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Abstract—We present a method for systematically evaluating
the correctness and robustness of instruction-tuned large lan-
guage models (LLMs) for code generation via a new benchmark,
Turbulence. Turbulence consists of a large set of natural language
question templates, each of which is a programming problem,
parameterised so that it can be asked in many different forms.
Each question template has an associated test oracle that judges
whether a code solution returned by an LLM is correct. Thus,
from a single question template, it is possible to ask an LLM a
neighbourhood of very similar programming questions, and assess
the correctness of the result returned for each question. This
allows gaps in an LLM’s code generation abilities to be identified,
including anomalies where the LLM correctly solves almost all
questions in a neighbourhood but fails for particular parameter
instantiations. We present experiments against five LLMs from
OpenAI, Cohere and Meta, each at two temperature configura-
tions. Our findings show that, across the board, Turbulence is
able to reveal gaps in LLM reasoning ability. This goes beyond
merely highlighting that LLMs sometimes produce wrong code
(which is no surprise): by systematically identifying cases where
LLMs are able to solve some problems in a neighbourhood but do
not manage to generalise to solve the whole neighbourhood, our
method is effective at highlighting robustness issues. We present
data and examples that shed light on the kinds of mistakes that
LLMs make when they return incorrect code results.

Index Terms—Large language models, correctness, robustness,
AI evaluation, code generation

I. INTRODUCTION

Large language models (LLMs) have proven effective in
tasks such as translating between programming languages [1]
and answering programming questions [2]. Their effectiveness
has been increased via instruction tuning [3], which uses
supervision to teach a pre-trained LLM to follow particular
kinds of instructions and apply this capability to unseen
tasks [4]. However, current instruction-tuned LLMs often
generate incorrect code [5]–[8]. To further enable AI-based
code generation in mainstream software development, where
correctness and robustness are essential, it is important to
address the issue of developers’ lack of trust in LLMs with
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respect to code generation tasks [9], [10]. To this end, several
works have focused on assessing the ability of LLMs to
generate correct code [5], [6], [11]–[14], whereas other studies
have investigated robustness while preserving the semantics of
prompts or code in their evaluations [15]–[25]. Our paper com-
plements this body of work by introducing a novel dimension
to correctness and robustness testing. While existing studies
primarily assess how models handle semantically equivalent
inputs—ensuring that variations do not alter the meaning or
functionality of the code or descriptions—we explore how
models perform when faced with neighbourhoods of similar
but non-equivalent tasks.

Our contribution. Inspired by Gardner et al. [26], the key
idea behind our approach is that instead of evaluating an LLM
using separate, isolated coding problems, we use sets of related
problems, where all problems in a set are variations on a
theme—they are all in the same neighbourhood. Rather than
being interested in whether an LLM can solve any particular
problem, we are interested in identifying discontinuities in
the LLM’s ability to solve a neighbourhood of problems—
e.g. cases where the LLM correctly solves most problems
in a neighbourhood but fails for certain cases. As opposed
to merely identifying problems with isolated code generation
prompts (the fact that problematic cases exist is no surprise),
identifying discontinuities within a neighbourhood reveals the
limits of an LLM’s (in)ability to generalise.

Our approach is based on the notion of a question template.
A question template is a natural language programming spec-
ification parameterised by one or more values. An example is
shown in Figure 1a. This question template is parameterised
by two integer values, p1 and p2, and can be instantiated for
any 0 ≤ p1 ≤ p2 ≤ K, where K is a reasonable upper limit
for Python list sizes. An instantiation of the question template
of Figure 1a with p1 = 1 and p2 = 8 is shown in Figure 1b.
This is called a question instance.

Each question template is paired with an associated oracle
template. This includes a suite of parameterised unit tests,
featuring the same parameters that appear in the question
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Write a function called ‘sum_even_ints_inclusive’ that
takes one argument, a list of integers, and returns the
sum of all even integers from index p1 to index p2, both
inclusive. If no even integers exist in the specified range,
the function should return 0.

(a) A question template featuring two parameters p1 and p2.

Write a function called ‘sum_even_ints_inclusive’ that
takes one argument, a list of integers, and returns the sum
of all even integers from index 1 to index 8, both inclusive.
If no even integers exist in the specified range, the function
should return 0.

(b) A question instance from (a) with p1 = 1 and p2 = 8.� �
def test_odd_range():
odd_list = [i for i in range(-10001, p2*10, 2)]
assert sum_even_ints_inclusive(odd_list) == 0� �

(c) A test case template for (a) featuring p2.� �
def test_odd_range():
odd_list = [i for i in range(-10001, 8*10, 2)]
assert sum_even_ints_inclusive(odd_list) == 0� �

(d) A test case instance from (c) with p2 = 8.� �
def sum_even_ints_inclusive(lst):
lst = lst[p1 : p2 + 1]
return sum([i for i in lst if i % 2 == 0])� �

(e) Model solution template for (a) featuring p1 and p2.� �
def sum_even_ints_inclusive(lst):
lst = lst[1 : 8 + 1]
return sum([i for i in lst if i % 2 == 0])� �

(f) A model solution instance from (e) with p1 = 1 and p2 = 8.

Fig. 1: An example of a question template, test case template
and model solution template, and an instantiation of each

template. Figure 1c shows an example parameterised test case
for the question template of Figure 1a. The parameterised test
suite can be instantiated to yield a set of concrete tests for a
question instance. For example, Figure 1d shows the concrete
test case obtained by instantiating the test case of Figure 1c
with p1 = 1 and p2 = 8 (as p1 does not occur in the test
case template its value is irrelevant to this instantiation). This
test is suitable for checking the correctness of solutions to
the question instance of Figure 1b. An oracle template also
includes a model solution, which we discuss in Section II.

