
FuzzFlesh: Randomised Testing of Decompilers via
Control Flow Graph-Based Program Generation
Amber Gorzynski #

Imperial College London, UK

Alastair F. Donaldson #

Imperial College London, UK

Abstract
Decompilation is the process of translating compiled code into high-level code. Control flow recovery
is a challenging part of the process. “Misdecompilations” can occur, whereby the decompiled code
does not accurately represent the semantics of the compiled code, despite it being syntactically valid.
This is problematic because it can mislead users who are trying to reason about the program.

We present CFG-based program generation: a novel approach to randomised testing that aims to
improve the control flow recovery of decompilers. CFG-based program generation involves randomly
generating control flow graphs (CFGs) and paths through each graph. Inspired by prior work in
the domain of GPU computing, (CFG, path) pairs are “fleshed” into test programs. Each program
is decompiled and recompiled. The test oracle verifies whether the actual runtime path through
the graph matches the expected path. Any difference in the execution paths after recompilation
indicates a possible misdecompilation. A key benefit of this approach is that it is largely independent
of the source and target languages in question because it is focused on control flow. The approach is
therefore applicable to numerous decompilation settings. The trade-off resulting from the focus on
control flow is that misdecompilation bugs that do not relate to control flow (e.g. bugs that involve
specific arithmetic operations) are out of scope.

We have implemented this approach in FuzzFlesh, an open-source randomised testing tool.
FuzzFlesh can be easily configured to target a variety of low-level languages and decompiler
toolchains because most of the CFG and path generation process is language-independent. At
present, FuzzFlesh supports testing decompilation of Java bytecode, .NET assembly and x86 machine
code. In addition to program generation, FuzzFlesh also includes an automated test-case reducer
that operates on the CFG rather than the low-level program, which means that it can be applied to
any of the target languages.

We present a large experimental campaign applying FuzzFlesh to a variety of decompilers,
leading to the discovery of 12 previously-unknown bugs across two language formats, six of which
have been fixed. We present experiments comparing our generic FuzzFlesh tool to two state-of-
the-art decompiler testing tools targeted at specific languages. As expected, the coverage our
generic FuzzFlesh tool achieves on a given decompiler is lower than the coverage achieved by a tool
specifically designed for the input format of that decompiler. However, due to its focus on control
flow, FuzzFlesh is able to cover sections of control flow recovery code that the targeted tools cannot
reach, and identify control flow related bugs that the targeted tools miss.

2012 ACM Subject Classification Security and privacy → Software reverse engineering; Software
and its engineering → Software testing and debugging; Software and its engineering → Compilers

Keywords and phrases Decompiler, Reverse Engineering, Control Flow, Software Testing, Fuzzing

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2025.13

Funding This work was supported by EPSRC grant EP/R006865/1 and gift funding from Google.

1 Introduction

In this work we present a new randomised testing approach for automatically finding
misdecompilation bugs in decompilers.

© Amber Gorzynski and Alastair F. Donaldson;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 13; pp. 13:1–13:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amber.gorzynski22@imperial.ac.uk
https://orcid.org/0009-0006-3061-366X
mailto:alastair.donaldson@imperial.ac.uk
https://orcid.org/0000-0002-7448-7961
https://doi.org/10.4230/LIPIcs.ECOOP.2025.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

13:2 FuzzFlesh: Randomised Testing of Decompilers

Decompilers aim to reconstruct source code corresponding to compiled code. This can
be useful for detecting security vulnerabilities in binaries [1, 17, 54, 28, 60, 48], source code
recovery [18], or to enable program analysis in cases where the source code is unavailable [45,
55, 52, 20, 24].

Decompilation is a difficult process because (a) some information is lost during compilation
and (b) restoring high-level code structure is technically difficult, particularly when the code
has been heavily altered through compiler optimisations. Control flow recovery is especially
challenging because there are often multiple valid ways to structure a given control flow graph
(CFG) using high-level constructs (such as while or if/else) and the process of deciding
which structure to use can be a source of errors. In addition, attempts by the decompiler to
make the output code more readable (for example by eliminating as many goto statements
as possible) rely on complex algorithms [6, 65, 25, 4].

In this paper, we define misdecompilation as any semantic deviation between the ori-
ginal low-level code and its decompiled counterpart. Misdecompilations mislead analysts,
wasting their time. They are more serious than decompiler crashes or failures to decompile
because there is no indication to the user that the output is incorrect. The consequences of
misdecompilations can be severe: misunderstandings arising from a misdecompilation could
cause a security analyst to overlook a vulnerability or mis-classify a piece of malware. For
example, Votipka et al. [59] find that malware engineers prefer working with decompiled
code for readability, but must switch to (harder-to-read) disassembly when they suspect
a misdecompilation has occurred. Source code recovery can also be complicated by the
presence of misdecompilation bugs [18].

In recognition of the importance of reliable decompilers, recent work has used randomised
testing to search for decompiler bugs in a proactive manner [41, 71, 43]. However, these only
target one language format each and do not focus specifically on control flow.

We build on Klimis et al. [34] to develop a novel decompiler fuzzing approach called
CFG-based program generation. It has two key features:

CFG-based program generation targets control flow recovery. The approach aims to
thoroughly test the control flow recovery components of decompilers. Beyond control flow,
our programs are designed to use limited low-level language features, so that the only
source of complexity is the control flow. This restriction to a limited set of features is
important, because in practice each decompiler has an informal “scope”, which is the set of
programs it should be able to decompile. Programs that make intricate use of specialised
low-level language features risk being outside of the scope of a decompiler, which may not
support the reconstruction of these features. These programs are not useful as test cases
because (a) they will not be recompilable, and therefore cannot detect misdecompilation bugs,
and (b) will not be interesting as crash- or failure-inducing test cases to developers, who
generally focus on in-scope supported language features. Prior work has devoted considerable
attention to addressing the problem of recompilability, for example through post-processing
the decompiled output [41, 71]. By producing programs that are syntactically simple, our
approach sidesteps this problem.

The trade-off associated with our restriction to the control flow-related parts of low-level
languages is that the programs generated by our approach are unlikely to trigger bugs related
to detailed language-specific features (such as bugs in the handling of arithmetic operations).

CFG-based program generation is easily retargeted to various low-level languages. All
mainstream programming languages have some notion of control flow. CFGs generated by
our approach can therefore be “fleshed” into many different target languages, without the

A. Gorzynski and A. F. Donaldson 13:3

need to provide full grammars to the tool or perform extensive language-specific engineering.
We are not aware of any other decompiler testing techniques that can be easily retargeted
to work with distinct low-level languages. Prior decompiler testing tools have been highly
customised for particular languages, requiring a great deal of expertise to build and typically
using existing specialised program generators for the target language [43]. Our approach
drastically reduces this manual effort with respect to the testing of control flow recovery.

In more detail, CFG-based program generation involves randomly generating CFGs
according to graph generation algorithms. Random paths through each CFG are also
generated; these represent the expected runtime execution path. Each (CFG, path) pair is
“fleshed” into a program that (a) guarantees that a particular path through the program
should be traversed, and (b) checks that this path really is followed when the program
executes. This check forms the test oracle: each program contains a self-checking assertion
that fails if there is any difference between the actual and expected path.

We have implemented this approach in FuzzFlesh, a new open source decompiler testing
tool. Figure 1 illustrates how we use FuzzFlesh to test decompilers. First, we generate a
CFG and path, which we flesh into a low-level program (for example a Java bytecode class).
We use the decompiler under test to decompile the program. We then recompile the
program. Finally, we execute the recompiled program and assert that the actual runtime
path matches the expected path. Any differences indicate a possible misdecompilation.

G e n e r a t e Flesh

×86-64

bytecode

C I L

Decompile

Ghid ra

CFR

FernFlower

JADX

I L S p y

J a v a

C#

Recompile

GCC

JVM

•NET

E x e c u t e

Runtime
path

==

Expected
path

Figure 1 Workflow of CFG-based program generation as implemented by FuzzFlesh.

FuzzFlesh also features a test case reducer that operates on the CFG and path to
automatically reduce bug-triggering programs to a manageable size. The reduction process
retains the “expected vs. actual path” test oracle, which assists in pinpointing the source of
the misdecompilation.

Most of the program generation and reduction toolchain required can be implemented
in a language-independent way, which means that it can be easily extended to multiple
languages. Based on our experience implementing support for four languages, we estimate
that implementing an additional language would only take approximately 8 hours for an
experienced programmer (see Section 6.1). This is in contrast to other program generators
used by decompiler testing tools, which require extensive language-specific engineering to
produce test cases. For example, JavaFuzzer [66] and Csmith [68] are used by other tools
and can only produce Java and C programs respectively. Such custom program generation
tools require a large amount of effort to produce for each language. FuzzFlesh is therefore
particularly useful for quickly testing a range of decompiler toolchains across different
languages.

ECOOP 2025

13:4 FuzzFlesh: Randomised Testing of Decompilers

Currently, FuzzFlesh supports the generation of low-level programs in three different
formats: Java bytecode, x86-64 machine code, and .NET assembly. We have used FuzzFlesh
to test three Java decompilers (CFR, FernFlower, JADX), one binary decompiler (Ghidra),
and one C# decompiler (ILSpy). We compare the performance of FuzzFlesh to a binary
decompiler testing tool (DecFuzzer) and a Java decompiler testing tool (JD-Tester).

Our evaluation aims to answer the following research questions about CFG-based program
generation, in the context of the FuzzFlesh tool:
RQ1 How effective is FuzzFlesh at identifying decompiler bugs?
RQ2 How does the efficacy of FuzzFlesh vary across languages and decompiler toolchains?
RQ3 How thoroughly is FuzzFlesh able to test the control flow recovery components of

decompilers in comparison to other decompiler testing approaches?
RQ4 To what extent can FuzzFlesh identify bugs that are different from those identified by

other decompiler testing approaches?

