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Abstract

Tracking features between two consecutive images captures the essence

of motion in order to categorize objects (either static or moving) in the

scene. There has been a lot of literature on tracking features (sparse

or dense) and lot of improvements have also been proposed over time.

Many of these methods try to extract motion either through global

optic flow methods, Horn-Schunck or local optic flow methods, Lucas-

Kanade. The analysis is more on scenes taken from a static camera in

which background remains stationary but it becomes more challeng-

ing to extract motion from a moving camera as the motion of camera

is also inherited into the objects. We examine the problem of tracking

and tailing single as well as multiple people from a camera mounted

on a mobile robot and present a solution for the same. In the pro-

posed method, an alternative approach to optic flow computation is

taken by formulating it in an energy minimization framework. The

computed flow field is filtered using a spatial relative velocity based

filter to determine the potential moving objects. Color and depth

information is then used to finally segment and correctly classify the

moving objects. The approach works for different testing environ-

ments including change in illumination, presence of many textured

static objects and similar background color.
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Chapter 1

Introduction

1.1 Background and Motivation

Tracking of moving people finds many applications including survellience, secu-

rity, guidance and monitoring. We deal with the problem of tracking and tail-

ing multiple people with a camera mounted on a mobile platform or a robot.

While tracking a single target or person from a moving robot has been studied

[9,10,11,18,19], there has not been much attention on tracking multiple people

from a mobile robot. In [20], a method for moving a robot to keep maximum

number of targets in field of view is presented. However this is an exercise more

at the higher decision making level of how to allocate robots to areas where there

are more targets than at the lower level of sensor data interpretation to detect

motion and finding objects of interest. Tracking multiple people with a stationary

camera is possible by modeling the background with a mixture of Gaussians [12].

However, for moving backgrounds, such a method is not suitable. In general,

motion extraction is more challenging when both the camera and the objects of

interest are in motion as it requires separating the ego-motion of the camera from

object motion. One solution determines a transformation function for the static

background from a pair of images,to compensate for the ego-motion of the camera

[17,7]. The moving objects are then taken to be those points which do not obey

the transformation. However, when there are multiple moving objects and the

static background forms a smaller area in the image, it is difficult to estimate the

transformation function.
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1.1 Background and Motivation

An alternative approach is based on range information obtained from a laser

on a mobile robot [6] where the positions of multiple moving objects are tracked

from successive laser scans. Changes in local occupancy grid map are used to

detect leg motion of people and a joint probability based data association to

track objects in subsequent scans. Cameras on the other hand can provide a

denser depth map that can more robustly cluster objects of interest along with

other criteria such as color.

With this method, we present a solution for tracking multiple people, from a

moving robot. The solution is based on the fact that there is a difference between

the motion of points on a moving object and the motion of static objects when

viewed from a moving camera. Specifically, the points on the static objects in the

scene should have a relative velocity which is different from that of the points on

the moving objects. This is due to the fact that the motion of the static objects

is inherited from the camera whereas the motion of the moving objects is not.

We propose a modified optic flow-based technique for computing this relative

motion using which, the moving objects can then be segmented robustly. To

compute the optical flow for each feature, we include the information of motion

contained in its neighbors. Most approaches for feature tracking consider each

feature independently of the other features, thus neglecting important information

that is available in determining the motion of a feature. By incorporating the

motion information of neighbors, for calculating flow, a smoothness term is added

to the formulation to penalize the deviation of the direction of a feature from its

expected value. This leads to a smooth flow of motion vectors. Finally the

objects of interest are identified as follows: First, based on the flow vectors, we

segment regions that have an abrupt change in spatial relative velocities and

intensity profile, in a neighborhood. We call this as a spatial relative velocity

(SRV) filter. Next, the color models and depth information are incorporated into

the flow field to accurately extract the moving objects of interest. The information

about moving objects is then used to control the robot motion such that it moves

towards the direction where there are more number of people.

The current method has been tested with our camera equipped mobile robot,

called SPAWN, in environments where one or more number of people are in

motion. The tested environments include moderate changes in ambient light,

2



1.2 Structure of the report

presence of many stationary objects having similar disparity and color as that of

moving object.

1.2 Structure of the report

The organization of this report follows the flow of the pipeline shown in Figure

1.1. The images captured from the camera mounted on the mobile robot are first

processed by the motion segmentation phase of the pipeline. The components

of this phase, namely the modified optical flow computation and SRV filter are

discussed in Chapter 4. Once motion is detected, in the next phase (presented in

Section 4.2), color and depth information are used to cluster the motion segments

into moving objects (people) and a robot control law is used to move the robot to

follow the cluster that has the maximum person count. In section 4.4, we present

results of testing the algorithm in different environments. We finally close with a

discussion about the performance of the proposed method and some concluding

remarks in Section 4.5.

Figure 1.1: Basic Pipeline of the algorithm
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Chapter 2

Optic Flow

Optical flow is the distribution of apparent velocities of movement of brighness

pattern in an image. The basic assumption for optical flow calculation is that

of conservation of pixel intensity. It is assumed that the intensity, or the color

of the objects has not changed significantly between two frames. Following this

idea, we can derive a constraint equation for an image to compute the flow of

motion. Images taken from a camera separated by a small time interval δt may

be observed to have changes in point intensity δI(x, y) value during that time.

The optical flow is a vector field describing the intensity change by indicating the

motion of features from one image to another.

In general, the optical flow will not be same as the true the 2-D projection of

the 3-D motion field. A typical example can be of a perfectly featureless sphere

rotating about its vertical axis. This sphere does not induce any optical flow, but

the 2-D projection of its motion field is non-zero everywhere on it except at the

occluding boundries. In other words, if the sphere is stationary but a light source

moves, the changes in shading will induce an optical flow field even though the

motion field is zero everywhere.

There is a lot of literature available on the techniques to calculate the optical

flow but these techniques work well under certain constraints. These can be

classified into gradient based and correlation based. We will look at both of these

techniques in detail in the following sections.

