 
VECTORIZED" with an indication of the line number. The compiler does not tell if it has 
inserted extra runtime checks for condition 4 - 6, not even with the maximum optimization 
report level. You have to look at the assembly output listing to see this (see page 82). 
 
The alignment of the data you want to vectorize is important. If you tell the compiler to 
assume that data are aligned when in fact they are not then the program will crash with a 
general protection exception. 
 
The compiler can also use vector operations where there is no loop if the same operation is 
performed on a sequence of consecutive variables. Example: 
 

// Example 12.2 
// Use Intel compiler f. Windows with options /Ox /QxB 
// or  Intel compiler f. Linux with options -O2 -xB 
 
__declspec(align(16))     // Make all instances of S1 aligned 
struct S1 {               // Structure of 4 floats 
   float a, b, c, d; 
}; 
 
void Func() { 
   S1 x, y; 
   ... 
   #pragma vector always  // Tell compiler to vectorize 
   x.a = y.a + 1.; 
   x.b = y.b + 2.; 
   x.c = y.c + 3.; 
   x.d = y.d + 4.; 
}; 

 
A structure of four float's fits into a 128-bit XMM register. In example 12.2, the compiler 
will store the constant vector (1.,2.,3.,4.) in static memory. When Func is called, it will 
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load the structure y into an XMM register, add the constant vector (1.,2.,3.,4.), and 
store the result in x. The #pragma vector always tells the compiler to override the 
normal heuristics and vectorize the code regardless of whether it is judged to be 
advantageous or not. The compiler is not always able to predict correctly whether 
vectorization will be advantageous or not. You can use the #pragma vector always to 
tell the compiler to vectorize, or #pragma novector to tell the compiler not to vectorize. 
The pragmas must be placed immediately before the loop or the series of statements that 
you want them to apply to. 
 
It is recommended to use the smallest data size that fits the application. Example: 
 

// Example 12.3 
// Use Intel compiler f. Windows with options /Ox /QxB 
// or  Intel compiler f. Linux with options -O2 -xB 
 
const int size = 1000; 
__declspec(align(16))         // align a and b by 16 
int a[size], b[size]; 
... 
for (int i = 0; i < size, i++) { 
   a[i] = b[i] * 2 + 1; 
} 

 
The Intel compiler will vectorize this loop, which takes approximately 1100 clock cycles on a 
Pentium 4. If the values in a and b can fit into 16-bit integers rather than the default 32-bit 
integers without overflow, then the execution speed can be almost doubled by changing the 
type of a and b to short int.  If 8-bit integers are sufficient then the speed can be 
increased further by changing the type of a and b to char. Without vectorization, the loop 
takes 4000 clock cycles regardless of integer size. 
 
The vector instructions cannot multiply integers of any other size than 16 bits, unless the 
SSE4.1 instruction set is available. The multiplication by 2 in example 12.3 is done by 
adding the value to itself. It is not possible to make integer division in vectors. 
 

12.3 Explicit vectorization 
It is difficult to predict whether the compiler will vectorize a loop or not. Some loops are 
vectorized automatically when the elements are floating point, but not if they are integers. 
And some loops are vectorized in 32-bit mode but not in 64-bit mode. The following 
example shows a code that the Intel compiler does not vectorize automatically. The code 
has a branch that chooses between two expressions for every element in the arrays: 
 

// Example 12.4a 
const int size = 128;        // Array size 
short int aa[size], bb[size], cc[size], dd[size]; 
 
void SelectAndAdd(short int g) { 
   for (int i = 0; i < size; i++) { 
      aa[i] = (bb[i] > 0) ? (cc[i] + 2) : (dd[i] + g); 
   } 
} 

Using intrinsic functions 
It is possible to tell the compiler which vector operations to use by using the so-called 
intrinsic functions. This is useful in situations like example 12.4a where the compiler doesn't 
vectorize the code automatically. It is also useful for compilers that cannot vectorize the 
code automatically. 
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Intrinsic functions are primitive operations in the sense that each intrinsic function call is 
translated to just one or a few machine instructions. Intrinsic functions are supported by the 
Intel, Gnu, Microsoft and PathScale compilers. (The PGI compiler supports intrinsic 
functions, but in a very inefficient way. The Codeplay compiler has some support for intrinsic 
functions, but the function names are not compatible with the other compilers). 
 
The best performance is obtained with the Gnu or the Intel compiler. Other compilers do not 
optimize code containing intrinsic functions as good as the Gnu and Intel compilers do. 
 
We want to vectorize the loop in example 12.4a so that we can handle eight elements at a 
time in vectors of eight 16-bit integers. The branch inside the loop can be implemented in 
various ways depending on the available instruction set. The most compatible way is to 
make a bit-mask which is all 1's when bb[i] > 0 is true, and all 0's when false. The 
expression cc[i]+2 is AND'ed with this mask, and dd[i]+g is AND'ed with the inverted 
mask. The expression that is AND'ed with all 1's is unchanged, while the expression that is 
AND'ed with all 0's gives zero. An OR combination of these two gives the chosen 
expression. (Intel CPUs with the SSE4.1 instruction set can use _mm_blendv_epi8 
instead of the AND/OR operations. AMD CPUs with the XOP instruction set can use the 
VPCMOV instruction, for which an intrinsic function name has not yet been defined). 
 
Example 12.4b shows how this can be implemented with intrinsic functions: 
 

// Example 12.4b 
// SSE2 instruction set must be enabled 
#include <emmintrin.h>       // Define intrinsic functions 
 
const int size = 128;        // Array size 
__declspec(align(16))        // Align arrays by 16 
short int aa[size], bb[size], cc[size], dd[size]; 
 
// Macro to type-cast an array address to a vector address: 
#define ToVectorAddress(x) ((__m128i*)&(x)) 
 
void SelectAndAdd(short int g) { 
   // Define local vector variables: 
   __m128i a, b, c, d, mask, zero, two, g_broadcast; 
   // Set zero to a vector of (0,0,0,0,0,0,0,0) 
   zero = _mm_set1_epi16(0); 
   // Set two to a vector of (2,2,2,2,2,2,2,2) 
   two  = _mm_set1_epi16(2); 
   // Set g_broadcast to a vector of (g,g,g,g,g,g,g,g) 
   g_broadcast = _mm_set1_epi16(g); 
 
   // Roll out loop by eight to fit the eight-element vectors: 
   for (int i = 0; i < size; i += 8) { 
      // Load eight consecutive elements from bb into vector b: 
      b = _mm_load_si128(ToVectorAddress(bb[i])); 
      // Load eight consecutive elements from cc into vector c: 
      c = _mm_load_si128(ToVectorAddress(cc[i])); 
      // Load eight consecutive elements from dd into vector d: 
      d = _mm_load_si128(ToVectorAddress(dd[i])); 
      // Add 2 to each element in vector c 
      c = _mm_add_epi16(c, two); 
      // Add g to each element in vector d 
      d = _mm_add_epi16(d, g_broadcast); 
      // Compare each element in b to 0 and generate a bit-mask: 
      mask = _mm_cmpgt_epi16(b, zero); 
      // AND each element in vector c with the corresponding bit-mask: 
      a = _mm_and_si128(c, mask); 
      // AND each element in vector d with the inverted bit-mask: 
      mask = _mm_andnot_si128(mask, d); 
      // OR the results of the two AND operations: 
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      a = _mm_or_si128(a, mask); 
      // Store the result vector in eight consecutive elements in aa: 
      _mm_store_si128(ToVectorAddress(aa[i]), a); 
   } 
} 

 
The resulting code will be very efficient because it handles eight elements at a time and it 
avoids the branch inside the loop. Example 12.4b executes three to seven times faster than 
example 12.4a, depending on how predictable the branch inside the loop is. 
 
The intrinsic vector functions have names that begin with _mm_. These functions are listed 
in the header file emmintrin.h and explained in the documentation for the Intel C++ 
compiler and in "IA-32 Intel Architecture Software Developer�s Manual" Volume 2A and 2B 
under "Instruction set reference". 

Using vector classes 
Programming in the way of example 12.4b is quite tedious indeed, and the program is not 
very readable. It is possible to write the same in a more human-intelligible way by wrapping 
the vectors into classes. A set of vector classes for this purpose is provided in various 
header files that come with the Intel compiler. See the documentation for the Intel C++ 
compiler for details. 
 
The following table lists the available vector classes. Including dvec.h will give you access 
to all of these. 
 
Vector 
class 

Size of each 
element, 
bits 

Number of 
elements 

Type of 
elements 

Total size of 
vector, bits 

Header file 

Is8vec8 8 8 char 64 ivec.h 
Iu8vec8 8 8 unsigned 

char 
64 ivec.h 

Is16vec4 16 4 short int 64 ivec.h 
Iu16vec4 16 4 unsigned 

short int 
64 ivec.h 

Is32vec2 32 2 int 64 ivec.h 
Iu32vec2 32 2 unsigned 

int 
64 ivec.h 

I64vec1 64 1 __int64 64 ivec.h 
      
Is8vec16 8 16 char 128 dvec.h 
Iu8vec16 8 16 unsigned 

char 
128 dvec.h 

Is16vec8 16 8 short int 128 dvec.h 
Iu16vec8 16 8 unsigned 

short int 
128 dvec.h 

Is32vec4 32 4 int 128 dvec.h 
Iu32vec4 32 4 unsigned 

int 
128 dvec.h 

I64vec2 64 2 __int64 128 dvec.h 
F32vec4 32 4 float 128 fvec.h 
F64vec2 64 2 double 128 dvec.h 
F32vec8 32 8 float 256 dvec.h 
F64vec4 64 4 double 256 dvec.h 

Table 12.1. Vector classes 
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It is not recommended to use the 64-bit vectors in ivec.h because these are incompatible 
with floating point code. If you do use the 64-bit vectors then you have to execute 
_mm_empty() after the 64-bit vector operations and before any floating point code. The 
128-bit vectors do not have this problem. The 256-bit vectors require that the AVX 
instruction set is supported by the microprocessor and the operating system. 
 
Rewriting example 12.4b with the use of vector classes makes the code look simpler: 
 

// Example 12.4c 
// SSE2 instruction set must be enabled 
#include <dvec.h>            // Define vector classes 
 
const int size = 128;        // Array size 
__declspec(align(16))        // Align arrays by 16 
short int aa[size], bb[size], cc[size], dd[size]; 
 
// Macro to type-cast an array to a vector: 
#define ToVector(x) (*(Is16vec8*)&(x)) 
 
void SelectAndAdd(short int g) { 
   // Define local vector class variables: 
   Is16vec8 a, b, c, d, zero; 
 
   // Set zero to a vector of (0,0,0,0,0,0,0,0) 
   zero = Is16vec8(0,0,0,0,0,0,0,0); 
    
   // Roll out loop by eight to fit the eight-element vectors: 
   for (int i = 0; i < size; i += 8) { 
 
      b = ToVector(bb[i]);       // Load eight elements from bb[i] 
      c = ToVector(cc[i]);       // Load eight elements from cc[i] 
      d = ToVector(dd[i]);       // Load eight elements from dd[i] 
      d += _mm_set1_epi16(g);    // Make eight copies of g and add 
      c += _mm_set1_epi16(2);    // Make eight copies of 2 and add 
      a = select_gt(b,zero,c,d); // a = b > 0 ? c : d; 
      ToVector(aa[i]) = a;       // Store eight elements in aa[i] 
   } 
} 

 
Example 12.4c looks simpler than example 12.4b because we can use the operator + or += 
and the predefined function select_gt on the vector class objects.  
 
We still haven't got rid of all the intrinsic functions and the ugly type-casting macro 
ToVector. We can make the code even more readable by defining our own vector class 
and operators, as explained below. 

Redefining a vector class 
It is possible to define your own vector classes with associated operators and functions. 
This is done most easily by inheriting from the predefined vector classes. You can define 
new member functions and operators for the derived class, but you cannot add any data 
members without destroying the vectorization. The vector classes have a size that fits into 
the vector registers. Adding any data members or virtual member functions will make the 
class objects bigger so they don't fit into the vector registers any more. 
 
The following example shows how example 12.4c can be made even more readable by 
redefining the vector classes. 
 

// Example 12.4d 
// SSE2 instruction set must be enabled 
#include <dvec.h>            // Define vector classes 
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const int size = 128;        // Array size 
__declspec(align(16))        // Align arrays by 16 
short int aa[size], bb[size], cc[size], dd[size]; 
 
// Redefine class for vector of eight 16-bit integers: 
class Int16Vector8 : public Is16vec8 { 
   public: 
   // Default constructor: 
   Int16Vector8() {}; 
   // Constructor to convert from parent type: 
   Int16Vector8(Is16vec8 const & x) : Is16vec8(x) { } 
   // Constructor to convert from type __m128i used in intrinsics: 
   Int16Vector8(__m128i const & x) : Is16vec8(x) { } 
   // Constructor to broadcast integer into all elements of vector: 
   Int16Vector8(short int const n) {*this = _mm_set1_epi16(n);} 
   // Member function to load eight values from array: 
   void load(short int const * p) { 
      *this = *(Int16Vector8 const*)p;} 
   // Member function to store eight values into array: 
   void store(short int * p) {*(Int16Vector8*)p = *this;} 
}; 
 
// Define another class for a vector of eight 16-bit masks, 
// Each mask should only be 0xFFFF for true or 0x0000 for false. 
class Bool16Vector8 : public M128 { 
   public: 
   // Default constructor: 
   Bool16Vector8() {}; 
   // Constructor to convert from type __m128i used in intrinsics: 
   Bool16Vector8(__m128i const x) : M128(x) { } 
}; 
 
// Operator + adds the same integer to all elements of vector 
static inline Int16Vector8 operator + (Int16Vector8 const & a,  
short int const b) { 
   return a + Int16Vector8(b);} 
 
// Operator > compares two vectors and returns a vector of masks. 
// Each mask is 0xFFFF for true, 0x0000 for false. 
static inline Bool16Vector8 operator > (Int16Vector8 const & a, 
Int16Vector8 const & b) { 
   return cmpgt(a, b);} 
 
// Operator > compares all elements of vector with the same integer 
// and returns a vector of masks. 
static inline Bool16Vector8 operator > (Int16Vector8 const & a,  
short int const b) { 
   return a > Int16Vector8(b);} 
 
// Function select does the same as the ?: operator,  
// element by element: 
// return_value[i] = s[i] ? a[i] : b[i] 
// s is a vector of 8 masks, each mask is  
// 0xFFFF for true, 0x0000 for false. 
static inline Int16Vector8 select (Bool16Vector8 const & s, 
Int16Vector8 const & a, Int16Vector8 const & b) { 
   return (s & a) | andnot(s, b);} 
 
// And here comes our revised SelectAndAdd function 
void SelectAndAdd(short int g) { 
   int i; 
   // Define local vector class variables: 
   Int16Vector8 a, b, c, d; 
 
   // Roll out loop by eight to fit the eight-element vectors: 
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   for (i = 0; i < size; i += 8) { 
      b.load(bb + i);            // Load eight elements from bb[i] 
      c.load(cc + i);            // Load eight elements from cc[i] 
      d.load(dd + i);            // Load eight elements from dd[i] 
      a = select(b > 0, c + 2, d + g); // Select c+2 or d+g 
      a.store(aa + i);       // Store eight elements in aa[i] 
   } 
} 

 
Example 12.4d does exactly the same as example 12.4b and c. The SelectAndAdd 
function looks simpler now because all the intrinsic functions and type conversions have 
been wrapped into the new class definitions. Defining the new class Int16Vector8 which 
inherits from class Is16vec8 allows us to redefine the constructors and operators to suit 
our needs. The constructor that converts from Is16vec8 to Int16Vector8 makes it 
possible to use all the operators that are defined for Is16vec8 on vectors of class 
Int16Vector8. For example, it would be legal to write a = b * c + d. 
 
The constructor that converts from __m128i to Int16Vector8 makes it possible to use 
the intrinsic functions that return __m128i. 
 