Our results show that FuzzFlesh is effective: it has found 12 previously-unknown bugs in
four decompilers across two languages, of which eight have been confirmed (with six already
fixed) in response to our bug reports. Ten of the bugs are directly related to control flow
recovery. Six of the total bugs are misdecompilations, while the remaining six are refusals to
decompile, whereby the decompiler refuses to produce a program in the target language due
to an internal failure.1 FuzzFlesh achieves reasonable code coverage of decompilers despite
the limited syntax and language features used within its programs. As expected, due to its
focus on control flow, the coverage FuzzFlesh achieves on any particular decompiler is lower
than that achieved by language-specific decompiler testing tools. Nevertheless, FuzzFlesh is
able to cover code that other tools cannot reach. In particular, FuzzFlesh identifies bugs
within control flow recovery code that is not covered by other tools.

In summary, our main contributions are:
A novel program generation technique that specifically targets control flow recovery
in decompilers by generating CFG data structures. The programs are designed to be
syntactically simple and therefore easily recompilable.
An implementation of this technique, FuzzFlesh, which comprises: a CFG and path
generating component, three different program “fleshing” modules that target x86, Java
bytecode, and .NET assembly, a program reducer that operates on the CFG and path
data structures, and a test harness for automating the decompiler testing workflow.
A large-scale testing campaign that identified 12 bugs by applying FuzzFlesh to five
decompilers covering three distinct (low, high) language pairs: CFR, FernFlower, JADX,
Ghidra, and ILSpy.
An evaluation of FuzzFlesh featuring a comparison to two other recent decompiler testing
approaches, DecFuzzer and JD-Tester, showing that FuzzFlesh offers complementary
bug-finding abilities.

Availability. FuzzFlesh is open-source and available on GitHub [21]. An artifact is also
published along with this paper [22]. This includes a copy of FuzzFlesh and all scripts and
instructions required to reproduce our results.

1 See Section 2.2 for further detail on decompiler problem categorisation.

A. Gorzynski and A. F. Donaldson 13:5

2 Background

In this section we explain the necessary prerequisites for understanding the CFG-based
program generation approach. Further related work is described in Section 7.

2.1 Decompilation
Decompilers are available for many languages [5, 30, 50, 29]. In general, decompilers are “best
effort”: they may detect and reject low-level programs that are overly complex. Even when
decompilation is attempted, decompilers typically cannot produce code that is syntactically
identical to the original source code [16, 64]. Nevertheless, in order to be useful, decompilers
must be free from serious errors. In particular, when a decompiler does deem a given low-level
program in scope for decompilation, the high-level program that the decompiler emits must
respect the semantics of the low-level program.

Decompilation involves several phases that reverse the compilation process. Implement-
ations vary, but the general approach is as follows [13]. First, the executable binary is
lifted to an intermediate representation (IR) using a process similar to disassembly. Next,
the CFG, variables, and types are recovered from the IR. Further phases of recovery may
take place, notably control flow structure recovery that recovers high-level syntactic control
flow structures from the CFG (e.g. if/else, for, while and do-while in C-like languages).
Other optimisations such as dead code elimination and variable renaming may be performed.
Finally, code generation outputs a decompiled program in the source code language.

All phases of decompilation are challenging because information is irretrievably lost during
compilation, including variable names (unless debug information has been inserted by the
compiler), types, and high-level programming abstractions. Control flow structure recovery
is particularly important and has been much researched. Early structuring algorithms
attempt to match node configurations against a codified set of high-level schema [6]. However,
this technique struggles when it encounters unexpected configurations. As a fallback, a
decompiler may handle such cases by using goto statements. However, the use of goto can
lead to code that is difficult to read, and many high-level languages (notably Java) do not
feature an unrestricted goto statement or similar. Alternative structuring algorithms can
be used to attempt to eliminate [65, 25] or minimise [4] the need for goto statements, but
correctly implementing these algorithms is technically challenging. Control flow recovery
becomes difficult when the program’s control flow graph features irreducible structures [2] –
cycles in the graph that have multiple entry points – but the target language does not
support arbitrary goto statements, because irreducible control flow does not map naturally
to structured programming language constructs.

2.2 Decompiler bug categories
Two categories of decompiler problems are unequivocally bugs:

Decompiler crash: The decompiler fails to produce a program in the target language,
and crashes, hangs, or otherwise fails ungracefully.
Misdecompilation: The decompiler produces a program in the target language that can
be successfully recompiled, but it is semantically inconsistent with the original program.

Two other categories of problems are sometimes, but not always, indicative of bugs:
Refusal to decompile: The decompiler refuses to produce a program in the target
language, failing gracefully with an error message. This may be indicative of a bug in the
decompiler, but alternatively may be because the input program does not fall within the
scope of programs the decompiler aims to handle.

ECOOP 2025

13:6 FuzzFlesh: Randomised Testing of Decompilers

Figure 2 Example CFG generated by FuzzFlesh with directions [0] and expected output [A,C].

Recompilation failure: The decompiler produces a program in the target language
that cannot be successfully recompiled, due to syntax or typing problems. Whether
such problems constitute decompiler bugs depends on whether the decompiler has been
designed to produce code that is expected to be directly recompilable.

Our approach aims to find misdecompilation bugs, which are of prime interest because
they may mislead users. As a by-product, our approach has the potential to find decompiler
crash bugs, which may be frustrating for users but are less serious than misdecompilations.
It can also find “refusal to decompile” issues that may be useful to decompiler developers in
understanding and assessing the limits of their tools.

While some works address the detection of recompilation failures [71], this is not our
focus because many decompilers do not aim to produce code that is directly recompilable. A
distinction exists between semantically correct and recompilable code: the decompiler output
may be semantically correct in that it is an accurate representation of the original code,
but it may need significant formatting adjustments in order to recompile without errors.
For example, Ghidra [50] sometimes excludes function declarations or necessary #include
statements. This does not pose a problem for the typical user who visually analyses the
decompiled output. We therefore do not include this category of failure because it conflates
bugs and expected limitations of the decompiler.2

3 CFG-based Program Generation and the FuzzFlesh Tool

We now describe our CFG-based program generation approach in detail and explain how we
have put it into practice in the FuzzFlesh tool.

We start with an overview of how the approach works using an example graph that was
able to identify a misdecompilation bug in CFR [5], a tool that decompiles Java bytecode
into Java source code. We then provide further details of each component of the approach.

CFG-based program generation involves randomly generating CFG skeleton data struc-
tures and then “fleshing” them into programs in a target low-level language. Figure 2 shows
an example CFG that might be generated. Each node represents a basic block in the low-level
program that will ultimately be generated, and each edge represents a jump in the control
flow between two nodes. The outgoing edges of a node are numbered with consecutive
integers starting from 0. A CFG has a single entry point, in this case node A.

A path through the CFG is also randomly chosen, and a corresponding sequence of edge
labels is determined; we call this sequence the directions that must be taken for the path to
be followed. For example, suppose the path [A, C] through the CFG of Figure 2 was chosen.
The directions sequence [0] would force this path to be taken.

2 We do automatically apply minor fixes to programs to support recompilability, which are discussed in
Section 4. We do not report these issues as bugs.

A. Gorzynski and A. F. Donaldson 13:7

1 test_program () {
2 int [] directions = {0};
3 int [] actual_output ;
4
5 int dir_index = 0;
6 int out_index = 0;
7
8
9 block_A :

10 actual_output [out_index ++] = 0;
11 switch (directions [dir_index ++]) {
12 case 0: goto block_C ;
13 case 1: goto block_B ;
14 case 2: goto block_D ;
15 }

16 block_B :
17 actual_output [out_index ++] = 1;
18 switch (directions [dir_index ++]) {
19 case 0: goto block_D ;
20 case 1: goto block_B ;
21 case 2 : goto block_C ;
22 }
23
24 block_C :
25 actual_output [out_index ++] = 2;
26 return ;
27
28 block_D :
29 actual_output [out_index ++] = 3;
30 return ;
31 }

Figure 3 Example pseudocode corresponding to the CFG in Figure 2.

From a (CFG, path) pair, (G, p), a concrete low-level program and program input are
synthesised, where the program input is the sequence of directions associated with p. The
program is designed to (a) consume the directions and follow the corresponding control flow
path, and (b) output the sequence of nodes that is traversed during execution. Therefore, on
execution, the program should output the path p.

The synthesised low-level program is then decompiled and recompiled, and executed on
the input, and a check is performed to confirm that the program output does indeed indicate
that the required path was followed. If not, a misdecompilation has occurred and can be
investigated.3 The comparison of the expected and actual path forms the test oracle, which
is self-contained within every test case.

Returning to the example of Figure 2, Figure 3 shows C-like pseudocode illustrating how
the graph can be fleshed into a program. The actual output is recorded at each node in
the actual_output array. The directions array is read from every time that a conditional
jump is encountered. The target language of the flesher depends on the toolchain under test.

When configured to target Java, our FuzzFlesh tool generates a textual Java bytecode
program for this example, which is converted to a class file using the Jasmin assembler [47].
FuzzFlesh uses CFR to decompile the program, uses javac to recompile it, and executes it on
the input [0], which should force the path [A, C] to be followed. The actual output indicated
that the path [A, B, C] had been followed: the bytecode program had been misdecompiled.
We have reported this issue to the CFR developers.

An attractive feature of CFG-based program generation is that it is easy to retarget
for various low-level languages. For example, the graph- and path-generation parts of our
FuzzFlesh implementation are entirely language-independent. The only language-specific
work that is required is the straightforward logic to flesh a (CFG, path) pair into a low-level
program. The tool is thereby able to test a range of decompilers for various languages.

In practice, FuzzFlesh generates larger and more complex CFGs than the one shown in
Figure 2. Once a potential bug is identified, FuzzFlesh reduces the program to a manageable
size by performing a series of operations on the CFG data structure and then re-fleshing it
into a (smaller) program.

3 Is is theoretically possible that the problem could actually be a compiler bug introduced during the
recompilation process, but this has not occurred in practice in our experience.

ECOOP 2025

13:8 FuzzFlesh: Randomised Testing of Decompilers

We now provide further detail on how we have realised each component of CFG-based
program generation in FuzzFlesh. Section 3.1 and Section 3.2 set out the CFG and path
generation approaches. Section 3.3 describes how these CFGs and paths are fleshed into
programs. Section 3.4 explains the test oracle used to identify potential misdecompilations.
Finally, Section 3.5 describes the CFG-based program reducer.