4



2.1 Gradient Based Optical flow

2.1 Gradient Based Optical flow

A common technique used to compute optical flow assumes that the total spa-

tial and temporal derivates of the image brightness remains constant. For small

motions, this assumption seem to work pretty well unless the case is severe like

occluding boundaries. Assuming that the brightness remains constant over small

interval of time δt then we can say that :

δI

δt
= 0

This essentially means that :

I(x, y, t) = I(x + δx, y + δy, t + δt)

Assuming the movement to be small enough, the image constraint at I(x, y, t)

with Taylor series can be developed to get :

I(x + δx, y + δy, t + δt) = I(x, y, t) +
δI

δx
δx +

δI

δy
δy +

δI

δt
δt + ....

ignoring the higher order terms we can say that

δI

δx
δx +

δI

δy
δy +

δI

δt
δt = 0

The spatial derivates δI
δx

and δI
δy

and the temporal derivate at an image point δI
δt

can

be estimated by using two or more images. Thus we have two motion variables

(u = δI
δx

, v = δI
δy

) And one constraint. Also the motion along the direction of

gradients ( δI
δx

, δI
δy

)is available. This is known as aperture problem i.e. motion

along an edge is ambiguous. To find the optical flow another set of equations

is needed, given by some additional constraint. The solution as given by Lucas

and Kanade is a non-iterative method which assumes a locally constant flow.

Assuming that the flow (u, v) is constant in a small window of size m × m with

5



2.1 Gradient Based Optical flow

Figure 2.1: The aperture problem is illustrated in the image sequence; only the

motion normal to the translating straight contour can be determined. Left image

shows only a part of the translating patch while right image exposes the aperture

problem. The motion can never be determined, either the translating patch is

moving upwards or downwards since the patch is featureless or uniform. Image

courtesy: http://robots.stanford.edu/cs223b

m ≥ 2, which is centered at voxel x,y and numbering the pixels within as 1...n, n

= m2, a set of equations can be found:

Ix1u + Iy1v = −It1

Ix2u + Iy2v = −It2

Ix3u + Iy3v = −It3

.

.

Ixnu + Iynv = −Itn

Here Ixi denotes ith pixel’s gradient along the x direction, Iyi denotes pixel’s

gradient along the y direction and Iti denotes pixel’s temporal gradient. If we

assume

A =





Ix1 Iy1

Ix2 Iy2

. .

. .

Ixn Iyn




.

6

Chapter1/Chapter1Figs/EPS/apf.eps


2.1 Gradient Based Optical flow

and

b =





It1

It2

.

.

Itn




.

then we can write the equation as :

A~v = −b

To solve the over-determined system of equations, the least squares method is

used in the Lucas Kanade optical flow estimation:

AT A~v = AT (−b)

~v = (AT A)−1AT (−b)

here

AT A =

( ∑
I2
x

∑
IxIy∑

IxIy

∑
I2
y

)
.

and

AT (−b) =

(
−

∑
IxIt

−
∑

IyIt

)
.

Since this derivation requires the invertiblity of matrix for solution, we may en-

counter situations in which the whole m × m patch is more or less uniform and

has no texture and leading to non-invertibility of AT A. Therefore, we look at

the properties of the matrix AT A and see how it affects the solution and other

conditions of solvability of this equation.

AT A =
( ∑

(Ig)(Ig)
T

)
.

where

Ig =

(
Ix

Iy

)
.

7



2.1 Gradient Based Optical flow

Gradient away from the edge will have a small magnitude while gradient along

the edge all point the same direction. Therefore
( ∑

Ig(Ig)
T

)
≈ kIg(Ig)

T

( ∑
Ig(Ig)

T

)
Ig = k||Ig||Ig

Here Ig is an eigenvector with eigenvalue k||Ig||. Hence the eigenvectors of AT A

relate to edge direction and magnitude. If we compute the eigen values of this

Figure 2.2: The Left image shows the intensity pattern of a block centered around

an edge and the right image shows the magnitude of the gradient plot of the

intensity in that image block taken.

matrix (AT A) we may classify the quality of pixel for tracking on the basis of the

magnitude of these eigenvalues (say λ1, λ2). Since :

λ1 + λ2 = trace(AT A)

λ1λ2 = det(AT A)

If λ1 and λ2 both are very small, it means that the gradient of pixel is very small

therefore it may lie in a region of uniform intensity pattern. In case both of them

are not very small, the chances are more that the pixel lies in a textured region.

If the ratio λ1

λ2

is more than a thershold, it confirms that the pixel is good for

tracking. Fig. 2.2, Fig. 2.4 and Fig. 2.3 show the quality of a pixel and hence

show whether the pixel is good for tracking or not. Now that it is known which

pixel is good for tracking, the next thing is to find out the correspondence of

8
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2.1 Gradient Based Optical flow

Figure 2.3: The Left image shows a block taken from a non-textured uniform

intensity region and right image shows the gradient plot of that block. As it is

quite evident from the graph that the gradient values are quite small and hence

it does not make for a good pixel to be tracked.

Figure 2.4: The Left image shows the intensity pattern of an image block taken

from textured region and the right image shows the gradient plot. The gradient

plot completely shows that the magnitude of gradient values is high and hence

this is a good pixel to track.

9
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2.2 Correlation Based optical flow

pixel is the next image. The pyramidal LK feature tracker implementation [8] by

Birchfield tracks the pixels in a base image to other images in sequence.

2.2 Correlation Based optical flow

In general it is not possible to determine the correct optical flow field given a

pair of images due to aperture problem. Under certain constraints, the problem

becomes well posed and can be solved significantly. The gradient based optical

flow methods generally suffer from noise since they depend upon the gradient of

pixel. A relatively noise-resistant method to determine the optical flow would

be to find the best possible direction of patch over a given search window in the

next image. The maximum possible displacement w is limited to the size of the

window. The value of w depends on the expected values of pixel displacement

in the image plane. This is shown in the Figure 2.5 Since we consider motion of

Figure 2.5: Image 1 shows the search space of pixel A for w=2 and Image 2 shows

the expected direction ~AB of pixel A to B.

a pixel as the motion of a patch it is assumed that the all the pixels belonging

to the patch have similar motion. In other words, the motion vectors of pixel

adjacent to the given pixel will be similar. An example is shown in Figure 2.6.

The motion of pixels around a given pixel is assumed to be the same due to rigid

body assumption and hence a patch centered around that pixel is considered.

The patch is moved in a given search window centered around that pixel and for

10
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2.2 Correlation Based optical flow

each location (i, j) in the window, a match strength based on a given criteria

function is computed. The final flow direction is the one which minimizes the

criteria function. A typical criteria function would be correlation (SSD) of patch

Figure 2.6: Motion vectors of pixels adjacent to a given pixel are assumed to be

constant.

in Image 1 and Image 2. We denote the correlation function as Icorr.

