
Scalable SMT Sampling for Floating-Point Formulas
via Coverage-Guided Fuzzing

Manuel Carrasco
Imperial College London

London, United Kingdom
m.carrasco@imperial.ac.uk

Cristian Cadar
Imperial College London

London, United Kingdom
c.cadar@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

London, United Kingdom
alastair.donaldson@imperial.ac.uk

Abstract—SMT sampling involves finding numerous satisfying
assignments (samples), for an SMT formula, and is increasingly
finding applications in software testing. An effective SMT sampler
should achieve high throughput, yielding a large number of samples
in a given time budget, and high diversity, yielding samples that
cover disparate parts of the solution space.

Most SMT samplers rely on off-the-shelf SMT solvers and
thus inherit those solvers’ scalability issues. Because SMT solvers
tend to scale poorly when applied to floating-point constraints,
the scalability and diversity of SMT sampling is correspondingly
limited in the floating-point domain.

We propose JFSAMPLER, the first SMT sampling technique
built on top of coverage-guided fuzzing. JFSAMPLER extends Just
Fuzz-it Solver (JFS), a scalable but incomplete SMT solver that is
effective at finding solutions to floating-point formulas by encoding
satisfiability as a reachability problem that is then offloaded to a
fuzzer. By building on JFS, JFSAMPLER has an advantage over
other SMT samplers in the floating-point domain. Further, we
propose two novel strategies that increase both throughput and
diversity of sampled solutions. First, JFSAMPLER enhances the
fuzzer’s code coverage feedback signal by measuring coverage of
the formula’s solution space. Second, JFSAMPLER incorporates
a custom mutator tailored for SMT sampling. By design, these
two novel techniques can be combined, having a positive synergy
on throughput and diversity.

We present a large evaluation over QF FP and QF BVFP
formulas from the SMT-LIB benchmark. Our results show that
JFSAMPLER achieves substantial improvements over SMTSAM-
PLER, a state-of-the-art SMT sampling technique, when applied
to floating-point formulas.

Index Terms—fuzzing, SMT, sampling.

I. INTRODUCTION

Various software testing techniques leverage SMT solvers to
produce inputs that meet specific constraints: if the constraints
can be satisfied, the solver provides a satisfying assignment
that can be used as a new input for testing. A prime example is
symbolic execution [1]–[4], where constraints arising from the
code of the software under test are gathered and solved to find
new inputs that cover previously-unexplored paths. Specifically,
symbolic execution uses an SMT solver to find an input that
corresponds to an execution path prefix.

SMT-based testing techniques are subject to two key lim-
itations of typical off-the-shelf SMT solvers. First, most off-
the-shelf solvers provide only one satisfying assignment for
a satisfiable set of constraints. Second, the difficulty of SMT
solving leads to scalability problems where solvers time out, so
that no satisfying assignment is provided even if the constraints

are actually satisfiable. Regarding the first limitation: traditional
symbolic execution techniques only expect one satisfying
assignment for each path prefix’s constraints, although multiple
inputs in the same path prefix can take different paths afterwards
and unlock new coverage. There is evidence that symbolic
execution can benefit from retrieving multiple solutions from
the constraints instead of exploring multiple paths from a
certain program point [5].

To overcome this limitation, researchers have been working
on techniques which find large sets of satisfying assignments
and that provide reasonable coverage of the formula’s solution
space. This field of research is referred to as SMT sampling.
The benefits of SMT sampling have started to gain attention
in the field of software testing [5]–[8].

The second limitation—scalability—leads to solver timeouts,
in which case no new input is generated. This may prevent
critical bugs from being revealed. Scalability is particularly
problematic for the floating-point SMT theory (QF FP). As a
result, symbolic execution implementations offer limited or no
support for floating-point arithmetic [9]–[11].

Various methods have been investigated to improve the
scalability of floating-point SMT solving. These methods can
be categorized into complete and incomplete SMT solvers.
Complete solvers [12]–[15] can determine whether the formula
is satisfiable or not (assuming no timeouts). On the other hand,
incomplete solvers [16]–[19] use heuristics that can only prove
a formula is satisfiable but cannot determine if it is unsatisfiable.

Widely-used complete solvers such as Z3 [14] support
floating-point constraints by translating them into bitvector
constraints and solving them using a SAT solver [20]–[22].
However, this approach does not scale well because floating-
point expressions are translated into very large, complex
Boolean circuits that are difficult for the underlying SAT
solver to reason about [22], [23]. In contrast, JFS [16], an
incomplete SMT solver, has been shown to yield competitive
and complementary results when compared with a wide range
of complete and incomplete solvers in the floating-point domain.
The key idea behind JFS is to leverage coverage-guided
fuzzing [24] to solve constraints: an SMT formula is turned
into a C++ program whose inputs correspond to free variables
of the formula, and that contains a special error location that
is reachable if and only if the inputs comprise a satisfying
assignment to the formula. Coverage-guided fuzzing can then

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Technical-Research Track

69

be used to find bugs in this program, where finding a bug
amounts to finding a satisfying assignment.

Although JFS has been shown to be successful in improving
the scalability of floating-point reasoning, it does not address
the limitation of not being able to generate multiple solutions:
JFS returns a single satisfying assignment. It thus cannot aid
in software testing problems requiring SMT sampling.

Our contribution. In this work, we focus on the problem of
achieving scalable SMT sampling in the domain of floating-
point arithmetic, contributing to addressing both of the above
limitations. We propose a new technique, called JFSAMPLER,
for SMT sampling, which is more scalable than the current
state-of-the-art technique, SMTSAMPLER [25], when dealing
with floating-point constraints.

Our JFSAMPLER technique lifts the coverage-guided fuzzing
approach of JFS from the domain of SMT solving to SMT
sampling. We draw on our insight that the incomplete nature of
JFS is unproblematic in the context of SMT sampling, where
the assumption is that the formula under analysis is satisfiable
and the aim is to extract a large number of diverse satisfying
assignments. Our key innovations in JFSAMPLER are (a) a
novel program encoding that plays to the strengths of coverage-
guided fuzzing, and (b) a custom mutation strategy inspired
by SMTSAMPLER that equips the underlying coverage-guided
fuzzer with a mutation operator explicitly tailored to meet the
needs of SMT sampling.

We validate our contributions using formulas from the
extensive SMT-LIB benchmark [26] that target the QF FP
(quantifier-free formulas over floating-point arithmetic) and
QF BVFP (quantifier-free formulas over bitvector and floating-
point arithmetic) theories. This benchmark has a wide range
of constraints, including (but not limited to) constraints arising
from various software testing and verification techniques, such
as symbolic execution, bounded model checking, and static
analysis. In this way, we aim to push the advancement of
scalable SMT-sampling-based testing methods for software
with floating-point operations.

In our evaluation, we compare JFSAMPLER to two base-
lines. The first baseline is SMTSAMPLER [25], which is
based on the SAT sampling technique QUICKSAMPLER [27].
SMTSAMPLER has previously shown outstanding scalability
compared to other samplers. Additionally, SMTSAMPLER has
shown competitiveness with respect to SMT coverage, a metric
designed to compute how well the generated samples cover
the solution space. The second baseline is an SMT sampler
based on the original JFS tool that does not use our novel
encoding and mutation strategies, allowing us to validate the
effectiveness of these strategies.