3.1 Graph generation

The aim of the graph generator is to create a CFG that can be used as the basis for a
program. It generates graphs using a set of user-configurable input parameters including a
random seed. Each graph is randomly generated from scratch; there is no initial corpus of
graphs. The output is a directed graph data structure that contains nodes and directed edges.
The generated graphs must be a valid basis for programs, which is achieved by ensuring
that they meet a set of conditions. First, there must exist a single entry point to the graph;
second, there must exist at least one path from the entry node to an exit node: a node
with no successors. All target languages (x86-64, Java bytecode, and .NET assembly) allow
irreducible control flow (see Section 2.1), which means we do not impose further restrictions
on the shape of the graphs, although other target languages that do not support arbitrary
control flow (such as WebAssembly) would require additional checks. This issue is discussed
further in Section 4.2. Disconnected graphs are valid programs, providing there is only one
entry point in the graph. The disconnected region can be considered “dead” code that the
decompiler may eliminate.

The graph generator in FuzzFlesh grows a graph of a parameterised target size using a
breadth-first algorithm adapted from Krapivsky and Redner [35]. Starting with the root,
the generation algorithm adds a random number of successors nodes. It continues to add
a random number of successor nodes to each existing node until the target graph size is
reached. This constructs a wide tree graph that contains a path from the entry node to
at least one exit node, but does not have any jumps beyond immediate child nodes. To
enhance the graph shape, we add edges to a randomly chosen number of nodes in the graph.
A proportion of these additional edges jump backwards to a direct ancestor of the current
node, which introduce cycles into the CFG so that important program constructs such as
loops are represented. Finally, additional exit nodes are optionally added to a randomly
selected sample of nodes in the graph. This reduces the likelihood that a path will become
stuck in a part of the graph that has no naturally-occurring exit nodes due to the back edge
annotations.

We also implemented an alternative graph-generation algorithm adapted from Erdős and
Rényi [19]. This graph generator creates a set of nodes according to a graph size parameter
and randomly connects them via directed edges. A single node is randomly selected as the
root node. In addition, exit nodes are randomly added. In practice we found that this
method generates graphs with many disconnected components and short paths, and we found
it to be ineffective at triggering bugs in practice, so do not discuss it further.

FuzzFlesh has been designed in a modular fashion so that other graph generation ap-
proaches would be straightforward to integrate. For example, one could mine existing
programs for interesting control flow graphs and using these as the basis for fuzzing; this is
an area for future work.

This stage of the toolchain is entirely language-independent.

A. Gorzynski and A. F. Donaldson 13:9

3.2 Path generation
The FuzzFlesh path generator performs a random traversal of each generated CFG. It records
the sequence of nodes visited on the path, and the sequence of directions that will force
this path to be followed. Multiple paths can be generated for each graph, and they can be
configured by a maximum length input parameter. Once this length is reached, the path
generation algorithm identifies the shortest path to an exit node and adds this to the path.
FuzzFlesh does not attempt to cover all paths through the CFG. Instead, a user-configurable
number of paths through each CFG are selected at random.

This stage of the toolchain is also language-independent: paths are a data structure
containing the path and the directions array.

3.3 Program fleshing
At this stage, FuzzFlesh becomes language-specific. The inputs to the flesher component
are a graph data structure and a path. The output is a program in a particular low-level
language, ready to be decompiled. By construction, the output program will write the IDs
of each node visited at runtime to an actual output array. The contents of this output array
can be compared with the expected output from the path to provide the test oracle.

Program fleshing involves traversing the CFG and fleshing each node based on its
characteristics. As described in Section 3.1, the CFG is constructed as an abstract graph
(i.e. not in a low-level language format) and fleshing provides a direct mapping between
CFG nodes and appropriate low-level language operations. First, the start of the program
is fleshed with the necessary code to begin the program, including the declaration of the
function and data structures for the directions and output arrays. Next, the flesher traverses
the CFG and fleshes each node with code that records the node ID in the output array so
that the actual path taken through the program at runtime is recorded. In addition, the
flesher checks the number of children that each node has and fleshes it with an appropriate
basic control instruction such as goto, if/else, or switch. Exit nodes with no children
contain a return instruction. We do not include more complex language features in order
to ensure that the resulting program is simple enough to be decompiled and subsequently
recompiled.

During the fleshing stage, the directions array corresponding to the expected path can
be configured to be statically unknown or known. This provides respectively less or more
information about the program to the decompiler under test.

If the directions are statically unknown, then the directions array is passed to the test
case function at runtime as a parameter from the wrapper program. In this case, the test
case is fleshed to accept the directions array and read directions from it, but these directions
are not known at decompile-time. This creates a program in which every node in the graph
is potentially dynamically reachable at runtime, given suitable inputs.

Alternatively, the directions array can be hard-coded into the function during the fleshing
step. In this case, the directions are known to the decompiler.

These approaches may result in different decompilation heuristics. The overall impact on
the decompiler is unclear: providing more information to the decompiler by hard-coding the
directions could make the program easier to decompile. However, as discussed in Section 4.1,
in some cases we generate programs in a high-level language such as C and use a compiler to
generate the low-level program (rather than directly generating the low-level program). In
this setting, statically-known directions can be used to perform optimisations at compile-time.
The resulting optimised binary may have a more complicated and less easily recoverable

ECOOP 2025

13:10 FuzzFlesh: Randomised Testing of Decompilers

structure. Alternatively, compiler optimisations may have greatly simplified the program,
which could result in more straightforward decompilation. To maximise diversity during
testing, we generate the low-level programs using a range of compiler optimisation levels.

3.4 Test oracle evaluation
Each program generated by FuzzFlesh contains a built-in self-checking test oracle in the form
of the expected output. A test harness performs the testing process and evaluates the test
oracle to determine whether the test has failed. The testing process for decompilers is as
follows:
1. Decompile: We use the decompiler under test to decompile the program to a target

source code. At this stage, the decompiler may crash or fail and throw an exception if it
encounters code that it is unable to process.

2. Recompile: If the decompilation was able to produce a source program, we recompile
the resulting program.

3. Execute: Finally, we execute the de- and recompiled program. If the actual output recor-
ded by the program at runtime differs from the expected output, then a misdecompilation
bug is flagged for investigation.

3.5 Test case reduction
Once a possible bug is found, FuzzFlesh reduces the bug-triggering test case to a manageable
size in order to pinpoint the source of the error. We have designed a custom automated test
case reducer to make the simplification and triage of bug-triggering test cases easier. Most
of the reduction is done at the language-independent graph and path level, which means
that it can be reused across multiple languages. The reducer performs the following types of
operation on a (CFG, path) pair:

Merge nodes: Two nodes n1 and n2 are merged together into a single node n′ so that
the total number of nodes in the graph is reduced by one. Any inwards edge to n1 or n2
becomes an inward edge to n′, and similarly for any outwards edge. If either of the nodes
was on the path, then the path and associated directions are also updated. Node merge
operations must ensure that at least one exit node is retained so that the program does
not become non-terminating.
Remove edges: Edges are removed from the graph. If an edge is on the path, then the
path and directions are also updated.

After each operation, the (CFG, path) pair are re-fleshed into a program. If compiling,
decompiling, and recompiling still trigger the same bug, then the program is saved and
reduced further. Otherwise, the updated program is discarded and a different reduction
operation is attempted.

4 Decompilers under test

We test three Java decompilers: CFR [5], FernFlower [30], and JADX [32], the popular binary
decompiler Ghidra [50], and the C# decompiler ILSpy [29]. We selected these decompilers
because they are relatively well established and currently maintained, and they have been
reviewed in previous studies [41, 43, 71]. Although it is considered in prior work we did
not include the decompiler RetDec because it describes itself as in “limited maintenance
mode” and only has one commit in the past six months [3]. We also do not consider the
angr decompiler [57] because we found that extensive engineering effort is required to allow
outputs from angr to be recompiled.

A. Gorzynski and A. F. Donaldson 13:11

Table 1 summarises the key characteristics of these decompilers, which we now discuss in
more detail.

Table 1 Decompilers under test.

Name Input Target CFG recovery

CFR Java bytecode Java Pattern-matching
FernFlower Java bytecode Java Tarjan’s algorithm
JADX Java bytecode Java Pattern-matching
Ghidra Binary C Tarjan’s algorithm
ILSpy .NET assembly C# Pattern-matching

4.1 Binary decompilers
Ghidra [50] is an open-source reverse engineering tool that allows users to perform a range of
analyses on compiled code. We specifically test the decompiler configuration that decompiles
x86-64 machine code to C. Rather than directly generating machine code, FuzzFlesh instead
fleshes graphs into C programs, which are then compiled to machine code using gcc with a
randomly chosen optimisation level. Ghidra disassembles and decompiles these programs to
C code. It uses Tarjan’s algorithm for identifying strongly connected graph components [58]
for control flow recovery. The output programs can typically be re-compiled and executed.
Some minimal adjustments are occasionally required. For example, Ghidra output often
includes a function call to __stack_chk_fail() to indicate that there may be an issue with
the decompilation process, but it does not define this function and so the program fails to
recompile. This adjustment is easily automatable: we simply insert a line into the decompiled
program: void __stack_chk_fail(){ return; }, which allows the program to recompile
and execute without errors or warnings. Based on our experience, Ghidra tends to insert
such calls frequently even within programs that it otherwise appears to have decompiled
correctly, which indicates a degree of over-caution. In the case that the __stack_chk_fail()
call relates to a genuine problem with the decompiled code, our test oracle should identify
the decompilation as incorrect since the program output will be altered.

4.2 Java decompilers
FernFlower [30], CFR [5], and JADX [32] are open-source decompilers that decompile Java
bytecode class files to Java source code. CFR and JADX use pattern-matching control
flow recovery algorithms that are supplemented by heuristics (for example in the handling
of switch statements). FernFlower uses some pattern-matching for code generation but,
similarly to Ghidra, also makes use of Tarjan’s algorithm (see Section 4.1). It was the
first Java decompiler that specifically aimed to be able to deobfuscate code, and it includes
modules specifically for restructuring control flow that is not representable in Java.

FuzzFlesh generates test programs in textual Java bytecode, which are converted to binary
Java class files using Jasmin [47]. We generate Java bytecode rather than Java because it
allows more expressive control flow. Specifically, Java does not allow irreducible control
flow [23, Section 2.2.6] (see Section 2.1). However, Java bytecode does allow irreducible
control flow; the bytecode instruction set [51] includes an unrestricted goto command that
can be used to transfer control to anywhere in the program. This difference in restrictions
allows compilers that generate bytecode to perform optimisations that introduce irreducible
control flow.