Icorr(i, j) =

y= pH

2∑

y=−pH

2

x= pW

2∑

x=−pW

2

(I1(x, y) − I2(x + i, y + j))2

Here pW and pH denote the width and the height of the patch and (i, j) denote

a location in the search window W of size wHxwW defined as

W (i, j) =






1 if −wW
2

≤ i ≤ wW
2

and
−wH

2
≤ j ≤ wH

2

0 otherwise

Therefore the direction which minimizes the energy function E(i, j) is defined as:

E(i, j) = Icorr(i, j)W (i, j)

(̂i, ĵ) = argmini,j(E(i, j))

11
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2.2 Correlation Based optical flow

The best direction is (̂i, ĵ) which minimizes the energy function.

Selim Temizer et al. [25] at MIT have controlled the robot motion to navigate

through obstacles by using correlation based optical flow. Their method to obtain

the optical flow field is basically as follows: First, a gaussian filter is applied to the

raw input images. This is a low pass filter, and has a blurring (smoothing) effect

on the image. Then, laplacian filter is applied to obtain the second derivative

information from the images. Theoretically, both of these filtering operations

are 2-D convolutions, but practically they implement them as two 1-D and one

2-D convolutions. The same effect of applying a 2-D, gaussian filter - an NxN

square matrix - is obtained in two 1-D steps (which helps us reduce the number

of necessary operations from N2 to 2N + 1), and then the laplacian is applied

as usual. The combined effect of these two filters are referred to as a LoG filter

(Laplacian of Gaussian). The result of this operation is the detection of the edges

in the images. After the LoG filter is applied to an image, the zero crossings of the

intensity values show the position of the edges. Therefore, it suffices to look at

the sign changes to detect the edges. They then produce binary sign of laplacian

of gaussian (SLOG) images by using the sign information. Once they have two

successive binary SLOG images, in order to find the displacements of features,

they apply a procedure called patch matching [23] [24]; For each needle of the

flow field, a patch centered around the origin of that needle in the first image

is taken. Then this patch is compared with all of the same sized patches that

have their centers in a search area in the second image. The search area is a

rectangle whose center has the same coordinates with the origin of the needle,

and whose sizes can be adjusted on the fly. If the number of the matching pixels

in two patches are above some (percentage) threshold, then the two patches are

considered to match. The vector defined by the needle origin and the center of

the best matching patch is the displacement to be found. They have tested their

programs both in simulated environments, and in real environments by using a

physical robot.

Hence this approach’s ”winner-takes-all” nature does not require that the

calculated match strengths have any relation whatsoever to what their actual

values should theoretically be, it is only necessary that their relative ordering

remains same. For example, a change in illumination between frames would
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2.3 Conclusions

certainly affect the individual match strengths, but need not change the best

matching pixel shift. Conversely, any noise in gradient-based method usually

directly results in errors in basic optical flow measurements. In the case of change

in illumination, the image intensity constraint does not apply since total image

intensity does not remain constant.

2.3 Conclusions

The gradient based optical flow tehcniques as said earlier, tend to suffer from noise

and hence affect the acual motion computation. The correlation based optical

flow techniques have a limit of maximum allowable displacement of the patch,

increasing which may affect the performance in real time. Also in correlation

based techniques, each patch is allowed to move independently, without even

incorporating the motion flow information of the neighboring patches which may

increase the accuracy in computing motion.
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Chapter 3

Motion extraction from sparse

features

3.1 Motion detection

Tracking with sparse features has find a lot of attraction in literature [7,9]. We

examine here the problem of extracting motion of external objects from a moving

robot. It is relatively difficult to extract the motion since there are two inde-

pendent motions involved in the scene: the motion of robot and the motion of

moving objects in the environment. These motions are blended together when

measured through a camera. Once the motion is segregated, moving objects need

to be tracked over image sequences. The motion detection process involved is

performed in two steps: the ego-motion compensation of camera images, and the

position estimation of moving objects in the image space.

3.2 Segregating Camera motion and Object mo-

tion

A generic and most intuitive approach for moving object detection assuming

camera is static, would be Frame differencing, which compares two consecutive

image frames and finds moving objects based on the difference. However, when

the camera itself moves (eg. when it is mounted on a mobile robot), simply taking

14



3.2 Segregating Camera motion and Object motion

the difference in frames is not applicable because a big difference is generated by

simply moving the camera even if nothing moves in the environment. There are

two independent motions involved in the moving camera scenario: motions of

moving objects and the ego-motion of the camera. Since these two motions are

blended into a single image, the ego-motion of the camera should be eliminated

so that the remaining motions, which are due to moving objects, can be detected.

The ego-motion of the camera can be estimated by tracking features between

images [1, 2, 3]. When the camera moves, two consecutive images, It (the image

at time t) and It−1 (the image at time t-1),are in different coordinate systems.

Ego-motion compensation is a transformation from the image coordinates of It−1

to that of It so that the two images can be compared directly. The transformation

can be estimated using two corresponding feature sets: a set of features in It and

a set of corresponding features in It−1. However, since there are independently

moving objects in the images, a transform model and outlier detection algorithm

needs to be designed so that the result of ego-motion compensation is not sensitive

to object motions.

The feature selection algorithm introduced in [4] for corresponding feature

set selection. The Lucas-Kanade method [5] is applied to track those features

in the subsequent image (It) to find the corresponding set of features f t . For

efficiency,the search range was limited to a small constant distance (assuming

a bounded robot speed). Once the correspondence < f t−1 , f t > is known,

the ego-motion of the camera can be estimated using a transformation model

and an optimization method. We have studied three different models: affine

model, bilinear model, and pseudo-perspective model. When the interval between

consecutive images is very small, most ego-motion of the camera can be estimated

using an affine model, which can cover translation, rotation, shearing, and scaling

motions. However, when the interval is long, the camera motion in the interval

cannot be captured by a simple linear model. For example, when the robot

moves forward, the features in the image center move slower that those near

the image boundary, which is a projection, not a zoom. Therefore, a nonlinear

transformation model is required for our case. On the other hand, an over-fitting

problem may be caused when a model is highly nonlinear, especially when some
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3.2 Segregating Camera motion and Object motion

of the selected features are associated with moving objects (outliers). There is

clearly a trade-off between a simple, linear model and a highly nonlinear model.