Given a (question template, oracle template) pair, an LLM
can be asked, via multiple independent queries, to solve a
neighbourhood of e.g. 100 different question instances derived
from the question template, each of which can be automati-
cally checked for correctness via the corresponding instanti-
ated oracle. The results might be extreme, suggesting that the
LLM is completely incapable of solving this neighbourhood
of questions (if every solution fails the oracle), or that the

LLM can easily solve this neighbourhood of questions (if all
solutions pass). More intriguingly, the LLM might successfully
solve many instances of a question template, but unexpectedly
yield an incorrect solution for specific parameter values.
Conversely, it may exhibit a lack of success in addressing
the majority of instances in a neighbourhood, yet unexpect-
edly deliver a correct solution for certain parameter values.
Our method for identifying these discontinuities may offer
valuable insights into the limitations of the LLM’s reasoning
capabilities and has the potential to serve as a source of data
for training or fine-tuning. Furthermore, our approach may
feed into discussions as to whether LLMs are truly exhibiting
emergent reasoning powers, as some researchers have spec-
ulated [27]–[29]. It seems implausible that an LLM that can
truly reason would be capable of solving the programming
question of Figure 1a for many values of p1 and p2 but not,
say, for the particular case of p1 = 100 and p2 = 200. Prior
methods for testing LLM-based code generation using stand-
alone problems (see Section VII) cannot yield such insights:
key to our method is that it assesses both LLM correctness (by
testing each generated code response) and LLM robustness (by
assessing how correctness varies across a neighbourhood).

The Turbulence benchmark. Conceptually, the method we
propose is both LLM- and programming language-agnostic.
We have put it into practice by building a new benchmark,
Turbulence, for assessing the capability of instruction-tuned
LLMs at generating Python code. Turbulence comprises (1)
infrastructure for automatically assessing LLMs against a set
of question and oracle templates, and (2) a set of 60 question
and oracle templates that we have curated. We expect the long-
lasting impact of our work to come from (1), because our
method and infrastructure can be used with any suitable set of
question and oracle templates in the future. Our curated ques-
tion templates allow us to report results across various state-
of-the-art LLMs. The questions were created from scratch
by the paper’s authors to avoid direct similarities to existing
online questions or code, thus preventing training bias. They
were refined based on feedback from a number of experienced
Python programmers to minimise any potential ambiguity.

Research questions and summary of findings. We have
used Turbulence to evaluate a variety of LLMs: the GPT-
4 [30] and GPT-3.5-turbo [31] models from OpenAI [32], the
Command model [33] from Cohere [34], the 4-bit quantised
version of CodeLlama:7B, and the 4-bit quantised version
of CodeLlama:13B with the full precision models and the
4-bit quantised versions being provided by Meta [35] and
Ollama [36], respectively. Our evaluation is guided by the fol-
lowing research questions about the instruction-tuned LLMs:

• RQ1: How robust are LLMs in code generation when
confronted with alterations in fixed values such as nu-
merical values or string characters within prompts?

• RQ2: How does setting an LLM’s temperature to zero for
maximum determinism affect its performance compared
to the default temperature?

• RQ3: What are the primary errors in the code responses
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of the LLMs that render the responses incorrect?
Our findings show that GPT-4 outperformed other LLMs.

Nevertheless, all LLMs exhibited a lack of robustness when
faced with variations in many questions. Certain question
neighbourhoods posed challenges that were either entirely
solvable or entirely unsolvable for the LLMs. However, a
significant portion of the question neighbourhoods were only
partially solved by the LLMs. Lowering the temperature re-
duced the number of partially solved question neighbourhoods,
with more falling into either the fully solved or unsolved
categories. This makes sense, because at a lower temperature
an LLM will behave more deterministically, so that it is more
likely to consistently fail or consistently succeed at a task,
whereas at a higher temperature the LLM may behave in a
more creative manner, leading to more fluctuation in its ability
to solve a given task successfully. Despite the stochastic nature
inherent in LLMs, the partial resolution of some question
neighbourhoods could potentially highlight gaps in the training
data used for the LLMs or flaws in their reasoning. We present
an analysis of the common problems associated with incorrect
code generated by LLMs in Section V.

In summary, the main contributions of this paper are:
• A new approach to assessing correctness and robustness

of the code generation capabilities of instruction-tuned
LLMs via neighbourhoods of related problem instances.

• Turbulence, a benchmark and automated testing frame-
work based on our approach, for assessing the Python
code generation capabilities of instruction-tuned LLMs.

• A study using Turbulence to evaluate the correctness and
robustness of five state-of-the-art instruction-tuned LLMs
of varying sizes and a deep dive into the key sources of
errors in incorrect solutions.

In the rest of the paper, we give an overview of our approach
(Section II), present the Turbulence benchmark (Section III),
present results applying Turbulence to a range of instruction-
tuned LLMs (Section IV), and discuss characteristics of incor-
rect code returned by LLMs (Section V). We discuss threats
to validity (Section VI) and related work (Section VII) before
concluding (Section VIII).

II. OUR BENCHMARKING APPROACH

We now describe our general approach to benchmarking
LLMs for code, an overview of which is shown in Figure 2.
In Section III we describe Turbulence, a concrete benchmark
based on this approach, tailored towards testing LLMs con-
cerning Python code generation. However, our approach is
LLM- and programming language-agnostic, allowing future
testing of other LLMs across various programming languages.

Question Templates and Instances. A question template is a
programming problem expressed in natural language, featuring
one or more parameters. Recall the template of Figure 1a,
which takes integer parameters p1 and p2. Instantiating this
template with p1 = 1 and p2 = 8 yields the question instance
of Figure 1b (instantiated parameters are shown in bold for
clarity). Each question template should be accompanied by a
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Fig. 2: Overview of our benchmarking approach

parameter set: a set of suitable parameter valuations that are
meaningful for the question template. The Turbulence bench-
mark described in Section III is equipped with a generator that
automatically produces a suitable parameter set of a desired
size for a given question template. A question template can
be automatically instantiated with a range of parameter values
drawn from its parameter set, leading to a set of question
instances that can be presented to an LLM (see Figure 2).