The constructor that converts from short int to Int16Vector8 makes it easy to make a 
vector with the same value in all elements. 
 
The load member function makes it easy to make a vector out of eight consecutive 
elements in an array. Note that the first element must be properly aligned. For example a = 
aa in the above example would be legal, a = aa + 1 would cause an error, a = aa + 8 
would be legal. The store member function makes it easy to store a vector into eight 
consecutive elements of an array. The first element must be properly aligned. 
 
The operator + is already defined, but I have made an overloaded version for adding an 
integer to all elements in an array. Without this operator we would have to replace c+2 by 
c+Int16Vector8(2). We may define similar operators for - and *. 
 
The operator > is not predefined, so we have to define it. I have made two overloaded 
versions of the operator >, one where the second operand is a vector and one where the 
second operand is an integer. 
 
The operator > returns a vector of eight 16-bit masks that are used as Booleans. I have 
defined a separate class, Bool16Vector8, for this vector of Booleans. We could have 
used Int16Vector8 for this purpose, but I think it is safer to define a separate class for a 
vector of elements that can have no other values than 0x0000 and 0xFFFF. This allows us 
to make sure that the select function is called with only this type as the s parameter, and 
not just any vector. 
 
Note that I have declared all the functions and operators static and inline in order to 
make it easier for the compiler to optimize the code. The vector parameters are declared as 
references (&) in order to make the parameter transfer efficient in case the function or 
operator is not inlined. The reference parameters have the const modifier in order to allow 
an expression rather than a variable as input. 
 
It is, admittedly, not easier to make the code like example 12.4d than the previous examples 
because of the extra class definitions and operators when these are used only once. The 
idea is to put these definitions into a reusable header file. Once these definitions are made 
and tested, the only thing that has to be done to make vectorized code is to write the code 
like the SelectAndAdd function in example 12.4d. 
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The three versions 12.4b, c and d generate almost exactly the same code and they are 
equally efficient. It may come as a surprise that the complicated syntax with inheritance in 
many levels doesn't generate a complicated code. We can thank the compiler for that. The 
Intel compiler does an excellent job of optimizing this code, and so does the Gnu compiler. 
The functions, operators and constructors are all inlined and the references and parameter 
transfer overheads eliminated. Furthermore, it uses the methods of loop-invariant code 
motion. The ability of the compilers to do constant propagation on vector code is very 
limited, however. 
 
Table 12.2 below shows measured execution times for the loop in example 12.4a, b and c 
on different microprocessors. The execution time for example 12.4a depends on the 
predictability of the bb[i] > 0 branch. The values listed as best case apply when the 
branch always goes the same way. The values listed as worst case apply when the branch 
goes randomly one way or the other. The timing results for example 12.4b and c do not 
depend on branch predictability. 
 
Code 
example 

Branch 
predicta-
bility 

Time per 
element 
AMD64 

Time per 
element 
Pentium 4 

Time per 
element 
Pentium M 

Time per 
element 
Core 2 

12.4a best case 8.0 4.6 9.0 8.0 
12.4a worst case 9.2 9.8 10.9 10.4 
12.4b worst case 1.0 1.6 1.3 0.5 
12.4c worst case 1.0 1.6 1.3 0.7 

Table 12.2. Loop execution times for example 12.4 for different microprocessors. Clock cycles 
per element. 

 

Defining missing operators 
It can be quite complicated to do operations that are not supported by the vector class 
operators or intrinsic functions. For example, the SSE2 instruction set has no function for 
multiplying vectors of 32 bit integers. There is a 32 x 32 → 64 bit multiply operation that we 
can use, but it requires a lot of data shuffling to get the data into the right places: 
 

// Example 12.5 
static inline Is32vec4 operator * (Is32vec4 const & a,  
Is32vec4 const & b) { 
   __m128i a13, b13, prod02, prod13, prod01, prod23, prod0123; 
   a13 = _mm_shuffle_epi32(a, 0xF5);             // (-,a3,-,a1) 
   b13 = _mm_shuffle_epi32(b, 0xF5);             // (-,b3,-,b1) 
   prod02 = _mm_mul_epu32(a, b);                 // (-,a2*b2,-,a0*b0) 
   prod13 = _mm_mul_epu32(a13, b13);             // (-,a3*b3,-,a1*b1) 
   prod01 = _mm_unpacklo_epi32(prod02,prod13);   // (-,-,a1*b1,a0*b0)  
   prod23 = _mm_unpackhi_epi32(prod02,prod13);   // (-,-,a3*b3,a2*b2)  
   prod0123 = _mm_unpacklo_epi64(prod01,prod23); // (ab3,ab2,ab1,ab0) 
   return prod0123; 
} 

 
This, of course, takes much longer time than 16 bit multiplications, which have intrinsic 
support. Multiplications by a power of 2 can be done by shifting. 
 
There is no way to do integer division in vectors. Integer division by a constant can 
sometimes be done by multiplication and shifting. Otherwise, you have to convert to floating 
point, as example 12.6 below shows, or do the entire calculation with floating point vectors. 

Mixed vector types 
The following examples show how to vectorize a loop with mixed types: 
 

// Example 12.6a 
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const int size = 128;  // size of arrays 
 
void AddAndDivide(int aa[], int bb[], int cc[], float ff[]) { 
      for (int i = 0; i < size; i++) { 
         aa[i] = (bb[i] + cc[i]) / ff[i]; 
   } 
} 

 
Example 12.6a is not vectorized automatically by the compiler. We can use the same 
method as in example 12.4d to get the following code: 
 

// Example 12.6b 
// SSE2 instruction set must be enabled 
#include <dvec.h> 
const int size = 128;  // size of arrays 
 
// Redefine class for vector of four 32-bit integers: 
class Int32Vector4 : public Is32vec4 { 
   public: 
   // Default constructor: 
   Int32Vector4() {}; 
   // Constructor to convert from parent type: 
   Int32Vector4(Is32vec4 const & x) : Is32vec4(x) { } 
   // Constructor to convert from type __m128i used in intrinsics: 
   Int32Vector4(__m128i const & x) : Is32vec4(x) { } 
   // Constructor to broadcast integer into all elements of vector: 
   Int32Vector4(int const n) {*this = _mm_set1_epi32(n);} 
   // Member function to load four values from array: 
   void load (int const * p) {*this = *(Int32Vector4 const*)p;} 
   // Member function to store four values into array: 
   void store(int * p) {*(Int32Vector4*)p = *this;} 
}; 
 
// Redefine class for vector of four 32-bit floats: 
class FloatVector4 : public F32vec4 { 
   public: 
   // Default constructor: 
   FloatVector4() {}; 
   // Constructor to convert from parent type: 
   FloatVector4(F32vec4 const & x) : F32vec4(x) { } 
   // Constructor to convert from type __m128 used in intrinsics: 
   FloatVector4(__m128 const & x) : F32vec4(x) { } 
   // Constructor to broadcast float into all elements of vector: 
   FloatVector4(float const x) : F32vec4(x) { } 
   // Constructor to convert from vector of integers: 
   FloatVector4(Int32Vector4 const & x) {*this = _mm_cvtepi32_ps(x);} 
   // Member function to load four values from array: 
   void load (float const * p) {*this = *(FloatVector4 const*)p;} 
   // Member function to store four values into array: 
   void store(float * p) {*(FloatVector4*)p = *this;} 
}; 
 
// Function to convert vector of floats to vector of integers, 
// using rounding: 
static inline Int32Vector4 round(FloatVector4 const & x) { 
   return _mm_cvtps_epi32(x); 
} 
 
// Function to convert vector of floats to vector of integers, 
// using truncation: 
static inline Int32Vector4 truncate(FloatVector4 const & x) { 
   return _mm_cvttps_epi32(x);} 
 
// Vectorized function: 
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void AddAndDivide(int aa[], int bb[], int cc[], float ff[]) { 
   Int32Vector4 a, b, c; 
   FloatVector4 f, t; 
 
   // Roll out loop by four to fit the four-element vectors: 
   for (int i = 0; i < size; i += 4) { 
      b.load(bb + i);           // Load four values from bb 
      c.load(cc + i);           // Load four values from cc 
      f.load(ff + i);           // Load four values from ff 
      t = FloatVector4(b + c);  // Add integers, convert to floats 
      t = t / f;                // Divide by floats 
      a = truncate(t);          // Convert back to integers 
      a.store(aa + i);          // Store four values in aa 
   } 
} 

 
Note that there are two different ways of converting an integer vector to a float vector. The 
_mm_cvtepi32_ps function converts each integer element to the floating point 
representation of the same value. The _mm_castsi128_ps function changes the type of 
the vector but preserves all bits unchanged. The latter function is used when an integer 
vector is used as a mask to select floating point values by means of AND and OR 
operations, as in example 12.4. The mask for true, which is 0xFFFFFFFF would be 
converted to the floating point representation of -1.0 (= 0xBF800000) by 
_mm_cvtepi32_ps, but remain unchanged by _mm_castsi128_ps. The opposite 
conversion is done with _mm_cvttps_epi32 and _mm_castps_si128 respectively.  

Mixing vectors with different number of elements 
Vectorization of loops becomes more difficult when mixing different types of vectors with 
different numbers of elements. If the integers in example 12.6b are changed to 16-bit 
integers then we have integer vectors with eight elements and floating point vectors with 
four elements. The loop must be rolled out by eight and make two floating point vectors for 
every integer vector: 
 

// Example 12.6c 
// SSE2 instruction set must be enabled 
#include <dvec.h> 
const int size = 128;  // Size of arrays 
 
class Int32Vector4; // Define as in example 12.6b 
 
class Int16Vector8; // Define as in example 12.4d 
 
class FloatVector4; // Define as in example 12.6b 
 
// Define as in example 12.6b: 
static inline Int32Vector4 truncate(FloatVector4 const & x); 
 
// Unpack a vector of eight 16-bit integers into two vectors of 
// four 32-bit integers each, using sign-extension: 
static inline void unpack (Int32Vector4 & uLo, Int32Vector4 & uHi, 
Int16Vector8 const & pk) { 
   __m128i aLo, aHi; 
   aLo = _mm_unpacklo_epi16(pk, pk);  // Unpack low  four integers 
   aHi = _mm_unpackhi_epi16(pk, pk);  // Unpack high four integers 
   uLo = _mm_srai_epi32(aLo, 16);     // Sign-extend to 32 bits 
   uHi = _mm_srai_epi32(aHi, 16);     // Sign-extend to 32 bits 
} 
 
// Pack two vectors of four 32-bit integers each into one 
// vector of eight 16-bit integers using signed saturation: 
static inline void pack (Int16Vector8 & pk, Int32Vector4 const & uLo, 
Int32Vector4 const & uHi) { 
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   pk = _mm_packs_epi32(uLo, uHi); 
} 
 
void AddAndDivide (short int *aa, short int *bb, short int *cc,  
float *ff) { 
   // Define temporary vectors: 
   Int16Vector8 a, b, c;          // Vectors of eight 16-bit integers 
   Int32Vector4 p1, p2;           // Vectors of four 32-bit integers 
   FloatVector4 f1, f2, t1, t2;   // Vectors of four floats 
 
   // Roll out loop by eight to fit the vector with most elements 
   for (int i = 0; i < size; i += 8) { 
      b .load(bb + i);            // Load eight values from bb 
      c .load(cc + i);            // Load eight values from cc 
      f1.load(ff + i);            // Load first four values from ff 
      f2.load(ff + i + 4);        // Load next  four values from ff 
      a = b + c;                  // Add eight integers 
      unpack (p1, p2, a);         // Unpack into 2 times 4 integers 
      t1 = FloatVector4(p1) / f1; // Divide with first 4 floats 
      t2 = FloatVector4(p2) / f2; // Divide with next  4 floats 
      p1 = truncate(t1);          // Convert first 4 back to int 
      p2 = truncate(t2);          // Convert next  4 back to int 
      pack (a, p1, p2);           // Pack 2 times 4 int into 8 int 
      a.store(aa + i);            // Store eight values into aa 
   } 
} 

 
Example 12.6c does not give the same result as example 12.6b in case of overflow because 
it uses saturation. Example 12.6c is less efficient than example 12.6b because of the extra 
time needed for packing and unpacking the vectors with different numbers of elements. 
Mixing vectors with different element sizes should be avoided if possible. 

Making your own vector classes 
In the above examples, I have defined my own vector classes by inheriting from the vector 
classes that are already defined in dvec.h in order to inherit the functions and operators 
that are already defined. In some cases it is preferable to make our own vector classes from 
scratch rather than basing our classes on inheritance from predefined classes. This can be 
useful if you don't have the Intel header files, if you don't want to use them, or if you want 
the operators to work differently. 
 
It is a bad idea to inherit from the predefined vector classes if the algebra for your vectors is 
different from the simple element-by-element operations defined in dvec.h. Let's consider 
the example of complex numbers. The product of two complex numbers is not computed 
just by multiplying the real parts and the imaginary parts. The formula is more complicated: 
 

))()(()()( bcadibdacidciba ++−=+⋅+  
 
The formula for division is even more complicated. It is possible to define a class complex 
for complex numbers by inheriting from F64vec2 (a vector of two double's) and then 
redefining the * and / operators for class complex. The + and - operators do not 
have to be redefined. But there is a pitfall here. The expression y = (a + b) * (c + d) 
would use the * operator for the base class F64vec2, not the * operator for the derived 
class complex, because both parentheses have type F64vec2. We can avoid this by also 
redefining the + operator, but the method is still somewhat risky because there may be 
some other operator, such as *=, that we have forgotten to redefine. It is safer to define a 
new base class rather than redefining an existing class. This prevents the inadvertent use of 
operators that we have forgotten to redefine. 
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The following example shows how to define a vector class from scratch and define 
operators for complex number algebra. 
 