[
f t

x

f t
y

]
=

[
a0 a1

a2 a3

] [
f t−1

x

f t−1
y

]
+

[
c

d

]

Given a transformation model Tt = [R|t], the cost function for least square opti-

mization is defined as :

C =
1

2

N∑

i=1

(f t
i − T t

t−1(f
t−1
i ))2

where N is the number of features. The model parameters for ego-motion compen-

sation are estimated by minimizing the cost. However, as mentioned before, some

of the features are associated with moving objects, which lead to the inference

of an inaccurate transformation. Those features (outliers) should be eliminated

from the feature set before the final transformation is computed. The model pa-

rameter estimation is thus performed using the algorithm described below: It is

Algorithm 1 Algorithm for computing the Transformation

(a) Compute the initial estimate T0 using the full feature set F.

(b) Divide the feature set into two subsets Fs and Fm as:

{
f t

i ∈ Fs if |f t
i − T t

0t−1
(f t−1

i )| < ǫ

f t
i ∈ Fm otherwise

(c) Re-compute the final estimate T using the subset Fs only.

assumed for outlier detection that the portion of moving objects in the images

is relatively small compared to the background; the features which do not agree

with the main motion are considered as outliers. This assumption will be violated

when the moving objects are very close to the camera or when there are many

moving objects in the scene so that they occlude the static background.

Jung and Sukhatme [7] have tested this algorithm on different robotic plat-

forms and results obtained are good. Recently [9] have also proposed their solu-

tion to track people with a mobile robot based on the computation of Tranfor-

mation function Tt in a different way. They conclude that due to the possible
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3.3 Conclusions

distraction caused by other moving objects in the scene, along with errors from

the tracker and approximation errors in the motion model, the background mo-

tion cannot be estimated by simply fitting a model to all the features. Even a

robust fitting that discards outliers will not be reliable, because the number of

outliers may exceed the number of inliers.

Instead they apply the random sample consensus (RANSAC) algorithm [22]

to find small groups of features (containing at least five features) with consistent

motion. They repeatedly select five random features from among the background

features (determined by disparity), enforcing a minimum distance between the

features to ensure that they are well spaced in the image. From these features

they compute an initial estimate to the model Tt, which is then applied to all

the background features to record the number of inliers. This process is repeated

several times, and the motion model with the largest number of inliers is taken

to be the background motion. Once the background motion has been estimated,

the foreground features that do not match this motion model are discarded.

3.3 Conclusions

This approach works fairly well for a static camera and in other cases when the

moving object viewed from a moving camera occupies a small area or remains

cosiderably far from the camera, this approach tends to satisfactorily classify the

two independent motions: the camera motion and the moving object motion.

Since this approach assumes that the most number of inliers are from a static

background, the Tt model is more biased towards these static features, but if

the background is occluded by various independent moving objects or when the

moving object occupies more area in the image, it becomes significantly more

difficult to segregate the camera motion and other moving object motion(s).
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Chapter 4

The proposed algorithm and

Implementation results

4.1 Motion detection

The task of tailing multiple people from a mobile robot requires good discrimi-

nation between the motion of a moving object and that of a static background.

Optic-flow techniques have been widely used to extract the motion information

[15,16]. However, they are susceptible to noise since they also depend on inten-

sity gradient. In general, the flow vectors tend to drift away from their actual

direction if allowed to move independently. Hence, we formulate the flow field de-

termination in an energy minimization framework. The energy function is based

on the correlation of an intensity patch in two successive frames and is defined

in such a way that it smoothly aligns the flow vectors of textured as well as non-

textured static objects. Next, we describe the details of this modified method

of flow field computation. Given an image pair It and It−1, we consider a patch

of size pWxpH at location (x, y) in image It and define an energy function as

follows

Ecorr(i, j) =

y= pH

2∑

y=−pH

2

x= pW

2∑

x=−pW

2

(It(x, y) − It−1(x + i, y + j))2 ,

18



4.1 Motion detection

(a) Image 1 (b) Image 2

(c) Flow field computation using our enery minimization

method

(d) Final Segmentation after SRV filtering

Figure 4.1: The results of energy minimization algorithm on two images. Note

the smoothness in the computed flow field on the addition of smoothness

term which penalizes any deviation from the expected field. Image courtesy:

http://vision.middlebury.edu/flow
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4.1 Motion detection

This represents the correlation of the intensity patch in It with intensity patches

in It−1 at locations (i, j) within a window W centered around the (x, y). Next by

associating with every patch at (i, j) a direction dt−1
p we define a second energy

function as

Edir(i, j) =
m∑

k=1

αk(d
t−1
p − dt

nk
)2 ,

dt−1
p = tan−1

(
j

i

)

and dt
nk

is the direction of kth neighbour of the patch at (x, y) in It. This function

represents a penalty imposed on the flow direction as it takes into account the

directions of neighbouring patches (those patches in the neighborhood for which

the flow has already been determined). Finally we define a net energy function

at each (i, j) as

Enet(i, j) = Ecorr(i, j) + Edir(i, j)

This is illustrated in Figure 4.2. The final direction dt
p and net spatial displace-

ment (̂i,ĵ) of a patch is the one which minimizes the net energy function.

(̂i, ĵ) = arg min
i,j

(Enet(i, j)W (i, j))

dt
p = tan−1

(
ĵ

î

)

Here, the window W of size wHxwW is defined as

W (i, j) =






1 if −wW
2

≤ i ≤ wW
2

and
−wH

2
≤ j ≤ wH

2

0 otherwise

and αk is a smoothening constant. The images are smoothened with Gaussian

filters before computing the energy minimization. Figure 4.1(c) shows the results

of our energy minimization technique.
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4.1 Motion detection

Figure 4.2: Scheme for energy minimization computation. For each location

(i, j) in the search window W direction dt−1
p is computed. The super script

t − 1 indicates that the patch is moved in Image It−1 for best match search.

This direction is compared absolutely with the directions of neighbors dt
nk

of a

given patch in the Image It. The super-script t here denotes the directions of

patches which have been already calculated. This may correspond to only 4

neighbors of that patch as shown in the figure. Note that this smoothness term

tends to accurately classify the motion of each patch. Considering each patch

as independent may lead to motion in any direction. Such smoothness functions

tend to smoothen the flow field by putting a constraint on their motion flow field.

21

ef.eps


4.2 Color modeling and person identification

Now that a flow field has been determined, we can derive the candidate mov-

ing objects by examining the distribution of the directions of the flow vectors.