ECOOP 2025

13:12 FuzzFlesh: Randomised Testing of Decompilers

It is possible that some Java bytecode programs do not have a corresponding representation
in Java due to differences in restrictions between the languages. In this case, it is expected
that a bytecode decompiler will gracefully refuse to decompile the program. Nevertheless,
since decompilers can be used for security purposes to inspect potentially malicious class files,
it is desirable for bytecode decompilers to be as capable as possible in decompiling atypical
bytecode. At a minimum, the decompiler should provide an informative error message stating
which part of the bytecode it was unable to process.

4.3 C# decompilers
ILSpy [29] is an open source .NET decompiler that decompiles programs expressed in the
.NET intermediate representation, Common Intermediate Language (CIL) to C#. Unlike
the Java decompilers, it does not have to convert irreducible control flow to a reducible
graph because C# supports irreducible control flow via a goto statement. FuzzFlesh has
two modes for targeting CIL: one in which CIL code is generated directly, and another where
C# programs are generated, and then compiled into CIL using the .NET C# compiler csc.

C# programs are typically compiled to CIL, which is then JIT-compiled using the .NET
runtime on Windows and Linux or the mono runtime on Mac OS. The intermediate CIL
programs are not usually optimised ahead of runtime, and there are no options to do so in
.NET or mono. ILSpy decompiles these programs and returns a corresponding C# program.

ILSpy does not apply algorithms to remove or reduce goto statements. This means that
the decompiler output is often very long and consists mainly of gotos rather than other
control flow structures.

5 Evaluation: Bugs found

In this section we answer research questions RQ1 and RQ2 set out in Section 1 and recapped
below. In Section 6 we further evaluate FuzzFlesh in comparison to other decompiler testing
tools to answer the remaining research questions.
RQ1 How effective is FuzzFlesh at identifying decompiler bugs? (Section 5.1)
RQ2 How does the efficacy of FuzzFlesh vary across languages and decompiler toolchains?

(Section 5.2)

5.1 RQ1: Effectiveness of FuzzFlesh for bug-finding
We tested five decompilers, which are described in detail in Section 4 and summarised in
Table 1. FuzzFlesh identified 12 bugs in total, comprising six misdecompilation bugs and
six decompiler failures. Details of these bugs are provided in Table 2. The bugs were found
across a total of four decompilers, which target two different low- to high-level language pairs.
At the time of writing, eight bugs have been confirmed and six fixed by developers. We label
each bug as “M” to denote a misdecompilation, or “R” to denote a refusal to decompile
that we deemed to be likely to be in-scope for the decompiler in question, in line with our
definitions of bug types in Section 2.

Most bugs are related to control flow restructuring. The bugs can be grouped into themes:
cycle bugs, switch bugs, and Java-specific irreducible control flow bugs.

5.1.1 Cycles
At a low level, all program cycles are implemented via branch instructions. The control flow
recovery algorithm must translate these to high-level looping constructs, potentially resorting
to the use of goto statements if these are supported by the target high-level language. As

A. Gorzynski and A. F. Donaldson 13:13

Table 2 List of decompilation bugs found (GitHub issues are hyperlinked to the bug ID)
Type M = misdecompilation, Type R = refusal to decompile.

ID Decompiler Type Description Fixed

G1 Ghidra M Missing jump table entry ✓

G2 Ghidra M Incorrect counter increment ✓

G3 Ghidra M Counter array incorrectly sized
G4 Ghidra M Locals instead of array
G5 Ghidra R Incorrect switch decompilation ✓

C1 CFR M Missing switch case
C2 CFR R Nested switch ✓

C3 CFR R Irreducible control flow cannot be restructured ✓

F1 FernFlower M Incorrect infinite loop
F2 FernFlower R Irreducible control flow cannot be restructured
J1 JADX R Code restructure failure ✓

J2 JADX R Unreachable block

discussed in Section 2, some decompilers use advanced recovery algorithms that aim to
minimise or completely avoid the use of goto, but can be hard to implement correctly.
FuzzFlesh found several bugs related to incorrect decompilation of cycles.

As an example, Figure 4 shows a CFG and path that generated by FuzzFlesh that
triggered a bug in FernFlower after being fleshed into Java bytecode; this is issue F1 in
Table 2. The path is shown by solid edges, while other off-path edges are shown by dotted
lines. Figure 5 shows the CFG and path corresponding to the Java program that was emitted
by FernFlower. The decompiler output contains an infinite loop: FernFlower attempted to
form the code into a while structure but did not correctly determine how the termination
should occur.

Other cycle-related bugs included misdecompilations of loop-control variables by Ghidra.

Figure 4 CFG and path of original program. Figure 5 CFG and path of program decom-
piled by FernFlower containing an infinite loop.

5.1.2 Switch statements

Three bugs were related to the decompilation of switch statements. Figures 6a and 6b
show an example of a switch misdecompilation by Ghidra. The original program contains a
jump table with five distinct instruction addresses (lines 3–7 of Figure 6a). However, the
decompiled code only contains four switch cases (lines 3–6 of Figure 6b): there should be
another case for the value 0. The problem was caused by an issue in the algorithm that
reconstructs loops, which did not correctly handle the existence of a self-edge. This has been
fixed by the Ghidra developers in response to our bug report [36].

ECOOP 2025

https://github.com/NationalSecurityAgency/ghidra/issues/6282
https://github.com/NationalSecurityAgency/ghidra/issues/6820
https://github.com/NationalSecurityAgency/ghidra/issues/6811
https://github.com/NationalSecurityAgency/ghidra/issues/6813
https://github.com/NationalSecurityAgency/ghidra/issues/6819
https://github.com/leibnitz27/cfr/issues/359
https://github.com/leibnitz27/cfr/issues/348
https://github.com/leibnitz27/cfr/issues/360
https://youtrack.jetbrains.com/issue/IDEA-358884
https://youtrack.jetbrains.com/issue/IDEA-331720
https://github.com/skylot/jadx/issues/2274
https://github.com/skylot/jadx/issues/2275

13:14 FuzzFlesh: Randomised Testing of Decompilers

1 switchD_001000b9 :: switchdataD_0010018c
2
3 0010018 c d4 fe ff ff uint FFFFFED4h
4 00100190 98 ff ff ff uint FFFFFF98h
5 00100194 db ff ff ff uint FFFFFFDBh
6 00100198 51 ff ff ff uint FFFFFE51h
7 0010019 c 76 ff ff ff uint FFFFFE76h
8

(a) Original jump table.

1 void test(int* p_1 , int* p_2) {
2 switch (p_2[local_2]){
3 case 1: goto block_D ; ...
4 case 2: goto block_E ; ...
5 case 3: goto block_I ; ...
6 case 4: goto block_F ; ...
7 }
8

(b) Decompiled switch statement.

Figure 6 Illustration of a bug in Ghidra related to switch statements (issue G1 of Table 2).
The jump table contains five entries, but only four of these are captured by switch cases in the
decompiled code.

5.1.3 Java-specific irreducible control flow

As discussed in Section 4.2, Java bytecode allows irreducible control flow while Java does
not. This means that decompilers must structure any irreducible control flow to produce
valid Java. Irreducible control flow can be converted to reducible control flow using several
techniques [8]. We found a number of bugs relating to this conversion process. These bugs
are particularly interesting because they are unlikely to be found by program generation
approaches that do not specifically aim to create unusual control flow structures.

An example of an irreducible CFG produced by FuzzFlesh is shown in Figure 7. This
formed the basis for a program that caused a decompiler failure in FernFlower, which we
reported in issue F2. Feedback in the discussion thread for the issue indicates that FernFlower
should be able to handle simple cases of irreducible control flow such as this one. Indeed, the
removal of any edge, node or statement from the CFG resulted in a program that FernFlower
was able to decompile, even those still containing irreducible control flow.

Figure 7 CFG that triggered a decompiler failure bug in FernFlower (issue F2 of Table 2).

5.2 RQ2: Efficacy of FuzzFlesh across languages and decompiler
toolchains

FuzzFlesh found bugs in binary and Java decompilers but was not successful at finding bugs
in C# decompilers. This is likely to be because CIL is fairly high level (unlike machine code),
C# allows unrestricted control flow (unlike Java), and ILSpy does not appear to attempt to
minimise the number of goto statements in the output code.

FuzzFlesh is not able to test decompilers whose output requires extensive engineering
effort to recompile, for example angr [57].

https://youtrack.jetbrains.com/issue/IDEA-331720

A. Gorzynski and A. F. Donaldson 13:15

6 Evaluation: Comparison to other approaches

In this section we answer research questions RQ3 and RQ4 set out in Section 1 and recapped
below by evaluating the efficacy of FuzzFlesh and its ability to exercise the control flow
recovery components of decompilers in comparison to other decompiler testing approaches.
RQ3 How thoroughly is FuzzFlesh able to test the control flow recovery components of

decompilers in comparison to other decompiler testing approaches? (Section 6.2)
RQ4 To what extent can FuzzFlesh identify bugs that are different from those identified by

other decompiler testing approaches? (Section 6.3)

6.1 Overview of decompiler testing approaches
We compare FuzzFlesh to two other tools4 that aim to test decompilers:

DecFuzzer [41], a binary decompiler fuzzer that targets open-source decompilers Ghidra
and RetDec and commercial decompilers IDA-Pro and JEB3. It uses Csmith to generate
an initial corpus of programs for de- and recompilation. Only a subset of the Csmith
grammar is used to improve the likelihood of recompilability. Mutations are applied to
any programs that successfully recompile, designed to yield programs that are equivalent
modulo inputs [37]. Comparing results between original and mutated programs then
provides a metamorphic test oracle [11].
JD-Tester [43], a Java decompiler fuzzer that targets three Java decompilers: CFR,
FernFlower, and JADX. JD-Tester uses two existing Java program generators: JavaFuzzer
and Hephaestus. Each program is compiled to a class file, decompiled by the decompiler
under test, and recompiled. The output of the original and recompiled program are
compared to find decompilation bugs.

Table 3 Overview of decompiler testing tools.