// Example 12.7 
#include <emmintrin.h> 
 
// Define class complexd for vector of two doubles.  
// The low element represents the real part and the high element 
// represents the imaginary part of a complex number: 
 
__declspec(align(16))       // must be aligned 
class complexd { 
   protected: 
   __m128d vec;             // Vector of two double's 
   public: 
 
   // Default constructor: 
   complexd() {}; 
 
   // Constructor to make from real and imaginary part: 
   complexd(double const re, double const im) { 
      vec = _mm_set_pd(im, re);} 
 
   // Constructor to convert from real number. Set imag. part to 0: 
   complexd(double const x) { 
      vec = _mm_set_pd(0., x);} 
 
   // Constructor to convert from type __m128d used in intrinsics: 
   complexd(__m128d const & x) {vec = x;} 
 
   // Operator to convert to __m128d used in intrinsics 
   operator __m128d() const {return vec;} 
 
   // Member function to extract real part: 
   double Re() const { 
      return *(double const*)&vec;} 
 
   // Member function to extract Imaginary part: 
   double Im() const { 
      return *(double const*)&_mm_shuffle_pd(vec, vec, 1);} 
}; 
 
// Define operators for class complexd: 
 
// complex + real: add only to real part: 
static inline complexd operator + (complexd const &a, double const b){ 
   return _mm_add_sd(a, _mm_load_sd(&b));} 
 
// complex - real: subtract only from real part: 
static inline complexd operator - (complexd const &a, double const b){ 
   return _mm_sub_sd(a, _mm_load_sd(&b));} 
 
// complex * real: multiply both real and imaginary part: 
static inline complexd operator * (complexd const &a, double const b){ 
   return _mm_mul_pd(a, _mm_set1_pd(b));} 
 
// complex / real: multiply both real and imag. part by reciprocal b: 
static inline complexd operator / (complexd const &a, double const b){ 
   return _mm_mul_pd(a, _mm_set1_pd(1. / b));} 
 
// complex + complex: add both parts: 
static inline complexd operator + (complexd const & a,  
complexd const & b) { 
   return _mm_add_pd(a, b);} 
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// complex - complex: subtract both parts: 
static inline complexd operator - (complexd const & a,  
complexd const & b) { 
   return _mm_sub_pd(a, b);} 
 
// complex * complex: (a.re*b.re-a.im*b.im, a.re*b.im+b.re*a.im). 
// This version is for SSE2 instruction set. It is more efficient 
// to use _mm_addsub_pd and _mm_hadd_pd if SSE3 is available. 
static inline complexd operator * (complexd const & a,  
complexd const & b) { 
   __m128d a_flipped;                 // (a.im,a.re) 
   __m128d b_re;                      // (b.re,b.re) 
   __m128d b_im;                      // (-b.im,b.im) 
   static const union {               // (signbit,0) 
      int i[4];  __m128d v; 
   } signbitlow = {0,0x80000000,0,0}; 
 
   b_im = _mm_shuffle_pd(b,b,3);      // Imag. part of b in both 
   b_re = _mm_shuffle_pd(b,b,0);      // Real  part of b in both 
   a_flipped = _mm_shuffle_pd(a,a,1); // Swap real and imag parts of a 
   b_im = _mm_xor_pd(b_im, signbitlow.v); // Change sign of low 
 
   // Multiply and add: 
   return (complexd)_mm_mul_pd(a, b_re) +  
          (complexd)_mm_mul_pd(a_flipped, b_im); 
} 
 
// complex / complex:  
// (a.re*b.re+a.im*b.im, b.re*a.im-a.re*b.im)/(b.re*b.re+b.im*b.im). 
// This version is for SSE2 instruction set. It is more efficient 
// to use _mm_addsub_pd and _mm_hadd_pd if SSE3 is available. 
static inline complexd operator / (complexd const & a, 
complexd const & b) { 
   __m128d a_flipped;                 // (a.im,a.re) 
   __m128d b_re;                      // (b.re,b.re) 
   __m128d b_im;                      // (-b.im,b.im) 
   __m128d ab_conj;                   // a * conjugate(b) 
   __m128d abs_b_square;              // (b.re*b.re,b.im*b.im) 
   double b_abs_square_recip;         // 1/(abs(b*b)) 
 
   abs_b_square = _mm_mul_pd(b, b);   // (b.re*b.re,b.im*b.im) 
   // Reciprocal of horizontal add: 
   b_abs_square_recip = 1. /  
      *(double const*)& _mm_add_sd(abs_b_square, 
      _mm_shuffle_pd(abs_b_square, abs_b_square, 1)); 
 
   // The following code is made as similar to the operator * as 
   // possible, to enable common subexpression elimination in code 
   // that contains both operator * and operator / with the same 
   // second operand: 
   static const union {               // (signbit,0) 
      int i[4];  __m128d v; 
   } signbitlow = {0,0x80000000,0,0}; 
   b_im = _mm_shuffle_pd(b,b,3);      // Imag. part of b in both 
   b_re = _mm_shuffle_pd(b,b,0);      // Real  part of b in both 
   a_flipped = _mm_shuffle_pd(a,a,1); // Swap real and imag parts of a 
   b_im = _mm_xor_pd(b_im, signbitlow.v); // Change sign of re 
 
   // Multiply and subtract: 
   ab_conj = (complexd)_mm_mul_pd(a, b_re) -  
             (complexd)_mm_mul_pd(a_flipped, b_im); 
   // Multiply by b_abs_square_recip: 
   return (complexd)ab_conj * b_abs_square_recip; 
} 
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// - complex: (-a.re, -a.im): 
static inline complexd operator - (complexd const & a) { 
   static const union {               // (signbit,signbit) 
      int i[4];  __m128d v; 
   } signbits = {0,0x80000000,0,0x80000000}; 
   return _mm_xor_pd(a, signbits.v);  // Change sign of both elements 
} 
 
// complex conjugate: (a.re, -a.im) 
static inline complexd operator ~ (complexd const & a) { 
   static const union {               // (signbit,signbit) 
      int i[4];  __m128d v; 
   } signbithigh = {0,0,0,0x80000000}; 
   return _mm_xor_pd(a, signbithigh.v); // Change sign of imag. part 
} 
 
 
// Example of use: 
// Second order complex polynomial: 
complexd polynomial(complexd x) { 
   const complexd a(1.,2.), b(3.,4.), c(5.,6.); 
   return (a * x + b) * x + c; 
} 

 
Example 12.7 shows how to define your own vector class from scratch and make 
appropriate operators for it. The Intel and Gnu compilers optimize this code quite well. The 
code may be further improved by using SSE3 instructions, if available. (The SSE3 
instructions _mm_addsub_pd and _mm_movedup_pd are designed specifically for complex 
math. _mm_hadd_pd is useful for horizontal addition). 
 
Another question is whether it is optimal to use vector operations at all in this case. The * 
and / operators involve a lot of shuffling in order to get the data elements into the right 
places. An implementation without vectorization does not require these shuffle operations. 
The vectorized code is in fact faster than the non-vectorized code on microprocessors with 
128 bit execution units, but not always on older microprocessors with 64 bit execution units. 

Vectorized table lookup 
Lookup tables can be useful for optimizing code, as explained on page 135. Unfortunately, 
table lookup is often an obstacle to vectorization. The newest instruction sets include a few 
instructions that may be used for vectorized table lookup with small tables. These 
instructions are summarized below. Microprocessors with these instructions are not 
available yet (2009). 
 
 

Intrinsic function 

M
ax. num

ber 
of elem

ents 
in table Size of each table 

element 

N
um

ber of 
sim

ultaneous 
lookups 

Instruction set 
needed 

_mm_perm_epi8 32 1 byte = char 16 XOP, AMD only 
_mm_permutevar_ps 4 4 bytes = float or int 4 AVX 
_mm256_permutevar_ps 4 4 bytes = float or int 8 AVX 
Table 12.3. Intrinsic functions for vectorized table lookup 

 
 



 120

12.4 Mathematical functions for vectors 
There are various function libraries for computing mathematical functions such as 
logarithms, exponential functions, trigonometric functions, etc. in vector operands. These 
function libraries are useful for vectorizing mathematical code. 
  
The following example is a piece of code that can benefit from vectorization. 
 

// Example 12.8a 
#include <math.h> 
 
const int size = 128; 
float a[size], b[size]; 
 
void Func() { 
   for (int i = 0; i < size; i++) { 
      a[i] = 0.5f * exp(b[i]); 
   } 
} 

 
The exponential function is available in a vector version calculating four exponential function 
values in one function call. This function is found in the Intel library called "Short Vector 
Math Library" (SVML) which comes with the Intel C++ compiler. Unfortunately, a header file 
for this library is not supplied. The function prototypes have to be copied from the document 
cited below. The same vectorized math functions are available with different names in the 
AMD math core library and with the PathScale compiler. The vectorized code looks like this: 
 

// Example 12.8b 
// Compile with SSE2 enabled. 
// Link with Intel math library svml_dispmt.lib 
 
// Define vector classes: 
#include <dvec.h> 
 
// Function prototype for exponential function on vector of 4 floats 
// (Copied from Mike Stoner: "Integrating Fast Math Libraries for the 
// Intel Pentium® 4 Processor"): 
extern "C" __m128 vmlsExp4(__m128); 
 
const int size = 128; 
__declspec(align(16)) 
float a[size], b[size]; 
 
void Func() { 
   // Define vector of 4 floats for temporary storage: 
   F32vec4 temp;  
 
   // Roll out loop by four to fit vectors of four floats: 
   for (int i = 0; i < size; i += 4) { 
 
      // Load four values from b into vector: 
      temp = *(F32vec4 const *)&b[i]; 
 
      // Call exponential founction on vector and multiply by 0.5: 
      temp = vmlsExp4(temp) * F32vec4(0.5f); 
 
      // Store result in four consecutive elements of a: 
      *(F32vec4 *)&a[i] = temp; 
   } 
} 

 



 121

The necessary function prototypes and description of the different math libraries can be 
found in: Mike Stoner: "Integrating Fast Math Libraries for the Intel Pentium® 4 Processor". 
www.intel.com, n. d. 
 
The code in example 12.8a is automatically converted to 12.8b when compiled with an Intel, 
Gnu or PathScale compiler, with the appropriate compiler switches for automatic 
vectorization. The explicit call to the SVML library is useful if another compiler is used or if 
the compiler cannot vectorize the code automatically. The AMD math core library may be 
used instead. 
 
An alternative is to use the Intel Vector Math Library (VML) which is part of Intel's Math 
kernel Library (MKL) (www.intel.com). The VML functions take the entire arrays as input and 
output. This library contains mathematical functions for large vectors. The following code 
shows how to use the VML Library: 
 

// Example 12.8c 
// Link with mkl_c.lib from Intel Math Kernel Library 
 
// Obtain this header file from Intel Math Kernel Library: 
#include <mkl_vml_functions.h> 
 
// Obtain header file for vector classes from Intel C++ compiler: 
#include <dvec.h> 
 
const int size = 128; 
__declspec(align(16)) 
float a[size], b[size]; 
 
void Func() { 
   // Define vector of 4 floats for temporary storage: 
   F32vec4 temp;  
 
   // Intel Math Kernel library function vsExp calculates 'size' 
   // exponentials. The loop is inside this library function: 
   vsExp(size, b, a); 
    
   // Multiply all elements in a by 0.5: 
   for (int i = 0; i < size; i += 4) { 
 
      // Multiply four elements by 0.5: 
      *(F32vec4 *)&a[i] *= F32vec4(0.5f);   
   }    
} 

 
Note that the Intel function libraries detect whether the code is running on an Intel CPU or 
not. If the CPU is not an Intel then the library may not use the optimal instruction set. See 
page 129 for how to overcome this limitation. 
 
The following table compares the measured computation time in clock cycles per element 
on various CPUs for example 12.8a, b and c. 
 

http://www.intel.com/
http://www.intel.com/
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Code 
example 

Compiler 
used 

Time per 
element 
AMD64 

Time per 
element 
Pentium 4 

Time per 
element 
Pentium M 

Time per 
element 
Core 2 

12.8a Microsoft 59 311 121 173 
12.8a Intel 9.1 80 45 33 49 
12.8a* Intel 9.1 60 45 33 49 
12.8b Intel 9.1 25 17 18 12 
12.8b* Intel 9.1 18 17 18 12 
12.8c Intel 9.1 16 12 14 13 
12.8c* Intel 9.1 11 12 14 13 

Table 12.4. Loop execution times for example 12.8 for different microprocessors. Clock cycles 
per element ( * = CPU detection overridden). 

 
These tests show that it is very advantageous to use the math libraries. The Vector Math 
Library (example 12.8c) is a little faster than the Short Vector Math Library (example 12.8b) 
on some processors, but the Vector Math Library has a much larger footprint in the code 
cache and a very large initialization routine, which is called the first time the library function 
is called. The initialization time is not included in the above time measurements. The 
performance of the Core 2 processor is lower than expected due to the fact that the Intel 
function libraries are not yet optimized for this processor and that the performance is limited 
by the predecoder rather than the execution units in this processor. 
 

12.5 Aligning dynamically allocated memory 
Memory allocated with new or malloc is typically aligned by 8 rather than by 16. This is a 
problem with vector operations, which require alignment by 16. The Intel compiler has 
solved this problem by defining _mm_malloc and _mm_free.  
 
A more convenient method is to wrap the allocated array into a container class that takes 
care of the alignment. See www.agner.org/optimize/cppexamples.zip for examples of how to 
make aligned arrays with vector access. 
 

12.6 Aligning RGB video or 3-dimensional vectors 
RGB image data have three values per point. This does not fit into a vector of e.g. four 
floats. The same applies to 3-dimensional geometry and other odd-sized vector data. The 
data have to be aligned by the vector size for the sake of efficiency. Using unaligned reads 
and writes will slow down the execution to the point where it is not advantageous to use 
vector operations. You may choose one of the following solutions, depending on what fits 
best into the algorithm in question: 
 

• Put in an unused fourth value to make the data fit into the vector. This is a simple 
solution, but it increases the amount of memory used. You may avoid this method if 
memory access is a bottleneck. 
   

• Organize the data into groups of four (or eight) points with the four R value in one 
vector, the four G values in the next vector, and the four B value in the last vector. 
   

• Organize the data with all the R values first, then all the G values, and last all the B 
values. 

 
The choice of which method to use depends on what fits best into the algorithm in question. 
You may choose the method that gives the simplest code. 
 
If the number of points is not divisible by the vector size then add a few unused points in the 
end in order to get an integral number of vectors. 

http://www.agner.org/optimize/cppexamples.zip
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12.7 Conclusion 
Vectorized code often contains a lot of extra instructions for converting the data to the right 
format and getting them into the right positions. The amount of extra data conversion and 
shuffling that is needed determines whether it is profitable to use vectorized code or not.  
 
The code in example 12.7 is slower than non-vectorized code on older processors, but 
faster on processors with 128 bit execution units. The code in example 12.6b and 12.6c is 
faster than the non-vectorized code on all processors despite the extra data conversion, 
packing and unpacking. This is because the bottleneck here is not data conversion and 
packing, but division. Division is very time-consuming and there is a lot to save by doing 
division in single precision vectors. The code in example 12.8b and c benefit a lot from 
vectorization. 
 
I will conclude this section by summing up the factors that decide whether vectorization is 
optimal or not. 
 
Factors that make vectorization favorable: 

Small data types: char, short int, float. 
Similar operations on all data in large arrays. 
Array size divisible by vector size. 
Unpredictable branches that select between two simple expressions. 
Operations that are only available with vector operands: minimum, maximum, saturated 

addition, fast approximate reciprocal, fast approximate reciprocal square root, RGB 
color difference. 

Mathematical vector function libraries. 
Use Gnu or Intel compiler. 
Use CPUs with 128 bit execution units or wider. 

 
Factors that make vectorization less favorable: 

Larger data types: __int64, double. 
Misaligned data. 
Extra data conversion, shuffling, packing, unpacking needed. 
Predictable branches that can skip large expressions when not selected. 
Compiler has insufficient information about pointer alignment and aliasing. 
Operations that are missing in the instruction set for the appropriate type of vector, such 

as 32-bit integer multiplication prior to SSE4.1 and integer division. 
Older CPUs with 64 bit execution units. 

 
Vectorized code is more difficult for the programmer to make and therefore more error 
prone. The vectorized code should therefore preferably be put away in reusable and well-
tested library modules and header files. 
 
 

13 Make critical code in multiple versions for different 
CPUs 

Microprocessor producers keep adding new instructions to the instruction set. These new 
instructions can make certain kinds of code execute faster. The most important addition to 
the instruction set is the vector operations mentioned in chapter 12. 
 
A disadvantage of using the newest instruction set is that the compatibility with older 
microprocessors is lost. This dilemma can be solved by making the most critical parts of the 
code in multiple versions for different CPUs. This is called CPU dispatching. For example, 
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you may want to make one version that takes advantage of the SSE2 instruction set and 
another version that is compatible with old microprocessors without SSE2. The program 
should automatically detect which instruction set is supported by the CPU and the operating 
system and choose the appropriate version of the subroutine that contains the critical 
innermost loops. 
 

13.1 CPU dispatch strategies 
There are several questions that you need to think through before implementing CPU 
dispatching in a piece of software: 
 

• Should the whole program have multiple versions or only a small part of the 
program? 
   

• Which part of the code can benefit from CPU dispatching? 
   

• Is the advantage big enough to justify the costs? 
   

• What is the lowest level of instruction set that you want to support? 
   

• Should you dispatch for specific CPU models, for specific instruction sets or for 
specific cache designs and other features? 
   

• How many different branches should you make? 
   

• Which CPUs will be most common at the time the software reaches the end users? 
   

• Should the dispatched code be isolated in a separate static or dynamic function 
library? 
   

• How can the dispatched code be tested, verified and maintained? 
 
To answer these questions, we must first look at the costs and benefits of CPU dispatching. 
The cost of increased program size is not much if only a small critical piece of the program 
has CPU dispatching. But the costs in terms of programmer man-hours can be very high. 
You need to test the speed of different code versions on different CPUs to check which 
version is fastest and how big the gain is. Furthermore, you need to verify that all code 
versions behave correctly in all situations. Whenever there is a change or update in the 
code, you have to modify all versions of the code. The maintenance costs are therefore 
high. 
 