A large experimental evaluation against these baselines
shows that JFSAMPLER excels in the QF FP domain. First,
the ability of JFSAMPLER to quickly solve many floating-
point queries, thanks to its use of coverage-guided fuzzing,
makes the technique practical for SMT sampling where SMT-
SAMPLER is often inapplicable (because the traditional SMT
solver that backs SMTSAMPLER cannot find any satisfying

assignments). Secondly, our novel encoding and mutation
strategy dramatically enhance the throughout and diversity of
sampled formulas compared with the naive JFS-based baseline.
In the QF BVFP domain, our strategies allow JFSAMPLER to
dramatically reduce an initial performance gap with respect to
SMTSAMPLER and win by a tight margin. Our experiments
evaluate a total of 862 formulas from the SMT-LIB benchmark
in the QF FP and QF BVFP suites and required 212 CPU days
of compute time to complete.

In summary, our contributions are as follow:
1) The first coverage-guided SMT sampler for floating-point

constraints.
2) A novel program encoding for fuzzing which increases

sampling throughput and the solution space coverage.
3) A coverage-guided custom mutator tailored for the SMT

sampling domain and designed to generate new satisfying
assignments with high probability.

4) The implementation of these ideas in a new SMT sampling
tool, JFSAMPLER, and an evaluation across 862 QF FP
and QF BVFP formulas from the SMT-LIB benchmark,
showing a superior performance compared to the state-of-
the-art SMTSAMPLER technique.

The rest of the paper is structured as follows. We introduce
the necessary background in §II. Then, we explain the design
of JFSAMPLER, which includes our key contributions, in
§III. Next, we evaluate and compare our contributions to the
baselines in §IV. Lastly, we present related work in §V and
conclude in §VI.

II. BACKGROUND

A. Coverage-guided Fuzzing

Coverage-guided fuzzing (also known as greybox fuzzing)
aims to find bugs by randomly mutating and combining inputs
drawn from a corpus and feeding them to a program, with the
aim of finding inputs that cause the program to crash. The
fuzzer instruments the program to track edge code coverage.
When an input is found to achieve new coverage, it is added
to the corpus for further mutation. The idea is that prioritising
inputs that were found to achieve new coverage for further
mutation and combination may guide the fuzzing process
towards bug-triggering inputs. Popular coverage-guided fuzzers
include LIBFUZZER [24] (used in this work) and AFL [28].

B. Just Fuzz-it Solver (JFS)

As discussed in the introduction, satisfiability modulo
theories (SMT) solvers underpin many formal testing methods,
and limitations of SMT solvers correspondingly limit the
effectiveness of testing. Solvers often perform so poorly when
dealing with floating-point constraints that SMT-based testing
methods become impractical for analysing software operating
on floating-point numbers [29].

Just Fuzz-it Solver (JFS) [16] is an incomplete SMT solver
for the theories of bitvectors (QF BV), floating point (QF FP)
and their combination (QF BVFP). It is built on top of the
coverage-guided fuzzer LIBFUZZER [24] (see §II-A). JFS can
only prove that a given formula is satisfiable but not that

70

1 ; Declare floating-point variable x
2 (declare-fun x () (_ FloatingPoint 8 24))
3 (assert
4 (let
5 ((?x9 ; Alias for (x + 0)
6 (fp.add RNE
7 x (_ +zero 8 24))))
8 ; Assert (x + 0) >= x
9 (fp.geq ?x9 x)))

10 (check-sat)

Listing 1: Example QF FP formula.

1 int LLVMFuzzerTestOneInput(uint8_t* data)
2 {
3 Float32 x = makeFloatFrom(data, 0, 31);
4 Float32 ssa0 = getPositiveZero();
5 Float32 ssa1 = ssa0.add(RM_RNE, x);
6 bool ssa2 = ssa1.fpgeq(x);
7 if (!ssa2) return 0;
8 abort();
9 }

Listing 2: C++ program generated by JFS for Listing 1.

it is unsatisfiable. In its evaluation, JFS is competitive and
complements off-the-shelf SMT solvers in the floating-point
domain (but not effective in the bitvector domain).

JFS requires that the input formula is presented as a
conjunction of assertions (the SMT-LIB format guarantees
it). Given the conjunction, JFS generates a C++ program that
takes an assignment to the free variables of the formula as
input. The program evaluates the formula on the assignment
by evaluating the top-level conjuncts in turn. By construction,
the program crashes if and only if all of the conjuncts are
satisfied—i.e. if the input is a satisfying assignment. JFS then
uses LIBFUZZER to automatically search for an input that
triggers a crash—i.e. for a satisfying assignment.

To illustrate this, consider the simple formula of Listing 1.
In SMT-LIB notation, this formula represents the constraint
(x+ 0) ≥ x. First, a floating-point free variable x is declared
with an exponent and mantissa of 8 and 24 bits, respectively.
Then x9 is declared as an alias for an addition expression fp.

add. The addition expression takes as operands the rounding
mode RNE (round to nearest, with ties to even [30]), the
free variable x, and (_ +zero 8 24), which represents the
constant value positive zero.

Listing 2 shows the C++ program that JFS generates for
the formula of Listing 1. The program is a fuzz target for
LIBFUZZER, and some details are omitted for conciseness,
such as the included headers (defining types and functions) and
the data buffer’s size. The fuzzing target receives the input
byte buffer data (line 1), which the fuzzer fully controls. JFS
uses the buffer to map its bits to the ones in the free variables
occurring in the SMT formula; the buffer’s bits correspond
to a full candidate assignment’s bits. JFS parses the buffer to
instantiate the floating-point free-variable x that matches the
semantics of SMT-LIB, in the process checking that the buffer
size is correct (line 3).1 This corresponds to the declaration
of free variable x at line 2 of Listing 1. The floating-point
positive zero is constructed (line 4) and added to x (line 5);
these steps correspond to lines 6–7 of Listing 1.

Finally, the program performs a comparison matching the
input constraint (line 6). If the comparison returns true, the
current assignment satisfies the constraint, and LIBFUZZER
is signaled with an abort; JFS terminates and returns SAT.

1Float32 is defined by JFS following the SMT-LIB specification.

In other words, if the current input satifies the constraints,
the program crashes and the fuzzer saves the byte buffer as
a crash-inducing test case. Otherwise, the fuzzer continues
testing. If no crashing input is found within a given time limit,
JFS returns an unknown result.

Before compiling the program, JFS applies fuzzing-friendly
optimisations to boost effectiveness, such as lifting equalities.
Since coverage-guided fuzzing needs an input corpus, JFS
provides smart seeds featuring special constant values (e.g.,
infinities and zeros) [16].

This illustrative example is simple; a larger example with
more constraints would contain more branching logic, providing
the coverage-guided fuzzer with numerous coverage points to
emit a feedback signal for fuzzing.

C. SMTSampler

SMTSAMPLER [25] is a scalable non-uniform SMT sampler;
not all satisfying assignments are equally likely to be generated.
SMTSAMPLER has been shown to outperform other sam-
plers [27], [31], [32] by orders of magnitude in throughput. It
can handle formulas in the quantifier-free theories of bitvectors,
arrays, and uninterpreted functions (QF AUFBV). The non-
uniform nature of SMTSAMPLER also applies to JFSAMPLER.

As the state-of-the-art non-uniform SMT sampler, we chose
SMTSAMPLER as a baseline for our evaluation. We straightfor-
wardly adapted its implementation for floating-point constraints
without altering its algorithm (see §IV-B1).

In short, SMTSAMPLER uses a MAX-SMT solver [33] to
find random satisfying assignments (samples) and applies a
heuristic to mine additional samples without calling the solver,
improving scalability. Each iteration of this process, called an
epoch, repeats until a time limit or sample count is reached.

