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Abstract—We present the design of CompFuzzCI, a frame-
work for incorporating compiler fuzzing into the continuous
integration (CI) workflow of the compiler for Dafny, an open-
source programming language that is increasingly used in and
contributed to by industry. CompFuzzCI explores the idea of
running a brief fuzzing campaign as part of the CI workflow
of each pull request to a compiler project. Making this effective
involved devising solutions for various challenges, including how
to deduplicate bugs, how to bisect the project’s revision history
to find the commit responsible for a regression (challenging
when project interfaces change over time), and how to ensure
that fuzz testing complements existing regression testing efforts.
We explain how we have engaged with the Dafny development
team at Amazon to approach these and other problems in the
design of CompFuzzCI, and the lessons learned in the process.
As a by-product of our work with CompFuzzCI, we found and
reported three previously-unknown bugs in the Dafny compiler.
We also present a controlled experiment simulating the use of
CompFuzzCI over time on a range of Dafny commits, to assess its
ability to find historic bugs. CompFuzzCI prioritises support for
the Dafny compiler and the fuzz-d fuzzer but has a generalisable
design: with modest modification to its internal interfaces, it
could be adapted to work with other fuzzers, and the lessons
learned from our experience will be relevant to teams considering
including fuzzing in the CI of other industrial software projects.

Index Terms—Fuzzing, compilers, continuous integration

I. INTRODUCTION

We present the design of CompFuzzCI,1 a framework for
incorporating compiler fuzzing into the continuous integration
(CI) workflow of the compiler for the Dafny language [32],
[33], and report on our experience working with Dafny devel-
opers in industry to deploy CompFuzzCI in practice.

Dafny is an open-source programming language with first-
class support for formal verification that has its origins at
Microsoft Research [32]. It is now increasingly being used
by a number of companies to construct high assurance soft-
ware, including Amazon [1]–[5], [27], ConsenSys [8], [15],
Microsoft [25], Intel [49], and VMware [47]. In this paper,
when we speak of the Dafny (compiler) developers, we mean
the project’s most active contributors at Amazon.

Due to the high-assurance use cases of Dafny, bugs in the
Dafny compiler are a major concern. Miscompilation bugs—
where the compiler emits code in a downstream language that

Supported by EPSRC grant EP/R006865/1 and gift funding from Amazon.
1Pronounced “comp fuzzy”, intended to refer to the use of compiler fuzzing

during continuous integration (CI).

does not respect the semantics of the Dafny source code—
are particularly serious. This is because they may lead to
the deployment of software that has been proven to meet
certain correctness properties at the Dafny source code level
but which, when compiled into executable code, no longer
meets these properties. Recent work has focused on the use
of randomised testing to automatically search for bugs in
the Dafny compiler (as well as in the Dafny verification en-
gine) [21], [28], showing that such techniques can be effective
in uncovering numerous miscompilation bugs.

Existing work on compiler fuzzing for Dafny (and compiler
fuzzing in general) focuses on running fuzzing campaigns
periodically, in an ad hoc manner. In this paper we inves-
tigate deploying compiler fuzzing as part of a compiler’s
CI workflow: running a limited fuzzing campaign as part of
CI on each pull request2 (PR) in the hope of finding bugs
that were recently introduced to the codebase, and potentially
introduced by the current PR. In contrast to running fuzzing
periodically, fuzzing during CI may find bugs that are “fresh”:
the developers responsible for introducing them are likely still
members of the development team, and likely recall details
of the recent change that introduced the bug, so that they are
well-placed to provide a fix.

Our experience designing and deploying CompFuzzCI has
involved considering various challenges; for example:

• For how long should fuzzing be applied to a given PR?
Fuzzing for too long will lengthen the CI process and
consume machine resources, but too short a fuzzing run
may miss bugs that a longer run would find.

• How can we ensure that developers are provided with
useful bug reports, and avoid providing duplicate reports
of the same bug, or re-reporting already-known bugs?

• How can we ensure fuzzing complements standard re-
gression testing?

• When is the right time to engage fuzzing on a project?
Early fuzzing may discover important bugs quickly, but
can lead to false alarms if a project has known limitations.

• When a bug is found, how do we accurately identify the
project revision that introduced the bug, given that project
dependencies and interfaces change over time?

2“Pull request” is the GitHub terminology for a proposed change to a
software project, sometimes called a “merge request” or “changelist”.
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We explain how we have addressed these and other chal-
lenges in creating and deploying CompFuzzCI—challenges
which other teams would likely face when deploying fuzzing
in the CI pipeline of a complex software project such as a
compiler—and the lessons we have learned in the process.
During our deployment of CompFuzzCI, we found and re-
ported three previously-unknown bugs in the Dafny compiler,
which have been confirmed by the Dafny developers. We
also report on a controlled experiment simulating the use of
CompFuzzCI over time on a range of Dafny commits, to assess
its ability to find historic bugs.

Concretely, our CompFuzzCI framework prioritises support
for the Dafny compiler and the fuzz-d fuzzing tool, which
was shown to be the most effective among three different
Dafny fuzzers in recent work [21]. However, CompFuzzCI
is comprised of modules that communicate via well-defined
interfaces. To adapt the framework for other fuzzers or
compilers for other programming languages would merely
require writing suitable adapters between the interfaces of
CompFuzzCI and the interfaces of these fuzzers and compilers.

Key lessons learned. We summarise the key lessons learned
from the design and deployment of CompFuzzCI.

Bisection is hard (Section IV-A). Frequent updates to the
Dafny compiler codebase and breaking changes made over
time created multiple pitfalls for bisection. Automated bisec-
tion tooling must be flexible to handle these changes.

Fuzzing too early can be counter-productive (Section IV-B).
Our controlled experiment shows that CompFuzzCI could
be useful in detecting faults early in the complete Dafny
backends. However, when deployed live on an immature
backend, CompFuzzCI detected many false positives that were
not useful to the developers.

Duplicate bug reports between fuzzing and regression test-
ing must be avoided (Section IV-C). Bugs were often du-
plicated between fuzzing and regression testing when both
were run simultaneously. We solved this by fuzzing only after
regression testing has successfully completed.

There are concrete opportunities to improve current fuzzers
(Section V-B). Characteristics of bugs missed by CompFuzzCI
during our controlled experiment suggest actionable ways in
which existing fuzzers could be improved.

Error message-based deduplication poses challenges (Sec-
tion V-D). The specificity of error messages varies between
different target languages and compiler components. This led
to some situations where CompFuzzCI can only be overly
conservative or overly lenient in deduplication.

In summary, the contributions of this paper are:
• CompFuzzCI, a framework for incorporating compiler

fuzzing into the CI workflow for the Dafny project.
• A report on our experience working with Dafny devel-

opers in industry to deploy CompFuzzCI in practice, the
lessons learned from this experience, and the previously-
unknown Dafny compiler bugs found during this process.

• A controlled experiment using historic revisions of Dafny
to assess the ability of CompFuzzCI and its associated

fuzzer, fuzz-d, with respect to historic bugs.