A radical solution is to make the entire program in multiple versions, possibly compiled with 
different compilers. This method is used in the Macintosh computers where the so-called fat 
binaries contain multiple executable files for 32-bit and 64-bit PPC and x86 processors. This 
is an expensive solution that should be used only when instruction sets are mutually 
incompatible. 
 
Otherwise, it is most convenient to isolate the code that has CPU dispatching into a 
separate module, usually a static or dynamic function library. A function library with a well-
defined functionality and a well-defined interface to the calling program is more manageable 
and easier to test, maintain and verify than a program where the dispatch branches are 
scattered everywhere in the source files. 
 
Be sure to optimize for the future CPU market, not the present, when deciding which CPUs 
to dispatch for and how many different branches to make. CPU dispatching is most often 
used in third-party function libraries where the development costs can be justified by the fact 
that the same library is used in different applications. Consider the time it takes to develop, 
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test and publish the function library. Add to this the time it takes before the application 
programmer decides to get the new version of the library. Add to this the time it takes for the 
application programmer to develop a new version of the software using the new version of 
the library. Add to this the time it takes to market the software. Add to this the time it takes 
before the average end user decides to upgrade the software to the newest version. All in 
all, it will possibly take several years before the software containing your CPU dispatcher 
peaks on the market. Any specific CPU that you have optimized for is likely to be obsolete 
at that time. 
 
For this reason, you should never make a separate code branch for a specific CPU brand 
and model. It is possible that one version of your code works best on CPU model X and 
another version works best on model Y. But you must remember that both X and Y may be 
obsolete in a few years, and you cannot know which code version works best on the 
successors of X and Y. Many programmers have made code that tests for specific CPU 
brands and models, and the consequences have been disastrous. For example, when the 
x64 version of Windows was introduced, it would run only on CPUs known to support the 
x64 instruction set. Rather than checking the CPUID feature bit for x64 support, it checks for 
known CPU brands and models. The consequence was seen when VIA started to make 
CPUs with x64 support. VIA had to implement a hardware feature that makes it possible to 
fake a different brand name in the CPU in order to run x64 Windows. For similar reasons, all 
new Intel CPU models have the CPUID family number fixed at 6, apparently because they 
have made software that makes CPU dispatching by family number, and this software will 
fail to work optimally on CPUs with a family number different from 6. 
 
The CPUID instruction gives information about most features, such as instruction sets and 
cache organization. There may be features that cannot be checked with CPUID, for 
example whether a particular instruction is fast or slow. If such information is really 
important then you may try to obtain it in other ways. It is better to actually measure the 
speed of the critical instruction than to rely on information on known processors.  
 
Let me repeat: CPU dispatching should be based only on which features the CPU has, not 
on specific brands and model numbers. The only good reason for checking the CPU model 
is when a specific model is known to have a bug that needs a workaround. You cannot 
possibly check for all CPU models. A list of known CPU models is almost certain to be 
obsolete before the end of the life cycle of the software that uses it, and the software will be 
unable to handle new models and new vendors, as well as unknown CPUIDs coming from 
virtualization, emulation or FPGA soft cores. 
 
The time perspective is also important when deciding how many different code branches to 
make in the CPU dispatching. There is no need to make many different code branches for 
different CPUs that will be obsolete at the time the software is used. If we assume that the 
most advanced instruction set available today will be mainstream in a few years, then it 
makes sense to make two code branches: one for the newest instruction set and one for 
compatibility with older CPUs. But only if the newest instruction set actually benefits the 
code. For example, the SSE4.2 instruction set has instructions for efficient search for a 
substring in a text. If your program has no text searching, or so little that it doesn't matter in 
terms of speed, then there is no reason to make a SSE4.2 branch. If the application can 
benefit from a particular instruction set then make one branch for that instruction set and 
another branch for computers that don't have it. 
 
Likewise, you have to decide what is the lowest instruction set you want to support. If the 
application is used only by demanding professionals who need fast computers anyway then 
it may not be necessary to support instruction sets that are more than a few years old. But if 
the application is used by a broad variety of users then it may be wise to support even the 
oldest instruction sets. There may be conservative users with old computers, and other 
users may have small ultra portable devices with lower capabilities. 
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AMD and VIA processors have certain instructions that are not supported by other vendors. 
You may make separate code branches for these instructions if they provide a significant 
benefit. Obviously, you should check the feature flags rather than the brand name in case 
other vendors later decide to support these instructions. 
 
It is costly to have many branches because of inefficient use of the code cache and 
because of the costs of developing, testing and maintaining all the branches. It is rare to 
have more than a few branches unless the code is very critical.  
 

13.2 Test and maintenance 
There are two things to test when software uses CPU dispatching: 
 

1. How much you gain in speed by using a particular code version. 
   

2. Check that all code versions work correctly. 
 
The speed test should preferably be done on the type of CPU that each particular branch of 
code is intended for. In other words, you need to test on several different CPUs if you want 
to optimize for several different CPUs. 
 
On the other hand, it is not necessary to have many different CPUs to verify that all code 
branches works correctly. A code branch for a low instruction set can still run on a CPU with 
a higher instruction set. Therefore, you only need a CPU with the highest instruction set in 
order to test all branches for correctness. It is therefore recommended to put a test feature 
into the code that allows you to override the CPU dispatching and run any code branch for 
test purposes. 
 
If the code is implemented as a function library or a separate module then it is convenient to 
make a test program that can call all code branches separately and test their functionality. 
This will be very helpful for later maintenance. However, this is not a textbook on test 
theory. Advice on how to test a software module thoroughly must be found elsewhere. 
 

13.3 Implementation 
The CPU dispatch mechanism can be implemented in different places making the dispatch 
decision at different times: 
 

• Dispatch on every call. A branch tree or switch statement leads to the appropriate 
version of the critical function. The branching is done every time the critical function 
is called. This has the disadvantage that the branching takes time. 
   

• Dispatch on first call. The function is called through a function pointer which initially 
points to a dispatcher. The dispatcher changes the function pointer and makes it 
point to the right version of the function. This has the advantage that it doesn't spend 
time on deciding which version to use in case the function is never called. This 
method is illustrated in example 13.1 below. 
   

• Make pointer at initialization. The program or library has an initialization routine that 
is called before the first call to the critical function. The initialization routine sets a 
function pointer to the right version of the function. This has the advantage that the 
response time is consistent for the function call. 
   

• Load library at initialization. Each code version is implemented in a separate 
dynamic link library (*.dll or *.so). The program has an initialization routine that 
loads the appropriate version of the library. This method is useful if the library is very 
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large or if different versions have to be compiled with different compilers. 
   

• Dispatch at load time. The program uses a procedure linkage table (PLT) that is 
initialized when the program is loaded. This method requires OS support. It will be 
available in future versions of Linux and Mac OS. See page 128 below. 
   

• Dispatch at installation time. Each code version is implemented in a separate 
dynamic link library (*.dll or *.so). The installation program makes a symbolic 
link to the appropriate version of the library. The application program loads the 
library through the symbolic link. 
   

• Use different executables. This method can be used if instruction sets are mutually 
incompatible. You may make separate executables for 32-bit and 64-bit systems. 
The appropriate version of the program may be selected during the installation 
process or by an .exe file stub. 

 
If different versions of the critical code are compiled with different compilers then it is 
recommended to specify static linking for any library functions called by the critical code so 
that you don't have to distribute all the dynamic libraries (*.dll or *.so) that belong to 
each compiler with the application. 
 
The availability of various instruction sets can be determined with system calls (e.g. 
IsProcessorFeaturePresent in Windows). Alternatively, you may use the CPU 
detection function that I have supplied in www.agner.org/optimize/asmlib.zip. The name of 
the function is InstructionSet().The following example shows how to implement the 
dispatch on first call method using InstructionSet(): 
 

// Example 13.1 
// CPU dispatching on first call 
 
// Header file for InstructionSet() 
#include "asmlib.h" 
 
// Define function type with desired parameters 
typedef int CriticalFunctionType(int parm1, int parm2); 
 
// Function prototype 
CriticalFunctionType CriticalFunction_Dispatch; 
 
// Function pointer serves as entry point. 
// After first call it will point to the appropriate function version 
CriticalFunctionType * CriticalFunction = &CriticalFunction_Dispatch; 
 
// Lowest version 
int CriticalFunction_386(int parm1, int parm2) {...} 
 
// SSE2 version 
int CriticalFunction_SSE2(int parm1, int parm2) {...} 
 
// SSE4.2 version 
int CriticalFunction_SSE42(int parm1, int parm2) {...} 
 
// Dispatcher. Will be called only first time 
int CriticalFunction_Dispatch(int parm1, int parm2) 
{ 
   // Get supported instruction set, using asmlib library 
   int level = InstructionSet(); 
 
   // Set pointer to the appropriate version (May use a table 
   // of function pointers if there are many branches): 
   if (level >= 10) 

http://www.agner.org/optimize/asmlib.zip
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   {  // SSE4.2 supported 
      CriticalFunction = &CriticalFunction_SSE42; 
   } 
   else if (level >= 4) 
   {  // SSE2 supported 
      CriticalFunction = &CriticalFunction_SSE2; 
   } 
   else 
   {  // Default version 
      CriticalFunction = &CriticalFunction_386; 
   } 
 
   // Now call the chosen version 
   return (*CriticalFunction)(parm1, parm2); 
} 
 
int main() 
{ 
   int a, b, c; 
   ... 
 
   // Call critical function through function pointer 
   a = (*CriticalFunction)(b, c); 
 
   ... 
   return 0; 
} 

 
The InstructionSet() function is available in the function library asmlib, which is 
available in different versions for different compilers. This function is OS independent and 
checks both the CPU and the operating system for support of the different instructions sets. 
The different versions of CriticalFunction in example 13.1 can be placed in separate 
modules if necessary, each compiled for the specific instruction set. 
 
CPU dispatching is less important in 64-bit systems than in 32-bit systems because the 
SSE2 instruction set is available in all 64-bit systems. The SSE3 and later instruction sets 
are not available in all 64-bit processors, but these instruction sets have only few 
advantages over SSE2. The forthcoming AVX instruction set has more advantages, 
including the larger YMM registers. 
 

13.4 CPU dispatching in Gnu compiler 
An "indirect function" feature will soon become available in Linux and Mac OS X and 
supported by the Gnu C/C++ compiler. This feature is intended for CPU dispatching and is 
used in the Gnu C library. It requires support from both compiler, linker and loader. 
 
The syntax for the Gnu compiler is illustrated in the following example with the same 
functionality as example 13.1: 
 

// Example 13.2. CPU dispatching in Gnu compiler 
 
// Header file for InstructionSet() 
#include "asmlib.h" 
 
// Lowest version 
int CriticalFunction_386(int parm1, int parm2) {...} 
 
// SSE2 version 
int CriticalFunction_SSE2(int parm1, int parm2) {...} 
 
// SSE4.2 version 

http://www.agner.org/optimize/asmlib.zip
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int CriticalFunction_SSE42(int parm1, int parm2) {...} 
 
// Dispatcher. Will be called only once 
int __attribute__ ((ifunc)) CriticalFunction (int parm1, int parm2) 
{ 
   // This "ifunc" is not a function with two integer parameters 
   // returning an integer, but a function without parameters 
   // returning a pointer to such a function. 
 
   // Get supported instruction set, using asmlib library 
   int level = InstructionSet(); 
 
   // Set pointer to the appropriate version (May use a table 
   // of function pointers if there are many branches): 
   if (level >= 10) 
   {  // SSE4.2 supported 
      return &CriticalFunction_SSE42; 
   } 
   if (level >= 4) 
   {  // SSE2 supported 
      return &CriticalFunction_SSE2; 
   } 
   // Default version 
   return &CriticalFunction_386; 
} 
 
int main() 
{ 
   int a, b, c; 
   ... 
 
   // Call critical function 
   a = CriticalFunction(b, c); 
 
   ... 
   return 0; 
} 

 
All calls to CriticalFunction go through a procedure linkage table (PLT). The "ifunc" 
CPU dispatcher is called only once, setting the PLT to the desired version of the function. 
This is done either on the first call (for static linking) or at load time (for shared objects). 
 
Note that this information is preliminary and not confirmed (February 2010). 
Source: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40528. 
 

13.5 CPU dispatching in Intel compiler 
The Intel compiler has a feature for making multiple versions of a function for different Intel 
CPUs. Every time the function is called, a dispatch is made to the right version of the 
function. The automatic dispatching can be made for all suitable functions in a module by 
compiling the module with the option /QaxAVX or -axAVX. This will make multiple versions 
even of functions that are not critical. It is possible to do the dispatching only for speed-
critical functions by using the directive __declspec(cpu_dispatch(...)). See the Intel 
C++ Compiler Documentation for details. Note that the CPU dispatch mechanism in the Intel 
compiler works only for Intel CPUs, not for other brands of CPUs such as  AMD and VIA. 
The next section (page 131) shows a way to work around this limitation and other flaws in 
the CPU detection mechanism. 
 
The CPU dispatch mechanism in the Intel compiler is less efficient than the Gnu compiler 
mechanism because it makes dispatching on every call of the critical function. The Intel 
mechanism executes a series of branches every time the function is called, while the Gnu 

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=40528
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mechanism stores a pointer to the desired version in a procedure linkage table. If a 
dispatched function calls another dispatched function then the dispatch branch of the latter 
is executed even though the CPU-type is already known at this place. This can be avoided 
by inlining the latter function, but it may be better to do the CPU dispatching explicitly as in 
example 13.1 page 127. 
 
The Intel compilers and function libraries have features for automatic CPU dispatching. 
Intel's function libraries have two or more versions of each function for different processors 
and instruction sets. Likewise, the compiler can automatically generate multiple versions of 
the user-written code with automatic CPU dispatching. 
 
Unfortunately, the CPU detection mechanism in Intel compilers has several flaws: 
 

• The best possible version of the code is chosen only when running on an Intel 
processor. The CPU dispatcher checks whether the processor is an Intel before it 
checks which instruction set it supports. An inferior version of the code is selected if 
the processor is not an Intel, even if the processor is compatible with a better version 
of the code. This can lead to a dramatic degradation of performance on AMD and 
VIA processors. 
 

• Explicit CPU dispatching works only with Intel processors. A non-Intel processor 
makes the dispatcher signal an error simply by performing an illegal operation that 
crashes the program. 
 

• The CPU dispatcher does not check if XMM registers are supported by the operating 
system. It will crash on old operating systems that do not support SSE. 

 
Several function libraries published by Intel have similar CPU dispatch mechanisms, and 
some of these also treat non-Intel CPUs in a suboptimal way. 
 
The fact that the Intel CPU dispatcher treats non-Intel CPUs in a suboptimal way has 
become a serious legal issue. See my blog for details.  
 
The behavior of the Intel compiler puts the programmer in a bad dilemma. You may prefer 
to use the Intel compiler because it has many advanced optimizing features available, and 
you may want to use the well optimized Intel function libraries, but who would like to put a 
tag on his program saying that it doesn't work well on non-Intel machines? 
 
Possible solutions to this problem are the following: 
 

• Compile for a specific instruction set, e.g. SSE2. The compiler will produce the 
optimal code for this instruction set and insert only the SSE2 version of most library 
functions without CPU dispatching. Only a few library functions still have a CPU 
dispatcher in this case. Test if the program will run on an AMD CPU. If an error 
message is issued then it is necessary to replace the CPU detection function as 
described below. The program will not be compatible with old microprocessors. 
 

• Compile with option /QxO. This will include a special version of certain library 
functions for AMD processors with SSE2. This performs reasonably on AMD 
processors but not optimally. A program compiled with /QxO will not run on any 
processor prior to SSE2. 
   