Tool Generator Decompilation scenarios Control flow
bugsbin to C class to Java CIL to C#

FuzzFlesh FuzzFlesh ✓ ✓ ✓ ✓

DecFuzzer Csmith ✓

JD-Tester JavaFuzzer /
Hephaestus

✓ ✓

Table 3 summarises the characteristics of each testing approach, and highlights two key
features of FuzzFlesh. First, FuzzFlesh covers multiple (low-level, high-level) language pairs,
while the other tools only cover a single language pair. We are not aware of any decompiler
testing tool that is able to target multiple languages. This is because of the simple nature
of program generation in FuzzFlesh. For example, FuzzFlesh devotes only 86 lines of code
to Java-specific program generation, while JavaFuzzer consists of 3,412 lines and Csmith
contains around 40,000 lines of code.5 This feature means that it is easy to add an additional
language pair to FuzzFlesh. Most of the program generation logic is language-independent,
which means it does not need to be repeated for each new language.

4 A recent paper evaluates binary decompilers using Dsmith [7], a fuzzer based on Csmith. The artifact
was released in September 2024; due to time constraints we have not included it in our evaluation.

5 Lines of code were measured using the cloc tool.

ECOOP 2025

13:16 FuzzFlesh: Randomised Testing of Decompilers

Second, Fuzzflesh targets control flow recovery. DecFuzzer and JD-Tester programs do
contain complex control flow, however DecFuzzer is not able to find any control-flow related
bugs. A detailed comparison of the nature of bugs found by each tool is given in Section 6.3.

6.2 RQ3: Comparison of thoroughness of control flow recovery testing
Code coverage measures the proportion of the decompiler source code that is executed
(“covered”) during testing. This provides a high-level indication of the extent to which a
testing tool is exercising the decompiler. However, coverage is limited as an evaluation metric
because (a) it does not provide any information on the relative importance of different lines,
and (b) it is possible to execute code that contains a bug without actually triggering the
bug. We therefore also include a comparison of actual bugs in Section 6.3.

Table 4 summarises the aggregate line coverage of each decompiler by FuzzFlesh, JD-
Tester and DecFuzzer. The coverage is calculated by running each tool in fuzzing mode 8
hours on a 16-core 128GB RAM machine running Ubuntu 22.04. The “path known” and
“path unknown” configurations of FuzzFlesh refer to whether the directions array that guides
the path through the CFG are hard-coded into the program or passed at runtime respectively
(see Section 3.3). The “JavaFuzzer” and “Hephaestus” configurations of JD-tester refer to the
underlying Java program generator used (see Section 6.1). We report bytecode instruction
coverage for Java and line coverage for C throughout; branch coverage follows a similar
pattern but is lower for all tools (not reported here but available in the accompanying
artifact).

We summarise our main findings, before giving more specific detail on the experimental
setup and results for binary decompilers and Java decompilers in Sections 6.2.1 and 6.2.2,
respectively.

Overall, coverage of each decompiler is highest for the language-specific testing tools
JD-Tester and DecFuzzer. This is expected because they are far more syntactically expressive
than the FuzzFlesh programs. Nevertheless, despite its limited syntax, FuzzFlesh achieves
reasonable overall coverage of up to 36% of Ghidra, 31% of CFR, 42% of FernFlower, and
37% of JADX. The different FuzzFlesh generation modes generally achieve similar levels of
overall coverage, as do the different program generators used by JD-Tester.

As part of these experiments we also computed coverage data at checkpoints of 2 and
4 hours of each 8 hour fuzzing run, and found that coverage had already plateaued after 2
hours for all tools.

Table 4 Instruction coverage comparison for an 8 hour fuzzing run (%).

Testing tool

Decompiler FuzzFlesh
path known

FuzzFlesh
path unknown DecFuzzer JD-Tester

JavaFuzzer
JD-tester

Hephaestus

Ghidra 36 31 39 – –
CFR 31 30 – 53 42
FernFlower 42 41 – 55 48
JADX 37 36 – 50 44

6.2.1 Binary decompiler coverage
Ghidra is implemented in a combination of Java and C++. We restrict our coverage
comparison to the decompiler component, which is implemented entirely in C++. We use
gcov and gcovr to analyse coverage.

A. Gorzynski and A. F. Donaldson 13:17

DecFuzzer generates programs using Csmith. These are compiled to binaries, decompiled
using Ghidra, and recompiled. Successfully recompiled programs are used as seeds for
equivalence modulo inputs testing. DecFuzzer aims to improve the likelihood of successful
recompilation by restricting Csmith to produce only one function (besides main()), limiting
the complexity of expressions, and excluding arrays, structs, unions, pointers and various
other language features. The restricted Csmith command in full is:

csmith –no-arrays –no-structs –no-unions –no-safe-math –no-pointers
–no-longlong –max-funcs 1 –max-expr-complexity 5

As discussed further in Section 6.3.2, despite these restrictions DecFuzzer’s use of Csmith
does not lead to programs that can be successfully recompiled after decompilation by recent
versions of Ghidra.

In addition to overall coverage, we compare the unique coverage of each testing tool.
Table 5 shows that FuzzFlesh is able to cover around 12,700 lines within Ghidra that
DecFuzzer programs are not able to cover. In particular, FuzzFlesh covers parts of the control
flow restructuring algorithms (within block.cc) that DecFuzzer does not cover.

Table 5 Unique line coverage comparison for the binary decompiler Ghidra.

Lines covered by
Decompiler FuzzFlesh only DecFuzzer only Both Neither Total lines

Ghidra 12,700 6,300 12,800 39,800 71,600

6.2.2 Java decompiler coverage

We use the Jacoco code coverage tool to measure coverage of the bytecode-to-Java decompilers,
which are implemented in Java. Fuzzing mode involves program generation, compilation,
decompilation, recompilation, and test oracle evaluation. Neither of these tools requires an
initial seed corpus for test generation. We then gather the programs that were generated by
each testing tool and decompile them using versions of CFR, FernFlower, and JADX that
are instrumented with Jacoco. The motivation for separating the coverage measurement
from the previous step is that coverage instrumentation can slow program execution, which
could lead to underestimating the coverage achieved in a given time budget.

In addition to overall coverage, we also analyse the unique coverage of each tool. Although
JD-Tester achieves higher overall coverage, FuzzFlesh is able to cover some parts of each
decompiler’s code that are not covered by JD-tester. Table 6 shows the number of instructions
that are covered by only FuzzFlesh or only JD-Tester. The instructions covered by FuzzFlesh
that are not covered by JD-Tester mainly relate to control-flow recovery. For example,
FuzzFlesh covers instructions in the following classes that are not covered by JD-Tester
(non-exhaustive list):

CFR: SwitchReplacer, LoopIdentifier, JumpsIntoDoRewriter, and JoinBlocks
FernFlower: IrreducibleCFGDeobfuscator, ControlFlowGraph, SwitchStatement, Jum-
pInstruction, and DomHelper (which calculates node dominance),
JADX: BlockSplitter, BlockProcessor, FixMultiEntryLoops, SwitchInsn, and LoopRegion-
Visitor

ECOOP 2025

13:18 FuzzFlesh: Randomised Testing of Decompilers

Table 6 Unique bytecode instruction coverage comparison for Java decompilers.

Instructions covered by

Decompiler FuzzFlesh only JD-Tester only Both Neither Total
instructions

CFR 800 35,300 51,000 79,000 166,100
FernFlower 4,700 15,900 34,900 38,300 93,800
JADX 1,300 17,100 43,400 60,400 122,200

6.3 RQ4: The kinds of bugs found by FuzzFlesh vs. other approaches
While code coverage provides a useful overview of the potential capabilities of decompiler
testing tools, it is only a proxy for the ideal fuzzer performance measurement: the potential
number of “useful” bugs that can be found [33]. In this section we evaluate the bug-finding
ability of FuzzFlesh in comparison to DecFuzzer and JD-Tester.

6.3.1 Bugs in all decompilers
FuzzFlesh is the only decompiler testing tool that we are aware of that is able to find bugs in
decompilers that target different language-pairs. In this respect it has a higher bug-finding
potential than other tools, since it can be easily extended to other languages in the future,
while DecFuzzer and JD-Tester both rely on language-specific program generators.

6.3.2 Bugs in binary decompilers
Problems with recompilability within DecFuzzer mean that we cannot perform a head-to-
head comparison of bug-finding ability. No DecFuzzer programs are recompilable using the
latest Ghidra plugin, which means that they are not able to identify misdecompilations.
DecFuzzer runs on Radare2, which is a reverse-engineering framework that uses a Ghidra
plugin for decompilation. However, multiple compiler errors occur when trying to recompile
the decompiled programs within DecFuzzer’s workflow. The errors include trivial issues such
as “unknown type name uint” but also more complex issues such as the incorrect number of
arguments to functions. Modifying DecFuzzer to support recompilability would likely require
a significant amount of engineering work to address the latest Ghidra output format. This
illustrates the difficulty of ensuring recompilability. We contacted the authors of DecFuzzer,
and they shared with us the commit used for Radare2 and their best estimate of the versions
of the Ghidra plugin, r2ghidra, and other tools that were used, however some of the original
artifacts from the paper (such as the contemporary binaries) are no longer available. It
has therefore not been possible to reconstruct a working version of the tool to perform a
direct bug-finding comparison due to incompatibilities between the historic Ghidra versions
and current binaries. The simple syntax used by FuzzFlesh means that we are less likely
to encounter this type of recompilation issues in the future, because we expect that future
versions of all tools will continue to support basic syntax.

Considering the original bugs reported to have been found by DecFuzzer [41] and the
actual bugs found by FuzzFlesh: FuzzFlesh mostly identifies control flow related bugs, while
DecFuzzer mainly identified bugs relating to type recovery and optimisations, and was not
able to find any bugs within the control flow recovery module of Ghidra or any other binary
decompiler. FuzzFlesh found a total of 6 bugs in Ghidra, at least three of which are confirmed
by developers to be directly related to control flow recovery. While the sample size is small,
this indicates that FuzzFlesh is likely to be capable of finding control flow related bugs that
DecFuzzer would not identify.