Paper structure. After providing relevant background (Sec-
tion II), we describe the design and implementation of Comp-
FuzzCI (Section III). We then discuss experiences and lessons
learned from working with the Dafny developers to integrate
CompFuzzCI into their workflow, and compiler bugs found
during this process (Section IV). Next, we present our con-
trolled experiment applying CompFuzzCI to historic revisions
of Dafny (Section V). After discussing related work (Sec-
tion VI) we conclude with ideas for future work (Section VII).

Availability. The source code for CompFuzzCI is available
online at https://github.com/CompFuzzCI.

II. BACKGROUND

A. The Dafny Language and Compiler

Dafny is a multi-paradigm programming language with
first-class support for contract-based formal verification [16],
[32], [33]. Combining a full-fledged programming language
with a rich specification language, allows developers to write
industrial-strength programs and specify the functional cor-
rectness properties of those programs, via features such as pre-
and post-conditions for procedures and invariants for loops.

Dafny is implemented via a verifier and a compiler. The
verifier uses automated Floyd-Hoare-style reasoning to check
whether a given program meets its formal specifications. This
works by translating the procedures of the Dafny program
into the Boogie intermediate verification language [7], and
using the Boogie verification engine to create a verification
condition for each procedure. These verification conditions
are then discharged by an SMT solver (the Z3 solver [17]
is used by default). If a procedure cannot be proven to meet
its specification, a warning is issued to the user. Otherwise,
the program is compiled into a target language, via backends
for various target languages including C#, Go, Python, Java,
JavaScript, and Rust (the Rust backend is currently a work
in progress). Once code has been generated for a particular
target language, downstream tooling for that language is used
to further compile and eventually execute the program.

Dafny has been used in numerous industry projects. For
example, Dafny was used to model the authorisation engine
and validator for Cedar, an authorisation-policy language from
Amazon [27]; Dafny was used to write the AWS Crypto-
graphic Material Providers Library [2]; Dafny was used by
VMWare to build their VeriBetrFS verified file system [47];
a project from Consensys, called Dafny-EVM, used Dafny
to construct a functional specification for the Ethereum Vir-
tual Machine [15]; and verification using Dafny was a key
component of Microsoft’s IronFleet project on proving the
correctness of distributed systems [25].

Very recently, it was announced that Dafny has been used to
rewrite and prove correct AWS’s policy authorisation engine,
which makes more than a billion decisions per second [5], and
that the AWS Clean Rooms Differential Privacy service uses
SampCert [45], a library of verified randomised algorithms
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that utilises Dafny to extract its implementations in target
languages (via the DafnyVMC project [50]).

B. Kinds of Compiler Bugs

Dafny compiler bugs can be broadly categorised as follows:

Compiler crash. Given a valid program, the compiler termi-
nates prematurely without producing a valid output, typically
yielding an error trace or message indicating the location at
which the crash occurred in the compiler codebase.

Non-compliant code generation. The compiler emits code
that does not comply with the syntax or static typing rules
of the target language. This is detected when code generated
by the Dafny compiler yields an error when compiled by
a compiler for the target language. Comparing the original
Dafny code with the non-compliant generated code usually
provides a hint as to the nature of the bug in the Dafny
compiler.

Miscompilation. The compiler emits code in the target lan-
guage that compiles without error, but that is semantically
inequivalent: the behaviour of the generated code is different
to the behaviour that should be expected from the original
source code according to the Dafny semantics, e.g. terminat-
ing abnormally or yielding different output. Miscompilations
are silent: they do not lead to compile-time errors during
compilation of the Dafny code or downstream compilation
of generated code. This makes it hard to distinguish between
miscompilation bugs.

C. The fuzz-d Compiler Fuzzing Tool

CompFuzzCI has been designed to work with fuzz-d [21],
[46], a black box fuzzer for the Dafny compiler. As shown
in Fig. 1, fuzz-d works by generating test programs in a
randomised fashion, and putting them through a test oracle
to check whether they trigger compiler bugs.

Test programs are generated by fuzz-d from scratch using a
grammar-guided approach. Because the main focus of fuzz-d
is on compiler testing, rather than verifier testing, and because
the programs that it generates are typically too large and com-
plex to be amenable to automated verification, fuzz-d invokes
Dafny in a mode where formal verification is disabled. To
make up for this, fuzz-d applies program reconditioning [31]
to generated programs to conservatively ensure that they are
free from problems that might lead to runtime errors.

To detect miscompilation bugs, fuzz-d relies on differential
testing [36], comparing the result computed by the Dafny
program after compilation to each target language with the
result computed by a custom interpreter built into fuzz-d.

For each generated program, fuzz-d captures the output of
the Dafny compiler, the target language compilers, and the
execution of the compiled program for each target language.
An error during compilation or a mismatch arising from
differential testing indicates a bug in the Dafny compiler. The
captured output and the summary of bug indicators are piped
out to a file for further analysis.

III. DESIGN OF COMPFUZZCI

We discuss the various modules that comprise CompFuzzCI
(Section III-A), how these are used in the overall Comp-
FuzzCI workflow (Section III-B), and provide details of how
CompFuzzCI is deployed in practice using GitHub actions and
Amazon Web Services (Section III-C).

A. Modules of CompFuzzCI

CompFuzzCI comprises five modules that work together to
run a mini fuzzing campaign on a Dafny compiler pull request.

Fuzzing. The fuzzing module generates test programs and runs
them against the Dafny compiler. The module uses a simple
interface to interact with the chosen fuzzer, and currently only
the fuzz-d tool (see Section II-C) is supported. The module
outputs a file containing captured outputs and a summary of
bug indicators from the fuzzer.

Deduplication. The deduplication module aims to determine
whether a bug found by the fuzzing module is new or a
duplicate of a known bug. This is essential to avoid cluttering
the Dafny bug tracker with duplicate bug reports. The module
has access to a database of known bugs and uses this to
determine whether a bug found by the fuzzing module is new.

For crash and non-compliant code generation bugs, each
database entry includes a bug signature: a set of normalised
and hashed error messages that can be tested against the output
of the Dafny compiler (crash) or a downstream compiler (non-
compliant code generation) to determine whether the output
exhibits symptoms of the bug. We have designed a script that
extracts relevant error messages and details of stack traces
from outputs captured by the fuzzing module. When a bug
is found, relevant error messages and stack trace details are
extracted via this script, hashed, and compared with the hashes
stored in the database. If all the hashes are found (even if
they only appear across multiple entries in the database) the
bug is considered a duplicate. If any hashes are not found,
the bug is potentially new and will be processed further. The
difficulty of putting this into practice comes from the challenge
of creating signatures that are strict enough to distinguish
between genuinely distinct bugs, yet lenient enough to allow
for natural variation in the output associated with a particular
bug. We discuss this further in Section V-D.