We now discuss the technique in more detail, assuming for
ease of presentation that all free variables are booleans.

An epoch consists of three sample-generation steps. The
first step computes a base solution, a randomly generated
satisfying assignment, using a MAX-SMT solver. A MAX-
SMT solver finds an assignment that satisfies a set of hard
constraint and maximises the satisfiability of a set of soft
constraints. SMTSAMPLER creates a MAX-SMT query in
which the input formula is a hard constraint, and constraints
assigning the free variables of the formula to random values are
soft constraints. Soft constraints are important because without

71

them the deterministic behaviour of solvers could undermine
the diversity of the satisfying assignments.

The second step uses the base solution as a string of bits;
all assignments for the input formula have the same length in
bits (a property that is guaranteed by the supported theories).
Each base solution’s bit, corresponding to a variable, is tested
to determine whether it can be flipped while minimising the
number of extra flips required by additional variables. This is
encoded as a MAX-SMT query with the input formula and the
bit flip as two hard constraints; the values of the remaining bits
are each set as soft constraints. The found solutions are called
atomic mutations because they are neighbouring solutions of
the base solution.

Finally, once the atomic mutations are available, SMTSAM-
PLER uses a simple but effective heuristic that combines the
assignments at the bit level. Two atomic mutations Ai and Aj

of the base solution B are combined in the following way
to produce a new assignment N . For Ai and Aj, a diff patch
is computed with respect to B by using the bit-wise XOR
operator: Ai

diff = Ai ⊕ B. These two patches are combined
using the bit-wise OR operator, and applied to B to yield N :
N = B⊕ (Ai

diff ∨Aj
diff). Every assignment generated by the

heuristic is tested for satisfiability because it does not come
from a solver; satisfiability can be checked by just evaluating
the formula with the assignment.

This heuristic is effective because it cheaply generates
potential satisfying assignments, compared to off-the-shelf
solvers, and has a high success rate in practice. By flipping
only differing bits between the two satisfying assignments, it
often produces a new solution since those bits can vary without
violating the formula.

The heuristic is first applied to all atomic mutation pairs,
generating a new set. This process is repeated five times on
each subsequent set (operating only on satisfying assignments),
yielding an exponential number of solutions based on the
atomic mutations. This step is crucial for scalability as it
avoids constraint solving. After completion, SMTSAMPLER
proceeds to the next epoch.

SMTSAMPLER only outputs unique satisfying assignments.
To ensure uniqueness, assignments are represented as strings
of bits of equal length. These strings are then hashed into a
set to avoid duplicates.

D. SMT Coverage Metric

SMTSAMPLER [25] has shown great scalability at the
expense of no uniformity guarantees (solutions do not have the
same probability of being generated). Therefore, the authors
proposed an SMT coverage metric to assess the samples’
diversity with respect to the formula evaluation. The input
QF AUFBV formula can be considered as an abstract syntax
tree, where the internal nodes represent boolean, bitvector or
floating-point sub-expressions to be evaluated. Each bit of
each internal node is tracked when evaluating all samples. The
coverage metric is incremented by one for each bit which is
assigned its two possible values across all generated samples.

To illustrate, consider the SMT formula of Listing 1
representing the constraint (x + 0) ≥ x. The SMT coverage
metric will consider its unique internal node that represents
the addition, typed as a 32-bit floating-point expression. When
evaluating the constraints with an assignment for x, the addition
sub-expression (x+ 0) will evaluate to x.

Let us assume that the following satisfying assignments for x
are considered for computing the SMT coverage: positive zero,
negative zero and −2. The binary representation for their first
byte is as follows: 00000000, 10000000 and 11000000
respectively (the remaining bytes are omitted because they are
all zeroes).

The metric starts by evaluating the first assignment for x,
which is the positive zero. The coverage computation keeps
track that all the addition expression’s bits were evaluated to
zero, and not one (the possible values for a bit). At this point,
the SMT coverage metric is zero because the expression’s bits
were only evaluated with one possible value.

Next, when evaluating the following satisfying assignment,
negative zero, all bits in the expression are evaluated as before
except the one corresponding to the sign bit. Consequently, the
SMT coverage metric is increased by one, because one bit, the
sign bit, was evaluated with its two possible values.

Finally, when −2 is evaluated, all bits are evaluated to zero
except the sign bit and one bit in the mantissa. The sign bit
has saturated in coverage, but the one in the mantissa has not,
and as a result the coverage metric is now increased again by
one. The total SMT coverage for these assignments is 6.25%
(covered bits=2

total bits=32 ∗ 100).

III. DESIGN OF JFSAMPLER

We now present the design of JFSAMPLER, an SMT sampler
for the QF FP and QF BVFP theories. From a baseline where
JFS is naively turned into an SMT sampler via repeated fuzzing
target runs (§III-A), we explain the two novel innovations
that make JFSAMPLER scale well: a diversity encoding based
on SMT coverage (§III-B), and a custom mutator based on
a heuristic used in SMTSAMPLER for combining existing
satisfying assignments (§III-C).

A. Naive Extension of JFS for Sampling

As explained in §II-B, the JFS solver halts fuzzing and
reports SAT as soon as LIBFUZZER discovers a crashing input
(abort) in the C++ encoding of the input formula. To turn JFS
into a naive SMT sampler, one can simply change JFS so
that instead of halting when a crash is discovered, it saves
the crashing input but carries on fuzzing in search of further
crashing inputs. We refer to this simple extension of JFS as
JFSAMPLERNaive, which is a key baseline for comparing our
more sophisticated techniques proposed in §III-B and §III-C.

The JFSAMPLERNaive approach is likely to have only limited
success because the standard JFS encoding of a formula (which
was not designed with SMT sampling in mind) does nothing
to reward the fuzzer for synthesising successive inputs that
crash the fuzzing target (and thus satisfy the formula). To
illustrate this, consider again the program of Listing 2. Once

72

an input that reaches the abort() and an input that does not
reach the abort() have been synthesised, the fuzzer will have
fully covered the program code.2 As a result, coverage-guided
fuzzing will in fact no longer be guided by coverage, because
fuzzing will now be no more effective than un-guided black
box fuzzing. Later, we explain how we solve this limitation
via a novel encoding and a custom mutator.

Implementation. The function abort() in Listing 2 is a
standard library function that triggers an abort signal and does
not return. We replaced it by raise(SIGABRT) to allow it
to return, and we modified LIBFUZZER’s signal handling to
save the crashing input and continue the fuzzing loop. To keep
track of the number of generated samples, we hash and count
each new input that reaches raise(SIGABRT).

B. Diversity Encoding

To enable sampling with better diversity and throughput
compared with JFSAMPLERNaive, we propose a new method
for encoding an SMT formula as a program-to-be-fuzzed. This
new diversity encoding (DE) is based on the SMT coverage
metric proposed in prior work on SMTSAMPLER and described
in §II-D. In our evaluation, we refer to the extension of
JFSAMPLERNaive with this encoding as JFSAMPLERDE.

Our new encoding inserts additional semantic-preserving
program code just before the abort() statement, i.e. code that
will only be reached when a satisfying assignment has been
found. Following the SMT coverage metric, the additional code
tests whether each bit of the input formula’s sub-expressions
is enabled. From the perspective of coverage-guided fuzzing,
these tests yield new edges in the program’s control flow
graph that can be covered only by satisfying assignments.
Different satisfying assignments will cover the additional code
in different ways, depending on which sub-expression bits are
enabled. Since edge coverage is the reward mechanism for
the coverage-guided fuzzer, by encoding SMT coverage as
program code coverage, the fuzzer will be rewarded for finding
diverse satisfying assignments that achieve new SMT coverage.