A. Gorzynski and A. F. Donaldson 13:19

6.3.3 Bugs in Java decompilers
JD-Tester is able to find control flow related bugs. This is because (a) the programs generated
by JD-Tester include control flow structures, and (b) decompiling bytecode to Java is easier
than decompiling machine code (for example because instructions and data are separate).
This means that more programs are recompilable than in the case of binary decompiler
testing, which enables the detection of control flow misdecompilations. However, some of the
bugs identified by FuzzFlesh are unlikely to be discoverable by JD-Tester due to the complex
control flow employed. To compare the tools directly, we evaluate whether JD-Tester is
able to find the control flow related bugs that FuzzFlesh identified in Java decompilers. We
restrict the comparison to bugs that have been fixed.

To do this, we rely on the notion of “correcting commit” used in an empirical study of
compiler testing techniques [9]: the commit in which a bug is fixed (so that the bug manifests
before the commit but not after). This is essential because otherwise, especially in the case
of misdecompilation bugs, it is not possible to directly identify which underlying bug is
triggered by a bug-inducing test program. Our evaluation works as follows:

We identify correcting commits associated with two CFR bugs and one JADX bug.
We run JD-Tester on a preceding commit (i.e. one for which we know that the bug is
present) for 2 hours and identify any failing test cases. These are potential bug-triggering
programs that could identify the bug.
We run the failing test cases on the correcting commit. If any test now passes, then we
infer that its original failure was caused by the bug. Such a test identifies the bug.

We found that none of the JD-Tester programs that failed on the preceding commit
passed on the correcting commit, indicating that none of the potential bug-triggering test
programs produced by JD-Tester were caused by these specific bugs. Although the time
budget is limited, in contrast FuzzFlesh was able to identify these bugs almost immediately.
These results suggest that JD-Tester is not able to identify some bugs that are found by
FuzzFlesh. This evaluation is based on a very small sample size of the two correcting commits
(recall that we focus here only on bugs that have been fixed), however the coverage analysis
provides supporting evidence that JD-Tester may not be able to trigger bugs in some parts
of the decompiler code. While neither of the FernFlower bugs have been fixed, one relates to
irreducible control flow restructuring. This would certainly not be detectable by JD-Tester
because its programs do not contain irreducible control flow. Similarly, the Jadx bug would
not be detectable by JD-Tester because it related to irreducible control flow restructuring.

To summarise, in prior work JD-Tester has been shown to perform well at finding a range
of bugs in Java decompilers, including some control flow bugs [41]. However, FuzzFlesh was
able to identify some previously-unknown and potentially significant bugs that JD-Tester
appears unable to find.

7 Related Work

Decompiler testing. Historically, the main evaluation metrics used to assess decompilers
were focused on readability, for example code compactness and complexity (measured by
cyclic complexity and the number of gotos in a decompiled program). In recent years there
has been an increasing focus on correctness within decompiler research [41].

As discussed in Section 6, as far as we are aware FuzzFlesh is the first random program
generator that is specifically targeted at decompilers. JD-Tester [43] uses a differential testing
approach with the pre-existing program generator JavaFuzzer [66]. It finds 62 bugs in three

ECOOP 2025

13:20 FuzzFlesh: Randomised Testing of Decompilers

Java decompilers: CFR, FernFlower, and JADX. A vast majority of the bugs reported in
this study are decompilation failures and crashes, most of which have not been fixed by
developers. This highlights the importance of focusing on misdecompilations that are more
likely to present a serious problem to users.

DecFuzzer [41] evaluates leading commercial and open-source decompilers using the
existing program generator Csmith [68] to generate a corpus of programs. It uses equivalence
modulo inputs testing [37] to compare the performance of four binary decompilers (Ghidra [50],
RetDec [3], IDA-Pro [27] and Jeb3 [53]). They find 13 bugs, however they report that this
required “extensive manual effort” from expert security analysts.

We recently became aware of D-Helix [71], which proposes a general framework for
decompiler testing that is intended to assist developers with decompilation tasks, and
identifies 25 bugs across binary decompilers Ghidra and angr. D-Helix detects semantic
discrepancies between the binary input and the decompiled output by performing symbolic
execution on both the original binary and a recompiled decompiled output. It also includes a
debugging tool that helps to pinpoint the source of the discrepancy. In future work it would
be interesting to compare FuzzFlesh experimentally with D-Helix.

Compiler testing. We have used techniques from the wider compiler fuzzing domain. In
recent years there has been a surge of interest in randomised compiler testing techniques, for
languages such as C [68, 42, 37], Java / Java bytecode [12, 69, 62], various GPU programming
languages [38, 14, 15], Rust [56, 61], Verilog [26], as well as techniques for testing machine
learning compilers [39, 40, 44], and techniques that use large language models for randomised
compiler testing [67].

Our approach is directly inspired work on testing compilers for SPIR-V, a low level
language for GPU programming [34], in which skeleton control flow graphs generated by the
Alloy tool [31] are fleshed into executable SPIR-V programs. Our approach is somewhat
related to a compiler testing method called skeletal program enumeration where the control
flow structure of an existing program is used as the basis for generating a large set of
programs that populate this structure with different uses of program variables [70]. Other
program generation approaches include creating full programs from scratch [68, 42] and
mutating existing full programs [37, 15, 49, 38]. A comprehensive review of current state-of-
the-art compiler testing approaches is given by Chen et al. [10]. Recently, Large Language
Models (LLMs) have been used to generate programs in a range of languages based on
user prompts [63]. However, these programs are only designed to detect crash bugs due to
the difficulty of ensuring that LLM-generated programs are free from undefined behaviour
(UB). We are not aware of any other program generator targeting miscompilations or
misdecompilations that is designed to be easily extensible to other languages.

Strategies for constructing test oracles include differential testing [46, 38, 68, 42], where
the output of similar compilation systems are compared, and metamorphic testing [11, 37,
49, 38, 15], which specifies how changes in the input source code should affect the output
code produced by the compiler.

8 Conclusion and future work

CFG-based program generation is a novel decompiler testing approach that we have used
to identify 12 bugs across four decompilers covering two languages. Our implementation,
FuzzFlesh, demonstrates the feasibility of sharing a language-independent random CFG
and path generator across several different languages with a small amount of incremental
programming time.

A. Gorzynski and A. F. Donaldson 13:21

Areas for further work include alternative CFG and path generation algorithms. For
example, mining a corpus of graph structures from real-world programs and mutating them.
This would ensure that realistic control flow structures are included in test cases. In addition,
more sophisticated path generation algorithms could be created to ensure that each generated
CFG is well-explored. For example, repeating path cycles to ensure that loop-like behaviour
is included in the test programs.

CFG-based program generation also has the potential to be applied to find bugs in
general-purpose compilers. The self-checking nature of the test cases mean that only a single
compiler is required, and the ease of adding new languages mean that the approach could
be used for newly established compiler toolchains. It is most likely to be useful for testing
the control flow optimisation passes of compilers. However, our current implementation is
unlikely to produce programs that will detect bugs in mainstream compilers without further
work. Decompiler control flow recovery is challenging because it involves imposing structure
onto spaghetti code: the more bizarre the control flow, the more challenging decompilation
is. Compiling complex control flow has different challenges: it is permissible for a compiler
to produce spaghetti code as output, and if the control flow of the source program is too
complex then it is possible that the compiler will not attempt to optimise it. Therefore,
further work in this area could explore graph generation approaches that may be more likely
to find bugs in compilers. For example, graphs could be generated in a way that will be
sufficiently complex to thoroughly exercise control flow optimisation compiler passes, but not
so complex that compilers will not attempt to perform optimisation.

References
1 Jaime Acosta and Daniel Krych. Hands-on cybersecurity studies: Uncovering and decoding

malware communications-malware analysis with Ghidra. Technical Report ARL-TR-9129,
Computational and Information Sciences Directorate, DEVCOM Army Research Laboratory,
2020. Accessed: 2025-04-25. URL: https://apps.dtic.mil/sti/trecms/pdf/AD1119396.pdf.

2 Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA,
2006.

3 Avast. RetDec: A retargetable machine-code decompiler based on LLVM, 2022. Accessed:
2025-04-25. URL: https://github.com/avast/retdec.

4 Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron Miao, Tiffany
Bao, Adam Doupé, Yan Shoshitaishvili, and Ruoyu Wang. Ahoy SAILR! there is no need to
DREAM of C: A Compiler-Aware structuring algorithm for binary decompilation. In 33rd
USENIX Security Symposium (USENIX Security 24), pages 361–378, Philadelphia, PA, August
2024. USENIX Association. Accessed: 2025-04-25. URL: https://www.usenix.org/system/
files/usenixsecurity24-basque.pdf.

5 Lee Benfield. CFR - another Java decompiler, 2025. Accessed: 2025-04-25. URL: https:
//www.benf.org/other/cfr/.

6 David Brumley, JongHyup Lee, Edward J. Schwartz, and Maverick Woo. Native x86 decom-
pilation using semantics-preserving structural analysis and iterative control-flow structuring.
In 22nd USENIX Security Symposium (USENIX Security 13), pages 353–368, Washington,
D.C., August 2013. USENIX Association. Accessed: 2025-04-25. URL: https://www.usenix.
org/system/files/conference/usenixsecurity13/sec13-paper_schwartz.pdf.

7 Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen. Evaluating the effectiveness of
decompilers. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2024, pages 491–502, New York, NY, USA, 2024. Association for
Computing Machinery. doi:10.1145/3650212.3652144.

ECOOP 2025

https://apps.dtic.mil/sti/trecms/pdf/AD1119396.pdf
https://github.com/avast/retdec
https://www.usenix.org/system/files/usenixsecurity24-basque.pdf
https://www.usenix.org/system/files/usenixsecurity24-basque.pdf
https://www.benf.org/other/cfr/
https://www.benf.org/other/cfr/
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_schwartz.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_schwartz.pdf
https://doi.org/10.1145/3650212.3652144

13:22 FuzzFlesh: Randomised Testing of Decompilers

8 Larry Carter, Jeanne Ferrante, and Clark D. Thomborson. Folklore confirmed: reducible flow
graphs are exponentially larger. In Alex Aiken and Greg Morrisett, editors, Conference Record
of POPL 2003: The 30th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, New Orleans, Louisisana, USA, January 15-17, 2003, pages 106–114. ACM, 2003.
doi:10.1145/604131.604141.