Recall from Section II-B that miscompilation bugs do not
exhibit any bug-specific symptoms. To deduplicate such bugs,
our first idea was to use the minimised test program as a signa-
ture. Newly-found miscompilations could then be deduplicated
based on the distance between its signature and the signatures
of existing miscompilations [12]. However, we found that this
was not feasible due to the time required to run test case
reduction, and because (unless test case reduction is highly
normalising) irrelevant syntactic differences between reduced
programs can easily fool this kind of deduplication. Instead,
inspired by the correcting commit metric used in an empirical
study on compiler testing [9], CompFuzzCI uses the commit
that introduced the bug as the signature for a miscompilation:
we conservatively assume that a single commit introduces at
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Program Generation Program

ReconditionWell-defined
Program

Interpretation Annotated
Program

...

Compile to C# Compiled? Yes Execute in C# Test Result

No

C# Backend

Compile to Go Compiled? Yes Execute in Go Test Result

No

Go Backend

Identify Crashes;
Differential Testing

Fig. 1: Illustration of the workflow of the fuzz-d fuzzing tool for Dafny. The illustration shows two of Dafny’s backends in
action; in practice fuzz-d exercises all available backends.

most one miscompilation bug. This will not always be true, but
is a reasonable approximation. A miscompilation bug database
entry thus contains the ID of the commit that introduced the
bug. Miscompilations are deduplicated by using the bisection
module (discussed next) to find the commit that introduced
the bug, and comparing this against the commits of known
miscompilations in the database.

Regardless of bug type, if the deduplication module deems
a bug to be new, it generates an interestingness test for the
bug (a term introduced by the C-Reduce project [11]): a bug-
specific script that determines whether a given Dafny program
triggers the bug of interest. The content of this test is different
for each crash and non-compliant code generation bug, being
based on the bug’s signature. For miscompilation bugs, a
differential interestingness test is predefined by CompFuzzCI.
This compares the output obtained for a Dafny program by
the fuzz-d interpreter with the output obtained via each target
backend. While theoretically, the interestingness test for a
miscompilation bug might allow for bug slippage [12], we
have not encountered this issue in practice.

Bisection. Given a bug-triggering test case, the bisection
module aims to determine the commit that introduced the
bug. While the key aim of CompFuzzCI is to find newly-
introduced bugs, the randomised nature of fuzzing means that
it may discover bugs that were introduced in earlier changes
to the project, rather than by the pull request on which CI is
being run. Bisection is useful for all bug types because (a)
the codebase of the Dafny compiler is complex, and (b) when
the fuzzer finds older bugs, the context associated with the
code that is relevant to the bug may not be obvious to the
compiler developers. Knowing which change introduced the
bug can help in determining the relevant part of the codebase,
and understanding the context of the bug.

Bisection is always needed for miscompilation bugs, to
create a signature for bug deduplication. For other bugs,
bisection is only needed when the bug is located on the master
branch because it is likely to be old and difficult to gain context
for. When a bug is located on the merge head of a PR, the
developer can quickly gain context by looking at the PR.

CompFuzzCI leverages the git-bisect command for
bisection [23]. This command takes a known bad commit

(exhibits the bug) and a known good commit (does not exhibit
the bug), where the known good commit must be an ancestor
of the known bad commit. It also takes a script that determines
whether the bug is present for a given commit; in the case of
CompFuzzCI this is the interestingness test associated with the
bug. The commit that introduces the bug is then determined
via binary search: checking out, building, and running the
interestingness test on commits in a systematic manner to find
a pair of adjacent commits: the newest good commit and the
oldest bad commit. This requires considering log(n) commits
in the worst case, where n is the number of commits between
the known good and bad commits.

In Section IV-A we discuss why finding the known good
commit turned out to be a challenging problem, leading to us
settling on a specific historic commit, the ‘bisection limit’ to
use as the known commit, meaning that we cannot bisect bugs
that existed prior to this commit.

Despite the efficiency of binary search, bisection can still be
time-consuming because of the time associated with checking
out, building, and testing a commit. In practice, this takes
around 4 minutes for the Dafny project on the AWS infras-
tructure that we used (see Section III-C). We rely on various
build tools used by the Dafny compiler to cache build artefacts
to reduce the time taken to build the Dafny compiler for each
commit. Bisecting from the ‘bisection limit’ commit requires
roughly 10 iterations, taking around 40 minutes in the worst
case. Therefore, we prefer to run bisection only when it is
needed. With input from the Dafny developers, we devised a
decision tree (Fig. 2) to determine when to run bisection.

Reduction. This module reduces the size of a bug-triggering
test program to make it easier for compiler developers to
work with. Like the bisection module, it takes the bug-
triggering test program and its associated interestingness test
as input. It outputs a reduced version of the test program that
(according to the interestingness test) still triggers the bug.
Reduction of crash and non-compliant code generation bugs
is supported by the language-agnostic program reducer, Perses
[43]. For miscompilation bugs, the reduction is supported by
C-Reduce [11], [37], a reducer for C/C++ programs that has
a “not C” mode in which C/C++-specific reduction steps are
disabled; in this mode, C-Reduce has been shown to provide
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Test program

Run on Master

Interestingness test

Run on bisection limit commit

Interestingness test

Case 1:
Bug needs manual

investigation

Run on merge base

Interestingness test

Case 3:
Bug is fixed;
MH outdated

Case 2:
Bug is on Master;

Bisect bug
Miscompilation?

Case 4:
Bug is on MH;
No Bisection

Case 5:
Bug is on MH;

Bisect

Bug No Bug

No Bug

Bug

Yes

No

Bug No Bug

Fig. 2: Bisection decision tree. MH refers to the merge head of a pull request.

effective test case reduction for a range of languages.
Ignoring efficiency, we find that Perses yields higher quality

reduction than C-Reduce because it uses a grammar for Dafny
and is able to perform grammatically-correct reduction steps
that are out of scope for C-Reduce. However, we found that
C-Reduce runs more efficiently than Perses, so we use it to
handle miscompilation bugs which we find often take a long
time to reduce in practice.
Bug tracking. This module performs various tasks such as au-
tomatically reporting bugs via the Dafny GitHub issue tracker,
automatically commenting on PRs, updating the status of bugs
in the database, and adding user-reported bugs to the database.
CompFuzzCI can report bugs in two ways: by creating a new
issue on the Dafny GitHub repository when a bug is found on
the master branch (such bugs being existing bugs, rather than
bugs introduced by the PR), or by commenting on the PR that
triggered the bug when a bug is found on the merge head of
a PR (such bugs being new problems introduced by the PR).

When a GitHub issue is closed, the bug tracking module
removes the associated bug entry from the database. This
ensures that if a future fuzzer-found bug exhibits symptoms
of the closed issue (indicating a regression) this will not be
flagged as a duplicate: CompFuzzCI report the regression.

When a user opens an issue, the bug tracking module
scrapes the issue for a bug-triggering program, compiles and
executes the program, captures the output, and stores its
signature in the database. Some user-created issues might not
comply with the Dafny bug report format, these issues will
not be processed by the bug tracking module.