Since the background pixels inherit the motion from the camera (which is on a

moving platform) their motions will be locally similar. On the other hand, pixels

on a moving object will have motions that is dissimilar to the background. Thus

the boundary of moving objects should correspond to discontinuity in their rela-

tive displacements in a local neighbourhood. Hence, we construct a filter which

we call as spatial relative velocity (SRV) filter that detects the moving object

boundary as follows. We assign a label for each patch based on the relative veloc-

ity distribution. Specifically, if the sum of the relative displacements of a patch

with respect to its neighbouring patches, is below a threshold, then it is unlikely

to belong to a boundary of a moving object and hence we label that patch as

0. If the sum surpasses the threshold, then it is likely to belong to a moving

object. Hence, it is labelled, along with all the neighboring patches, as 1. This

is illustrated as follows. Denoting the patch label as L and sum of displacements

as δ:

L =

{
0 : if((δx + δy < th1) ∨ ((δx + δy > th1) ∧ (σi < th2)))
1 : otherwise

where δx and δy are the sum of relative displacements in x and y directions

respectively and σi is the standard deviation in intensity. Patches labelled 1 are

further processed to check for false alarms. This is done based on the variation in

the intensity profile. Since the goal is to extract the boundary of moving objects,

discontinuity in motion field should correlate with discontinuity in intensity as

well. Accordingly, we check for the intensity profile of a patch and if it is smooth,

it is unlikely to be part of a moving edge and it is therefore labelled as 0. This

filtering tends to accurately classify the motion of every patch, leading to the

selection of potential moving patches in the image. Figure 4.1(d) shows the

result after SRV filtering.

4.2 Color modeling and person identification

In order to accurately classify each candidate patch as belonging to a moving

person, we incorporate color and depth information. After the motion segmenta-
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4.2 Color modeling and person identification

tion, patches are clustered first on the basis of their depth and then classified as

belonging to a person or background. We model the color density of the upper

body of each person using non-parametric kernel density estimation. Given a

sample data for color values Dc = {ci} where i = 1...N and ci is a k-dimensional

vector, kernel density estimation is used to estimate the probability that a given

color sample C is from the distribution given by Dc as

P (C) =
1

N

N∑

i=1

K(C − ci)

Choosing a zero mean and
∑

bandwidth Gaussian function as a kernel es-

timator function K, we assume independence between the different k channels.

Then for each kernel, the bandwidth is

∑
=





σ2
1 0 0 0
0 σ2

2 0 0
0 . . .

0 . . σ2
k



 .

Hence, the density can be written as

P (C) =
1

N

N∑

i=1

1

(2π)
k
2 |

∑
|
1

2

e−
1

2
(C−ci)

T
P

−1(C−ci)

A Bayesian classification is used to classify a pixel p as belonging to a partic-

ular person’s color model Dc
i .

P (Dc
i |p) = ζP (Dc

i )P (p|Dc
i )

wherein the P (p|Dc
i ) is given by the color model of the person and the prior

probability is obtained from the disparity d and the height h of the pixel in the

image and ζ is a normalizing factor. The classification is done using a MAP

estimation process:

î = max
i

(P (Dc
i |p))

Each patch is classified by computing the posterior probability for each pixel in

the patch and using a majority rule. The centroid of a person is computed from
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4.3 Robot control

the patches belonging to the same class for finally identifying the moving person.

Color models are periodically updated by adding new values once identification

is done.

In our implementation, the bandwidths were estimated offline from image

regions of the upper part of person. The bandwidth for the Gaussian function

was estimated as σ ≈ 1.06σ̂n−1/5 where σ̂ is the standard deviation and n is the

sample size. To speed up the computation of the probabilities, the values of the

Gaussian kernel, given the color value difference and kernel function bandwidth,

were precalculated and stored in a Look Up Table (LUT ). Thus, the values could

be fetched in O(1), avoiding excessive floating point computations. Also, the color

values for the models were stored as < r
j
i , g

j
i , b

j
i , n

j
i > where < r

j
i , g

j
i , b

j
i > is the

sample color data for ith person and n
j
i denotes the number of times the jth color

tuple has occured in the sample data. Hence, the likelihood of the pixel to a

particular person was computed efficiently as

P (p|Dc
i ) =

1

N

∑

j

n
j
iKσi

r
(r − r

j
i )Kσi

g
(g − g

j
i )Kσi

b
(b − b

j
i )

where

p = < r, g, b > .

4.3 Robot control

Once the moving persons in the scene are identified, the robot moves in the

direction where the density of people is high. The robot velocities are controlled

by the disparities and the angles of the centroids of persons, in the image plane.

Proximity of the vector (xt
c, y

t
c, d

t
c), where (xt

c, y
t
c) are the image coordinates of

the centeroid of the person and dt
c is the disparity, at instant t with its previous

location,is used as a consistency check for continuity in motion tracking for every

person. All the computed angles are sorted and clustered based on their proximity

to each other. The robot’s rotation velocity, vr, is made proportional to average

of all the angles in the person cluster having maximum person count and the

translation velocity, vt, is proportional to the average of disparities of persons of
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4.4 Experimental results

the same cluster.

vt = c1dmean

vr = c2θmean

and dmean is the mean disparity and θmean is the mean angle of the persons in the

person cluster having maximum person count. In the current implementation, the

robot design could only permit an operational rate of 0.2 m/sec and maximum

possible was 0.4 m/sec.

(a) Motion Segmentation. Left: the flow field and right:

segmented motion.

(b) person identification. Left: depth based clustering and

right: the segmented person.