Listing 3 illustrates the JFSAMPLERDE encoding. The macro
DIVERSIFY_FLOAT(expr) inlines the bit-level tests on the
input floating-point expression. For reasons of space, the
example only shows a formula that requires diversifying
a floating-point expression. The new edges introduced by
this macro’s encapsulated tests give the fuzzer feedback on
code coverage, rewarding satisfying assignments that explore
different values in expr’s bits.

Implementation. The new encoding is built on top of three
C/C++ macros: DIVERSIFY_BOOL(expr), DIVERSIFY_BV(
expr) and DIVERSIFY_FLOAT(expr). These macros incor-
porate a check for each bit in the input expression, determining
whether the target bit is set.

Listing 3 demonstrates the implementation of
DIVERSIFY_FLOAT(expr) for 32-bit floats. For ease

2The source code for the types defined by JFS is relatively simple. It
offloads the corresponding operations to native types as much as possible,
which is not enough to mitigate the lack of coverage issue.

1 #define TEST_BIT(BYTE, POS) {
2 if ((BYTE & (1 << POS)) != 0) {}
3 }
4
5 #define DIVERSIFY_FLOAT(F) {
6 uint32_t bits = F.getRawBits();
7 uint8_t* buffer = (uint8_t*)&bits;
8 // Test each bit in each byte
9 uint8_t byte = buffer[0];

10 TEST_BIT(byte, 0) TEST_BIT(byte, 1)
11 TEST_BIT(byte, 2) TEST_BIT(byte, 3)
12 TEST_BIT(byte, 4) TEST_BIT(byte, 5)
13 TEST_BIT(byte, 6) TEST_BIT(byte, 7)
14 // Idem for buffer[1 <= i <= 3]
15 }
16
17 int LLVMFuzzerTestOneInput(uint8_t* data)
18 {
19 Float32 x = makeFloatFrom(data, 0, 31);
20 Float32 ssa0 = getPositiveZero();
21 Float32 ssa1 = ssa0.add(RM_RNE, x);
22 bool ssa2 = ssa1.fpgeq(x);
23 if (!ssa2) return 0;
24 DIVERSIFY_FLOAT(ssa1);
25 abort();
26 }

Listing 3: New diversity encoding (§III-B) for Listing 1.

of presentation we have slighly simplified the code; for
example line continuation characters for multi-line macros
are omitted. The macro uses the bit-level representation
of the float value, inspecting each byte bit by bit, which
adds two new edges at the inlining point for each bit check.
Optimisations are disabled during compilation (the default in
JFS), ensuring these checks remain intact. The same approach
applies to other data types, as we also operate at their bit-level
representation.

In pilot experiments, the overhead while enabling these run-
time checks in full led to an unacceptable decrease in fuzzing
throughput. To control the overhead, DIVERSIFY_FLOAT(

expr) and DIVERSIFY_BV(expr) are guarded with a runtime-
random check that triggers them with 20% probability, which
we found to provide a good balance in our pilot experiments;3

for brevity the guards are omitted in Listing 3. Therefore,
JFSAMPLERDE generates a C++ program diversifying all
sub-expressions, but at runtime, their execution is randomly
triggered each time the fuzzer tests an input corresponding to a
satisfying assignment. We found this to be more effective than
only selecting a fraction of the sub-expressions at compilation
time for diversification.

C. A Custom Mutator for SMT Sampling

Recall from §II-C that SMTSAMPLER uses a heuristic for
combining existing satisfying assignments that has proven to
be highly effective as a means of generating new satisfying

3In our pilot experiments, the overhead was more noticeable in the QF FP
suite than in QF BVFP because in practice floating-point sub-expressions
are 32 or 64 bits, whereas bitvector ones are often smaller.

73

1 void SamplingMutator(uint8_t* Cur,
2 uint8_t* Out){
3 // Cur is chosen by the fuzzer based on

code-coverage feedback.
4 uint32_t Size = TestCasesSize();
5 uint8_t* First = RandPrevSAT();
6 uint8_t* Second = RandPrevSAT();
7
8 for (uint32_t i = 0; i < Size; i++){
9 Out[i] = (Cur[i] ˆ First[i]);

10 Out[i] |= (Cur[i] ˆ Second[i]);
11 Out[i] ˆ= Cur[i];
12 }
13 }

Listing 4: Implementation of the coverage-feedback driven
SMT mutator inspired by SMTSAMPLER (§III-C).

assignments; we refer to this heuristic as SAMPLINGMUTATOR.
This is the only way SMTSAMPLER attempts to find satisfying
assignments without calling a constraint solver. It is worth not-
ing that SMTSAMPLER applies SAMPLINGMUTATOR blindly
and without any feedback on the satisfying assignments.

The fuzzer that underlies JFSAMPLERNaive is LIBFUZZER,
and LIBFUZZER performs byte-level mutations on a corpus of
inputs to achieve new code coverage. We equip LIBFUZZER
with the SAMPLINGMUTATOR heuristic as a new custom
mutator; we refer to this version as JFSAMPLERSM.

We improved and relaxed how the SAMPLINGMUTATOR
heuristic is applied in JFSAMPLERSM. Unlike SMTSAMPLER,
which only combines satisfying assignments, in JFSAM-
PLERSM, SAMPLINGMUTATOR is applied to any assignment
that achieves new coverage (whether satisfying or not). In
this case, the assignment that has achieved new coverage is
combined with two randomly-picked satisfying assignments
from earlier in the fuzzing run. Our hypothesis is that applying
this mutator to all assignments that gain new coverage will
improve the diversity of fuzzing. We decided to randomly select
the two other satisfying assignments to keep our implementation
simple and efficient. Any other criteria would have required
a more expensive implementation, which would damage the
throughput of fuzzing.

In summary, the above design improves JFSAMPLERSM

by generating new inputs via an effective heuristic for SMT
constraints, and increases SMT coverage by leveraging code
coverage feedback. JFSAMPLERSM, with its custom mutator,
is orthogonal to the diversity encoding used by JFSAMPLERDE

(see §III-B)—these features can be used independently or
combined.

Implementation. LIBFUZZER has a list of built-in mutators
that are applied on the current feedback-driven input. We
implemented SAMPLINGMUTATOR as an additional built-in
mutator in LIBFUZZER.

Listing 4 shows the implementation of SAMPLINGMUTATOR
in JFSAMPLERSM. The mutator receives the Cur buffer, which
is the currently picked assignment by the fuzzer based on the

coverage feedback. Then, it randomly selects two satisfying
assignments from an internal list (if there are not enough
satisfying assignments, the mutator returns without yielding
a new input). Finally, the mutator combines them at the byte
level following the heuristic defined in SMTSAMPLER (§II-C);
in JFSAMPLER all assignments have the same length in bytes.
The fuzzing loop treats the output written in the Out buffer
like any other mutator’s result, and it is added to the corpus if
and only if it triggers new code coverage.

IV. EVALUATION

We now compare JFSAMPLER and SMTSAMPLER in terms
of throughput (number of generated samples within a given
time budget) and diversity (SMT coverage). We aim to answer
the following research questions (RQs):
RQ1 Does JFSAMPLER achieve higher throughput and diver-

sity than the state-of-the-art SMTSAMPLER technique?
RQ2 Do the diversity encoding (§III-B) and SMT sampling

mutator (§III-C) lead to higher throughput and diversity
compared to the naive extension of JFS (§III-A)?