B. Workflow of CompFuzzCI

We now explain the overall workflow of CompFuzzCI in
terms of the five modules discussed in Section III-A.

When CompFuzzCI is applied to a pull request, the fuzzing
module is invoked to generate a test program.

If the test program triggers a crash or non-compliant code
generation bug, the workflow of Fig. 3 is used. Deduplication
determines whether the bug is new. If so, bisection and reduc-
tion are run simultaneously, to provide a reduced test program
and the bug-introducing commit. The bug tracking module
gathers the bug’s details and reports it to the developers.

If instead, the test program triggers a miscompilation bug,
the workflow of Fig. 4 is used. Bisection and reduction run
simultaneously with a differential interestingness test. Once

bisection is complete, the ID of the commit that introduced
the miscompilation bug is fed to the deduplication module to
determine whether the miscompilation bug is new. If the bug is
deemed to be new, the bug tracking module adds details of the
bug (including the reduced test case emitted by the reduction
module) and reports it to the Dafny developers.

Otherwise, if the test program does not trigger a bug, no
action is required.

CompFuzzCI then starts again with the fuzzer module. This
execution sequence is repeated until the time budget dedicated
to fuzzing for the pull request is exhausted.

C. Deployment Details

CompFuzzCI is integrated into the Dafny continuous in-
tegration pipeline as a GitHub Actions workflow, supported
by Amazon Web Services to provide the computing power
required for fuzzing, bisection, etc. to scale. The infrastructure
underlying CompFuzzCI and their interactions once invoked
is shown in Fig. 5 and can be described as follows:

1) The Dafny developer opens or synchronises a PR on
GitHub, triggering the CompFuzzCI workflow in the
Dafny CI pipeline.

2) CompFuzzCI builds the Dafny compiler from the PR’s
merge head and registers the container image to the
Amazon Elastic Container Registry (ECR).

3) CompFuzzCI deploys multiple containers from the regis-
tered image to Amazon Elastic Container Service (ECS)
to run the fuzzing campaign.

4) The fuzzing campaign runs, executing the fuzzing, dedu-
plication, bisection, reduction, and bug tracking modules
as needed.

5) The bug tracking module reports bugs to the developers
via GitHub issues or comments on the PR.

IV. EXPERIENCES AND LESSONS LEARNED FROM INITIAL
DEPLOYMENT

Over the last four months, we have worked with the Dafny
developers on integrating CompFuzzCI into their continuous
integration workflow. Engagement with the development team
was through a series of meetings, as well as via frequent
interaction on GitHub issues and pull requests.

We now describe a number of challenges and lessons
learned from this deployment experience (Sections IV-A
to IV-C), and discuss a previously-unknown bugs that we
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Fig. 3: The CompFuzzCI workflow for processing crash and non-compliant code generation bugs
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Fig. 4: The CompFuzzCI workflow for processing miscompilation bugs
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Dafny

5. Report Bug

3. Deploy
Elastic Container Services
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Fig. 5: CompFuzzCI infrastructure and interactions

found and reported to the Dafny team during the process of
deploying CompFuzzCI (Section IV-D).

A. Bisection: a Moving Target

Bisection is an easy process in theory, but the reality is that
the Dafny compiler is a moving target. The Dafny developers
continuously make changes to the compiler to improve its
performance and add new features. Mostly, such changes only
affect the internal workings of the compiler. But sometimes
they change the interface to the compiler, e.g. by affecting its
user interface, or the format of its output.

Interface changes can render naive bisection inaccurate
and misleading. The interestingness test, which determines
whether a bug in the compiler is present (see Section III-A)
must invoke the compiler. Using an interestingness test written
against the interface of the current Dafny compiler will cause
problems if applied to an older version of the compiler that
expects arguments to be provided in a different form, or that
prints error messages in a different manner. These problems
can lead to git-bisect, which relies on the interestingness
test for a bug, finding the wrong first bad commit.

From our experience deploying CompFuzzCI, we found that
bisection can be misled by the following problems.

Changes to the compiler’s command-line interface. The
Dafny compiler’s command-line interface underwent a re-
design in October 2022, changing the available commands
and introducing a different command-line argument format.
To allow bisection to work with older commits, the interest-
ingness test must be version-aware, issuing a suitable compiler
command line depending on the Dafny version associated with
the commit under consideration.

Changes to default flag values. Certain Dafny compiler
flags have default values that the user can override, dictating
compiler behaviour such as the function syntax that is used
and how compiler warnings should be treated. The default
values for these settings can vary over time. For instance, in
February 2023, the default for the function syntax flag was
updated from ‘3’ to ‘4’. Similar to the problem with command
line arguments, if a bug depends on compiler options whose
defaults have changed over time, an interestingness test that
does not account for this may incorrectly identify the first bad
commit associated with a bug.

Changes to interaction with downstream tools. Over time,
the way the Dafny compiler supports interaction with down-
stream compilers for target languages has changed. For exam-
ple, after a successful Dafny-to-Java compilation, Dafny used
to invoke the javac compiler in a manner that would generate
.class files; in January 2023 this changed so that a .jar
file would be generated instead. Additionally, in July 2023,
the Python backend was changed so that the entry point file
for a compiled Dafny program was renamed from name.py
to _name_.py. All changes of this nature require attention
for bisection to work correctly, so that the correct commands
to attempt to reproduce a bug are issued depending on the
version of Dafny under consideration.

Temporary breakages. The Dafny compiler has a ‘version’
option, which returns the compiler version. This is used as
part of the interestingness test to identify the correct command
to invoke Dafny and the expected output. We found that
this option was broken for a series of 21 commits in the
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Dafny revision history, resulting in no output being returned.
This caused bisection to fail, as the interestingness test was
expecting the version number as part of the compiler’s output.
The Dafny developers were able to fix this issue quickly, but it
highlights the fragility of the bisection process when it relies
on the output of the compiler.
Changes to build dependencies. Recall from Section III-A
that bisection involves building historic commits of Dafny. The
Dafny compiler is written in multiple languages including C#
and Java. Over time, the required Java and .Net versions have
changed, affecting the Gradle and MSBuild versions required
by the build process. Without accounting for these older
versions in the container image used during CI, older Dafny
commits cannot be built. In principle, this could be solved
by patching the Java and .Net versions in the Dafny compiler
source code for each iteration of bisection, but this would add
overhead to the (already expensive) bisection process. We have
not investigated support for this yet.

To overcome many of the above problems, we had to adapt
CompFuzzCI so that interestingness tests are version-aware:
the version of the compiler is queried, and the commands to
build and invoke Dafny and associated downstream compilers
are issued accordingly. We have provided support for building
and invoking versions of Dafny from May 2022 onwards (since
Dafny version 3.6). This currently requires the management of
two major versions and 18 minor versions.

As changes to interfaces and dependencies are common in
industrial software projects, this problem of historic version
management is not specific to Dafny: it is fundamental to
supporting bisection-based bug triage.