• Make two or more versions of the most critical part of the code and compile them 
separately with the appropriate instruction set specified. Insert an explicit CPU 
dispatching in the code to call the version that fits the microprocessor it is running 
on. 
 

http://www.agner.org/optimize/blog/read.php?i=49
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• Replace the CPU detection function of the Intel compiler with another function with 
the same name. This method is described below. 
 

• Make calls directly to the CPU-specific versions of the library functions. The CPU-
specific functions typically have names ending in .J for the SSE2 version and .A for 
the generic version. The dot in the function names is not allowed in C++ so you need 
to use objconv or a similar utility for adding an alias to these library entry names. 
 

• The ideal solution would be an open source library of well-optimized functions with a 
performance that can compete with Intel's libraries and with support for multiple 
platforms and multiple instruction sets. I have no knowledge of any such library. 

 
The performance on non-Intel processors can be improved by using one or more of the 
above methods if the most time-consuming part of the program contains automatic CPU 
dispatching or memory-intensive functions such as memcpy, memmove, memset, or 
mathematical functions such as pow, log, exp, sin, etc. 

Overriding the Intel CPU detection function 
It is possible to replace the CPU detection function in Intel function libraries and compiler-
generated code by making another function that has exactly the same name. If the static 
version of the function libraries is used then a function in a C or C++ source file will take 
precedence over a library function with the same name. The code examples below show 
how to override the Intel CPU detection functions in code generated by the Intel compiler as 
well as code that uses Intel function libraries. This works even for code that uses Intel 
function libraries with a different compiler, for example the Intel short vector math library 
(SVML) with the Gnu compiler. These code examples can be used for improving 
performance and compatibility with non-Intel microprocessors, microcode and old operating 
systems. 
 
These examples are ready to copy and paste into your code. Remember to use static 
linking (e.g. option /MT). A function in a dynamic library (*.dll, *.so) cannot be changed 
without disassembling and modifying the library. These code examples below use the 
InstructionSet function from my asmlib library (www.agner.org/optimize/asmlib.zip). 
 
Note that these examples are based on my own research, not on publicly available 
information. They have worked well in my specific tests, but there may be certain library 
functions that are not covered, and they may not work with future versions of the libraries. 
The examples are intended to work in both Windows and Linux, 32-bit and 64-bit. They 
have not been tested in Mac systems. 

CPU dispatcher for Intel compiler and libraries 
Example 13.3 overrides the Intel CPU dispatcher for code generated by the Intel compiler, 
as well as for code that uses the general Intel function libraries (e.g. libirc), the math 
library (libm), and the short vector math library (svml). 
 

// Example 13.3. Dispatcher-patch for Intel compiler 
#include "asmlib.h" // Header file for asmlib 
 
#ifdef __cplusplus 
extern "C" {        // Avoid C++ name mangling 
#endif 
 
// Global variable indicating cpu 
int __intel_cpu_indicator = 0;  
 
// CPU dispatcher function 
void __intel_cpu_indicator_init() { 
   // Get CPU level from asmlib library function 

http://www.agner.org/optimize/asmlib.zip
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   switch (InstructionSet()) { 
   case 0:  // No special instruction set supported 
      __intel_cpu_indicator = 1; 
      break; 
   case 1: case 2: // MMX supported 
      __intel_cpu_indicator = 8; 
      break; 
   case 3:  // SSE supported 
      __intel_cpu_indicator = 0x80; 
      break; 
   case 4:  // SSE2 supported 
      __intel_cpu_indicator = 0x200; 
      break; 
   case 5:  // SSE3 supported 
      __intel_cpu_indicator = 0x800; 
      break; 
   case 6: case 7:  // Supplementary-SSE3 supported 
      __intel_cpu_indicator = 0x1000; 
      break; 
   case 8: case 9:  // SSE4.1 supported 
      __intel_cpu_indicator = 0x2000; 
      break; 
   case 10: case 11: // SSE4.2 and POPCNT supported 
      __intel_cpu_indicator = 0x8000; 
      break; 
   case 12: // AVX, PCLMUL and AES supported 
   default: 
      __intel_cpu_indicator = 0x20000; 
      break; 
   } 
#ifdef __cplusplus 
}   // End of extern "C" 
#endif 
 

This applies to Intel C++ compiler version 11 and earlier and the libraries that are included 
with this compiler on all x86 and x86-64 platforms. It may or may not work in future versions. 
It is recommended to check with a debugger that the function 
__intel_cpu_indicator_init() is called at least once and that the code works 
correctly on both Intel and non-Intel processors. 

CPU dispatcher for Intel Math Kernel Library 
Example 13.4 overrides the Intel CPU dispatcher for the Intel math kernel library (MKL), 
except the vector math library (VML). This override may not be needed in 32-bit mode. 
 

// Example 13.4.  
// Dispatcher-patch for Intel math kernel library v. 10.x and later 
#include "asmlib.h" // Header file for asmlib 
 
#ifdef __cplusplus 
extern "C" {        // Avoid C++ name mangling 
#endif 
 
// CPU dispatcher function for MKL 
int mkl_serv_cpu_detect(void) { 
   int n = InstructionSet(); // Get instruction set 
   if (n < 4) return 0; // SSE2 not supported 
 
   if (sizeof(void*) == 4) { 
      // 32 bit mode 
      switch (n) { 
      case 4:  // SSE2 supported 
         n = 2; break; 
      case 5:  // SSE3 supported 
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         n = 3; break; 
      case 6: case 7: case 8: case 9: // Supplementary-SSE3 supported 
         n = 4; break; 
      case 10: // SSE4.2 supported 
         n = 5; break; 
      default: // AVX 
         // Set n = 6 if MKL library supports AVX 
         // (currently experimental in 64-bit version of MKL 10.2) 
         n = 5; break; 
      } 
   } 
   else { 
      // 64 bit mode 
      switch (n) { 
      case 4:  // SSE2 supported 
         n = 0; break; 
      case 5:  // SSE3 supported 
         n = 1; break; 
      case 6: case 7: case 8: case 9: // Supplementary-SSE3 supported 
         n = 2; break; 
      case 10: // SSE4.2 supported 
         n = 3; break; 
      default: // AVX 
         // Set n = 4 if MKL library supports AVX 
         // (currently experimental in 64-bit version of MKL 10.2) 
         n = 3; break; 
      } 
   } 
   return n; 
} 
#ifdef __cplusplus 
}  // End of extern "C" 
#endif 

 
This code has been tested with MKL version 10.2. It doesn't work if the return value is 
higher than the latest instruction set supported by the library. You may need to limit the 
return value if an earlier version of MKL is used. Later versions are likely to allow higher 
values. 

CPU dispatcher for Intel Vector Math Library 
Example 13.5 overrides the Intel CPU dispatcher for the Intel Vector Math Library (VML). 
 

// Example 13.5.  
// Dispatcher-patch for Intel VML v. 10.x and later 
#include "asmlib.h" // Header file for asmlib 
 
#ifdef __cplusplus 
extern "C" {        // Avoid C++ name mangling 
#endif 
 
// CPU dispatcher function for VML 
int mkl_vml_service_cpu_detect(void) { 
   int n = InstructionSet(); 
   if (n < 4) return 0; // SSE2 not supported 
 
   if (sizeof(void*) == 4) { 
      // 32 bit mode 
      switch (n) { 
      case 4:  // SSE2 supported 
         n = 2; break; 
      case 5:  // SSE3 supported 
         n = 3; break; 
      case 6: case 7: // Supplementary-SSE3 supported 
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         n = 4; break; 
      case 8: case 9: // SSE4.1 supported 
         n = 5; break; 
      case 10:  // SSE4.2 supported 
         n = 6; break; 
      default:  // AVX supported  
         // Set n = 7 if VML library supports AVX 
         // (currently experimental in 64-bit version of MKL 10.2) 
         n = 6; break; 
      } 
   } 
   else { 
      // 64 bit mode 
      switch (n) { 
      case 4: case 5: // SSE2 supported 
         n = 1; break; 
      case 6: case 7: // Supplementary-SSE3 supported 
         n = 2; break; 
      case 8: case 9: // SSE4.1 supported 
         n = 3; break; 
      case 10:  // SSE4.2 supported 
         n = 4; break; 
      default:  // AVX supported  
         // Set n = 5 if VML library supports AVX 
         // (currently experimental in 64-bit version of MKL 10.2) 
         n = 4; break; 
      } 
   } 
   return n; 
} 
#ifdef __cplusplus 
}  // End of extern "C" 
#endif 

 
This code has been tested with VML in MKL version 10.2. It doesn't work if the return value 
is higher than the latest instruction set supported by the library. You may need to limit the 
return value if an earlier version of the library is used. Later versions are likely to allow 
higher values. 
 
The Short Vector Math Library (SVML) needs the code in example 13.3, not example 13.5. 

CPU dispatching in Intel Performance Primitives Library 
The CPU dispatching in the Intel Performance Primitives library (IPP) version 6.1 appears to 
work well with non-Intel processors. No override appears to be needed. 
 
Future versions may be checked by testing the external variable 
ippJumpIndexForMergedLibs after calling ippStaticInit(). This variable should 
have the following values: 0: < SSE2,  1: SSE2,  2: SSE3,  3: SSSE3,  4: SSE4.1,  5: Intel 
Atom. You may do the test in example 13.6 on a non-Intel processor. 
 

// Example 13.6. Dispatcher test for Intel IPP 
#include <ipp.h> 
#include <stdio.h> 
 
extern "C" { 
   extern int ippJumpIndexForMergedLibs; 
} 
 
int main() { 
   ippStaticInit(); 
   printf("\nJump index = %i\n", ippJumpIndexForMergedLibs); 
   return 0; 
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} 
 
 

14 Specific optimization tips 

14.1 Use lookup tables 
Reading a value from a table of constants is very fast if the table is cached. Usually it takes 
only a few clock cycles to read from a table in the level-1 cache. We can take advantage of 
this fact by replacing a function call with a table lookup if the function has only a limited 
number of possible inputs. 
 
Let's take the integer factorial function (n!) as an example. The only allowed inputs are the 
integers from 0 to 12. Higher inputs give overflow and negative inputs give infinity. A typical 
implementation of the factorial function looks like this: 
 

// Example 14.1a 
int factorial (int n) {          // n! 
   int i, f = 1; 
   for (i = 2; i <= n; i++) f *= i; 
   return f; 
} 

 
This calculation requires n-1 multiplications, which can take quite a long time. It is more 
efficient to use a lookup table: 
 

// Example 14.1b 
int factorial (int n) {          // n! 
   // Table of factorials: 
   static const int FactorialTable[13] = {1, 1, 2, 6, 24, 120, 720,  
      5040, 40320, 362880, 3628800, 39916800, 479001600}; 
   if ((unsigned int)n < 13) {   // Bounds checking (see page 137) 
      return FactorialTable[n];  // Table lookup 
   } 
   else { 
      return 0;                  // return 0 if out of range 
   } 
} 

 
This implementation uses a lookup table instead of calculating the value each time the 
function is called. I have added a bounds check on n here because the consequence of n 
being out of range is possibly more serious when n is an array index than when n is a loop 
count. The method of bounds checking is explained below on page 137. 
 
The table should be declared const in order to enable constant propagation and other 
optimizations. In most cases it is also recommended to declare the table static. This 
makes sure that the table is initialized when the program is loaded rather than each time the 
function is called. You may declare the function inline. 
 
Replacing a function with a lookup table is advantageous in most cases where the number 
of possible inputs is limited and there are no cache problems. It is not advantageous to use 
a lookup table if you expect the table to be evicted from the cache between each call, and 
the time it takes to calculate the function is less than the time it takes to reload the value 
from memory plus the costs to other parts of the program of occupying a cache line. 
 
Table lookup cannot be vectorized with the current instruction set. Do not use lookup tables 
if this prevents a faster vectorized code. 
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Storing something in static memory can cause caching problems because static data are 
likely to be scattered around at different memory addresses. If caching is a problem then it 
may be useful to copy the table from static memory to stack memory outside the innermost 
loop. This is done by declaring the table inside a function but outside the innermost loop and 
without the static keyword: 
 

// Example 14.1c 
void CriticalInnerFunction () { 
   // Table of factorials: 
   const int FactorialTable[13] = {1, 1, 2, 6, 24, 120, 720,  
      5040, 40320, 362880, 3628800, 39916800, 479001600}; 
   ... 
   int i, a, b; 
   // Critical innermost loop: 
   for (i = 0; i < 1000; i++) { 
      ... 
      a = FactorialTable[b]; 
      ... 
   } 
} 

 
The FactorialTable in example 14.1c is copied from static memory to the stack when 
CriticalInnerFunction is called. The compiler will store the table in static memory and 
insert a code that copies the table to stack memory at the start of the function. Copying the 
table takes extra time, of course, but this is permissible when it is outside the critical 
innermost loop. The loop will use the copy of the table that is stored in stack memory which 
is contiguous with other local variables and therefore likely to be cached more efficiently 
than static memory. 
 
If you don't care to calculate the table values by hand and insert the values in the code then 
you may of course make the program do the calculations. The time it takes to calculate the 
table is not significant as long as it is done only once. One may argue that it is safer to 
calculate the table in the program than to type in the values because a typo in a hand-
written table may go undetected. 
 
The principle of table lookup can be used in any situation where a program chooses 
between two or more constants. For example, a branch that chooses between two 
constants can be replaced by a table with two entries. This may improve the performance if 
the branch is poorly predictable. For example: 
 

// Example 14.2a 
float a;  int b; 
a = (b == 0) ? 1.0f : 2.5f; 

 
If we assume that b is always 0 or 1 and that the value is poorly predictable, then it is 
advantageous to replace the branch by a table lookup: 
 

// Example 14.2b 
float a;  int b; 
static const float OneOrTwo5[2] = {1.0f, 2.5f}; 
a = OneOrTwo5[b & 1]; 

 
Here, I have AND'ed b with 1 for the sake of security. b & 1 is certain to have no other 
value than 0 or 1 (see page 138). This extra check on b can be omitted, of course, if the 
value of b is guaranteed to be 0 or 1. Writing a = OneOrTwo5[b!=0]; will also work, 
although slightly less efficiently. This method is inefficient, however, when b is a float or 
double because all the compilers I have tested implement OneOrTwo5[b!=0] as 
OneOrTwo5[(b!=0) ? 1 : 0] in this case so we don't get rid of the branch. It may seem 
illogical that the compiler uses a different implementation when b is floating point. The 
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reason is, I guess, that compiler makers assume that floating point comparisons are more 
predictable than integer comparisons. The solution a = 1.0f + b * 1.5f; is efficient 
when b is a float, but not if b is an integer because the integer-to-float conversion takes 
more time than the table lookup. 
 
Lookup tables are particular advantageous as replacements for switch statements 
because switch statements often suffer from poor branch prediction. Example: 
 

// Example 14.3a 
int n; 
switch (n) { 
case 0: 
   printf("Alpha");  break; 
case 1: 
   printf("Beta");   break; 
case 2: 
   printf("Gamma");  break; 
case 3: 
   printf("Delta");  break; 
} 

 
This can be improved by using a lookup table: 
 

// Example 14.3b 
int n; 
static char const * const Greek[4] = { 
   "Alpha", "Beta", "Gamma", "Delta" 
}; 
if ((unsigned int)n < 4) { // Check that index is not out of range 
   printf(Greek[n]); 
} 

 
The declaration of the table has const twice because both the pointers and the texts they 
point to are constant. 
 

14.2 Bounds checking 
In C++, it is often necessary to check if an array index is out of range. This may typically 
look like this: 
 

// Example 14.4a 
const int size = 16; int i; 
float list[size]; 
... 
if (i < 0 || i >= size) { 
   cout << "Error: Index out of range"; 
} 
else { 
   list[i] += 1.0f; 
} 

 
The two comparisons i < 0 and i >= size can be replaced by a single comparison: 
 

// Example 14.4b 
if ((unsigned int)i >= (unsigned int)size) { 
   cout << "Error: Index out of range"; 
} 
else { 
   list[i] += 1.0f; 
} 
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A possible negative value of i will appear as a large positive number when i is 
interpreted as an unsigned integer and this will trigger the error condition. Replacing two 
comparisons by one makes the code faster because testing a condition is relatively 
expensive, while the type conversion generates no extra code at all. 
 