9 Junjie Chen, Wenxiang Hu, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie.
An empirical comparison of compiler testing techniques. In Laura K. Dillon, Willem Visser,
and Laurie A. Williams, editors, Proceedings of the 38th International Conference on Software
Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016, pages 180–190. ACM, 2016.
doi:10.1145/2884781.2884878.

10 Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan Hao, and
Lu Zhang. A survey of compiler testing. ACM Comput. Surv., 53(1):4:1–4:36, 2021. doi:
10.1145/3363562.

11 T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01, Department of Computer Science, The
Hong Kong University of Science and Technology, 1998. Accessed: 2025-04-25. URL: https:
//www.cse.ust.hk/faculty/scc/publ/CS98-01-metamorphictesting.pdf.

12 Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. Coverage-directed
differential testing of JVM implementations. In Chandra Krintz and Emery D. Berger, editors,
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 85–99. ACM,
2016. doi:10.1145/2908080.2908095.

13 Cristina Cifuentes and K. John Gough. Decompilation of binary programs. Softw. Pract. Exp.,
25(7):811–829, 1995. doi:10.1002/SPE.4380250706.

14 Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. Automated testing
of graphics shader compilers. Proc. ACM Program. Lang., 1(OOPSLA):93:1–93:29, 2017.
doi:10.1145/3133917.

15 Alastair F. Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez
Maselco, and Antoni Karpinski. Test-case reduction and deduplication almost for free with
transformation-based compiler testing. In Stephen N. Freund and Eran Yahav, editors, PLDI
’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, pages 1017–1032. ACM, 2021.
doi:10.1145/3453483.3454092.

16 Luke Dramko, Jeremy Lacomis, Edward J. Schwartz, Bogdan Vasilescu, and Claire Le Goues.
A taxonomy of C decompiler fidelity issues. In Davide Balzarotti and Wenyuan Xu, editors,
33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA, USA, August
14-16, 2024. USENIX Association, 2024. Accessed: 2025-04-25. URL: https://www.usenix.
org/system/files/usenixsecurity24-dramko.pdf.

17 Lukás Durfina, Jakub Kroustek, and Petr Zemek. PsybOt malware: A step-by-step decompil-
ation case study. In Ralf Lämmel, Rocco Oliveto, and Romain Robbes, editors, 20th Working
Conference on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013,
pages 449–456. IEEE Computer Society, 2013. doi:10.1109/WCRE.2013.6671321.

18 Mike Van Emmerik and Trent Waddington. Using a decompiler for real-world source recovery.
In 11th Working Conference on Reverse Engineering, WCRE 2004, Delft, The Netherlands,
November 8-12, 2004, pages 27–36. IEEE Computer Society, 2004. doi:10.1109/WCRE.2004.
42.

19 P Erdös and A Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

20 Miguel Gómez-Zamalloa, Elvira Albert, and Germán Puebla. Decompilation of Java bytecode
to Prolog by partial evaluation. Inf. Softw. Technol., 51(10):1409–1427, 2009. doi:10.1016/J.
INFSOF.2009.04.010.

https://doi.org/10.1145/604131.604141
https://doi.org/10.1145/2884781.2884878
https://doi.org/10.1145/3363562
https://doi.org/10.1145/3363562
https://www.cse.ust.hk/faculty/scc/publ/CS98-01-metamorphictesting.pdf
https://www.cse.ust.hk/faculty/scc/publ/CS98-01-metamorphictesting.pdf
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1002/SPE.4380250706
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3453483.3454092
https://www.usenix.org/system/files/usenixsecurity24-dramko.pdf
https://www.usenix.org/system/files/usenixsecurity24-dramko.pdf
https://doi.org/10.1109/WCRE.2013.6671321
https://doi.org/10.1109/WCRE.2004.42
https://doi.org/10.1109/WCRE.2004.42
https://doi.org/10.1016/J.INFSOF.2009.04.010
https://doi.org/10.1016/J.INFSOF.2009.04.010

A. Gorzynski and A. F. Donaldson 13:23

21 Amber Gorzynski. FuzzFlesh, 2024. URL: https://github.com/ambergorzynski/control_
flow_fleshing.

22 Amber Gorzynski. FuzzFlesh artifact, 2024. URL: https://github.com/ambergorzynski/
control_flow_fleshing/tree/ecoop-2025.

23 James Gosling and Henry McGilton. The Java Language Environment, 1996. Accessed:
2025-04-25. URL: https://www.oracle.com/java/technologies/simple-familiar.html.

24 Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. Gigahorse: thorough,
declarative decompilation of smart contracts. In Joanne M. Atlee, Tevfik Bultan, and Jon
Whittle, editors, Proceedings of the 41st International Conference on Software Engineering,
ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 1176–1186. IEEE / ACM, 2019.
doi:10.1109/ICSE.2019.00120.

25 Andrea Gussoni, Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. A comb
for decompiled C code. In Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, ASIA CCS ’20, pages 637–651, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3320269.3384766.

26 Yann Herklotz and John Wickerson. Finding and understanding bugs in FPGA synthesis tools.
In Stephen Neuendorffer and Lesley Shannon, editors, FPGA ’20: The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Seaside, CA, USA, February
23-25, 2020, pages 277–287. ACM, 2020. doi:10.1145/3373087.3375310.

27 Hex-Rays. IDA Pro, 2025. Accessed: 2025-04-25. URL: https://hex-rays.com/ida-pro/.
28 Joshua Homan. Deobfuscating Python bytecode, 2016. Accessed: 2025-04-25. URL: https:

//cloud.google.com/blog/topics/threat-intelligence/deobfuscating-python.
29 ICSharpCode. ILSpy, 2025. Accessed: 2025-04-25. URL: https://github.com/icsharpcode/

ILSpy.
30 IntelliJ. Fernflower, 2025. Accessed: 2025-04-25. URL: https://github.com/

JetBrains/intellij-community/blob/master/plugins/java-decompiler/engine/src/
org/jetbrains/java/decompiler.

31 Daniel Jackson. Alloy: a language and tool for exploring software designs. Commun. ACM,
62(9):66–76, 2019. doi:10.1145/3338843.

32 JADX Authors. JADX, 2025. Accessed: 2025-04-25. URL: https://github.com/skylot/jadx.
33 George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluating fuzz

testing. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 2123–2138. ACM, 2018. doi:
10.1145/3243734.3243804.

34 Vasileios Klimis, Jack Clark, Alan Baker, David Neto, John Wickerson, and Alastair F.
Donaldson. Taking back control in an intermediate representation for GPU computing. Proc.
ACM Program. Lang., 7(POPL):1740–1769, 2023. doi:10.1145/3571253.

35 P. L. Krapivsky and S. Redner. Organization of growing random networks. Physical Review
E, 63(6), May 2001. doi:10.1103/physreve.63.066123.

36 Ryan Kurtz. Git commit fixing a bug found by fuzzflesh in Ghidra, 2024. Ac-
cessed: 2025-04-25. URL: https://github.com/NationalSecurityAgency/ghidra/commit/
6ede2b498f75e29c13fe64d3ce7549e90e17aa2b.

37 Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence modulo
inputs. In Michael F. P. O’Boyle and Keshav Pingali, editors, ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, pages 216–226. ACM, 2014. doi:10.1145/2594291.2594334.

38 Christopher Lidbury and Alastair F. Donaldson. Dynamic race detection for C++11. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, pages 443–457. ACM, 2017. doi:10.1145/3009837.3009857.

ECOOP 2025

https://github.com/ambergorzynski/control_flow_fleshing
https://github.com/ambergorzynski/control_flow_fleshing
https://github.com/ambergorzynski/control_flow_fleshing/tree/ecoop-2025
https://github.com/ambergorzynski/control_flow_fleshing/tree/ecoop-2025
https://www.oracle.com/java/technologies/simple-familiar.html
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3320269.3384766
https://doi.org/10.1145/3373087.3375310
https://hex-rays.com/ida-pro/
https://cloud.google.com/blog/topics/threat-intelligence/deobfuscating-python
https://cloud.google.com/blog/topics/threat-intelligence/deobfuscating-python
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ILSpy
https://github.com/JetBrains/intellij-community/blob/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://github.com/JetBrains/intellij-community/blob/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://github.com/JetBrains/intellij-community/blob/master/plugins/java-decompiler/engine/src/org/jetbrains/java/decompiler
https://doi.org/10.1145/3338843
https://github.com/skylot/jadx
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3571253
https://doi.org/10.1103/physreve.63.066123
https://github.com/NationalSecurityAgency/ghidra/commit/6ede2b498f75e29c13fe64d3ce7549e90e17aa2b
https://github.com/NationalSecurityAgency/ghidra/commit/6ede2b498f75e29c13fe64d3ce7549e90e17aa2b
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/3009837.3009857

13:24 FuzzFlesh: Randomised Testing of Decompilers

39 Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming
Zhang. NNSmith: Generating diverse and valid test cases for deep learning compilers. In
Tor M. Aamodt, Natalie D. Enright Jerger, and Michael M. Swift, editors, Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023,
pages 530–543. ACM, 2023. doi:10.1145/3575693.3575707.

40 Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. Coverage-guided tensor
compiler fuzzing with joint IR-pass mutation. Proc. ACM Program. Lang., 6(OOPSLA1):1–26,
2022. doi:10.1145/3527317.

41 Zhibo Liu and Shuai Wang. How far we have come: Testing decompilation correctness of C
decompilers. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2020, pages 475–487, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3395363.3397370.

42 Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing for C and C++
compilers with yarpgen. Proc. ACM Program. Lang., 4(OOPSLA):196:1–196:25, 2020. doi:
10.1145/3428264.

43 Yifei Lu, Weidong Hou, Minxue Pan, Xuandong Li, and Zhendong Su. Understanding
and finding Java decompiler bugs. Proc. ACM Program. Lang., 8(OOPSLA1), April 2024.
doi:10.1145/3649860.

44 Haoyang Ma, Qingchao Shen, Yongqiang Tian, Junjie Chen, and Shing-Chi Cheung. Fuzzing
deep learning compilers with HirGen. In René Just and Gordon Fraser, editors, Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2023, Seattle, WA, USA, July 17-21, 2023, pages 248–260. ACM, 2023. doi:10.1145/3597926.
3598053.