B. Too Soon to Fuzz: the Dafny Rust backend
Support for Rust as a target language has only recently been

added to the Dafny compiler. At the time of CompFuzzCI’s
deployment, the Dafny compiler’s Rust backend was still
under active development. As a result, when CompFuzzCI was
triggered on Rust-related pull requests, it often found errors
related to currently unimplemented or partially-supported fea-
tures. From a formal standpoint, such errors are bugs: failures
to compile valid Dafny programs. However, from a developer
standpoint, these reports were false alarms: providing or
completing support for relevant Rust backend features was
already on the development roadmap.

In an attempt to avoid bothering developers with such false
alarm reports, we added a simple text matching feature to
CompFuzzCI to ignore failures where the term ‘Unsupport-
edInvalidOperation’ appeared in the compiler output. This
sufficed for simple cases, but some partially-supported features
proved more challenging to detect via text-based matching,
since they led to Dafny emitting an invalid Rust code. It was
non-obvious how to adapt CompFuzzCI to distinguish between
a genuine non-compliant code generation bug, vs. a case where
invalid code was generated due to a known limitation of the
work-in-progress Rust backend.

For example, Dafny’s support for traits has been imple-
mented in the Rust backend. However, having a constant

method Main() {
var v1 := new char[1];
var v2 := new array<char>[1][v1];

}

Fig. 6: Program that triggers a Java backend miscompilation

attribute within a trait was not yet supported at the time of our
integration. When the fuzzer generated a program containing
a class that extends a trait with a constant attribute, the Dafny
compiler emitted invalid Rust due to this known limitation.
This caused the Rust compiler to fail with an error message.
From the perspective of CompFuzzCI this looks like a bug,
rather than an unsupported feature, leading to a false positive.

The challenges faced when fuzzing the Rust backend raise
a question about the right time to apply fuzzing. In princi-
ple, it makes sense to intensively test software while it is
under development: if bugs can be found early, they can be
fixed quickly by developers who are still actively working
on the associated features. However, our experience with
the Dafny Rust backend suggests that fuzzing too early can
waste computational resources and distract developers if the
feature under test is not yet mature enough for the scrutiny of
fuzzing to be worthwhile. This echoes recent experience with
the deployment of compiler fuzzing tools for the WebGPU
shading language, where pros and cons associated with early
deployment of fuzzing were identified [18].

C. Fuzzing vs. Regression Testing in Continuous Integration

The Dafny CI pipeline has a comprehensive regression test
suite that covers most of the compiler code. Initially, Comp-
FuzzCI was configured to run alongside the test suite. We
observed that when shallow bugs are present in a newly created
PR, they will often be caught by both the regression test suite
and CompFuzzCI. This would lead to CompFuzzCI posting
comments on the PR about a problem that the developer would
already be alerted to due to a regression test suite failure.
Furthermore, the reduced program in the CompFuzzCI bug
report would rarely be as small or easy to understand as the
failing test in the manually-crafted regression test suite.

Instead of devising a complex strategy to deduplicate bugs
found through fuzzing from those identified by the regression
test suite, we decided to delay the execution of CompFuzzCI
until after the regression test suite has successfully passed.
This simple approach ensures that any issues identified by
fuzzing are genuinely new.

D. Previously-unknown Bugs

During the deployment of CompFuzzCI, we found three
previously-unknown bugs in the Dafny compiler, all of which
have been confirmed by the developers.

Issue #5741: Java miscompilation with nested arrays. The
Dafny program of Fig. 6, involving nested arrays, triggers a
miscompilation when the Java backend is used. The generated
Java code compiles successfully, but raises a runtime exception
when executed. CompFuzzCI bisected this bug and determined
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that it was a regression introduced by commit 5758205 that
aimed to implement coercion for collection operations.

Issue #5736: Crash due to sequence comparison inside map
comprehension. This problem occurs when a sequence com-
parison is used inside a map comprehension, causing the Dafny
resolver, a component of the Dafny compiler responsible for
the resolution of names and types, to crash. CompFuzzCI’s
bisection showed that this was a regression introduced by PR
#5669, which was written to fix a different bug.

Issue #5698: Parser error on set comparison. This bug
occurs when an array initialiser or a datatype constructor is
given the following as input: a relational expression, followed
by another relational expression involving two sets. The Dafny
compiler incorrectly rejected the test programs due to a parser
error (which CompFuzzCI regards as a crash bug). Our bisec-
tion module was unable to pinpoint the commit that introduced
the bug because it was already present in the earliest commit
we could bisect. Further investigation showed that the bug has
been around since at least November 2021.

V. CONTROLLED EVALUATION ON HISTORIC COMMITS

We now present the results of an evaluation where we
run CompFuzzCI on a series of pull requests associated with
historic commits known to have introduced compiler bugs
into the Dafny codebase. We are interested in whether, via
CompFuzzCI, these bugs can be found on the commits that
we know introduced them, how well the bug-inducing test
programs are automatically reduced, and whether they are
deduplicated successfully in relation to known bug reports.

Because the evaluation focuses on bugs that have been
introduced on the merge head of a PR, it does not serve to
evaluate the bisection module. Conducting an evaluation of
this module would be possible by applying CompFuzzCI to a
selection of more recent commits for each bug, where the bug
is still present; we leave this for future work.

For simplicity, this evaluation focuses on crash and non-
compliant code generation bugs, because it is easier to obtain
ground-truth information about whether tests that expose such
bugs are duplicates of one another. In contrast, this is hard for
miscompilations due to the inherent difficulty associated with
deduplicating them.

A. Evaluation Setup

We meticulously studied the Dafny issue tracker on GitHub
to select known bugs in the Dafny compiler for our eval-
uation of CompFuzzCI. From 2,727 total issue reports, we
filtered down to 20 relevant bugs by excluding open issues,
non-compiler-related issues, issues without known introducing
commits, and miscompilation bugs. The 20 selected bugs were
introduced by 13 distinct pull requests.

The controlled evaluation involved running CompFuzzCI on
the 13 bug-introducing pull requests. In each run, we deployed
10 instances of CompFuzzCI in parallel, each running for 2
hours. This is similar to the way CompFuzzCI is deployed live
in the Dafny CI pipeline.

To simulate a realistic “steady state” environment for Comp-
FuzzCI, as if it were in regular use, we used the bug tracking
module to pre-populate the bug database with signatures of
crash and non-compliant code generation bugs known to
exist before the oldest PR in the evaluation. We then ran
CompFuzzCI on the PRs in order from oldest to newest,
adding any new bugs found to the bug database before running
CompFuzzCI on the next PR.

To account for variance, we ran this experiment 10 times
for each PR, allowing us to determine whether bugs could
be reliably found or not. All instances ran on Amazon EC2
t2.medium instances with 2 vCPUs and 4GB RAM, ensuring
consistency with real-world conditions.