This method can be extended to the general case where you want to check whether an 
integer is within a certain interval: 
 

// Example 14.5a 
const int min = 100, max = 110;  int i; 
... 
if (i >= min && i <= max) { ... 
 

can be changed to: 
 

// Example 14.5b 
if ((unsigned int)(i - min) <= (unsigned int)(max - min)) { ... 

 
There is an even faster way to limit the range of an integer if the length of the desired 
interval is a power of 2. Example: 
 

// Example 14.6 
float list[16]; int i; 
... 
list[i & 15] += 1.0f; 

 
This needs a little explanation. The value of i&15 is guaranteed to be in the interval from 0 
to 15. If i is outside this interval, for example i = 18, then the & operator (bitwise and) will 
cut off the binary value of i to four bits, and the result will be 2. The result is the same as i 
modulo 16. This method is useful for preventing program errors in case the array index is 
out of range and we don't need an error message if it is. It is important to note that this 
method works only for powers of 2 (i.e. 2, 4, 8, 16, 32, 64, ...). We can make sure that a 
value is less than 2n and not negative by AND'ing it with 2n -1. The bitwise AND operation 
isolates the least significant n bits of the number and sets all other bits to zero. 
 

14.3 Use bitwise operators for checking multiple values at once 
The bitwise operators &, |, ^, ~, <<, >> can test or manipulate all the bits of an integer in 
one operation. For example, if each bit of a 32-bit integer has a particular meaning, then you 
can set multiple bits in a single operation using the | operator; you can clear or mask out 
multiple bits with the & operator; and you can toggle multiple bits with the ^ operator. 
 
The & operator is also useful for testing multiple conditions in a single operation. Example: 
 

// Example 14.7a. Testing multiple conditions 
enum Weekdays { 
   Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday 
}; 
Weekdays Day; 
if (Day == Tuesday || Day == Wednesday || Day == Friday) { 
   DoThisThreeTimesAWeek(); 
} 

 
The if statement in this example has three conditions which are implemented as three 
branches. They can be joined into a single branch if the constants Sunday, Monday, etc. 
are defined as powers of 2: 
 

// Example 14.7b. Testing multiple conditions using & 
enum Weekdays { 
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   Sunday = 1, Monday = 2, Tuesday = 4, Wednesday = 8,  
   Thursday = 0x10, Friday = 0x20, Saturday = 0x40 
}; 
Weekdays Day; 
if (Day & (Tuesday | Wednesday | Friday)) { 
   DoThisThreeTimesAWeek(); 
} 

 
By giving each constant a value that is a power of 2 in example 14.7b, we are in fact using 
each bit in Day for signifying one of the weekdays. The maximum number of constants we 
can define in this way is equal to the number of bits in an integer, usually 32. In 64-bit 
systems we can use 64-bit integers with hardly any loss of efficiency. 
 
The expression (Tuesday | Wednesday | Friday) in example 14.7b is converted by 
the compiler to the value 0x2C so that the if condition can be calculated by a single & 
operation, which is very fast. The result of the & operation will be non-zero, and therefore 
count as true, if any of the bits for Tuesday, Wednesday or Friday is set in the variable 
Day. 
 
Note the difference between the Boolean operators &&, ||, ! and the corresponding bitwise 
operators &, |, ~. The Boolean operators produce a single result, true (1) or false (0); and 
the second operand is evaluated only when needed. The bitwise operators produce 32 
results when applied to 32-bit integers, and they always evaluate both operands. 
Nevertheless, the bitwise operators are calculated much faster than the Boolean operators 
because they do not use branches, provided that the operands are integer expressions 
rather than Boolean expressions. 
 
There are lots of things you can do with bitwise operators using integers as Boolean 
vectors, and these operations are very fast. This can be useful in programs with many 
Boolean expressions. Whether the constants are defined with enum, const, or #define 
makes no difference for the performance. 
 

14.4 Integer multiplication 
Integer multiplication takes longer time than addition and subtraction (3 - 10 clock cycles). 
Optimizing compilers will often replace integer multiplication by a constant with a 
combination of additions and shift operations. Multiplying by a power of 2 is faster than 
multiplying by other constants because it can be done as a shift operation. For example, 
a * 16 is calculated as a << 4, and a * 17 is calculated as (a << 4) + a. 
 
You can take advantage of this by preferably using powers of 2 when multiplying with a 
constant. The compilers also have fast ways of multiplying by 3, 5 and 9. 
 
Multiplications are done implicitly when calculating the address of an array element. In some 
cases this multiplication will be faster when the factor is a power of 2. Example: 
 

// Example 14.8 
const int rows = 10, columns = 8; 
float matrix[rows][columns]; 
int i, j; 
int order(int x); 
... 
for (i = 0; i < rows; i++) { 
   j = order(i); 
   matrix[j][0] = i; 
} 
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Here, the address of matrix[j][0] is calculated internally as  
(int)&matrix[0][0] + j * (columns * sizeof(float)). 
Now, the factor to multiply j by is (columns * sizeof(float)) = 8 * 4 = 32. This 
is a power of 2, so the compiler can replace j * 32 with j << 5. If columns had not 
been a power of 2 then the multiplication would take longer time. It can therefore be 
advantageous to make the number of columns in a matrix a power of 2 if the rows are 
accessed in a non-sequential order. 
 
The same applies to an array of structure or class elements. The size of each object should 
preferably be a power of 2 if the objects are accessed in a non-sequential order. Example: 
 

// Example 14.9 
struct S1 { 
   int a; 
   int b; 
   int c; 
   int UnusedFiller; 
}; 
int order(int x); 
const int size = 100; 
S1 list[size];  int i, j; 
... 
for (i = 0; i < size; i++) { 
   j = order(i); 
   list[j].a = list[j].b + list[j].c; 
} 

 
Here, we have inserted UnusedFiller in the structure to make sure its size is a power of 
2 in order to make the address calculation faster. 
 
The advantage of using powers of 2 applies only when elements are accessed in non-
sequential order. If the code in example 14.8 and 14.9 is changed so that it has i instead of 
j as index then the compiler can see that the addresses are accessed in sequential order 
and it can calculate each address by adding a constant to the preceding one (see page 69). 
In this case it doesn't matter if the size is a power of 2 or not. 
 
The advise of using powers of 2 does not apply to very big data structures. On the contrary, 
you should by all means avoid powers of 2 if a matrix is so big that caching becomes a 
problem. If the number of columns in a matrix is a power of 2 and the matrix is bigger than 
the cache then you can get very expensive cache contentions, as explained on page 95. 
 

14.5 Integer division 
Integer division takes much longer time than addition, subtraction and multiplication (40 - 80 
clock cycles for 32-bit integers). 
 
Integer division by a power of 2 can be done with a shift operation, which is much faster. 
 
Division by a constant is faster than division by a variable because optimizing compilers can 
compute a / b as a * (2n / b) >> n with a suitable choice of n. The constant (2n / b) is 
calculated in advance and the multiplication is done with an extended number of bits. The 
method is somewhat more complicated because various corrections for sign and rounding 
errors must be added. This method is described in more detail in manual 2: "Optimizing 
subroutines in assembly language". The method is faster if the dividend is unsigned. 
 
The following guidelines can be used for improving code that contains integer division: 
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• Integer division by a constant is faster than division by a variable 
 

• Integer division by a constant is faster if the constant is a power of 2 
 

• Integer division by a constant is faster if the dividend is unsigned 
 
Examples: 
 

// Example 14.10 
int a, b, c; 
a = b / c;                // This is slow 
a = b / 10;               // Division by a constant is faster 
a = (unsigned int)b / 10; // Still faster if unsigned 
a = b / 16;               // Faster if divisor is a power of 2 
a = (unsigned int)b / 16; // Still faster if unsigned 

 
The same rules apply to modulo calculations: 
 

// Example 14.11 
int a, b, c; 
a = b % c;                // This is slow 
a = b % 10;               // Modulo by a constant is faster 
a = (unsigned int)b % 10; // Still faster if unsigned 
a = b % 16;               // Faster if divisor is a power of 2 
a = (unsigned int)b % 16; // Still faster if unsigned 

 
You can take advantage of these guidelines by using a constant divisor that is a power of 2 
if possible and by changing the dividend to unsigned if you are sure that it will not be 
negative. 
 
Division of a loop counter by a constant can be avoided by rolling out the loop by the same 
constant. Example: 
 

// Example 14.12a 
int list[300]; 
int i; 
for (i = 0;  i < 300;  i++) { 
   list[i] += i / 3; 
} 

 
This can be replaced with: 
 

// Example 14.12b 
int list[300]; 
int i, i_div_3; 
for (i = i_div_3 = 0;  i < 300;  i += 3, i_div_3++) { 
   list[i]   += i_div_3; 
   list[i+1] += i_div_3; 
   list[i+2] += i_div_3; 
} 

 
A similar method can be used to avoid modulo operations: 
 

// Example 14.13a 
int list[300]; 
int i; 
for (i = 0;  i < 300;  i++) { 
   list[i] = i % 3; 
} 

 
This can be replaced with: 
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// Example 14.13b 
int list[300]; 
int i; 
for (i = 0;  i < 300;  i += 3) { 
   list[i]   = 0; 
   list[i+1] = 1; 
   list[i+2] = 2; 
} 

 
The loop unrolling in example 14.12b and 14.13b works only if the loop count is divisible by 
the unroll factor. If not, then you must do the extra operations outside the loop: 
 

// Example 14.13c 
int list[301]; 
int i; 
for (i = 0;  i < 301;  i += 3) { 
   list[i]   = 0; 
   list[i+1] = 1; 
   list[i+2] = 2; 
} 
list[300] = 0; 

 

14.6 Floating point division 
Floating point division takes much longer time than addition, subtraction and multiplication 
(20 - 45 clock cycles). 
 
Floating point division by a constant should be done by multiplying with the reciprocal: 
 

// Example 14.14a 
double a, b; 
a = b / 1.2345; 

 
Change this to: 
 

// Example 14.14b 
double a, b; 
a = b * (1. / 1.2345); 

 
The compiler will calculate (1./1.2345) at compile time and insert the reciprocal in the 
code, so you will never spend time doing the division. Some compilers will replace the code 
in example 14.14a with 14.14b automatically but only if certain options are set to relax 
floating point precision (see page 71). It is therefore safer to do this optimization explicitly. 
 
Divisions can sometimes be eliminated completely. For example: 
 

// Example 14.15a 
if (a > b / c) 

 
can sometimes be replaced by 
 

// Example 14.15b 
if (a * c > b) 

 
But beware of the pitfalls here: The inequality sign must be reversed if c < 0. The division is 
inexact if b and c are integers, while the multiplication is exact. 
 
Multiple divisions can be combined. For example: 
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// Example 14.16a 
double y, a1, a2, b1, b2; 
y = a1/b1 + a2/b2;   

 
Here we can eliminate one division by making a common denominator: 
 

// Example 14.16b 
double y, a1, a2, b1, b2; 
y = (a1*b2 + a2*b1) / (b1*b2);   

 
The trick of using a common denominator can even be used on completely independent 
divisions. Example: 
 

// Example 14.17a 
double a1, a2, b1, b2, y1, y2; 
y1 = a1 / b1; 
y2 = a2 / b2; 

 
This can be changed to: 
 

// Example 14.17b 
double a1, a2, b1, b2, y1, y2, reciprocal_divisor; 
reciprocal_divisor = 1. / (b1 * b2); 
y1 = a1 * b2 * reciprocal_divisor; 
y2 = a2 * b1 * reciprocal_divisor; 

 

14.7 Don't mix float and double 
Floating point calculations usually take the same time regardless of whether you are using 
single precision or double precision, but there is a penalty for mixing single and double 
precision in programs compiled for 64-bit operating systems and programs compiled for the 
instruction set SSE2 or later. Example:  
 

// Example 14.18a 
float a, b; 
a = b * 1.2;       // Mixing float and double is bad 

 
The C/C++ standard specifies that all floating point constants are double precision by 
default, so 1.2 in this example is a double precision constant. It is therefore necessary for 
the compiler to convert b from single precision to double precision before multiplying with 
the double precision constant and then convert the result back to single precision. These 
conversions take a lot of time. You can avoid the conversions and make the code up to 5 
times faster either by making the constant single precision or by making a and b double 
precision: 
 

// Example 14.18b 
float a, b; 
a = b * 1.2f;      // everything is float 

 
// Example 14.18c 
double a, b; 
a = b * 1.2;       // everything is double 

 
There is no penalty for mixing different floating point precisions when the code is compiled 
for old processors without the SSE2 instruction set, but it may be preferable to keep the 
same precision in all operands in case the code is later ported to another platform. 
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14.8 Conversions between floating point numbers and integers 

Conversion from floating point to integer 
According to the standards for the C++ language, all conversions from floating point 
numbers to integers use truncation towards zero, rather than rounding. This is unfortunate 
because truncation takes much longer time than rounding unless the SSE2 instruction set is 
used. A typical conversion time is 40 clock cycles. If you cannot avoid conversions from 
float or double to int in the critical part of the code, then you may improve efficiency 
by using rounding instead of truncation. This is approximately three times faster. The logic 
of the program may need modification to compensate for the difference between rounding 
and truncation. 
 
Efficient conversion from float or double to integer can be done with the functions 
lrintf and lrint. Unfortunately, these functions are missing in many commercial 
compilers due to controversies over the C99 standard. An implementation of the lrint 
function is given in example 14.19 below. The function rounds a floating point number to the 
nearest integer. If two integers are equally near then the even integer is returned. There is 
no check for overflow. This function is intended for 32-bit Windows and 32-bit Linux with 
Microsoft, Intel and Gnu compilers. 

 
// Example 14.19 
static inline int lrint (double const x) { // Round to nearest integer  
   int n; 
#if defined(__unix__) || defined(__GNUC__) 
   // 32-bit Linux, Gnu/AT&T syntax: 
   __asm ("fldl %1 \n fistpl %0 " : "=m"(n) : "m"(x) : "memory" ); 
#else 
   // 32-bit Windows, Intel/MASM syntax: 
   __asm fld qword ptr x; 
   __asm fistp dword ptr n; 
#endif 
   return n;} 
 

This code will work only on Intel/x86-compatible microprocessors. The function is also 
available in the function library at www.agner.org/optimize/asmlib.zip.  
 
The following example shows how to use the lrint function: 
 

// Example 14.20 
double d = 1.6; 
int a, b; 
a = (int)d;      // Truncation is slow. Value of a will be 1 
b = lrint(d);    // Rounding is fast. Value of b will be 2 

 
In 64-bit mode or when the SSE2 instruction set is enabled there is no difference in speed 
between rounding and truncation. The missing functions can be implemented as follows in 
64-bit mode or when the SSE2 instruction set is enabled: 
 

// Example 14.21.  // Only for SSE2 or x64 
#include <emmintrin.h> 
 
static inline int lrintf (float const x) { 
   return _mm_cvtss_si32(_mm_load_ss(&x));} 
 
static inline int lrint (double const x) { 
   return _mm_cvtsd_si32(_mm_load_sd(&x));} 

 
The code in example 14.21 is faster than other methods of rounding, but neither faster nor 
slower than truncation when the SSE2 instruction set is enabled. 

http://www.agner.org/optimize/asmlib.zip
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Conversion from integer to floating point 
Conversion of integers to floating point is faster than from floating point to integer. The 
conversion time is typically between 5 and 20 clock cycles. It may in some cases be 
advantageous to do simple integer calculations in floating point variables in order to avoid 
conversions from integer to floating point. 
 