A. Benchmark Selection
JFS’s evaluation [16] identified challenging satisfiable for-

mulas from the SMT-LIB benchmark [26], resulting in two
suites for the QF FP and QF BVFP logics, containing 160 and
702 formulas, respectively. Our experiments are conducted on
these two suites.

B. SMTSampler Implementation
We use SMTSAMPLER [25] as a baseline SMT sampling

tool that represents the state-of-the-art in SMT sampling. Our
evaluation is based on commit 8186483 of the SMTSAMPLER
GitHub repository [34]. We explain the minimal extensions we
made to enable floating-point support in SMTSAMPLER, and
key aspects about its underlying constraint solver:

1) Extension for QF FP Support: SMTSAMPLER is de-
signed for quantifier-free bitvector theories, specifically sup-
porting the QF AUFBV logic. IEEE-754 floating-point values
are represented as bitvectors, so that in principle the SMT-
SAMPLER algorithm can process them as bitvector variables.
However, in SMT-LIB, direct access to the bitvector represen-
tation of a floating-point value is not permitted; conversion
must be explicit.

We minimally extended SMTSAMPLER by utilising Z3
API’s mk_to_ieee_bv(FloatExpr) function, which returns
the bitvector representation of a floating-point input expression
as an SMT-LIB bitvector.

The input formula remains unchanged and is added to the
constraint solver as before. When constructing a base solution,
random bitvector constants are assigned to free variables as
soft constraint equalities (as explained in §II-C); this process is
adjusted for floating-point variables. A floating-point variable
expression is wrapped with mk_to_ieee_bv for conversion
to a correctly typed bitvector. Similarly, during the atomic
mutation constraints generation, if a bit from a floating-point
free variable is flipped, the variable expression is also wrapped
with mk_to_ieee_bv to treat it as a bitvector.

74

2) Underlying Constraint Solver: The SMTSAMPLER im-
plementation uses Z3 for MAX-SMT solving. We upgraded
Z3 to commit fa2c0e027 from 2024; by default, it was using
a commit from 2018.

In principle the SMTSAMPLER approach could work with
any SMT solver that provides MAX-SMT support for relevant
theories. However, the SMTSAMPLER implementation is
tightly coupled to the Z3 API: this API is used for building
expressions; SMTSAMPLER uses a complex binary encoding of
satisfying assignments also coupled to Z3’s in-memory models;
and SMTSAMPLER relies on custom changes to Z3 to support
its SMT coverage metric. For these reasons it was not possible
for us to compare JFSAMPLER against the SMTSAMPLER’s
approach based on solvers other than Z3.

We also considered whether SMTSAMPLER could be con-
figured with JFS as its underlying solver. However, in addition
to the technical issues outlined above, more fundamentally
the SMTSAMPLER algorithm requires a MAX-SMT solver,
whereas JFS is only an incomplete SMT solver.

C. Samplers Evaluated

We compare SMTSAMPLER and various variants of JFSAM-
PLER variants, as follows:

1) SMTSAMPLER is the state-of-the-art baseline technique,
extended with floating-point support (§II-C and §IV-B1).

2) JFSAMPLERNaive is our sampler in its simplest form
(§III-A).

3) JFSAMPLERDE is JFSAMPLERNaive with our diversity
encoding (§III-B).

4) JFSAMPLERSM is JFSAMPLERNaive with the SMT heuris-
tic for combining inputs (§III-C).

5) JFSAMPLERSM+DE combines the features in JFSAM-
PLERDE and JFSAMPLERSM.

D. Experimental Setup

Hardware setting: Experiments were conducted on a cluster
of AMD EPYC 7742 64-Core machines. Each formula sam-
pling process, whether using JFSAMPLER or SMTSAMPLER,
is allocated to a single physical core, with each core assigned
8 GiB of RAM and 1TB of storage.

JFSAMPLER and SMTSAMPLER keep the generated samples
in memory during the sampling time budget, and do not write
to disk. We observed that the writing of samples to disk caused
I/O bottlenecks due to the high level of parallelism achieved
in the cluster. Therefore, we modified both tools to write the
generated samples to disk only after the sampling time budget
is exhausted.

Sampler configurations: The sampling time budget per
formula is set to 5 min, and the maximum number of samples
is unbounded. Sampling of each formula is repeated 10 times
per sampler, using different RNG seeds.

JFSAMPLER (all variants) is configured using the JFS-LF-
SS mode of JFS, which was the most successful mode in its
evaluation [16]. SMTSAMPLER is configured in the SMTBIT
mode, which led to the best coverage results [25].

Both tools are configured with a memory limit of 6 GiB
of RAM. For JFSAMPLER this is configured in LIBFUZZER,
while in SMTSAMPLER this is configured using the Z3 API.
In case the limit is reached, both tools exit gracefully.

In order to calculate the SMT coverage metric (§II-D), we
randomly select 10% of the total samples generated by each
tool. We only choose 10% of the samples because computing
the SMT coverage metric is computationally expensive. The
metric requires evaluating the input formula in a Z3 model
object (a satisfying assignment). The metric is hooked into the
Z3 evaluation method of its models. Alongside the evaluation,
which is already expensive [35], computing the coverage metric
also requires testing each bit of each of the formula’s sub-
expressions. Due to the large number of generated models, this
overhead can easily exceed the time spent in sampling if all
samples are selected.

SMTSampler’s solver timeout: SMTSAMPLER uses a MAX-
SMT solver and requires a specified timeout value. Using
too short or too long of a timeout could unfairly penalise
SMTSAMPLER by spending too little or too much time in
generating a base solution or an atomic mutation (see II-C).

To ensure a fair comparison, we profiled the SMTSAMPLER
with various timeouts to identify the most competitive value.
We randomly selected 30 formulas from each logic and
executed the SMTSAMPLER following the previously outlined
methodology. Timeout values ranged from 5 s to 295 s in 10-
second increments, totalling 30 values; this profiling required
62 days of CPU time. The initial timeout of 5 s matches the
one used in the SMTSAMPLER’s evaluation [25].

We analysed the SMT coverage distribution per timeout
using boxplots for both suites, which were all equal in size and
height, with variations only in whiskers and outliers. Minor
differences in the number of generated samples’ distributions
were noted in QF BVFP. Thus, we determined the optimal
timeout for SMTSAMPLER based on the generated samples.
Boxplots are omitted for brevity and can be found in [36].

We selected the first timeout value (5 s) as the control
experiment and computed the effect size (A12) for each
subsequent timeout (29 remaining values) relative to the control.
The effect size indicates the probability that a non-control value
scores higher than the control on a formula. We selected the
timeout with the highest effect size greater than 0.5, ensuring it
outperformed the control. For the QF FP suite, the best timeout
was 255 s, while for the QF BVFP suite, it was 125 s.

E. Results

Figures 1 and 2 show the performance of different samplers
on the QF FP and QF BVFP suites respectively, in terms of
total samples generated and SMT coverage achieved in the
sampling budget of 5 min.

The figures display boxplots together with a strip plot overlay
that shows the distribution of all observations; black dots at the
same height correspond to observations of the same magnitude.

Tables I and II present a statistical analysis comparing the
techniques in terms of generated samples and SMT coverage,
respectively. Following Arcuri and Briand’s guidelines [37],

75

(a) Samples per formula in QF FP.