Intuitively, since question instances from the same template
differ only by parameter values, they should all be just as easy
or hard to solve as each other. Thus, it is noteworthy when an
LLM solves some but not all instances from a template.
Assessing Correctness: Oracle Templates. To assess whether
an LLM has returned a correct solution to a question instance,
the benchmark designer must provide an oracle template for
each question instance. This comprises: (1) a fixed test suite—
a set of unit tests, parameterised with the same parameters
as the question template, which when instantiated provides
a concrete test suite for the question instance; (2) a model
solution template, which can be instantiated to provide a
correct solution for any question instance; and (3) a random
input generator, which facilitates fuzz testing of solutions as
described further below.

To illustrate this, consider the question template of Fig-
ure 1a. The oracle template associated with this question
template comprises multiple parameterised test cases. One
of these is shown in Figure 1c, and refers to parameter p2
from the question template. When the question template is
instantiated with p1 = 1 and p2 = 8, as shown in Figure 1b,
the oracle template is also instantiated with these parameters.
This transforms the parameterised test case of Figure 1c
into the concrete test case of Figure 1d, which is suitable
for assessing the correctness of a solution to the concrete
question instance of Figure 1b. Furthermore, Figure 1e shows
a parameterised model solution for the question template,
again expressed in terms of the parameters p1 and p2, while
Figure 1f shows a concrete instantiation of this model solution
for the given parameter values. This concrete model solution
facilitates experimental comparison with an LLM-generated
solution on arbitrary input values. The random input generator
component of the oracle template (not shown in Figure 1)
provides a means of generating a stream of input values at
random to support this kind of comparison.

Armed with these components, a code solution returned by
an LLM in response to a question instance is deemed correct
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if and only if all of the following hold (see the “Test Oracle”
component of Figure 2): the LLM solution is well-formed
(syntactically correct and conforming to any static typing rules
of the programming language); the LLM solution passes all
tests in the fixed test suite (instantiated with the parameters
associated with the question instance); and the LLM solution
yields the same result as the model solution (again, instantiated
with the parameters of the question instance) when applied to
a number of random inputs generated by the input generator.
The approach of comparing the LLM solution with a model
solution using randomly-generated inputs is a special case
of fuzzing known as random differential testing [37]. The
combination of testing via a fixed test suite and through
random differential testing helps to ensure that the LLM
solution works on particular important edge cases (provided
by the fixed tests), as well as on a wider range of examples
(from the randomised input generator). The user can control
the amount of randomised testing per question instance.
Avoiding Ambiguity. It would be unfair to penalise an LLM
for failing test cases that check aspects of a question whose
solution is open to multiple interpretations. The designer
of a question and oracle template must either (a) state the
question precisely, without ambiguity, or (b) design the oracle
template to avoid testing solutions in ambiguous parts of the
input space. For example, the question template in Figure 1a
avoids ambiguity by specifying that list indices are inclusive.
Alternatively, this clarification could be omitted, and the
oracle template could be adjusted to exclude test cases with
even integers at indices p1 and p2, ensuring the oracle does
not distinguish between solutions treating index ranges as
inclusive or exclusive.

In Section III we explain how we used feedback from human
programmers to avoid ambiguity in Turbulence.
Assigning Correctness Score. An oracle template provides a
means for assigning a pass/fail result to an LLM’s solution for
a question instance. We explain how these results are combined
into an overall score for each question template, reflecting the
LLM’s effectiveness in solving that question neighbourhood.
Given the non-deterministic nature of LLMs, multiple inde-
pendent queries per question instance are necessary.

Definition 1 (Correctness Score): Let L be an LLM under
evaluation. Let Q be a question template with M associated
parameter valuations (so that M distinct question instances
are derived from Q). Suppose that the LLM is queried N
times per question instance, and let Lj

i (Q) denote the result
returned by L the jth time that it is queried with question
instance i of Q. Let Oracle(Lj

i (Q))=1 if this result is deemed
correct according to the oracle template and 0 otherwise.
The correctness score, CorrSc, for question template Q with
respect to LLM L, CorrSc(Q,L), is then defined as follows:

CorrSc(Q,L) =

∑M
i=1

∑N
j=1 Oracle(Lj

i (Q))

M ×N

This is the mean over the correctness of all solutions
returned by the LLM, where an individual solution is given

a score of either 0 or 1. It yields a score in the range [0, 1]
for each question template Q. Rather than featuring M × N
discrete question instances, our approach entails the usage of
N identical collections of M unique question instances. This
design choice is motivated by the inherent non-deterministic
nature of LLMs, allowing multiple attempts with the same
question instance to assess the LLM’s ability to generate
correct responses.

While the pass@k metric [5], commonly used for evaluating
LLMs in code generation, is a well-regarded measure, it is not
suitable in the context of our study as our goal was to assess
the overall correctness of each model. The pass@k metric [5]
focuses on whether at least one correct solution is found within
the first k attempts. In our study, each prompt was sent five
times (k = 5). Consider the following hypothetical results
for a single prompt: incorrect (attempt 1), correct (attempt
2), incorrect (attempt 3), correct (attempt 4), and incorrect
(attempt 5). In this case, pass@5 would be 100% since at least
one correct answer is provided, but the overall correctness (i.e.
the proportion of correct answers) is 40% (or 0.4, as described
in Definition 1). We focused on the CorrSc metric to evaluate
overall correctness.

III. THE TURBULENCE BENCHMARK

Based on the approach described in Section II we have
created a novel benchmark, Turbulence, for evaluating the
correctness and robustness of instruction-tuned LLM for code.
Turbulence focuses on the generation of Python code due to
the language’s popularity and the ample Python training data
available for LLMs.