Conversion of unsigned integers to floating point numbers is less efficient than signed 
integers. It is more efficient to convert unsigned integers to signed integers before 
conversion to floating point if the conversion to signed integer doesn't cause overflow. 
Example: 
 

// Example 14.22a 
unsigned int u;  double d; 
d = u; 

 
If you are certain that u < 231 then convert it to signed before converting to floating point: 
 

// Example 14.22b 
unsigned int u;  double d; 
d = (double)(signed int)u; 

 

14.9 Using integer operations for manipulating floating point variables 
Floating point numbers are stored in a binary representation according to the IEEE standard 
754 (1985). This standard is used in almost all modern microprocessors and operating 
systems (but not in some very old DOS compilers). 
 
The representation of float, double and long double reflects the floating point value 
written as  ±2eee⋅1.fffff, where ± is the sign, eee is the exponent, and fffff is the 
binary decimals of the fraction. The sign is stored as a single bit which is 0 for positive and 1 
for negative numbers. The exponent is stored as a biased binary integer, and the fraction is 
stored as the binary digits. The exponent is always normalized, if possible, so that the value 
before the decimal point is 1. This '1' is not included in the representation, except in the 
long double format. The formats can be expressed as follows: 
 

struct Sfloat { 
   unsigned int fraction : 23; // fractional part 
   unsigned int exponent :  8; // exponent + 0x7F 
   unsigned int sign     :  1; // sign bit 
}; 
 
struct Sdouble { 
   unsigned int fraction : 52; // fractional part 
   unsigned int exponent : 11; // exponent + 0x3FF 
   unsigned int sign     :  1; // sign bit 
}; 
 
struct Slongdouble { 
   unsigned int fraction : 63; // fractional part 
   unsigned int one      :  1; // always 1 if nonzero and normal 
   unsigned int exponent : 15; // exponent + 0x3FFF 
   unsigned int sign     :  1; // sign bit 
}; 

 
The values of nonzero floating point numbers can be calculated as follows: 
 

( )23127 212)1( −− ⋅+⋅⋅−= fractionfloatvalue exponentsign , 
( )521023 212)1( −− ⋅+⋅⋅−= fractionedoublevalu exponentsign , 



 146

( )6316383 22)1( −− ⋅+⋅⋅−= fractiononevaluelongdouble exponentsign . 
 
The value is zero if all bits except the sign bit are zero. Zero can be represented with or 
without the sign bit. 
 
The fact that the floating point format is standardized allows us to manipulate the different 
parts of the floating point representation directly with the use of integer operations. This can 
be an advantage because integer operations are faster than floating point operations. You 
should use such methods only if you are sure you know what you are doing. See the end of 
this section for some caveats. 
 
We can change the sign of a floating point number simply by inverting the sign bit: 
 

// Example 14.23 
union { 
   float f; 
   int i; 
} u; 
u.i ^= 0x80000000; // flip sign bit of u.f 

 
We can take the absolute value by setting the sign bit to zero: 
 

// Example 14.24 
union { 
   float f; 
   int i; 
} u; 
u.i &= 0x7FFFFFFF; // set sign bit to zero 

 
We can check if a floating point number is zero by testing all bits except the sign bit: 
 

// Example 14.25 
union { 
   float f; 
   int i; 
} u; 
if (u.i & 0x7FFFFFFF) { // test bits 0 - 30 
   // f is nonzero 
} 
else { 
   // f is zero 
} 

 
We can multiply a nonzero floating point number by 2n by adding n to the exponent: 
 

// Example 14.26 
union { 
   float f; 
   int i; 
} u; 
int n; 
if (u.i & 0x7FFFFFFF) { // check if nonzero    
   u.i += n << 23;      // add n to exponent 
} 

 
Example 14.26 does not check for overflow and works only for positive n. You can divide by 
2n by subtracting n from the exponent if there is no risk of underflow. 
 
The fact that the representation of the exponent is biased allows us to compare two positive 
floating point numbers simply by comparing them as integers: 
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// Example 14.27 
union { 
   float f; 
   int i; 
} u, v; 
if (u.i > v.i) { 
   // u.f > v.f if both positive 
} 

 
Example 14.27 assumes that we know that u.f and v.f are both positive. It will fail if both 
are negative or if one is 0 and the other is -0 (zero with sign bit set).  
 
We can shift out the sign bit to compare absolute values: 
 

// Example 14.28 
union { 
   float f; 
   unsigned int i; 
} u, v; 
if (u.i * 2 > v.i * 2) { 
   // abs(u.f) > abs(v.f) 
} 

 
The multiplication by 2 in example 14.28 will shift out the sign bit so that the remaining bits 
represent a monotonically increasing function of the absolute value of the floating point 
number. 
 
We can convert an integer in the interval 0 <= n < 223 to a floating point number in the 
interval [1.0, 2.0) by setting the fraction bits: 
 

// Example 14.29 
union { 
   float f; 
   int i; 
} u; 
int n; 
u.i = (n & 0x7FFFFF) | 0x3F800000; // Now 1.0 <= u.f < 2.0 

 
This method is useful for random number generators. 
 
In general, it is faster to access a floating point variable as an integer if it is stored in 
memory, but not if it is a register variable. The union forces the variable to be stored in 
memory, at least temporarily. Using the methods in the above examples will therefore be a 
disadvantage if other nearby parts of the code could benefit from using registers for the 
same variables.  
 
In these examples we are using unions rather than type casting of pointers because this 
method is safer. Type casting of pointers may not work on compilers that rely on the strict 
aliasing rule of standard C, specifying that pointers of different types cannot point to the 
same object, except for char pointers. 
 
The above examples all use single precision. Using double precision in 32-bit systems gives 
rise to some extra complications. A double is represented with 64 bits, but 32-bit systems do 
not have inherent support for 64-bit integers. Many 32-bit systems allow you to define 64-bit 
integers, but they are in fact represented as two 32-bit integers, which is less efficient. You 
may use the upper 32 bits of a double which gives access to the sign bit, the exponent, 
and the most significant part of the fraction. For example, to test the sign of a double: 
 

// Example 14.23b 
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union { 
   double d; 
   int i[2]; 
} u; 
if (u.i[1] < 0) {  // test sign bit 
   // u.d is negative or -0 
} 

 
It is not recommended to modify a double by modifying only half of it, for example if you 
want to flip the sign bit in the above example with u.i[1] ^= 0x80000000; because this 
is likely to generate a store forwarding delay in the CPU (See manual 3: "The 
microarchitecture of Intel, AMD and VIA CPUs"). This can be avoided in 64-bit systems by 
using a 64-bit integer rather than two 32-bit integers to alias upon the double. 
 
Another problem with accessing 32 bits of a 64-bit double is that it is not portable to systems 
with big-endian storage. Example 14.23b and 14.30 will therefore need modification if 
implemented on other platforms with big-endian storage. All x86 platforms (Windows, Linux, 
BSD, Intel-based Mac OS, etc.) have little-endian storage, but other systems may have big 
endian storage (e.g. PowerPC). 
 
We can make an approximate comparison of doubles by comparing bits 32-62. This can be 
useful for finding the numerically largest element in a matrix for use as pivot in a Gauss 
elimination. The method in example 14.28 can be implemented like this in a pivot search: 
 

// Example 14.30 
const int size = 100; 
// Array of 100 doubles: 
union {double d; unsigned int u[2]} a[size]; 
unsigned int absvalue, largest_abs = 0; 
int i, largest_index = 0; 
for (i = 0; i < size; i++) { 
   // Get upper 32 bits of a[i] and shift out sign bit: 
   absvalue = a[i].u[1] * 2; 
   // Find numerically largest element (approximately): 
   if (absvalue > largest_abs) { 
      largest_abs = absvalue; 
      largest_index = i; 
   } 
} 

 
Example 14.30 finds the numerically largest element in an array, or approximately so. It may 
fail to distinguish elements with a relative difference less than 2-20, but this is sufficiently 
accurate for the purpose of finding a suitable pivot element. The integer comparison is likely 
to be faster than a floating point comparison. On big endian systems you have to replace 
u[1] by u[0]. 
 

14.10 Mathematical functions 
The most common mathematical functions such as logarithms, exponential functions, 
trigonometric functions, etc. are implemented in hardware in the x86 CPUs. However, a 
software implementation is faster than the hardware implementation in most cases when the 
SSE2 instruction set is available. The best compilers use the software implementation if the 
SSE2 instruction set is enabled. 
 
The advantage of using a software implementation rather than a hardware implementation 
of these functions is higher for single precision than for double precision. But the software 
implementation is faster than the hardware implementation in most cases, even for double 
precision. 
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You may use the Intel math function library with a different compiler by including the library 
libmmt.lib and the header file mathimf.h that come with the Intel C++ compiler. This 
library contains many useful mathematical functions. A lot of advanced mathematical 
functions are supplied in Intel's Math Kernel Library, available from www.intel.com. (See 
also page 120). The AMD math core library contains similar functions. 
 
Note that the Intel function libraries do not use the best possible instruction set when 
running on AMD processors (see page 129 for how to overcome this limitation), while the 
AMD math core library does not discriminate against Intel processors. 
 
 

15 Metaprogramming 
Metaprogramming means to make code that makes code. For example, in interpreted script 
languages, it is often possible to make a piece of code that produces a string and then 
interpret that string as code. 
 
Metaprogramming can be useful in compiled languages such as C++ for doing some 
calculations at compile time rather than at runtime if all the inputs to the calculations are 
available at compile time. (Of course there is no such advantage in interpreted languages 
where everything happens at runtime). 
 
The following techniques can be considered metaprogramming in C++: 
 

• Preprocessor directives. For example use #if instead of if. This is a very efficient 
way of removing superfluous code, but there are serious limitations to what the 
preprocessor can do because it comes before the compiler and it understands only 
the simplest expressions and operators.  
   

• Make a C++ program that produces another C++ program (or part of it). This can be 
useful in some cases, for example to produce tables of mathematical functions that 
you want as static arrays in the final program. This requires, of course, that you 
compile twice. 
   

• An optimizing compiler may try to do as much as possible at compile time. For 
example, most compilers will reduce  int x = 2 * 5;  to  int x = 10;  
   

• Templates are instantiated at compile time. A template instance has its parameters 
replaced by their actual values before it is compiled. This is the reason why there is 
virtually no cost to using templates (see p. 56). It is possible to express any 
algorithm with template metaprogramming, but this method is extremely complicated 
and clumsy, as you will see shortly. 

 
The following examples explain how metaprogramming can be used to speed up the 
calculation of the power function when the exponent is an integer known at compile time. 
 

// Example 15.1a. Calculate x to the power of 10 
double xpow10(double x) { 
   return pow(x,10); 
} 

 
The pow function uses logarithms in the general case, but in this case it will recognize that 
10 is an integer, so that the result can be calculated using multiplications only. The following 
algorithm is used inside the pow function when the exponent is a positive integer: 
 

// Example 15.1b. Calculate integer power using loop 
double ipow (double x, unsigned int n) { 

http://www.intel.com/
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   double y = 1.0;               // used for multiplication 
   while (n != 0) {              // loop for each bit in nn 
      if (n & 1) y *= x;         // multiply if bit = 1 
      x *= x;                    // square x 
      n >>= 1;                   // get next bit of n 
   } 
   return y;                     // return y = pow(x,n) 
} 
 
double xpow10(double x) { 
   return ipow(x,10);            // ipow faster than pow 
} 

 
The method used in example 15.1b is easier to understand when we roll out the loop and 
reorganize: 
 

// Example 15.1c. Calculate integer power, loop unrolled 
double xpow10(double x) { 
   double x2  = x * x;           // x^2 
   double x4  = x2*x2;           // x^4 
   double x8  = x4*x4;           // x^8 
   double x10 = x8*x2;           // x^10 
   return x10;                   // return x^10 
} 

 
As we can see, it is possible to calculate pow(x,10) with only four multiplications. How 
was it possible to come from example 15.1b  to 15.1c? We took advantage of the fact that n 
is known at compile time to eliminate everything that depends only on n, including the 
while loop, the if statement and all the integer calculations. The code in example 15.1c is 
faster than 15.1b, and in this case it may be smaller as well. 
 
The conversion from example 15.1b  to 15.1c was done by me manually, but if we want to 
generate a piece of code that works for any compile-time constant n, then we need 
metaprogramming. None of the compilers I have tested can convert example 15.1a  to 
15.1c automatically, and only the Gnu compiler will convert example 15.1b  to 15.1c. We 
can only hope that future compilers will do such optimizations automatically, but as long as 
this is not the case we may need metaprogramming. 
 
The next example shows this calculation implemented with template metaprogramming. 
Don't panic if you don't understand it. I am giving this example only to show how tortuous 
and convoluted template metaprogramming is. 
 

// Example 15.1d. Integer power using template metaprogramming 
 
// Template for pow(x,N) where N is a positive integer constant. 
// General case, N is not a power of 2: 
template <bool IsPowerOf2, int N>  
class powN {  
public: 
   static double p(double x) {    
   // Remove right-most 1-bit in binary representation of N: 
   #define N1 (N & (N-1)) 
      return powN<(N1&(N1-1))==0,N1>::p(x) * powN<true,N-N1>::p(x); 
   #undef N1 
   } 
}; 
 
// Partial template specialization for N a power of 2 
template <int N> 
class powN<true,N> { 
public: 
   static double p(double x) { 
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      return powN<true,N/2>::p(x) * powN<true,N/2>::p(x); 
   } 
}; 
 
// Full template specialization for N = 1 
template<> 
class powN<true,1> { 
public: 
   static double p(double x) { 
      return x; 
   } 
}; 
 
// Full template specialization for N = 0 
// This is used only for avoiding infinite loop if powN is  
// erroneously called with IsPowerOf2 = false where it should be true. 
template<> 
class powN<true,0> { 
public: 
   static double p(double x) { 
      return 1.0; 
   } 
}; 
 
// Function template for x to the power of N 
template <int N> 
static inline double IntegerPower (double x) { 
   // (N & N-1)==0 if N is a power of 2 
   return powN<(N & N-1)==0,N>::p(x); 
} 
 
// Use template to get x to the power of 10 
double xpow10(double x) { 
   return IntegerPower<10>(x); 
} 

 
If you want to know how this works, here's an explanation. Please skip the following 
explanation if you are not sure you need it. 
 
In C++ template metaprogramming, loops are implemented as recursive templates. The 
powN template is calling itself in order to emulate the while loop in example 15.1b. 
Branches are implemented by (partial) template specialization. This is how the if branch in 
example 15.1b is implemented. The powN template is a class template rather than a 
function template because partial template specialization is allowed only for classes. The 
splitting of N into the individual bits of its binary representation is particularly tricky. I have 
used the trick that  N1 = N&(N-1)  gives the value of N with the rightmost 1-bit removed. 
If N is a power of 2 then  N&(N-1)  is 0. The constant N1 could have been defined in other 
ways than by a macro, but the method used here is the only one that works on all the 
compilers I have tried. 
 
The Microsoft, Intel and Gnu compilers are actually reducing example 15.1d to 15.1c as 
intended, while the Borland and Digital Mars compilers produce less optimal code because 
they fail to eliminate common sub-expressions. 
 
Why is template metaprogramming so complicated? Because the C++ template feature was 
never designed for this purpose. It just happened to be possible. Template meta-
programming is so complicated that I consider it very unwise to use it. This is nothing but a 
playground for eggheads. Complicated code is a risk factor in itself, and the cost of 
verifying, debugging and maintaining such code is simply so high that it doesn't justify the 
relatively small gain in performance. 
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The D language allows compile-time if statements (called static if), but no compile-
time loops. We can only hope that such a feature becomes available in the future. If a future 
version of C++ should allow compile-time if and compile-time while loops, then the 
transformation of example 15.1b to metaprogramming would be straightforward. The MASM 
assembly language has full metaprogramming features, including the ability to define 
function names and variable names from string functions. A metaprogramming 
implementation analogous to example 15.1b and d in assembly language is provided as an 
example in the "Macro loops" chapter in manual 2: "Optimizing subroutines in assembly 
language". 
 