(b) SMT coverage per formula in QF FP.

Fig. 1: Total samples and SMT coverage distributions for the QF FP suite.

TABLE I: Statistical analysis of the difference in the number of generated samples per formula: A12 effect size of technique TA relative to
technique TB (i.e., probability that TA generated more samples than TB), and the corresponding Winner for statistically significant cases
(Wilcoxon signed-rank test, p < 0.001).

TA vs TB
QF FP QF BVFP

A12 Winner p-value A12 Winner p-value

JFSAMPLERNaive SMTSAMPLER 0.77 TA 0.000 0.19 TB 0.000
JFSAMPLERSM SMTSAMPLER 0.79 TA 0.000 0.30 TB 0.000
JFSAMPLERDE SMTSAMPLER 0.79 TA 0.000 0.35 TB 0.000
JFSAMPLERSM+DE SMTSAMPLER 0.79 TA 0.000 0.51 TA 0.000
JFSAMPLERSM JFSAMPLERNaive 0.67 TA 0.000 0.87 TA 0.000
JFSAMPLERDE JFSAMPLERNaive 0.63 TA 0.000 0.88 TA 0.000
JFSAMPLERSM+DE JFSAMPLERNaive 0.66 TA 0.000 0.92 TA 0.000

the tables report the Vargha-Delaney A12 effect size. The A12

effect size is the probability that the technique TA achieves a
higher number of samples or SMT coverage than TB on the
same formula. Using the Wilcoxon signed rank test, we report
the winning technique when this probability (when it is not
0.5) is statistically significant (p < 0.001).

As we explain next, our results demonstrate that JFSAM-
PLER performs significantly better than SMTSAMPLER for
the QF FP suite, with the diversity encoding and sampling
mutator making substantial contributions. In QF BVFP, JF-
SAMPLERSM+DE still emerges as the winner, but only by a
small margin.

1) JFSamplerNaive vs. JFSamplerSM: JFSAMPLERSM

achieves higher throughput with statistical significance for
both suites (Table I). This is because, as discussed in §III-C,

JFSAMPLERSM incorporates a new input mutator tailored to
SMT sampling, that combines satisfying assignments (crashing
inputs), whereas the default LIBFUZZER mutators are entirely
domain-agnostic.

JFSAMPLERSM obtains higher SMT coverage than JFSAM-
PLERNaive with statistical significance for QF FP (Table II). The
increase in QF FP is explained by the considerable increase
in throughput. In QF BVFP, the achieved coverage is similar
to JFSAMPLERNaive, possibly indicating that the achievable
coverage in this suite is low and easily achieved by all
techniques, including the SMTSAMPLER. It is worth noticing
that the sub-expressions in the QF FP have greater chances of
having more achievable SMT coverage because expressions
are either 32 or 64 bits. In contrast, in QF BVFP, the bitvector
expressions are smaller.

76

(a) Samples per formula in QF BVFP.

(b) SMT coverage per formula in QF BVFP.

Fig. 2: Total samples and SMT coverage for the QF BVFP suite.

TABLE II: Statistical analysis of the difference in the SMT coverage per formula: A12 effect size of technique TA relative to technique TB
(i.e., probability that TA achieved higher SMT coverage than TB), and the corresponding Winner for statistically significant cases (Wilcoxon
signed-rank test, p < 0.001).

TA vs TB
QF FP QF BVFP

A12 Winner p-value A12 Winner p-value

JFSAMPLERNaive SMTSAMPLER 0.77 TA 0.000 0.63 TA 0.000
JFSAMPLERSM SMTSAMPLER 0.77 TA 0.000 0.63 TA 0.000
JFSAMPLERDE SMTSAMPLER 0.78 TA 0.000 0.63 TA 0.000
JFSAMPLERSM+DE SMTSAMPLER 0.78 TA 0.000 0.63 TA 0.000
JFSAMPLERSM JFSAMPLERNaive 0.51 TA 0.000 0.50 - 0.001
JFSAMPLERDE JFSAMPLERNaive 0.57 TA 0.000 0.50 - 0.000
JFSAMPLERSM+DE JFSAMPLERNaive 0.57 TA 0.000 0.50 - 0.000

2) JFSamplerNaive vs. JFSamplerDE: JFSAMPLERDE

achieves higher throughput than JFSAMPLERNaive in both
suites with statistical significance (Table I), explained as
follows. LIBFUZZER tracks a corpus of interesting inputs based
on code coverage as discussed in §III-B. In JFSAMPLERNaive,
inputs that satisfy the input formula will quickly saturate in
coverage, so LIBFUZZER retains fewer in the in-memory
corpus for subsequent mutations. However, JFSAMPLERDE

allows LIBFUZZER to retain more formula-satisfying inputs
with different coverage thanks to the new program encoding.
Mutating satisfying inputs has greater chances of generating a
new satisfying input, increasing throughput.

JFSAMPLERDE achieves higher SMT coverage compared
to JFSAMPLERNaive for the QF FP suite in a statistically
significant manner, but for QF BVFP, it achieves comparable

SMT coverage as JFSAMPLER (Table II).
The new inlined edges introduced by JFSAMPLERDE may

introduce certain overhead. This overhead is noticeable in the
throughput difference between JFSAMPLERDE and JFSAM-
PLERNaive, higher in QF BVFP but smaller in QF FP. The
sub-expressions in QF FP have a higher number of bits than
those in QF BVFP, which impacts throughput. Nevertheless,
the benefits are positive in both suites and JFSAMPLERDE can
effectively increase throughput and achieve equal or higher
SMT coverage than JFSAMPLERNaive.

3) JFSamplerNaive vs. JFSamplerSM+DE (all new features): In
QF BVFP, JFSAMPLERSM+DE outperforms JFSAMPLERNaive,
JFSAMPLERSM and JFSAMPLERDE in throughput (Table I and
Figure 2a). Similarly, in QF FP, JFSAMPLERSM+DE performs
comparable to JFSAMPLERSM, which performs the best (Figure

77

2a). However, JFSAMPLERSM+DE performs at the top in terms
of SMT coverage, whereas JFSAMPLERSM does not (Table II
and Figure 1b).

The slight difference in throughput between JFSAM-
PLERSM+DE and JFSAMPLERSM in QF FP (Figure 1a) is
explained by the overhead that the diversity encoding may
introduce, although this does not outweigh the benefits. Based
on these results, we consider JFSAMPLERSM+DE to be the
strategy that performs the best across the two suites.

4) JFSampler vs. SMTSampler: SMTSAMPLER is outper-
formed by JFSAMPLER (all variants) in the QF FP suite
in terms of throughput and SMT coverage (Figure 1). The
difference between JFSAMPLER and SMTSAMPLER replicates
the results in JFS. The low throughput is explained by the
large amount of timeouts that SMTSAMPLER suffers during
constraint solving, despite our timeout calibration. In addition,
our new contributions improve JFSAMPLERNaive, and make
this difference more significant.

On the other hand, in QF BVFP, SMTSAMPLER outper-
forms JFSAMPLERNaive, JFSAMPLERSM and JFSAMPLERDE

in the number of samples generated (Figure 2a). Notably,
JFSAMPLERSM+DE, the combination of our new features,
allow us to reverse this difference and win by a slight
difference with statistical significance (Table I). In other words,
JFSAMPLERSM+DE performs better than the baseline technique
SMTSAMPLER and our naive sampler extension of JFS,
JFSAMPLERNaive, in both suites.