To create the benchmark, we developed a diverse set of 60
Python problem-solving questions encompassing fundamental
concepts and basic data structures ensuring comprehensive and
balanced coverage of key topics. No specific methodology or
framework was followed for the selection of these questions,
and to the best of our knowledge, no existing research outlines
best practices for question formulation in this context. Fur-
thermore, as discussed later, we deliberately avoided reusing
publicly available questions to mitigate potential training bias.

Table I provides a broad categorisation of the 60 question
templates into six distinct problem groups, further subdivided
into subgroups. The questions utilise a wide variety of Python
data types, either explicitly mentioned in the questions or
implicitly required in the solutions. These include list (43
questions), integer (35 questions), boolean (60 questions),
string (39 questions), set (9 questions), tuple (4 questions),
and NumPy matrix (2 questions). Since some questions span
multiple problem groups and data types, the counts in Table I
and the data type totals exceed 60. Additionally, the subgroup
counts within each problem group may exceed the total for
their respective group, as certain questions pertain to more
than one subgroup.

Turbulence comprises 60 question templates, each featuring
at least one parameter, where each parameter is either a
numerical value or a string. Each question template is equipped
with an associated oracle template: a fixed test suite, random
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input generator and model solution, as described in Section II.
Every question template is accompanied by a parameter set
of size 100, yielding 100 question instances per template.
Hence, a total of 6,000 question instances are generated by
Turbulence. For each question template, the parameter set
was created by choosing a number of natural or evidently
interesting parameter valuations (e.g. to exercise edge case
behaviour), and thereafter populated with random valuations,
restricted to well-formed valuations. For example, with respect
to the question template of Figure 1a we would not allow
negative values or values such that p2 < p1.

To avoid problems of bias occurring due to LLMs having
been exposed to questions during the training, we decided
to write question templates ourselves, from scratch, rather
than seeking existing questions available on the internet. This
was done to ensure that the LLMs were not able to simply
regurgitate previously learned information, but instead had to
generate new and creative responses. We were also careful
not to put our questions online publicly before running exper-
iments against LLMs. We used only a small selection of the
most trivial questions when undertaking preliminary evaluation
against LLMs during the construction of Turbulence, to guard
against the possibility of these (closed source) LLMs learning
from our interaction with them.

To ensure the clarity of question templates and the cor-
rectness of test oracles, we asked two experienced Python
programmers to solve an instance of each question template
independently, cross-checking their solution against our test
oracle, and soliciting their feedback about potential ambiguity
in the question. This led us to improve the wording of several
question templates and fix several bugs in our test oracles.

Creating our own questions has its pros and cons. As
argued above, using previously-unseen questions minimises
problems of training-related bias, but it could arguably be
more interesting to have a benchmark based on real-world
programming challenges faced by developers “in the field”.
While the true role of LLMs in software engineering is solving
real-world programming tasks, to have any chance of being
useful in such contexts they should at least be capable of
solving the kinds of programming problems that beginner to
intermediate programmers would be capable of solving. Also,
we emphasise that Turbulence is just one example of our
proposed approach in Section II. The enduring value of our
research lies in the approach itself, which could be retargeted
to use alternative questions.

We deliberately included questions that, while uncommon in
typical development scenarios, are pertinent to evaluating the
reasoning capabilities of LLMs. For instance, a prompt like
“Write a function called ‘all_ints_exclusive’ that takes one
argument, a list of integers, and returns the list of all elements
from index 0 to index 1, both exclusive” serves as an edge case
designed to test the model’s ability to comprehend and execute
nuanced instructions. A primary goal of our benchmark is
to assess whether LLMs are genuinely exhibiting emergent
reasoning abilities. True reasoning capability should enable a
model to solve not only standard problems but also edge cases

TABLE I: A classification of the Turbulence questions into
problem groups and subgroups

Problem Group Problem Subgroup Question Count
List Manipulation Total 40

Slicing 21
Indexing 14
Filtering 16
Element-based Operations 7
Summation 6
Sorting/Order-based Operations 6
Element Insertion 2
Count elements 2
Circular Lists 1

String Manipulation Total 16
Character Insertion 2
Character Removal 3
Substring/Character Extraction 4
Palindrome Operations 4
Anagram Detection 2
Sorting 2

Set Manipulation Total 9
Add Elements 6
Subset/Superset Operation 1
Counting Subsets 1
Union 1

Searching Total 36
Linear Search 12
Binary Search 8
Index-based Search 10
String Search 6

Copying Total 10
Deep Copy 4
Shallow Copy 3
Copy Sublist 3

Mathematical Problems Total 31
Arithmetic Operations 7
Factorial Calculations 5
Prime Checking 4
Composite Checking 3
Factorisation 4
Special Sequences 3
Combinatorial Problems 5

that deviate from common patterns. While a human developer
is unlikely to craft such an edge-case prompt, it is important to
consider the evolving contexts in which LLMs are deployed.
LLMs are increasingly being used in the back-ends of systems
(such as integrated development environments) where prompts
are generated programmatically rather than being written by
humans. In these automated systems, the likelihood of en-
countering edge cases rises, as the prompts may not undergo
human refinement or oversight. Auto-generated prompts are
inherently more prone to exhibiting unusual or unexpected
parameters, making it essential for LLMs to handle them
effectively. Moreover, evaluating out-of-distribution robustness
has been recognised as a critical aspect in the field of NLP: as
highlighted by Yuan et al. [38], assessing how models perform
on data that falls outside the distribution of their training data
is necessary for understanding their generalisation capabilities
and identifying potential weaknesses.