Figure 4.3: Results of the various stages of the algorithm

4.4 Experimental results

The media files of the results obtained are available on this web-site [27]. The

proposed method was implemented in C++ on a Linux platform (FC7) with

AMD Athlon 64 bit Processor. The image resolution used was 320x240. The

entire algorithm was tested comprehensively on our lab robot, SPAWN, in indoor
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4.4 Experimental results

environments under different conditions. Figure 4.4 shows the trajectories of

three among the several expriments performed on the the robot. Paths 1 and 3

correspond to the robot tailing multiple persons while paths 2 and 4 correspond

to the robot tracking single person. Path 4 was obtained when the robot tracked a

person who moved without facing the camera. Other exprimenrts involved people

moving along zig-zag paths in environments cluttered with stationary objects

(furniture and persons) and changing lighting conditions which varied from high

to low brighness regions. The tracking performance was invariant to how the

person faced the robot and similarity of the color of a person’s clothing to that

of the background. Figure 4.3 shows the various stages of the pipeline described

Figure 4.4: Trajectories of the robot as it followed the moving persons. Path

1 and 3 correspond to the robot tailing multiple persons while path 2 and 4

correspond to the robot tracking single person. The robot was made to pass

through a narrow doorway and follow a zig-zag path as well.

in Chapter 1. Figure 4.3(a) shows the motion segmentation based on the energy

minimization and SRV filtering whereas Figure 4.3(b) shows the clustering of

flow vectors based on the depth and the final segmented person. Figure 4.5 shows
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4.4 Experimental results

results of motion segmentation on two persons. Figure 4.6 illustrates the tracking

(a) The flow field (b) Segmented moving

patches

Figure 4.5: Tracking results for two persons in the view

experiment involving three persons who appeared in the scene at different time

intervals. Figure 4.6(a) shows the results when there was only one person in the

scene Figure 4.6(b) shows the situation when the second person got introduced

in the scene,with the robot beginning to track both and Figure 4.6(c) shows the

results when the third person also joined the group.

(a) Single person being

tracked

(b) Two persons being

tracked

(c) Three persons being

tracked

Figure 4.6: Frames from the experiment where people entered the scene at dif-

ferent times

We also show results of tracking under poor lighting conditions (Figure 4.9),

similar background color and depth (Figure 4.7) and when the person is not facing

the camera (Figure 4.8). Figure 4.10 shows some results of experiments done on

single as well as multiple people.
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4.4 Experimental results

Figure 4.7: Robot is able to track the person when the background color is same.

Since we look for patches which have discontinuity in motion and intensity as

well, the background patches having similar color may tend to be ruled out due

to their uniform intensity profile and continuity in motion as the flow vectors are

smoothly aligned after the energy minimization process.

(a) Segmented moving

patches

(b) Segmented moving

person

Figure 4.8: Person being tracked when he is facing away from the camera. The

robot is able to track the person even when it is facing away from the camera.

This ensures that no facial or skin color based features are being tracked. Also

note that there is another person sitting next to the person being tracked and he

is wearing a decently textured shirt. Since the motion produced by the person

who is sitting, is small, the filtering process tends to discard this from being a

potential moving object.
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4.5 Discussion and conclusions

(a) Segmented moving

patches

(b) Segmented Person

Figure 4.9: Person being tracked under poor lighting conditions. Note the smooth

flow vectors. The color model is updated by adding new values from the identified

regions of person detection. Since the model is getting updated each step, the

robot is able to track the person accurately.

4.5 Discussion and conclusions

We have presented a solution for tailing multiple moving people using a camera on

a mobile platform. The method circumvents the need to extract the ego-motion

of the camera by devising a novel method for motion segmentation. The segmen-

tation is achieved through an energy-based minimization technique for flow field

computation and SRV filtering. The solution also uses statistical color models

and depth to improve the accuracy of segmenting the moving objects. The results

of various experiments conducted show that, the tailing of multiple people mov-

ing in a cluttered environment, was achieved despite challenges imposed during

the motion. For instance, the motion included people moving from well-lit to

ill-lit zones through a narrow passageway (1.2 m wide). It was also found that

the motion segmentation was robust to conditions where the background color

was similar to person’s clothing, as a result of the adopted motion segmentation

technique. In our current implementation, the color models are initialized offline

and updated as the motion progresses. Eliminating this offline initialization will

increase the scope of the presented method, however it is challenging to devise a

fully online process of color modeling, given the camera is also moving.

Finally we note that the problem of tailing multiple people with a robot

using only visual information has received little attention in literature despite

its potential application in important areas including security and health care

29

Chapter3/Chapter3Figs/EPS/p308.eps
Chapter3/Chapter3Figs/EPS/o308.eps


4.5 Discussion and conclusions

Figure 4.10: Tracking of single as well as multiple people in different frames. First

two rows show the results of tracking when there is only single person in the view.

Next two rows show the results when there are two persons in the view and last

two rows illustrate the tracking performance when there are three people in the

field of view.
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4.5 Discussion and conclusions

applications e.g. robotic aid for following group of doctors on ward-rounds in

hospitals.
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Chapter 5

The Robot

5.1 The Anatomy

The robot, SPAWN [26] used in testing this algorithm was build by the author

at the Center for Artificial Intelligence and Robotics(CAIR) in summer of 2007.

The following sections describe the anatomy of the robot in detail.

1. ATMEL atMega-16.

2. Caster wheels.

3. 12V, 7Ah Lead Acid battery pair.

4. USB cable.

5. MAX-232.

6. Johnson 150 × 40mm wheels.

7. DC-to-DC converters.

8. PITTMAN motors.

9. Main board.
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5.1 The Anatomy

Figure 5.1: The robot (Spawn) we used to test the algorithm.
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5.2 ATMEL atMega-16

Figure 5.2: This is the avr-atMega16-usb board used for serial to USB data

transfer.

5.2 ATMEL atMega-16

The laptops (in this case it is AMD Turion 64) today in general don’t have serial

ports in their motherboard. The ATMEL atMega-16 is used as simple serial to

USB converter to exchange the data from the laptop with the robot. A seperate

soldered board with an atMega-16, a MAX-232, a red LED and a switch, finds its

place on the second acrylic sheet placed in order. A white colored USB wire which

is attached to the board has one connector at the other end which fits into the USB

port. The red LED flashes as the connection is established with the main board.

If this doesn’t happen in one pass, pressing the reset switch will ensure another

attempt to establish a connection. The main board (the green colored) has a 3

PIN-Male connector for serial data transfer (Tx, Rx and Gnd). The atMega-16

utilizes UART to connect to the main board through a TTL-RS232 level shifter

IC, MAX-232 which sits on a 16 PIN IC base soldered on the atMega-16 board.

There is another 6 PIN connector comprised of 3 separate 2 PIN connectors

placed in series. This connector connects with STK-200 programming dongle to

download the hex code from PC into atMega-16. The atMega-16 is running at

12Mhz with external oscillator. At this frequency each bit on the USB takes 8

clock cycles and thus the rate of transfer is 1.5M bits/sec. The circuit is designed
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5.3 Caster wheels

and soldered as explained in [28]. We are using the connection at a low speed

data rate.