V. RELATED WORK

A. SAT/SMT Samplers

The total number of models for a satisfiable formula is
denoted as N , and a uniform sampler is designed to generate
any given model with a probability of 1/N . Examples of SAT
samplers with uniformity guarantees include UNIGEN [38]
and UNIGEN2 [31], as well as SEARCHTREESAMPLER [32],
which provides approximately uniform guarantees.

In contrast, QUICKSAMPLER [27] is a SAT sampler
that lacks uniformity guarantees and focuses on generat-
ing a diverse set of solutions. Compared to UNIGEN2
and SEARCHTREESAMPLER, it achieves significantly higher
throughput and a reasonable degree of uniformity. For SMT
formulas in the QF AUFBV logic, SMTSAMPLER generalises
and outperforms QUICKSAMPLER.

GUIDEDSAMPLER [39] builds on SMTSAMPLER by adding
user-defined predicates to bias sampling, but retains the
core logic of SMTSAMPLER. Extending JFSAMPLER with
such predicates is future work. ESAMPLER [40] speeds up
and complements SAT sampling by flipping bits in existing
solutions that maintain satisfiability, avoiding solver calls.
Integrating ESAMPLER with SMTSAMPLER or JFSAMPLER
is non-trivial due to its focus on SAT, not SMT.

CMSGEN [41] is a SAT sampler that shows advantages
over QUICKSAMPLER, although its effectiveness in the SMT
domain remains unexplored.

B. Non-traditional Solvers

FUZZY-SAT [42], a constraint solver for concolic execution,
uses fuzzing heuristics as mutators but does not encode
formulas as programs or use coverage-guided fuzzing; it
does not support floating-point constraints. JFS allowed us to
leverage code coverage feedback to improve the SMT coverage
metric.

C. Coverage-guided Fuzzing

ENTROPIC [43] is a seed power scheduling for LIBFUZZER,
based on Shannon’s information theory, and is now the default
in LIBFUZZER. JFSAMPLER uses an old LIBFUZZER version,
LLVM 6, containing custom modifications, thus we have not
tested ENTROPIC. However, we expect ENTROPIC to benefit
from our diversity encoding, improving the differentiation of
satisfying assignments via code coverage feedback, because
ENTROPIC and our encoding are two orthogonal features.

HASHFUZZ [44] is a semantic-preserving C program transfor-
mation for fuzzing that promotes uniform test case generation
using hash functions to partition input space, rewarding fuzzers
for covering these partitions. Similarly, JFSAMPLERDE rewards
satisfying assignments that increase SMT coverage. Unlike
JFSAMPLER, HASHFUZZ enhances coverage-guided fuzzers
rather than serving as an SMT sampler. Investigating HASH-
FUZZ ’s impact on JFSAMPLER ’s uniformity is future work; in
this work, we compare JFSAMPLER to SMTSAMPLER, which
lacks uniformity guarantees.

Recent work on the simulation of concurrency memory
models investigated the use of coverage-guided fuzzing to
detect violations of memory model properties in the absence of
a bespoke simulator using a JFS-like encoding [45]. Adapting
this method to search for multiple interesting inputs in the
style of JFSAMPLER would allow a memory model analyst
to obtain a diverse range of inputs that violate a particular
memory model property of interest.

VI. CONCLUSION

In this work, we propose JFSAMPLER, a novel scalable
SMT sampling method for floating-point constraints using
coverage-guided fuzzing. JFSAMPLER leverages the efficiency
of fuzzing, enhanced by a tailored input mutator and program
encoding for sampling.

We benchmarked our contributions, comparing them against
baselines in an extensive evaluation. This included the state-of-
the-art SMTSAMPLER [25] technique, which matches JFSAM-
PLER in terms of uniformity. Results show that JFSAMPLER
outperforms the baselines in both suites.

Future work will focus on improving the initial smart seeds
and developing new mutators to combine satisfying assignments
for more efficient sampling.

A replication package for our project is is available at [46].

Acknowledgements. This project has received funding from
the European Research Council under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment 819141).

78

REFERENCES

[1] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs,” in
Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08), Dec. 2008.

[2] S. Poeplau and A. Francillon, “Symbolic execution with SymCC: Don’t
interpret, compile!” in Proc. of the 29th USENIX Security Symposium
(USENIX Security’20), Aug. 2020.

[3] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proc. of the 15th Network and Distributed System Security
Symposium (NDSS’08), Feb. 2008.

[4] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in Proc. of the Conference on Programing Language
Design and Implementation (PLDI’05), Jun. 2005.

[5] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental
hybrid fuzzing with polyhedral path abstraction,” in Proc. of the IEEE
Symposium on Security and Privacy (IEEE S&P’20), May 2020.

[6] D. Liu, G. Ernst, T. Murray, and B. I. P. Rubinstein, “Legion: Best-first
concolic testing,” in Proc. of the 35th IEEE International Conference on
Automated Software Engineering (ASE’20), Sep. 2020.

[7] C. Robert, J. Guiochet, H. Waeselynck, and L. V. Sartori, “TAF: a tool for
diverse and constrained test case generation,” in Proc. of the 21th IEEE
International Conference on Software Quality, Reliability and Security
(QRS’21), Dec. 2021.

[8] R. Heradio, D. Fernandez-Amoros, J. A. Galindo, D. Benavides, and
D. Batory, “Uniform and scalable sampling of highly configurable
systems,” Empirical Software Engineering (EMSE), vol. 27, no. 2, 2022.

[9] KLEE, “Getting Involved,” https://klee-se.org/getting-involved, 2024, last
accessed 2025-01-21.

[10] angr, “FAQ,” https://docs.angr.io/en/latest/faq.html#what-does-
unsupportediroperror-floating-point-support-disabled-mean, 2025, last
accessed 2025-01-21.

[11] Triton, “Floating point - ISA and the IEEE standard (issue #326),” https:
//github.com/JonathanSalwan/Triton/issues/326, 2016, last accessed 2025-
01-21.

[12] Bruno Marre and François Bobot and Zakaria Chihani, “Real Behavior of
Floating Point Numbers,” in Proc. of the 15th International Workshop on
Satisfiability Modulo Theories (SMT’17), Jul. 2017. [Online]. Available:
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017 paper 21.pdf

[13] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Proc. of the 23rd International
Conference on Computer-Aided Verification (CAV’11), Jul. 2011.

[14] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’08), Mar. 2008.

[15] A. Cimatti, A. Griggio, B. J. Schaafsma, R. Sebastiani, and S. A.
Smolka, “The MathSAT5 SMT solver,” in Proc. of the 19th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’13), Mar. 2013.

[16] D. Liew, C. Cadar, A. Donaldson, and J. R. Stinnett, “Just fuzz it: Solving
floating-point constraints using coverage-guided fuzzing,” in Proc. of
the Joint Meeting of the European Software Engineering Conference
and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’19), Aug. 2019.

[17] M. Souza, M. Borges, M. d’Amorim, and C. S. Păsăreanu, “CORAL:
Solving complex constraints for symbolic pathfinder,” in Proc. of the
3rd International Conference on NASA Formal Methods (NFM’11), Apr.
2011.

[18] M. A. Ben Khadra, D. Stoffel, and W. Kunz, “goSAT: Floating-point
satisfiability as global optimization,” in Proc. of the 17th Formal Methods
in Computer-Aided Design (FMCAD’17), Oct. 2017.