We distinguish between (a) the underlying conceptual
framework of Turbulence and (b) the specific empirical find-
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ings of this study. It is evident that (a), the concept of using
neighbourhoods to identify reasoning discrepancies in LLMs,
could be extended to test other LLMs (with a small amount of
engineering effort specific to each model) and could also be
adapted for other programming languages (requiring additional
engineering effort for each language). However, concerning
(b), we do not expect our specific findings to generalise
directly to other LLMs or programming languages. Instead, we
anticipate discovering different deficiencies, similar to how ap-
plying a software testing technique to different systems under
test reveals distinct bugs. Our findings show that our approach
effectively provides valuable insights into code generation.

Practical Issues. Implementing our approach necessitates
some level of prompt engineering [39] to enhance the chances
of obtaining source code from an LLM. In our initial experi-
ments with the models discussed in Section IV, we observed
that appending a simple prefix requesting that Python code be
enclosed within triple backticks proved effective. The returned
code could then be extracted by locating the section between
the triple backticks.

IV. EXPERIMENTAL EVALUATION

We now present results from running Turbulence against a
range of LLMs.

A. Experimental Setup

We have gathered results running Turbulence against five
LLMs: GPT-4, GPT-3.5-turbo, Command, CodeLlama:7B:4-
bit-quantised, and CodeLlama:13B:4-bit-quantised.

GPT-4 [30], by OpenAI [40], is a large multimodal text gen-
eration model. GPT-3.5-turbo is the most advanced in the 3.5
series, trained on text and code up to Q4 2021 [31]. Cohere’s
52-billion-parameter Command model [33] generates text from
user commands. Meta’s CodeLlama family [41] offers coding-
specialised models (7B, 13B, 34B, 70B), including instruct-
tuned versions. Ollama [36] provides quantised versions
like CodeLlama:7B:4-bit-quantised and CodeLlama:13B:4-bit-
quantised, which run on standard machines with 4GB and
8GB of RAM. We selected these models due to their low
resource demands: GPT-4, GPT-3.5-turbo, and Command are
hosted remotely, while CodeLlama:7B:4-bit-quantised and
CodeLlama:13B:4-bit-quantised are small enough that they
can be run locally as described below.

To maintain conciseness, in the rest of this paper, we re-
fer to CodeLlama:7B:4-bit-quantised, CodeLlama:13B:4-bit-
quantised, and GPT-3.5-turbo as CodeLlama-7, CodeLlama-
13, and GPT-3.5, respectively. LLM configuration denotes
an LLM combined with a specific temperature setting and
t= 0 and t=D refer to the configurations of the LLM with
temperature settings of 0 and default, respectively.

We accessed proprietary models GPT-4, GPT-3.5, and Com-
mand via their commercial APIs. Initially, we minimised
Turbulence-related queries to these models to prevent potential
bias, making only a few simple queries to test and debug the
Turbulence infrastructure.

We downloaded CodeLlama-7 and CodeLlama-13 from the
Ollama website [36] and ran them on a MacBook Pro with an
Apple M1 Pro CPU and 16GB RAM, running macOS 14.0.
To prevent bias, our queries never included sample solutions
or hints about the correctness of previous responses from the
LLM under test.

We evaluated all LLM-generated solutions for correctness
on a desktop machine with an Intel Core i7-12700 CPU and
16GB RAM, running Ubuntu 22.04.2.

Every LLM has a user-determined temperature parameter
that controls output randomness. Lower temperatures reduce
randomness, improving quality but decreasing diversity [42],
[43], while higher temperatures increase randomness, enhanc-
ing creativity. In addressing RQ2, we focused exclusively
on comparing the models’ behaviour at two specific settings:
their default temperature and a temperature of zero. A tem-
perature of zero was chosen to evaluate the performance of
LLMs in as deterministic a context as possible, causing the
models to select the most probable next token at each step.
The default temperatures varied across LLMs, as developers
fine-tuned them for optimal performance, balancing diverse
outputs and coherence. Since these default temperatures re-
flect the intended behaviour envisioned by the developers,
we used them to assess the performance of LLMs in their
standard operational settings. Our goal was to analyse the
shift from non-deterministic behaviour at default temperature
to maximum determinism at a temperature of zero, offering
clear insights into how determinism affects LLM performance
without the complexity of varying randomness. We excluded
broader temperature values to keep our experiments tractable.

Due to the stochastic nature of LLMs, repeat runs of exper-
iments are necessary. At the same time, access to commercial
LLMs (i.e. GPT-3.5, GPT-4, and Command) is costly, with
variable query times. We ran the full benchmark 5 times for
each LLM configuration.

While a temperature of 0 should cause the LLMs to behave
in a highly deterministic manner, our initial mock tests re-
vealed that LLMs occasionally yielded varying answers. This
non-deterministic behaviour may be due to several factors,
including non-deterministic GPU operations, memory access
patterns, and numerical precision [44] and the inherent ran-
domness from sampling, even at a temperature of 0 [45].

Our results are thus based on a comprehensive set of
300,000 LLM responses (i.e. number of models× number
of configurations per model× number of prompts per each
model’s configuration× number of repeat runs = 5 × 2 ×
6000 × 5 = 300000). For a consistent comparison of experi-
mental results, we used the same random seed when generating
parameters for each question template.

B. Results Based on CorrSc

Figure 3 summarises how well each LLM configuration
solved question templates. Recall from Definition 1 that we
obtain the correctness score, CorrSc, for each question tem-
plate and LLM configuration. In Figure 3, the first and last
bars of each graph indicate how many question templates each
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Fig. 3: CorrSc of question templates across the LLM configurations evaluated

QT: Write a function called ‘sum_of_multiples’ that takes one
argument, a positive integer, and returns the sum of the first
p positive multiples of the given integer.