5.3 Caster wheels

Two caster wheels, one at the front and other at the rear end, are fixed on the

acrylic sheet at the bottom. These caster wheels move freely and the positioning

is such that they maintain the center of gravity of the robot at the center of the

sheet, unlike the case when only one caster wheel is used. Typically such type of

wheels are found on shopping carts and rolling chairs.

Figure 5.3: Front caster wheel.

5.4 12V, 7Ah Lead Acid battery pair

Two 12V, 7Ah Lead acid batteries provide the main power supply needed by the

robot. These batteries rest on the acrylic sheet at the bottom, above each wheel.

The batteries when fully charged can supply 24.5-25.5 Volts. After running the

robot for reasonably longer period of time, if the voltage drops to 22V or less,

the batteries need charging.
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5.5 USB cable

Figure 5.4: A typical 12V, 7Ah Lead Acid battery.

5.5 USB cable

A white colored cable is attached to the atMega-16 board which has USB Series

A plug [29] at the other end. This plug is the most common plug and fits into

any of the typical USB ports available at the host. When the robot is switched

on, this plug is connected into the USB port of the host. The other end of the

cable is a 5 PIN female connector fixed into its male counterpart soldered on the

atMega-16 board.

Figure 5.5: The figure shows USB cable and plug A at the end.
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5.6 MAX-232

5.6 MAX-232

The basic purpose of this IC is to shift the voltage levels from TTL to RS232 and

vice-versa. Generally this IC is used to connect to the serial port of the PC with

any other device having a UART. Since the voltage levels may be different at the

device and PC, the IC thus shifts the voltage levels to either logic.

Figure 5.6: Pin-out of MAX232.

5.7 Johnson 150x40mm wheels

Two 150mm diameter and 40mm thick Johnson wheels are used with which the

robot runs over. These wheels are quite tough in strength and provide non-shaky

and stable movement. Fig. 5.7 shows a snapshot of wheel.

Figure 5.7: Johnson 150x40 wheel used on the robot.
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5.8 DC-to-DC converters

5.8 DC-to-DC converters

Three different DC-to-DC converters derive different isolated voltages from the

input voltage supplied by the batteries. A 24V to 24V converter supplies power

to the SICK laser, one 24V to 12V converter supplies power to the motors. There

are two 24V to 5V converters. One of them supplies power to the motor driver

circuit and other provides power to the PIC microcontroller. Fig. 5.8 shows the

DC-to-DC converters on board.

Figure 5.8: DC to DC converters on acrylic sheet.

5.9 PITTMAN motors

Two PITTMAN motors (as shown in Fig. 5.9) with built-in encoders are used to

run the wheels. The various specs mechanical and electrical are listed as:

1. DC Brush Gearmotor.

2. 1.37” Diameter.

3. 218.4:1 ratio.

4. 500 oz-in Maximum Continuous Torque.
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5.9 PITTMAN motors

Figure 5.9: The figure shows a sample of PITTMAN GM9234 motor which is used

on the robot. These motors belong to the GM9000 series of brushed commutated

DC gearmotors.

5. 4199 oz-in Peak Torque (Note: Peak torque is provided for the purpose of

performance calculations only. Operation near, or at, a stalled condition

will result in motor and/or gearhead damage).

6. 21 rpm No load speed.

7. Torque Constant (Kt) = 3.29 oz-in / amp.

8. Voltage Constant (Ke) = 2.43 v/krpm.

9. Resistance (R) = 1.26 ohms.

10. Inductance = 1.02 mH.

11. Rated voltage: 12 volts.

12. Encoder: 500 CPR.

13. Length (motor) = 3.67”.

14. The gearhead will be damaged when operating at the Peak Torque.

15. Unit supplied with ball bearing output shaft.
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5.10 Main Board

5.10 Main Board

Figure 5.10: The main board (placed at the bottom).

The main board which is lying on the acrylic sheet at the bottom is comprised

up of the following ICs:

1. PIC18F452 microcontroller.

2. MAX232 level shifter (TTL to RS232 and vice-versa).

3. LMD18200T motor driver.

4. HCTL-1100 motion controller.

PIC18F452 controls HCTL-1100, LMD18200T and MAX232. Apart from these

components, there is one slot for programming PIC18F452, two 5 pin connectors

and a 6 pin connector. There are two jumpers just aligned to the placement of

micrcontroller on the board. These jumpers have to be taken out when program-

ming is to be done and placed into the same positions after programming. The

color coding for the 6 pin connectors is as described below:

Yellowish Green (thick) +12V volts

Black(thick) GND(of 12Volts)

Blue +5V (drive)

Black GND(of 5Volts drive)

Red +5V (ckt)

Black GND(of 5Volts ckt)
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5.11 Commands

5.11 Commands

The various functions to control the motion of the robot included:

5.11.1 robot.connectUsb()

This function is called to connect the host to the robot after the main power

switch is turned on, failing which may lead to pop-up message on the terminal

Could not find USB device ’PowerSwitch’ with vid=0x16c0 pid=0x5dc.

Once the connection is established, the robot is able to follow the instructions

given by the user.

5.11.2 robot.resetOdometery()

This function is called on default just after the attempt to connect to the robot

goes successful. It is a sort of good practice to reset the odometery just after

the connection is established to avoid any kind of garbage values of odometery

affecting the algorithm. Although in our case odometery is not used, but this

function is called for the sake of being a good technician.

5.11.3 robot.setVelocity(vt,vr)

Here vt is the translation velocity of the robot and vr is the rotational veloc-

ity of the robot. The robot motion is controlled by the translation as well as

rotational velocity. The translational velocity tries to make the robot move for-

ward/backward in a straight line path while the rotational velocity tries to make

the robot move along a curve.
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Chapter 6

Conclusions

We have demostrated a tracking algorithm with a moving platform. The robot is

able to track people under different environment testing conditions. The whole

system was set up in the lab and we have restricted the testing to indoors, al-

though the performace will not be greatly affectd in outdoors. The robot design

and other mechanical issues did not permit us to test the algorithm over consider-

ably fast moving objects. Owing to this the robot speed was limited to maximum

of 1200mm/sec.

The field of view of cameras used (Logitech Notebook Pro) is small, therefore

for a given scene only limited number of people can be tracked. Also, we need to

build the color models of person before they can be tracked, hence it can track

only those people which have been introduced to it in the beginning.

Such type of robotic systems may find application in guiding someone in a

big hall, providing physicians with ready access to charts, supplies and patient

data and digital assitance for medical personnel in hospital environments. A

much advanced application is that of automating time-and-motion studies for

increasing the clinical efficency in hospitals.