While we are waiting for better metaprogramming tools to be available, we may choose the 
compilers that are best at doing metaprogramming at their own initiative whenever it is 
possible. A compiler that automatically reduces example 15.1a to 15.1c would of course be 
the easiest and the most reliable solution. (In my tests, the Intel compiler reduced 15.1a to 
an inlined 15.1b and the Gnu compiler reduced 15.1b to 15.1c, but none of the compilers 
reduced 15.1a to 15.1c). 
 
 

16 Testing speed 
Testing the speed of a program is an important part of the optimization job. You have to 
check if your modifications actually increase the speed or not. 
 
There are various profilers available which are useful for finding the hot spots and 
measuring the overall performance of a program. The profilers are not always accurate, 
however, and it may be difficult to measure exactly what you want when the program 
spends most of its time waiting for user input or reading disk files. See page 16 for a 
discussion of profiling. 
 
When a hot spot has been identified, then it may be useful to isolate the hot spot and make 
measurements on this part of the code only. This can be done very accurately by using the 
so-called time stamp counter. This is a counter which measures the number of clock pulses 
since the CPU was started. The length of a clock cycle is the reciprocal of the clock 
frequency, as explained on page 15. If you read the value of the time stamp counter before 
and after executing a critical piece of code then you can get the exact time consumption as 
the difference between the two clock counts. 
 
The value of the time stamp counter can be obtained with the function ReadTSC listed 
below in example 16.1. This code works only for compilers that support intrinsics. 
Alternatively, you can get ReadTSC as a library function available in 
www.agner.org/optimize/asmlib.zip. 
 

// Example 16.1 
#include <intrin.h>        // Or #include <ia32intrin.h> etc. 
 
__int64 ReadTSC() {        // Returns time stamp counter 
   int dummy[4];           // For unused returns 
   volatile int DontSkip;  // Volatile to prevent optimizing 
   __int64 clock;          // Time 
   __cpuid(dummy, 0);      // Serialize 
   DontSkip = dummy[0];    // Prevent optimizing away cpuid 
   clock = __rdtsc();      // Read time 
   __cpuid(dummy, 0);      // Serialize again 
   DontSkip = dummy[0];    // Prevent optimizing away cpuid 
   return clock; 
} 

 

http://www.agner.org/optimize/alib.zip
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You can use this function to measure the clock count before and after executing the critical 
code. A test setup may look like this: 
 

// Example 16.2 
// Link with appropriate version of asmlib 
 
#include <stdio.h> 
#include <asmlib.h>        // Use ReadTSC() from library asmlib.. 
                           // or from example 16.1 
void CriticalFunction();   // This is the function we want to measure 
 
const int NumberOfTests = 10;         // Number of times to test 
int i; __int64 time1; 
__int64 timediff[NumberOfTests];      // Time difference for each test 
for (i = 0; i < NumberOfTests; i++) { // Repeat NumberOfTests times 
   time1 = ReadTSC();                 // Time before test 
 
   CriticalFunction();                // Critical function to test 
 
   timediff[i] = ReadTSC() - time1;   // (time after) - (time before) 
} 
printf("\nResults:");                 // Print heading 
for (i = 0; i < NumberOfTests; i++) { // Loop to print out results 
   printf("\n%2i  %10I64i", i, timediff[i]); 
} 

 
The code in example 16.2 calls the critical function ten times and stores the time 
consumption of each run in an array. The values are then output after the test loop. The 
time that is measured in this way includes the time it takes to call the ReadTSC function. 
You can subtract this value from the counts. It is measured simply by removing the call to 
CriticalFunction in example 16.2. 
 
The measured time is interpreted in the following way. The first count is always higher than 
the subsequent counts. This is the time it takes to execute CriticalFunction when code 
and data are not cached. The subsequent counts give the execution time when code and 
data are cached as good as possible. The first count and the subsequent counts represent 
the "worst case" and "best case" values. Which of these two values is closest to the truth 
depends on whether CriticalFunction is called once or multiple times in the final 
program and whether there is other code that uses the cache in between the calls to 
CriticalFunction. If your optimization effort is concentrated on CPU efficiency then it is 
the "best case" counts that you should look at to see if a certain modification is profitable. 
On the other hand, if your optimization effort is concentrated on arranging data in order to 
improve cache efficiency, then you may also look at the "worst case" counts. In any event, 
the clock counts should be multiplied by the clock period and by the number of times 
CriticalFunction is called in a typical application to calculate the time delay that the 
end user is likely to experience. 
 
Occasionally, the clock counts that you measure are much higher than normal. This 
happens when a task switch occurs during execution of CriticalFunction. You cannot 
avoid this in a protected operating system, but you can reduce the problem by increasing 
the thread priority before the test and setting the priority back to normal afterwards. 
 
An alternative to the test setup in example 16.2 is to use one of the test tools that I have 
made available at www.agner.org/optimize/testp.zip. These test tools are based on the 
same principle as example 16.2, but they can give additional performance counts for cache 
misses, misaligned memory references, branch mispredictions, floating point underflows, 
etc. This information is based on the performance monitor counters that are built into the 
CPU hardware. A test is performed by inserting the critical function into the test program 
and compiling it. My test tools are intended for testing small critical pieces of code, not for 
testing whole programs. 

http://www.agner.org/optimize/testp.zip
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The time stamp counter is a little inaccurate on microprocessors that can change the clock 
frequency (Intel SpeedStep® technology). A more accurate measurement can be obtained 
with a performance monitor counter for "core clock cycles", using the test program 
mentioned above. 
 

16.1 The pitfalls of unit-testing 
It is common practice to test each function or class separately in software development. 
This unit-testing is necessary for verifying the functionality of an optimized function, but 
unfortunately the unit-test doesn't give the full information about the performance of the 
function in terms of speed. 
 
Assume that you have two different versions of a critical function and you want to find out 
which one is fastest. The typical way to test this is to make a small test program that calls 
the critical function many times with a suitable set of test data and measure how long time it 
takes. The version that performs best under this unit-test may have a larger memory 
footprint than the alternative version. The penalty of cache misses is not seen in the unit-
test because the total amount of code and data memory used by the test program is likely to 
be less than the cache size. 
 
When the critical function is inserted in the final program, it is very likely that code cache 
and data cache are critical resources. Modern CPUs are so fast that the clock cycles spent 
on executing instructions are less likely to be a bottleneck than memory access and cache 
size. If this is the case then the optimal version of the critical function may be the one that 
takes longer time in the unit-test but has a smaller memory footprint. 
 
If, for example, you want to find out whether it is advantageous to roll out a big loop then 
you cannot rely on a unit-test without taking cache effects into account. 
 
You can calculate how much memory a function uses by looking at a link map or an 
assembly listing. Use the "generate map file" option for the linker. Both code cache use and 
data cache use can be critical. The branch target buffer is also a cache that can be critical. 
Therefore, the number of jumps, calls and branches in a function should also be considered. 
 
A realistic performance test should include not only a single function or hot spot but also the 
innermost loop that includes the critical functions and hot spots. The test should be 
performed with a realistic set of data in order to get reliable results for branch 
mispredictions. The performance measurement should not include any part of the program 
that waits for user input. The time used for file input and output should be measured 
separately. 
 
The fallacy of measuring performance by unit-testing is unfortunately very common. Even 
some of the best optimized function libraries available use excessive loop unrolling so that 
the memory footprint is unreasonably large. 
 

16.2 Worst-case testing 
Most performance tests are done under the best-case conditions. All disturbing influences 
are removed, all resources are sufficient, and the caching conditions are optimal. Best-case 
testing is useful because it gives more reliable and reproducible results. If you want to 
compare the performance of two different implementations of the same algorithm, then you 
need to remove all disturbing influences in order to make the measurements as accurate 
and reproducible as possible. 
 
However, there are cases where it is more relevant to test the performance under the worst-
case conditions. For example, if you want to make sure that the response time to user input 
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never exceeds one second, then you should test the response time under worst-case 
conditions. 
 
Programs that produce streaming audio or video should also be tested under worst-case 
conditions in order to make sure that they always keep up with the expected real-time 
speed. If the computer system is too slow, then there will be occasional delays or glitches in 
the output, which is usually unacceptable. 
 
Each of the following methods could possibly be relevant when testing worst-case 
performance: 
 

• The first time you activate a particular part of the program, it is likely to be slower 
than the subsequent times because of lazy loading of the code, cache misses and 
branch mispredictions. 
   

• Test the whole software package, including all runtime libraries and frameworks, 
rather than isolating a single function. Switch between different parts of the software 
package in order to increase the likelihood that certain parts of the program code are 
swapped to disk. 
   

• Software that relies on network resources and servers should be tested on a network 
with heavy traffic and a server in full use rather than a dedicated test server. 
   

• Use large data files and databases with lots of data. 
   

• Use an old computer with a slow CPU, an insufficient amount of RAM, a lot of 
irrelevant software installed, a lot of background processes running, and a 
fragmented hard disk. 
   

• Test with different brands of CPUs, different types of graphics cards, etc. 
   

• Use an antivirus program that scans all files on access. 
   

• Run multiple processes or threads simultaneously. If the microprocessor has 
hyperthreading, then try to run two threads in each processor core. 
   

• Try to allocate more RAM than there is, in order to force the swapping of memory to 
disk. 
   

• Provoke cache misses by making the code size or data used in the innermost loop 
bigger than the cache size. Alternatively, you may actively invalidate the cache. The 
operating system may have a function for this purpose, or you may use the 
_mm_clflush intrinsic function. 
   

• Provoke branch mispredictions by making the data more random than normal. 
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17 Overview of compiler options 
 
Table 17.1. Command line options relevant to optimization 
 
 MS compiler 

Windows 
Gnu compiler
Linux 

Intel compiler 
Windows 

Intel compiler 
Linux 

Optimize for speed /O2 or /Ox -O3 /O3 -O3 
Interprocedural 
optimization 

/Og    

Whole program 
optimization 

/GL --combine  
-fwhole-
program 

/Qipo -ipo 

No exception 
handling 

/EHs-    

No stack frame /Oy -fomit-
frame-
pointer 

 -fomit-
frame-
pointer 

No runtime type 
identification (RTTI) 

/GR– -fno-rtti /GR- -fno-rtti 

Assume no pointer 
aliasing 

/Oa   -fno-alias 

Non-strict floating 
point 

 -ffast-math /fp:fast 
/fp:fast=2 

-fp-model 
fast, -fp-
model fast=2 

Simple member 
pointers 

/vms    

Fastcall functions /Gr    
Function level linking 
(remove unreferen-
ced functions) 

/Gy -ffunction-
sections 

/Gy -ffunction-
sections 

SSE instruction set 
(128 bit float vectors) 

/arch:SSE -msse /QxK -xK 

SSE2 instruction set 
(128 vectors of inte-
ger or double) 

/arch:SSE2 -msse2 /QxW 
/QxB 

-xW 
-xB 

SSE3 instruction set  -msse3 /QxP  -xP 
Suppl. SSE3 instr. set   /QxT -xT 
Automatic CPU 
dispatch 

  /QaxB, etc. 
(not AMD) 

-axB, etc. 
(not AMD) 

Automatic 
vectorization 

 -mveclibabi (requires no specific option) 

Automatic paralleli-
zation by multiple 
threads 

  /Qparallel -parallel 

Parallelization by 
OpenMP directives 

/openmp  /Qopenmp -openmp 

32 bit code  -m32   
64 bit code  -m64   
Static linking 
(multithreaded) 

/MT -static /MT -static 

Generate assembly 
listing 

/FA -S -
masm=intel 

/FA -S 

Generate map file /Fm    
Generate optimization 
report 

  /Qopt-
report 

-opt-report 
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Table 17.2. Compiler directives and keywords relevant to optimization 
 
 MS compiler 

Windows 
Gnu compiler 
Linux 

Intel compiler 
Windows 

Intel compiler 
Linux 

Align by 16 __declspec( 
align(16)) 

__attribute(( 
aligned(16))) 

__declspec( 
align(16)) 

__attribute(( 
aligned(16))) 

Assume 
pointer is 
aligned 

  #pragma vector 
aligned 

#pragma vector 
aligned 

Assume 
pointer not 
aliased 

#pragma 
optimize("a", 
on) 
__restrict 

__restrict __declspec( 
noalias) 
__restrict 
#pragma ivdep 

__restrict 
#pragma ivdep 

Assume 
function is 
pure 

 __attribute(( 
const)) 

 __attribute(( 
const)) 

Assume 
function 
does not 
throw 
exceptions 

throw() throw() throw() throw() 

Assume 
function 
called only 
from same 
module 

static static static static 

Assume 
member 
function 
called only 
from same 
module 

 __attribute__ 
((visibility 
("internal"))) 

 __attribute__ 
((visibility 
("internal"))) 

Vectorize   #pragma vector 
always 

#pragma vector 
always 

Optimize 
function 

#pragma 
optimize(...) 

   

Fastcall 
function 

__fastcall __attribute(( 
fastcall)) 

__fastcall  

Noncached 
write 

  #pragma vector 
nontemporal 

#pragma vector 
nontemporal 

 
 
Table 17.3. Predefined macros 
 
 MS compiler 

Windows 
Gnu compiler 
Linux 

Intel compiler 
Windows 

Intel compiler 
Linux 

Compiler 
identification 

_MSC_VER and not 
__INTEL_COMPILER 

__GNUC__ and not 
__INTEL_COMPILER 

__INTEL_COMPILER __INTEL_COMPILER 

16 bit 
platform 

not _WIN32 n.a. n.a. n.a. 

32 bit 
platform 

not _WIN64  not _WIN64  

64 bit 
platform 

_WIN64 _LP64 _WIN64 _LP64 

Windows _WIN32  _WIN32  



 158

platform 
Linux 
platform 

n.a. __unix__ 
__linux__ 

 __unix__ 
__linux__ 

x86 platform _M_IX86  _M_IX86  
x86-64 
platform 

_M_IX86 and 
_WIN64 

 _M_X64 _M_X64 
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scientific vector processors. 
 

Henry S. Warren, Jr.: "Hacker's Delight". Addison-Wesley, 2003. 
Contains many bit manipulation tricks 

 
Michael Abrash: "Zen of code optimization", Coriolis group books 1994. 

Mostly obsolete. 
 
Rick Booth: "Inner Loops: A sourcebook for fast 32-bit software development", Addison-
Wesley 1997. 

Mostly obsolete. 
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Literature on usability 
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University-level textbook. Theoretical but easy to understand, with many illustrations 
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Ben Shneiderman & Catherine Plaisant: "Designing the User Interface: Strategies for 
Effective Human-Computer Interaction". 4th ed. Addison Wesley 2004.  

Comprehensive university-level textbook on the design of human/computer interface. 
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W. M. Newman & M. G. Lamming: "Interactive System Design". Addison-Wesley 1995.  

Textbook with the main focus on user psychology and cognition, including user 
study, modeling user activity, and systems analysis.  

 
Jef Raskin: "The Humane Interface: New Directions for Designing Interactive Systems". 
Addison-Wesley 2000.  

Theoretical book on human/computer interface and cognitive psychology with 
detailed discussion of commands, displays, cursors, icons, menus, etc.  

  
W3C: "Web Content Accessibility Guidelines 1.0". 1999. www.w3.org/TR/WAI-
WEBCONTENT/. 

Guidelines for handicap-friendly web user interfaces. Some of the advices are also 
applicable to other software interfaces. 

 

Internet forums 
Several internet forums and newsgroups contain useful discussions about code 
optimization. See www.agner.org/optimize and the FAQ for the newsgroup 
comp.lang.asm.x86 for some links. 
 
 

19 Copyright notice  
This series of five manuals is copyrighted by Agner Fog. Public distribution and mirroring is 
not allowed. Non-public distribution to a limited audience for educational purposes is 
allowed. The code examples in these manuals can be used without restrictions. A GNU 
Free Documentation License shall automatically come into force when I die. See 
www.gnu.org/copyleft/fdl.html. 
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