(a) p = 51, correct answer� �
def sum_of_multiples(n):

if n <= 0:
return 0

sum = 0
for i in range(1,52):
sum += i * n

return sum� �

(b) p = 56, wrong answer� �
def sum_of_multiples(n):
if n <= 0:
raise ValueError("n

must be a
positive
integer")

sum = 0
for i in range(1, 57):
if i % n == 0:
sum += i

return sum� �
Fig. 4: Consistent failure, CodeLlama-7 (t=0)

LLM configuration either completely failed (scoring 0) or per-
fectly succeeded (scoring 1.0). The intermediate bars represent
scores in ranges of size 0.1. For each LLM configuration, the
corresponding graph shows the number of question templates
whose CorrSc fell within each range. The density of question
templates is mostly clustered around high or low score ranges,
with no abrupt changes in the middle. For CodeLlama-7,
CodeLlama-13, and Command at both temperatures, the data
density is mostly in the lower score ranges, indicating weaker
performance. In contrast, GPT-3.5 and GPT-4 show superior
performance with more templates in the higher score ranges.
However, there are numerous question templates where the
LLMs failed to address all instances. Regarding RQ1, the
many question templates not scoring 1.0 highlight the limited
robustness of LLMs in addressing question neighbourhoods.

Addressing RQ2, examining each vertical pair of plots in
Figure 3 shows that with temperature zero, the data distribution

shifts to the left side for CodeLlama-7, CodeLlama-13, and
Command; and to both sides for GPT-3.5 and GPT-4 indicating
that LLMs are more likely to either fail consistently or succeed
consistently for a given question neighbourhood.

C. Results Based on Distinct Categories
Recall that each question template is instantiated to yield

a neighbourhood of 100 instances, each using distinct pa-
rameters, and each instance is given to the LLM across
5 rounds. We categorise LLM performance for a question
into four distinct categories: perfect failure, where the LLM
does not ever return a correct result (CorrSc = 0.0, i.e. the
LLM cannot solve this neighbourhood of questions at all);
perfect success, where the LLM always returns a correct result
(CorrSc = 1.0, i.e. the LLM can solve this neighbourhood
effortlessly); consistent failure, where the LLM returns at least
one correct result but where there is at least one instance for
which the LLM returns an incorrect result across all 5 rounds
(the LLM appears to be completely blocked on at least one
question instance); and random failure, where the LLM returns
at least one incorrect result, but there is no instance for which
the LLM returns an incorrect result across all 5 rounds (the
LLM is not completely blocked on any question instance). This
category describes cases where the LLM does appear capable
of generalisation, solving every instance in a neighbourhood in
at least one round, with sporadic failures due to its stochastic
nature, not necessarily a lack of reasoning ability.

The consistent failure category is particularly noteworthy
as it suggests a reasoning gap—an inability to generalise,
since the LLM can sometimes solve instances arising from
the question template, but there are certain instances that it
does not manage to solve on any round. Figure 4 shows
a consistent failure example: when the question template
(referred to as QT in the figure) was instantiated with p=51
(Figure 4a), CodeLlama-7 at t=0 solved the question instance
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Fig. 5: Distribution of Turbulence question templates across result categories for the LLM configurations evaluated

correctly in all five rounds (that is at least one correct answer);
however, when the question template was instantiated with 56
(Figure 4b), the LLM consistently generated wrong answers
in all five rounds. The consistent failure category highlights
LLM robustness issues where failures are consistent for par-
ticular question instances, and not solely due to the LLM’s
stochastic nature. Resource and financial constraints limited
our experiments to five rounds; consistent failure across more
rounds would offer stronger evidence of LLM reasoning gaps.

Figure 5 shows results according to these categories. The
perfect failure and perfect success bars mirror the CorrSc =
0.0 and CorrSc = 1.0 bars of Figure 3, respectively.

To answer RQ1, Figure 5 indicates a lack of robustness
in the performance of the LLMs considered in this study.
Notably, there is a significant count of question templates
categorised as consistent failure for each LLM configuration.
CodeLlama-13 (t=D) exhibits the highest count (50 question
templates), while GPT-4 (t=D) has the smallest count (21
question templates).

To address RQ2, lowering the temperature from the default
value to zero led to a reduction in the number of question
templates classified under the consistent failure category, with
the exception of GPT-4. A similar trend was observed in the
random failure category, where all models except Command
showed a decrease in the number of question templates. This
effect was especially noticeable in the GPT models.

V. EXPLORING REASONS FOR FAILURE

In this section, we address RQ3 by examining the main
errors in the LLM’s code responses that caused them to be
incorrect. Table II presents 9 failure categories, which we now
illustrate with selected examples. The initial three rows in
Table II, i.e. no function, wrong function name, and wrong
count of arguments, align with the well-formedness check of
the Turbulence test oracle (Figure 2). Recall that each question
instance asks the LLM to write a Python function bearing the
specified name and count of arguments (Figure 1b).

For the remaining six categories, the syntax error category is
identified via the Python parser, the static type error category
is identified using the Pylint linter [46], and the remaining
categories are identified by running the test oracle for a
question instance.
No function. This category includes cases where the LLM
failed to generate a Python function, occurring with Command
(t=D) and GPT-3.5 (t=D) for certain questions.

Wrong function name. This occurs when the LLM generates
a function with a different name than requested, causing fail-
ures as each Turbulence test oracle requires specified function
names, and there is no systematic, reliable way to fix function
names, especially when responses include multiple functions.
At t=D, all LLMs exhibit this problem in some cases.

Wrong number of arguments. Here, the LLM generates
a correctly-named function but with the wrong number of
arguments, making it incompatible with the test oracle. All
LLMs except GPT-3.5 and GPT-4 experienced this problem.
Table II shows this issue was less frequent at t=0.

Syntax errors. Here, the LLM output could not be parsed
due to Python syntax errors, such as unmatched parentheses,
misaligned brackets, incorrect indentation, missing comment
indicators (#), using else if instead of elif, missing
except or finally clauses after a try block, invalid variable
names (e.g. 6th_number), and invalid assignment targets (e.g.
len(binary) -= 1). Syntax errors decreased when LLMs
were run at temperature 0.