B. Ability of CompFuzzCI to Find Historic Bugs

CompFuzzCI was able to identify 4 out of 20 known bugs
fully reliably. That is, these bugs were found on every one of
the 10 repeat runs that were carried out for the associated PR.
In this case, the bug was always found within a 30-minute
timeframe. There were 2 additional bugs that CompFuzzCI
could sometimes find: these bugs were not found during every
repeat run, but were found during at least 5 repetitions. Being
harder to find, these bugs took longer to detect but when they
were found this was within 90 minutes of fuzzing.

The remaining 14 bugs were not discovered during fuzzing.
We attribute this to the complexity of their triggers and the
limitations of the fuzz-d fuzzer used by CompFuzzCI. We
discuss the reasons for this, demonstrating the value of eval-
uation in shedding light on the limitations of fuzz-d (shared
by other Dafny fuzzing tools), which provide inspiration for
future improvements in this area.

Complex triggers. Bugs with complex triggers, such as those
requiring specific nested structures or particular sequences of
operations, were less likely to be found within the 2-hour
testing period. For example, issue #3987 was caused by the use
of an array operation within a forall loop, inside a match
statement. This bug was previously found by fuzz-d during a
12-hour fuzzing campaign, indicating that the complexity of
the trigger, and the time budget of the fuzzing campaign, were
factors in the bug not being found.

Specific names. The bug in issue #5283 was caused by the
Go reserved keyword fmt being used as a module name,
which will never arise in programs generated by fuzz-d due
to its naming scheme. It would be worth extending fuzz-d
to deliberately use identifiers that correspond to keywords of
the languages that Dafny targets, to ensure that Dafny avoids
naming conflicts when generating code.

Recursion. Bugs involving recursion were not found because
fuzz-d does not generate recursive programs. This includes
issue #5523 where the this keyword is mishandled in the
compilation of a tail-recursive function. It would be worth-
while to add support for recursion to Dafny fuzzers.

Order of declarations. Bugs related to the order of declara-
tion in generated code were also missed. For instance, issue
#5569 was caused by a problematic declaration order of class
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TABLE I: Percentage of changes in each PR covered by
fuzzing after 30 minutes. In most cases, coverage had saturated
by this time. In a small number of cases, coverage increased
further during the 2-hour run, but never by more than 0.2%.

PR Coverage at 30m
2241 11.96%
2646 18.40%
2734 26.40%
3479 19.52%
3623 0.27%
3886 18.31%
3909 17.15%

PR Coverage at 30m
4136 7.79%
4591 43.34%
5390 2.37%
5474 11.27%
5528 25.91%
5591 12.76%

and methods in the generated Python code. The fuzz-d tool
always generates declarations in a specific order, which does
not match the order required to trigger the bug. Since Dafny
is permissive regarding the ordering of declarations, a fruitful
addition to fuzzing for Dafny would be a post-processing pass
that randomises the order of declarations.

C. Coverage Analysis to Inform Fuzzing Duration

To investigate a suitable time limit for fuzzing, we computed
coverage data achieved on the Dafny compiler by Comp-
FuzzCI during our evaluation. For each PR and each repeat
run, we calculated the coverage achieved on the changed lines
of code, combined over the 10 fuzzing container instances at
30-minute intervals. We then averaged these numbers across
the 10 repeat runs. Table I shows the average percentage of
changed lines of code covered for each PR within 30 minutes.
In almost all cases, coverage had saturated by this time, while
for a small number of PRs, a marginal coverage increase was
observed during the remainder of the 2-hour run (but never
more than an additional 0.2%). Combined with the fact that the
bugs that were found reliably were found within 30 minutes,
we conclude that a 30-minute duration is a suitable time limit
for running a 10-way parallel fuzzing session during CI.

This finding aligns with a previous study [29], which also
recommends a 30-minute fuzzing duration for CI pipelines.
Their research showed that the number of bugs triggered
increased significantly in the first 10 to 30 minutes, with the
next significant increase only occurring at the 4-hour mark,
which is too long for CI pipelines.

D. Rate of Successful Deduplication

We calculated the successful deduplication rate shown in
Table II based on the number of bugs successfully dedupli-
cated out of all the bugs found during the evaluation. The
deduplication module was mostly effective in handling crash
bugs that included error traces and non-compliant generation
bugs that had informative error messages. However, the dedu-
plication module struggled with crash bugs that had varying
error messages, and non-compliant generation bugs that had
uninformative error messages.

We illustrate the difficulty of error message-based dedupli-
cation with three examples from our controlled experiment.

First, CompFuzzCI failed to deduplicate distinct test cases
exposing a single bug where Dafny would incorrectly reject

TABLE II: Deduplication success rates for different bug types

Type of bugs Successful deduplication rate
Crash 68.36 %
Non-compliant generation 87.47 %

a valid program. This is because the details of the errors
would vary significantly depending on the features of the test
program. The following errors were regarded by CompFuzzCI
as distinct despite being duplicates:

Error Message 1:
Error: semicolon expected
Error: invalid UpdateStmt
Error: rbrace expected
3 parse errors detected in
main.dfy

Error Message 2:
Error: closeparen expected
Error: missing semicolon
at end of statement
Error: rbrace expected
3 parse errors detected in
main.dfy

Second, CompFuzzCI is too coarse-grained in its dedu-
plication of some non-compliant code generation bugs. For
example, two different bugs affecting the Go backend led to
the downstream Go compiler rejecting generated code with
similar, uninformative messages:

Error Message 1:
undefined: _2_a

Error Message 2:
undefined: fmt.Dummy__

Because the only differences in these messages relate to
identifiers in the generated Go code, which are expected to
vary based on features of the input Dafny program, without
further context CompFuzzCI has no way to tell whether these
messages correspond to the same or different underlying bugs.

Third and finally, it is hard to find a sweet spot whereby
the deduplication of non-compliant code generation bugs is
neither too coarse-grained nor too fine-grained. Consider the
following three error message snippets which arose from the
non-compliant generation of Java code:

Error Message 1:
incompatible types:
Object cannot be
converted to
BigInteger

Error Message 2:
incompatible types:
Object cannot be
converted to
CodePoint

Error Message 3:
incompatible types:
CodePoint cannot be
converted to int

Based on manual investigation, the first and second error
messages are due to a common issue and should be regarded
as duplicates, whereas the third error arises due to a distinct
issue and should not be regarded as a duplicate. If Comp-
FuzzCI were to deduplicate based on the non-program-specific
error message alone, it would incorrectly regard all three as
duplicates. However, if CompFuzzCI would deduplicate based
on the types involved, it would regard all three as distinct. Both
approaches are inaccurate.

In difficult cases like these, CompFuzzCI would require a
more intelligent deduplication mechanism that can identify the
underlying issue by understanding the context of the generated
program. We designed the deduplication module to err on the
side of being coarse-grained, to avoid alerting developers to
the same bug multiple times.

E. Size of Reduced Test Programs
We studied the size of the reduced test programs output

by the reduction module. Based on their initial size, we cat-
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TABLE III: Average number of lines of code before and after
reduction, and the reduction percentage achieved for small,
medium, and large programs.