45 Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti. The
convergence of source code and binary vulnerability discovery - A case study. In Yuji Suga,
Kouichi Sakurai, Xuhua Ding, and Kazue Sako, editors, ASIA CCS ’22: ACM Asia Conference
on Computer and Communications Security, Nagasaki, Japan, 30 May 2022 - 3 June 2022,
pages 602–615. ACM, 2022. doi:10.1145/3488932.3497764.

46 William M. McKeeman. Differential testing for software. Digit. Tech. J., 10(1):100–107, 1998.
Accessed: 2025-04-25. URL: http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v10-01_
1998.pdf.

47 Jonathan Meyner and Daniel Reynaud. Jasmin, 2004. Accessed: 2025-04-25. URL: https:
//jasmin.sourceforge.net/.

48 Omid Mirzaei, Roman Vasilenko, Engin Kirda, Long Lu, and Amin Kharraz. SCRUTINIZER:
detecting code reuse in malware via decompilation and machine learning. In Leyla Bilge,
Lorenzo Cavallaro, Giancarlo Pellegrino, and Nuno Neves, editors, Detection of Intrusions and
Malware, and Vulnerability Assessment - 18th International Conference, DIMVA 2021, Virtual
Event, July 14-16, 2021, Proceedings, volume 12756 of Lecture Notes in Computer Science,
pages 130–150. Springer, 2021. doi:10.1007/978-3-030-80825-9_7.

49 Kazuhiro Nakamura and Nagisa Ishiura. Random testing of C compilers based on test program
generation by equivalence transformation. In 2016 IEEE Asia Pacific Conference on Circuits
and Systems, APCCAS 2016, Jeju, South Korea, October 25-28, 2016, pages 676–679. IEEE,
2016. doi:10.1109/APCCAS.2016.7804063.

50 National Security Agency. Ghidra - reverse software engineering framework, 2025. Accessed:
2025-04-25. URL: https://ghidra-sre.org/.

51 Oracle. The Java virtual machine instruction set, 2025. Accessed: 2025-04-25. URL: https:
//docs.oracle.com/javase/specs/jvms/se24/html/jvms-6.html.

52 Jihee Park, Sungho Lee, Jaemin Hong, and Sukyoung Ryu. Static analysis of JNI programs
via binary decompilation. IEEE Trans. Software Eng., 49(5):3089–3105, 2023. doi:10.1109/
TSE.2023.3241639.

https://doi.org/10.1145/3575693.3575707
https://doi.org/10.1145/3527317
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3428264
https://doi.org/10.1145/3649860
https://doi.org/10.1145/3597926.3598053
https://doi.org/10.1145/3597926.3598053
https://doi.org/10.1145/3488932.3497764
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v10-01_1998.pdf
http://www.dtjcd.vmsresource.org.uk/pdfs/dtj_v10-01_1998.pdf
https://jasmin.sourceforge.net/
https://jasmin.sourceforge.net/
https://doi.org/10.1007/978-3-030-80825-9_7
https://doi.org/10.1109/APCCAS.2016.7804063
https://ghidra-sre.org/
https://docs.oracle.com/javase/specs/jvms/se24/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se24/html/jvms-6.html
https://doi.org/10.1109/TSE.2023.3241639
https://doi.org/10.1109/TSE.2023.3241639

A. Gorzynski and A. F. Donaldson 13:25

53 PNF Software. JEB3, 2013. Accessed: 2025-04-25. URL: https://www.pnfsoftware.com/
blog/category/jeb3/.

54 Bernardo Quintero. From assistant to analyst: The power of Gemini 1.5 Pro for mal-
ware analysis, 2024. Accessed: 2025-04-25. URL: https://cloud.google.com/blog/topics/
threat-intelligence/gemini-for-malware-analysis.

55 Pemma Reiter, Hui Jun Tay, Westley Weimer, Adam Doupé, Ruoyu Wang, and Stephanie For-
rest. Automatically mitigating vulnerabilities in x86 binary programs via partially recompilable
decompilation. CoRR, abs/2202.12336, 2022. arXiv:2202.12336.

56 Mayank Sharma, Pingshi Yu, and Alastair F. Donaldson. RustSmith: Random differential
compiler testing for rust. In René Just and Gordon Fraser, editors, Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,
WA, USA, July 17-21, 2023, pages 1483–1486. ACM, 2023. doi:10.1145/3597926.3604919.

57 Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Krügel, and Giovanni Vigna.
SOK: (state of) the art of war: Offensive techniques in binary analysis. In IEEE Symposium
on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 138–157.
IEEE Computer Society, 2016. doi:10.1109/SP.2016.17.

58 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

59 Daniel Votipka, Seth M. Rabin, Kristopher K. Micinski, Jeffrey S. Foster, and Michelle L.
Mazurek. An observational investigation of reverse engineers’ processes. In Srdjan Capkun
and Franziska Roesner, editors, 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 1875–1892. USENIX Association, 2020. Accessed: 2025-04-25. URL:
https://www.usenix.org/system/files/sec20-votipka-observational.pdf.

60 Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei, and Dinghao Wu.
Software protection on the go: a large-scale empirical study on mobile app obfuscation. In
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of
the 40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pages 26–36. ACM, 2018. doi:10.1145/3180155.3180169.

61 Qian Wang and Ralf Jung. Rustlantis: Randomized differential testing of the Rust compiler.
Proc. ACM Program. Lang., 8(OOPSLA2):1955–1981, 2024. doi:10.1145/3689780.

62 Mingyuan Wu, Minghai Lu, Heming Cui, Junjie Chen, Yuqun Zhang, and Lingming Zhang.
JITfuzz: Coverage-guided fuzzing for JVM just-in-time compilers. In 45th IEEE/ACM
International Conference on Software Engineering, ICSE 2023, Melbourne, Australia, May
14-20, 2023, pages 56–68. IEEE, 2023. doi:10.1109/ICSE48619.2023.00017.

63 Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang.
Fuzz4All: Universal fuzzing with large language models. In Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20,
2024, pages 126:1–126:13. ACM, 2024. doi:10.1145/3597503.3639121.

64 Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith. Helping
Johnny to analyze malware: A usability-optimized decompiler and malware analysis user
study. In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 158–177. IEEE Computer Society, 2016. doi:10.1109/SP.2016.18.

65 Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. No
more gotos: Decompilation using pattern-independent control-flow structuring and semantic-
preserving transformations. In 22nd Annual Network and Distributed System Security Sym-
posium, NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet Society,
2015. Accessed: 2025-04-25. URL: https://www.ndss-symposium.org/wp-content/uploads/
2017/09/11_4_2.pdf.

66 Andrey Yakovlev, Mohammad R. Haghighat, and Dmitry Khukhro. AzulSystems/JavaFuzzer,
2018. Accessed: 2025-04-25. URL: https://github.com/AzulSystems/JavaFuzzer.

ECOOP 2025

https://www.pnfsoftware.com/blog/category/jeb3/
https://www.pnfsoftware.com/blog/category/jeb3/
https://cloud.google.com/blog/topics/threat-intelligence/gemini-for-malware-analysis
https://cloud.google.com/blog/topics/threat-intelligence/gemini-for-malware-analysis
https://arxiv.org/abs/2202.12336
https://doi.org/10.1145/3597926.3604919
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1137/0201010
https://www.usenix.org/system/files/sec20-votipka-observational.pdf
https://doi.org/10.1145/3180155.3180169
https://doi.org/10.1145/3689780
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1109/SP.2016.18
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_4_2.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/11_4_2.pdf
https://github.com/AzulSystems/JavaFuzzer

13:26 FuzzFlesh: Randomised Testing of Decompilers

67 Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and
Lingming Zhang. Whitefox: White-box compiler fuzzing empowered by large language models.
Proc. ACM Program. Lang., 8(OOPSLA2):709–735, 2024. doi:10.1145/3689736.

68 Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in
C compilers. In Mary W. Hall and David A. Padua, editors, Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San
Jose, CA, USA, June 4-8, 2011, pages 283–294. ACM, 2011. doi:10.1145/1993498.1993532.

69 Zhiqiang Zang, Nathan Wiatrek, Milos Gligoric, and August Shi. Compiler testing using
template java programs. In 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2022, Rochester, MI, USA, October 10-14, 2022, pages 23:1–23:13. ACM,
2022. doi:10.1145/3551349.3556958.

70 Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumeration for rigorous
compiler testing. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017, pages 347–361. ACM, 2017. doi:10.1145/3062341.
3062379.

71 Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio Bianchi, and Dave (Jing) Tian.
D-Helix: A generic decompiler testing framework using symbolic differentiation. In Davide
Balzarotti and Wenyuan Xu, editors, 33rd USENIX Security Symposium, USENIX Security
2024, Philadelphia, PA, USA, August 14-16, 2024. USENIX Association, 2024. Accessed:
2025-04-25. URL: https://www.usenix.org/system/files/usenixsecurity24-zou.pdf.

https://doi.org/10.1145/3689736
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3551349.3556958
https://doi.org/10.1145/3062341.3062379
https://doi.org/10.1145/3062341.3062379
https://www.usenix.org/system/files/usenixsecurity24-zou.pdf

	1 Introduction
	2 Background
	2.1 Decompilation
	2.2 Decompiler bug categories

	3 CFG-based Program Generation and the FuzzFlesh Tool
	3.1 Graph generation
	3.2 Path generation
	3.3 Program fleshing
	3.4 Test oracle evaluation
	3.5 Test case reduction

	4 Decompilers under test
	4.1 Binary decompilers
	4.2 Java decompilers
	4.3 C# decompilers

	5 Evaluation: Bugs found
	5.1 RQ1: Effectiveness of FuzzFlesh for bug-finding
	5.1.1 Cycles
	5.1.2 Switch statements
	5.1.3 Java-specific irreducible control flow

	5.2 RQ2: Efficacy of FuzzFlesh across languages and decompiler toolchains

	6 Evaluation: Comparison to other approaches
	6.1 Overview of decompiler testing approaches
	6.2 RQ3: Comparison of thoroughness of control flow recovery testing
	6.2.1 Binary decompiler coverage
	6.2.2 Java decompiler coverage

	6.3 RQ4: The kinds of bugs found by FuzzFlesh vs. other approaches
	6.3.1 Bugs in all decompilers
	6.3.2 Bugs in binary decompilers
	6.3.3 Bugs in Java decompilers

	7 Related Work
	8 Conclusion and future work