Static type errors. This is where the integrated Pylint linter
[46] identified static type errors in generated code, including
undefined variables (e.g. using math.gcd without importing
the math library), and the use of Python keywords as variable
names (e.g. sum = sum(multiples)). Lowering the temper-
ature from default to 0 in all LLMs (except CodeLlama-13 and
Command models) reduced both the quantity and variety of
static type errors in the generated responses.

Resource exhaustion error. This category involves cases
where the generated code exceeded time or memory re-
sources during execution, observed across all LLMs, despite
more efficient solutions being available. For example, GPT-4
(t=D) was asked to write a function to return the number
of subsets of size 54 from a set of elements. The LLM
used len(list(combinations(elements,54))), which
becomes resource-intensive for sets larger than 60. A more ef-
ficient solution is to use math.comb(len(elements),54),
which works efficiently with any size of a set.

Runtime errors. This category covers cases where execut-
ing the generated code caused Python errors. For example,
for i in range(2,x+1) where x was a tuple, making
concatenation of an ‘int’ and a ‘tuple’ invalid.

Assertion errors and fuzzing failures. This category covers
cases where the code executed but was functionally incorrect,
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TABLE II: Percentage of responses per LLM configuration out of 30,000, categorised by test failures and passes

CodeLlama-7 CodeLlama-13 Command GPT-3.5 GPT-4
Categories t = 0 t = D t = 0 t = D t = 0 t = D t = 0 t = D t = 0 t = D
no function 0.00% 0.00% 0.00% 0.00% 0.00% 0.45% 0.00% 0.13% 0.00% 0.00%

wrong function name 0.00% 0.02% 0.00% 0.14% 0.00% 0.02% 0.00% 0.07% 0.00% 0.24%
wrong count of arguments 3.73% 4.04% 0.82% 2.69% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

syntax error 4.90% 11.72% 0.47% 0.83% 1.14% 1.96% 0.00% 0.04% 0.00% 0.07%
static type error 3.57% 9.34% 10.28% 9.29% 7.68% 5.88% 0.80% 0.91% 0.03% 0.05%

resource exhaustion 0.63% 0.63% 0.02% 0.12% 0.04% 0.37% 2.26% 1.22% 0.93% 0.91%
runtime error 7.65% 8.10% 4.74% 6.85% 10.81% 13.40% 1.95% 2.98% 0.56% 1.04%
assertion error 45.65% 36.35% 44.09% 43.90% 66.91% 64.35% 27.15% 26.65% 9.31% 10.89%
fuzzing failure 4.92% 4.98% 6.85% 6.93% 7.86% 7.28% 6.17% 6.75% 4.38% 4.66%

passed 28.95% 24.81% 32.73% 29.25% 5.57% 6.27% 61.67% 61.26% 84.79% 82.15%

QI: Write a function called ‘prime_factors’ that takes one
argument, a list of positive integers, and returns the set of
all prime factors of the integer at index 85.� �
def prime_factors(lst):
number = lst[85]
factors = set()
for i in range(2, int(number/2) + 1):
while number % i == 0:
factors.add(i)
number = number/i

if number > 2:
factors.add(number)

return factors� �
Fig. 6: Functional bug, code generated by GPT-3.5 (t=D)

not fitting the errors in the first seven rows of Table II. We
identified five main causes of functional errors and grouped
them accordingly. The first group involves incorrect ranges.
For questions requiring an index or number range, the common
bug was either excluding the range or inaccuracies in the lower
or upper bounds. For example, when CodeLlama-13 (t = 0)
was asked to return all list elements from index 55 to 98, both
inclusive, it returned elements from [54 : 99] instead of the
expected range, [55 : 99].

The second group includes responses where redundant code
rendered the functionality incorrect, though the code would
have been correct without it.

The third group includes responses with an incorrect logical
order of tasks. For example, when CodeLlama-7 (t=D) was
asked to return the second largest number from a specified
index range in a list, its generated code sorted the entire
list first, then sliced it and returned the second element. The
correct approach is to slice the specified range first, then sort
it, and return the second element.

The fourth group includes responses where the LLM mis-
understood the question. For example, Command (t=0) was
asked if the integer at index 85 of a list was a perfect number,
it generated the incorrect code: return nums[85]==64820,
where nums was a placeholder for the list.

The fifth group includes partially correct responses that miss
certain input cases. In Figure 6 (where QI refers to question

instance), the code fails to return {2} when the list contains
2 at index 85 due to the condition if number > 2 instead
of if number >= 2, which would correctly identify 2 as a
prime number.
Passed. As shown in the “passed” row in Table II, reducing
the temperature to 0 increased the number of correct answers
for all models except Command. GPT-4, which outperformed
GPT-3.5, solved over 82% of question instances in both
settings, while Command underperformed across all setups.
Additionally, CodeLlama-13 outperformed CodeLlama-7.
Patterns in parameter values leading to errors. Across
most question templates we could not discern patterns among
parameter values that led to incorrect LLM answers. The val-
ues were highly diverse with no identifiable trends. However,
when examining cases where the LLM succeeded with most
of the parameters in a question neighbourhood but failed with
specific parameters, i.e. 0.9 ≤ CorrSc < 1.0, we identified
certain patterns. CodeLlama-7, CodeLlama-13, GPT-3.5, and
GPT-4 generated incorrect answers for question instances
involving indices or number ranges, particularly at temperature
0. In contrast, Command showed no pattern at any temperature.
The pattern involved indices or bounds that were identical,
where the lower bound was 0, or where the difference be-
tween bounds was 1. In other words, if x denotes a non-
negative integer, the ranges were: (0, x), (x, x), [0, x], [x, x],
and (x, x + 1), with parentheses indicating exclusivity and
square brackets indicating inclusivity. Additionally, GPT-3.5
made errors when inserting a character before another in a
string if either was a space character.