42



References

[1] Alberto Censi, Andrea Fusiello, and Vito Roberto. Image stabilization by

features tracking. In Proceedings of the 10th International Conference on

Image Analysis and Processing, pages 665667, Venice, Italy, September

1999.

[2] I. Zoghlami, O. Faugeras, and R. Deriche. Using geometric corners to build

a 2d mosaic from a set of images. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 420425, 1997

[3] Gian Luca Foresti and C. Micheloni. A robust feature tracker for active

surveillance of outdoor scenes. Electronic Letters on Computer Vision and

Image Analysis, 1(1):2134, 2003.

[4] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features.

Technical Report CMU-CS-91-132, Carnegie Mellon University, Pittsburgh,

PA, April 1991.

[5] Bruce D. Lucas and Takeo Kanade. An iterative image registration tech-

nique with an application to stereo vision. In Proceedings of the 7th Inter-

national Joint Conference on Artificial Intelligence, pages 674697, 1981.

[6] Dirk Schultz, Wolfram Burgard, Dieter Fox, and Armin B. Cremers. Track-

ing multiple moving targets with a mobile robot using particle filters and

statistical data association. In Proceedings of the 2001 IEEE International

Conference on Robotics and Automation, pages 11651170, 2001.

43



REFERENCES

[7] B.Jung, and G.Sukhatme. Detecting Moving Objects using a Single Camera

on a Mobile Robot in an Outdoor Environment In the 8th Conference on In-

telligent Autonomous Systems pp. 980–987, Amsterdam, The Netherlands,

March 10-13, 2004.

[8] KLT Tracker Implementation, Stanley Birchfield:

http://www.ces.clemson.edu/ stb/klt/

[9] Zhichao Chen and Stanley T. Birchfield, Person Following with a Mobile

Robot Using Binocular Feature-Based Tracking IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) San Diego, Califor-

nia, October 2007

[10] M. Piaggio, P. Fornaro, A. Piombo, L. Sanna and R. Zaccaria. An op-

tical flow based person following behaviour.In Proceedings of the IEEE

ISIC/CIRNISAS Joint Conference, 1998.

[11] C. Schlegel, J. Illmann, H. Jaberg, M. Schuster and R. Worz. Vision based

person tracking with a mobile robot. In The British Machine Vision Con-

ference, 1998.

[12] Z.Zivkovic. Improved adaptive Gausian mixture model for background sub-

traction. International Conference Pattern Recognition, Vol.2, pages: 28-31

, 2004.

[13] Wren C., A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real Time

Tracking of the Human Body. IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol.19, pages:780-785, 1997

[14] Y. Raja, S. McKenna, S. Gong. Object Tracking Using Adaptive Colour

Mixture Models,Proc. ACCV 98, Vol. I, pp 615-622 66.

[15] B.K. Horn and B.G. Schunck. Determining optical flow. Artificial

Intelligence,Vol.17,pages:185-203,1981.

[16] B. Lucas and T. Kanade. An iterative image registeration technique with an

application to stereo vision.In International Joint Conference on Artificial

Intelligence (IJCAI), pages: 674-679, 1981.

44



REFERENCES

[17] A. Behrad, A. Shahrokni, S. A. Motamedi and K. Madani.A Robust Vision-

based Moving Target Detection and Tracking System. In Pro- ceedings

of Image and Vision Computing conference (IVCNZ2001),University of

Otago, Dunedin, New Zealand, November 26-28, 2001

[18] H. Kwon, Y. Yoon, J. B. Park and A. C. Kak. Person tracking with a mobile

robot using two uncalibrated independently moving cameras. In Proceedings

of IEEE International Conference on Robotics and Automation (ICRA),

2005

[19] H. Sidenbladh, D. Kragik and H. I. Christensen. A Person following be-

haviour of mobile robot.In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, 1999.

[20] B. Jung and Gaurav S. Sukhatme. A Region-based Approach for Coopera-

tive Multi-Target Tracking in a Structured Environment. In Proceedings of

IEEE International Conference on Robotics and Systems ,2002.

[21] D. Scott. Multivariate Density Estimation, 1992.

[22] M. A. Fischler, R. C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartogra-

phy. Comm. of the ACM, 24: 381-395, 1981.

[23] Nishihara, H. K., Practical Real-Time Imaging Stereo Matcher,

OptEng(23), No. 5, September/October 1984, pp. 536-545

[24] Nishihara, H. K., Real-Time Implementation of a Sign-Correlation Algo-

rithm for Image-Matching, Technical report, Teleos Research, February

1990

[25] Selim Temizer, Optical Flow Based Local Navigation, MIT

[26] Ankur Handa, A report on SPAWN, IIIT-Hyderbad.

[27] Ankur Handa, Media Files, http://students.iiit.ac.in/∼ankurhanda/robot.html/

Note: Type in the browser the same link instead of cut-copy-paste or

clicking from here.

45

http://students.iiit.ac.in/~ankurhanda/robot.html/


REFERENCES

[28] http://www.obdev.at/products/avrusb/index.html

[29] http://en.wikipedia.org/wiki/USB

46

http://www.obdev.at/products/avrusb/index.html
http://en.wikipedia.org/wiki/USB

	1 Introduction
	1.1 Background and Motivation
	1.2 Structure of the report

	2 Optic Flow
	2.1 Gradient Based Optical flow
	2.2 Correlation Based optical flow
	2.3 Conclusions

	3 Motion extraction from sparse features
	3.1 Motion detection
	3.2 Segregating Camera motion and Object motion
	3.3 Conclusions

	4 The proposed algorithm and Implementation results
	4.1 Motion detection
	4.2 Color modeling and person identification
	4.3 Robot control
	4.4 Experimental results
	4.5 Discussion and conclusions

	5 The Robot
	5.1 The Anatomy
	5.2 ATMEL atMega-16
	5.3 Caster wheels
	5.4 12V, 7Ah Lead Acid battery pair
	5.5 USB cable
	5.6 MAX-232
	5.7 Johnson 150x40mm wheels
	5.8 DC-to-DC converters
	5.9 PITTMAN motors
	5.10 Main Board
	5.11 Commands
	5.11.1 robot.connectUsb()
	5.11.2 robot.resetOdometery()
	5.11.3 robot.setVelocity(vt,vr)


	6 Conclusions
	References