Group Original no. lines Reduced no. lines Reduction %
Small 468 58 88.06%
Medium 1,105 108 90.24%
Large 5,281 1,399 73.52%

egorised original, unreduced test programs as small (original
size <30 KB), medium (original size 30-100KB), and large
(original size >100KB). Table III shows the average number
of lines of test programs in these categories before and after
reduction, and indicates the reduction factor achieved for these
categories based on these averages.

On average, the test programs attached to the GitHub issues
for the 20 bug reports used in our evaluation contained 13 lines
of code. The reduction module effectively minimised small
programs to a size of the same order of magnitude as those
in bug reports. However, medium and large programs often
remained impractically large. In future, delaying bug reports
until a suitably small bug-triggering program is found could
help maintain the quality of bug reports while exploring further
options to improve program reduction efficiency.

VI. RELATED WORK

Compiler fuzzing. The fuzz-d tool [21] used by CompFuzzCI
principally uses differential testing [36] as a test oracle,
where the execution of compiled programs is compared across
compilers, compiler backends, or optimisation levels. This is
a widely-used oracle in compiler testing, having been used to
test compilers for languages such as C [48], OpenCL [34],
Java [13], Verilog [26] and Rust [41]. It is also used by the
XDsmith fuzzer for Dafny [28].

An alternative test oracle, metamorphic testing [10], is
used by the DafnyFuzz fuzzer for Dafny [21]. This involves
comparing behaviour across compiled programs that, by con-
struction, should behave identically. Metamorphic testing is the
basis of various previous approaches to randomised compiler
testing [19], [20], [22], [30], [42], [44].
Incorporating fuzzing in CI. Google’s OSS-Fuzz [24] project
for fuzzing open-source software supports multiple fuzzers,
including libFuzzer, AFL, and HongFuzz. Once a project is
integrated, OSS-Fuzz regularly builds the project, runs the
fuzzers over it, and reports bugs that are found. However, OSS-
Fuzz does not work directly as part of the CI for a project:
it runs “after the fact” on commits that have been pushed
to the main branch of a project, rather than running before
pull requests have been merged. OSS-Fuzz uses ClusterFuzz,
a scalable fuzzing infrastructure that runs on Google Cloud
infrastructure. CompFuzzCI’s use of AWS is similar to this.
OSS-Fuzz is primarily designed to detect generic issues such
as memory corruption, buffer overflows, and use-after-free
bugs. In contrast, CompFuzzCI is targeted towards finding
compiler bugs specifically.

CI Fuzz [14], developed by Code Intelligence, is a com-
mercial product which is designed for projects written in

C/C++, Java, and JavaScript that use specific build tools. CI
Fuzz integrates into GitHub CI, allowing it to be incorporated
into the CI pipeline as if it were a unit test. Compared to
CompFuzzCI, CI Fuzz is better integrated into the CI pipeline.
Due to its limited language support, it is not suitable for
projects like Dafny, which are written in multiple unsupported
languages. CI Fuzz is also not designed for finding bugs in
compilers, which require a specialised fuzzer like fuzz-d.

Bug deduplication. Existing work on bug deduplication typ-
ically utilises runtime data or information from bug reports.
Our focus is on runtime information-based approaches, which
leverage data such as stack traces, control flow, and register
states to identify duplicates. These approaches employ meth-
ods like TF-IDF for term frequency analysis [40], sequence
alignment algorithms [6], [38], [39], and deep learning tech-
niques [35]. Currently, none of the approaches mentioned can
be applied to deduplicate miscompilation bugs. The deduplica-
tion in CompFuzzCI is limited to using stack traces from crash
bugs and is not as sophisticated as the existing approaches.

An existing approach for deduplicating miscompilation bugs
is the furthest point first ranking approach [12], based on
the Levenshtein distance between the test cases’ content and
(optionally) runtime information. This approach requires the
test cases to be fully minimised. CompFuzzCI’s reduction
module has not yet been optimised to fully minimise test cases
within a reasonable time frame.

VII. CONCLUSIONS AND FUTURE WORK

We have reported on the design and deployment of Comp-
FuzzCI, a framework for running compiler fuzzing as part of
continuous integration in the Dafny project. Our experience
working with the Dafny developers to put this into practice
has identified a number of challenges associated with CI-based
fuzzing, including the challenges of accurately bisecting bugs
when the environment of a project changes over time, the
pros and cons of applying fuzzing early in the development
of a new feature (the Rust backend), and the issue of ensuring
that fuzzing and regression testing complement one another.
A controlled study on historic Dafny commits suggests that
a 30-minute fuzzing campaign using 10 fuzzing containers
in parallel works well for finding various bugs introduced by
PRs, while some bugs are out of scope due to limitations of
the fuzz-d fuzzer, identifying concrete ways in which fuzzing
could be improved.

Ideas for future work include integrating the DafnyFuzz
and XDsmith fuzzers into CompFuzzCI, investigating whether
fuzzing on a given PR could be directed based on the changes
introduced by the PR, and improving error message-based
deduplication by cross-checking error messages arising from
distinct Dafny backends when a compiler bug is found to affect
multiple backends simultaneously.
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“Continuous fuzzing: A study of the effectiveness and scalability of
fuzzing in CI/CD pipelines,” in IEEE/ACM International Workshop
on Search-Based and Fuzz Testing, SBFT@ICSE 2023, Melbourne,
Australia, May 14, 2023. IEEE, 2023, pp. 25–32. [Online]. Available:
https://doi.org/10.1109/SBFT59156.2023.00015

[30] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, M. F. P. O’Boyle and K. Pingali, Eds.
ACM, 2014, pp. 216–226. [Online]. Available: https://doi.org/10.1145/
2594291.2594334

[31] B. Lecoeur, H. Mohsin, and A. F. Donaldson, “Program reconditioning:
Avoiding undefined behaviour when finding and reducing compiler
bugs,” Proc. ACM Program. Lang., vol. 7, no. PLDI, pp. 1801–1825,
2023. [Online]. Available: https://doi.org/10.1145/3591294

[32] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, ser. Lecture
Notes in Computer Science, E. M. Clarke and A. Voronkov,
Eds., vol. 6355. Springer, 2010, pp. 348–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-17511-4 20