VI. THREATS TO VALIDITY

Our assessment of LLM correctness relies on (a) unambigu-
ous questions, (b) accurate test oracles that do not mis-classify
a correct answer as incorrect, and (c) strong test oracles
capable of catching errors. For (a) and (b), although skilled
Python programmers reviewed our questions and test oracles
(see Section III), this may not have eliminated all potential
ambiguities and oracle errors. For (c), we combine regression
testing and random differential testing to thoroughly evaluate
LLM responses, but testing is inherently incomplete.

Our findings are limited to the LLMs we evaluated; how-
ever, Turbulence supports integrating additional LLMs in the
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future. To balance costs, we set M and N (Definition 1) to
100 parameter settings per question for diversity and 5 runs
to address variance, reflecting our resource constraints. Larger
values would be preferable with increased resources.

To avoid training data bias, we developed custom question
templates instead of using internet-sourced “real-world” ques-
tions. While our questions may resemble online ones, they are
tailored for the question neighbourhood approach. In practical
tasks, parameters in Turbulence questions are usually kept
as formal parameters, awaiting user input. However, artificial
questions in Turbulence offer key advantages: (i) focusing on
hard-to-find edge cases and (ii) enabling easy reproducibility
and comparison across LLMs. Our framework remains flexible
for future studies with different question sets.

VII. RELATED WORK

We categorise prior work on LLM robustness and correct-
ness for code into the following themes.

Correctness and evaluation benchmarks. Various bench-
marks and datasets, such as HumanEval [5], APPS [6],
MBPP [11], CodeContests [47], CodeXGLUE [48], and ex-
amples from LeetCode [7] have been used to evaluate the
correctness of LLM-generated code, and the effectiveness of
LLMs with respect to code generation has been investigated
for a specific languages such as Python [49] and Verilog [50],
as well as for particular programming paradigms, such as the
use of classes in an object-oriented setting [51]. Xu et al. sys-
tematically evaluated multilingual LLMs for code correctness
and perplexity [12]. Moradi et al. compared Copilot’s solutions
to human-generated code on algorithmic problems [52]. The
focus of CCTest [53] is on improving LLM-based code com-
pletion by ensuring structural consistency using Levenshtein
edit distance [54], and detecting errors through mutations
that maintain consistency of program structure. Wong et al.
assessed Copilot’s code quality by formally verifying that
generated code meets predefined specifications [55]. Rajan et
al. proposed KONTEST to detect inconsistencies in LLM out-
puts using knowledge graph-based test cases and metamorphic
and ontological oracles [56]. Dozono et al. evaluated LLMs
for detecting common weaknesses and introduced CODE-
GUARDIAN to enhance accuracy and speed in VS Code [57].
Recent works have focused on the importance of fine-tuning
in LLM performance [14], and on evaluating self-consistency
of LLMs in code generation and comprehension tasks [58].

In contrast to these works, which mainly focus on the
absolute performance of LLMs on specific code generation
tasks, our approach evaluates LLM code generation capa-
bilities across neighbourhoods of related question instances,
allowing the identification of discontinuities in reasoning abil-
ity. This can offer insights into how LLMs handle a variety
of strongly-related tasks in a given problem space, which
is under-explored by these prior works. Additionally, unlike
most previous approaches that rely on manually crafted test
suites, we automate testing by combining fixed test suites with
fuzzing as complementary techniques [59].

Robustness. Several studies have investigated LLM robustness
to syntactic variations that preserve semantics, e.g. by modify-
ing problem descriptions without altering semantics [20], [23],
perturbing prompts (with the finding that slight perturbations
can significantly impact model performance) [18], [19], and
changing method names [60]. Various works have focused on
enhancing robustness: CLAWSAT utilises contrastive learning
with adversarial views and staggered adversarial training for
this purpose [61], the CoTR framework [21] defends code
translation models against adversarial attacks through syn-
tactic transformations and data augmentation with semanti-
cally equivalent code examples, CodeBERT-Attack highlights
vulnerabilities and suggests adversarial training examples for
model improvement [62], the CODA framework aims to
enhance model robustness by generating adversarial examples
from semantically similar inputs [63], and the CARROT
framework focuses on robustness detection, measurement, and
enhancement in the context of code-focused LLMs [64]. Nu-
merous other approaches focus on the problem of identifying
a lack of robustness in models [16], [22], [65]–[70].

Among these works, the study by Shirafuji et al. [20] is
the most closely related to our research. However, there is a
key difference in focus. Their study examines how syntactic
modifications, such as altering variable names or rephrasing
prompts, influence the correctness and quality of generated
code while maintaining the underlying task. In contrast, our
research explores how LLMs perform when faced with a
question neighbourhood—a set of semantically similar but
distinct tasks. By leveraging parameterised question templates,
we systematically investigate the models’ ability to generalise
and identify gaps in their performance.

VIII. CONCLUSIONS AND FUTURE WORK

We have introduced a new method for assessing the correct-
ness and robustness of LLMs with respect to code generation,
based on the notion question neighbourhoods. Being able to
assess the performance of an LLM across a question neigh-
bourhood makes it possible not only to identify specific prob-
lem instances that an LLM cannot solve, but to identify gaps in
an LLM’s ability to perform general reasoning in a particular
problem space. We have put this into practice via Turbulence,
the first benchmark to systematically evaluate code-generating
LLMs using question neighbourhoods. Experiments with five
models showed that GPT-4 consistently outperformed the other
evaluated models, but that all models demonstrated a lack of
robustness in certain question neighbourhoods. Lowering the
temperature to zero improved correctness scores (except for
Command) and reduced error diversity.

Interesting avenues for future research include assessing the
impact of quantisation on LLM performance, and developing
Turbulence-like benchmarks for code-infilling models.

IX. DATA AVAILABILITY STATEMENT

The source code for Turbulence, all question and oracle
templates, together with all results, are available in the Zenodo
repository [71].
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