[19] Z. Fu and Z. Su, “XSat: A fast floating-point satisfiability solver,” in Proc.
of the 26th International Conference on Computer-Aided Verification
(CAV’16), Jul. 2016.

[20] N. Bjørner and et al., “Programming Z3,” https://theory.stanford.edu/
∼nikolaj/programmingz3.html#sec-solving-bit-vectors, last accessed
2025-01-21.

[21] ——, “Programming Z3,” https://theory.stanford.edu/∼nikolaj/
programmingz3.html#sec-floating-point-arithmetic, last accessed
2025-01-21.

[22] “Z3 very slow VC (issue #823),” https://github.com/Z3Prover/z3/issues/
823#issuecomment-265463695, 2016, last accessed 2025-01-21.

[23] A. Brillout, D. Kroening, and T. Wahl, “Mixed abstractions for floating-
point arithmetic,” in Proc. of the 9th Formal Methods in Computer-Aided
Design (FMCAD’09), Nov. 2009.

[24] “LibFuzzer website,” http://llvm.org/docs/LibFuzzer.html, 2022, last
accessed 2025-01-21.

[25] R. Dutra, J. Bachrach, and K. Sen, “SMTSampler: Efficient Stimulus
Generation from Complex SMT Constraints,” in Proc. of the 37th
International Conference on Computer-Aided Design (ICCAD’19), Nov.
2018.

[26] S. Ranise and C. Tinelli, “The SMT-LIB format: An initial proposal,”
in Proc. of the Workshop on Pragmatics of Decision Procedures in
Automated Reasoning (PDPAR’03), Jul. 2003.

[27] R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of
SAT solutions for testing,” in Proc. of the 40th International Conference
on Software Engineering (ICSE’18), May 2018.

[28] M. Zalewski, “Technical “whitepaper” for afl-fuzz,” http:
//lcamtuf.coredump.cx/afl/technical details.txt, last accessed 2025-01-21.

[29] D. Liew, D. Schemmel, C. Cadar, A. Donaldson, R. Zähl, and K. Wehrle,
“Floating-point symbolic execution: A case study in N-version program-
ming,” in Proc. of the 32nd IEEE International Conference on Automated
Software Engineering (ASE’17), Oct. 2017.

[30] “IEEE Standard for Floating-Point Arithmetic,” Institute of Electrical
and Electronics Engineers, Standard, 2008.

[31] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y.
Vardi, “On parallel scalable uniform SAT witness generation,” in Proc.
of the 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’15), Apr. 2015.

[32] S. Ermon, C. Gomes, and B. Selman, “Uniform solution sampling using
a constraint solver as an oracle,” in Proc. of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI’07), Aug. 2012.

[33] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz - an optimizing SMT
solver,” in Proc. of the 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’15),
Apr. 2015.

[34] R. Dutra, “SMTSampler: Efficient stimulus generation from complex
SMT constraints,” https://github.com/RafaelTupynamba/SMTSampler,
2018, last accessed 2025-01-21.

[35] D. Bueno, “Model evaluation performance (issue #2341),” https://
github.com/Z3Prover/z3/issues/2341, 2019, last accessed 2025-01-21.

[36] M. Carrasco, C. Cadar, and A. Donaldson, “[artifact] SMTSampler’s
timeout calibration plots,” https://zenodo.org/records/14651572/files/
smtsampler-calibration-plots.zip, 2025, last accessed 2025-01-21.

[37] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[38] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “Balancing scalability
and uniformity in SAT witness generator,” in Proc. of the 51th Design
Automation Conference (DAC’14), Jun. 2014.

[39] R. Dutra, J. Bachrach, and K. Sen, “GuidedSampler: Coverage-guided
Sampling of SMT Solutions,” in Proc. of the 19th Formal Methods in
Computer-Aided Design (FMCAD’19), Oct. 2019.

[40] Y. Xu, F. Song, and T. Chen, “ESampler: Efficient sampling of satisfying
assignments for boolean formulas,” in Proc. of the 7th International
Symposium on Software Engineering: Theories, Tools, and Applications
(SETTA’21), Nov. 2021.

[41] P. Golia, M. Soos, S. Chakraborty, and K. S. Meel, “Designing samplers
is easy: The boon of testers,” in Proc. of the 21th Formal Methods in
Computer-Aided Design (FMCAD’21), Oct. 2021.

[42] L. Borzacchiello, E. Coppa, and C. Demetrescu, “Fuzzing symbolic
expressions,” in Proc. of the 43rd International Conference on Software
Engineering (ICSE’21), May 2021.

[43] M. Böhme, V. J. Manès, and S. K. Cha, “Boosting fuzzer efficiency: An
information theoretic perspective,” in Proc. of the Joint Meeting of the
European Software Engineering Conference and the ACM Symposium
on the Foundations of Software Engineering (ESEC/FSE’20), Nov. 2020.

[44] H. D. Menendez and D. Clark, “Hashing fuzzing: Introducing input
diversity to improve crash detection,” IEEE Transactions on Software
Engineering (TSE), vol. 48, no. 9, pp. 3540–3553, 2022.

[45] D. Iorga, J. Wickerson, and A. F. Donaldson, “Simulating operational
memory models using off-the-shelf program analysis tools,” IEEE Trans.
Software Eng., vol. 49, no. 12, pp. 5084–5102, 2023.

[46] M. Carrasco, C. Cadar, and A. Donaldson, “[artifact] Scalable SMT
sampling for floating-point formulas via coverage-guided fuzzing,” https:
//doi.org/10.5281/zenodo.14651572, 2025, last accessed 2025-01-21.

79

https://klee-se.org/getting-involved
https://docs.angr.io/en/latest/faq.html#what-does-unsupportediroperror-floating-point-support-disabled-mean
https://docs.angr.io/en/latest/faq.html#what-does-unsupportediroperror-floating-point-support-disabled-mean
https://github.com/JonathanSalwan/Triton/issues/326
https://github.com/JonathanSalwan/Triton/issues/326
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-solving-bit-vectors
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-solving-bit-vectors
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-floating-point-arithmetic
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-floating-point-arithmetic
https://github.com/Z3Prover/z3/issues/823#issuecomment-265463695
https://github.com/Z3Prover/z3/issues/823#issuecomment-265463695
http://llvm.org/docs/LibFuzzer.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://github.com/RafaelTupynamba/SMTSampler
https://github.com/Z3Prover/z3/issues/2341
https://github.com/Z3Prover/z3/issues/2341
https://zenodo.org/records/14651572/files/smtsampler-calibration-plots.zip
https://zenodo.org/records/14651572/files/smtsampler-calibration-plots.zip
https://doi.org/10.5281/zenodo.14651572
https://doi.org/10.5281/zenodo.14651572

	Introduction
	Background
	Coverage-guided Fuzzing
	Just Fuzz-it Solver (JFS)
	SMTSampler
	SMT Coverage Metric

	Design of JFSampler
	Naive Extension of JFS for Sampling
	Diversity Encoding
	A Custom Mutator for SMT Sampling

	Evaluation
	Benchmark Selection
	SMTSampler Implementation
	Extension for QF_FP Support
	Underlying Constraint Solver

	Samplers Evaluated
	Experimental Setup
	Results
	JFSamplerNaive vs. JFSamplerSM
	JFSamplerNaive vs. JFSamplerDE
	JFSamplerNaive vs. JFSamplerSM+DE (all new features)
	JFSampler vs. SMTSampler

	Related Work
	SAT/SMT Samplers
	Non-traditional Solvers
	Coverage-guided Fuzzing

	Conclusion
	References