[33] ——, “Accessible software verification with Dafny,” IEEE Softw.,

451

https://aws.amazon.com/verified-permissions/
https://aws.amazon.com/verified-permissions/
https://github.com/aws/aws-cryptographic-material-providers-library-dafny
https://github.com/aws/aws-cryptographic-material-providers-library-dafny
https://github.com/aws/aws-encryption-sdk-dafny
https://github.com/aws/aws-encryption-sdk-dafny
https://aws.amazon.com/verified-access/
https://aws.amazon.com/verified-access/
https://www.youtube.com/watch?v=oshxAJGrwMU
https://www.youtube.com/watch?v=oshxAJGrwMU
https://doi.org/10.1109/HASE.2012.38
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-031-27481-7_32
https://doi.org/10.1145/2884781.2884878
https://github.com/csmith-project/creduce
https://github.com/csmith-project/creduce
https://doi.org/10.1145/2491956.2462173
https://doi.org/10.1145/2908080.2908095
https://www.code-intelligence.com/product-ci-fuzz
https://www.code-intelligence.com/product-ci-fuzz
https://github.com/Consensys/evm-dafny
https://github.com/Consensys/evm-dafny
https://github.com/dafny-lang/dafny
https://github.com/dafny-lang/dafny
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ICST57152.2023.00042
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3133917
https://doi.org/10.1145/2896971.2896978
https://doi.org/10.1109/ICST60714.2024.00044
https://doi.org/10.1145/3453483.3454092
https://git-scm.com/docs/git-bisect
https://git-scm.com/docs/git-bisect
https://github.com/google/oss-fuzz
https://doi.org/10.1145/3068608
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://www.amazon.science/blog/how-we-built-cedar-with-automated-reasoning-and-differential-testing
https://www.amazon.science/blog/how-we-built-cedar-with-automated-reasoning-and-differential-testing
https://doi.org/10.1145/3533767.3534382
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3591294
https://doi.org/10.1007/978-3-642-17511-4_20


vol. 34, no. 6, pp. 94–97, 2017. [Online]. Available: https:
//doi.org/10.1109/MS.2017.4121212

[34] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, D. Grove and S. Blackburn,
Eds. ACM, 2015, pp. 65–76. [Online]. Available: https://doi.org/10.
1145/2737924.2737986

[35] C. Liu, Q. Xie, Y. Li, Y. Xu, and H. Choi, “DeepCrash: deep
metric learning for crash bucketing based on stack trace,” in
Proceedings of the 6th International Workshop on Machine Learning
Techniques for Software Quality Evaluation, MaLTeSQuE 2022,
Singapore, Singapore, 18 November 2022, M. Cordy, X. Xie, B. Xu,
and S. Bibi, Eds. ACM, 2022, pp. 29–34. [Online]. Available:
https://doi.org/10.1145/3549034.3561179

[36] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available:
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[37] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang,
“Test-case reduction for C compiler bugs,” in ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’12, Beijing, China - June 11 - 16, 2012, J. Vitek, H. Lin,
and F. Tip, Eds. ACM, 2012, pp. 335–346. [Online]. Available:
https://doi.org/10.1145/2254064.2254104

[38] I. M. Rodrigues, D. Aloise, and E. R. Fernandes, “FaST: A linear time
stack trace alignment heuristic for crash report deduplication,” in 19th
IEEE/ACM International Conference on Mining Software Repositories,
MSR 2022, Pittsburgh, PA, USA, May 23-24, 2022. ACM, 2022, pp.
549–560. [Online]. Available: https://doi.org/10.1145/3524842.3527951

[39] I. M. Rodrigues, A. Khvorov, D. Aloise, R. Vasiliev, D. V. Koznov,
E. R. Fernandes, G. A. Chernishev, D. V. Luciv, and N. Povarov,
“Tracesim: An alignment method for computing stack trace similarity,”
Empir. Softw. Eng., vol. 27, no. 2, p. 53, 2022. [Online]. Available:
https://doi.org/10.1007/s10664-021-10070-w

[40] K. K. Sabor, A. Hamou-Lhadj, and A. Larsson, “DURFEX: A
feature extraction technique for efficient detection of duplicate
bug reports,” in 2017 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2017, Prague, Czech Republic,
July 25-29, 2017. IEEE, 2017, pp. 240–250. [Online]. Available:
https://doi.org/10.1109/QRS.2017.35

[41] M. Sharma, P. Yu, and A. F. Donaldson, “Rustsmith: Random
differential compiler testing for rust,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, R. Just
and G. Fraser, Eds. ACM, 2023, pp. 1483–1486. [Online]. Available:
https://doi.org/10.1145/3597926.3604919

[42] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November 4, 2016, E. Visser and
Y. Smaragdakis, Eds. ACM, 2016, pp. 849–863. [Online]. Available:
https://doi.org/10.1145/2983990.2984038

[43] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: syntax-
guided program reduction,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, 2018, pp. 361–371. [Online]. Available:
https://doi.org/10.1145/3180155.3180236

[44] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for compiler based on metamorphic testing technique,” in
17th Asia Pacific Software Engineering Conference, APSEC 2010,
Sydney, Australia, November 30 - December 3, 2010, J. Han and T. D.
Thu, Eds. IEEE Computer Society, 2010, pp. 270–279. [Online].
Available: https://doi.org/10.1109/APSEC.2010.39

[45] J.-B. Tristan, “SampCert version 1.0.0,” 2024, https://github.com/
leanprover/SampCert, last accessed 2025-01-18.

[46] A. Usher, “fuzz-d GitHub repository,” 2023, https://github.com/fuzz-d/
fuzz-d, last accessed 2025-01-18.

[47] VMware, “Verified BetrFS,” 2024, https://github.com/vmware-labs/
verified-betrfs.

[48] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

[49] Z. Yang, W. Wang, J. Casas, P. Cocchini, and J. Yang, “Towards a
correct-by-construction FHE model,” Cryptology ePrint Archive, Paper
2023/281, 2023. [Online]. Available: https://eprint.iacr.org/2023/281

[50] S. Zetzsche and J.-B. Tristan, “Dafny-VMC: a library for verified Monte
Carlo algorithms,” 2023, https://github.com/dafny-lang/Dafny-VMC,
last accessed 2025-01-18.

452

https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/3549034.3561179
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3524842.3527951
https://doi.org/10.1007/s10664-021-10070-w
https://doi.org/10.1109/QRS.2017.35
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1109/APSEC.2010.39
https://github.com/leanprover/SampCert
https://github.com/leanprover/SampCert
https://github.com/fuzz-d/fuzz-d
https://github.com/fuzz-d/fuzz-d
https://github.com/vmware-labs/verified-betrfs
https://github.com/vmware-labs/verified-betrfs
https://doi.org/10.1145/1993498.1993532
https://eprint.iacr.org/2023/281
https://github.com/dafny-lang/Dafny-VMC

	Introduction
	Background
	The Dafny Language and Compiler
	Kinds of Compiler Bugs
	The fuzz-d Compiler Fuzzing Tool

	Design of CompFuzzCI
	Modules of CompFuzzCI
	Workflow of CompFuzzCI
	Deployment Details

	Experiences and Lessons Learned From Initial Deployment
	Bisection: a Moving Target
	Too Soon to Fuzz: the Dafny Rust backend
	Fuzzing vs. Regression Testing in Continuous Integration
	Previously-unknown Bugs

	Controlled Evaluation on Historic Commits
	Evaluation Setup
	Ability of CompFuzzCI to Find Historic Bugs
	Coverage Analysis to Inform Fuzzing Duration
	Rate of Successful Deduplication
	Size of Reduced Test Programs

	Related Work
	Conclusions and Future Work
	References

