
Formalising CXL Cache Coherence
Chengsong Tan

∗

Kaihong

Shenzhen, China

Alastair F. Donaldson

Imperial College London

London, UK

John Wickerson

Imperial College London

London, UK

Abstract
We report our experience formally modelling and verifying

CXL.cache, the inter-device cache coherence protocol of the
Compute Express Link standard. We have used the Isabelle

proof assistant to create a formal model for CXL.cache based
on the English prose specification. This led to us identify-

ing and proposing fixes to several parts of the specification

that were unclear, ambiguous or inaccurate. Nearly all our

issues and proposed fixes have been confirmed and tenta-

tively accepted by the CXL consortium for adoption, save

for one which is still under discussion. To validate the faith-

fulness of our model we performed scenario verification of

essential restrictions such as “Snoop-pushes-GO”, and used

the Isabelle proof assistant to produce a fully mechanised

proof of a coherence property of the model. The considerable

size of this proof, comprising tens of thousands of lemmas,

prompted us to develop new proof automation tools, which

we have made available for other Isabelle users working with

similarly cumbersome proofs.

CCS Concepts: • Computer systems organization → Ar-
chitectures; Architectures; • Theory of computation →
Logic and verification; Logic and verification;

Keywords: CXL, Cache Coherence, Proof Assistant, Hetero-
geneous Computing, Formal Proof

ACM Reference Format:
Chengsong Tan, Alastair F. Donaldson, and John Wickerson. 2025.

Formalising CXL Cache Coherence. In Proceedings of the 30th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’25), March
30-April 3, 2025, Rotterdam, Netherlands. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3676641.3715999

1 Introduction
Compute Express Link (CXL) [8] is an emerging standard

that provides cache coherence across multiple devices con-

nected along a PCIe bus. Inter-device cache coherence is a

∗
Work done while the author was at Imperial College London.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03

https://doi.org/10.1145/3676641.3715999

boon to computer architects because it allows multiple de-

vices to communicate with each other while transferring a

minimal amount of data between them. CXL has the poten-

tial to be faster than other memory expansion methods [13]

and save stranded memory in cloud computing clusters [19].

CXL is not the first standard for inter-device cache coher-

ence [5, 6, 12, 17, 20, 28, 30, 34], but it is the first to enjoy

broad support across the computer industry, with backers

including Alibaba, AMD, Arm, Broadcom, Cisco, Dell, Er-

icsson, Google, Hewlett Packard, Huawei, IBM, Intel, Meta,

Microsoft, Nvidia, Oracle, Qualcomm, Samsung, Synopsys,

Xilinx, and many others.

The CXL standard is large, complex and new, and is set

to form a trusted pillar of datacenter computers for years to

come.
1
As such, now is the ideal time to study the standard

intensively. Does it contain inconsistencies? Is the wording

unambiguous throughout? And perhaps most importantly:

does it actually provide its stated guarantee of inter-device

cache coherence?

We report here on our efforts to answer those questions.

Contribution 1: Formalising CXL.cache. The part of
the CXL standard that provides inter-device cache coherence

is called CXL.cache. (The other two parts of the standard

are CXL.io, which governs bulk data transfers, and CXL.mem,
which relates to disaggregated memory.) Our first contri-

bution is a formalisation of the CXL.cache protocol in the

Isabelle proof assistant [22]. Our formalisation takes the form

of a state-transition system. It comprises a detailed model

of the whole-system state (encompassing the state of caches

in devices plus the contents of the various channels that

contain messages sent between the devices and the ‘host’),

together with dozens of transition rules that define the legal

ways the state can evolve in response to CXL messages being

passed around and processed.

We explain in Section 3 how our formalisation corresponds

to the informal prose given in the official CXL standard, and

which assumptions we have made in our modelling process.

As a direct result of our modelling efforts, we uncovered

five areas where the CXL standard could be improved (one

inconsistency, one redundancy, one inefficiency, and two

places where the intention could be clarified). We have pro-

posed corresponding improvements to the text to the engi-

neers who lead the drafting of the protocol. In four cases

they have confirmed that these will be incorporated into the

1
Yole Group anticipates a CXL market size of $15.8 billion by 2028 [14].

https://orcid.org/0009-0008-7822-8407
https://orcid.org/0000-0002-7448-7961
https://orcid.org/0000-0001-6735-5533
https://doi.org/10.1145/3676641.3715999
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3715999

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

lemma inv_preservation_i_j:
fixes Σ, Σ ′ :: state
assumes inv_1(Σ) ∧ . . . ∧ inv_796(Σ)
assumes rule_i(Σ,Σ ′)
shows inv_j(Σ ′)

Figure 1. Lemmas of this form state that all rules preserve

all conjuncts of the invariant. They assume all 796 conjuncts

hold in state Σ, and that the ith rule can evolve the state

to Σ ′
, then show that the jth conjunct of the invariant still

holds.

next version of the standard, with one of our proposed fixes

still under discussion.

Contribution 2: Proving a cache coherence property.
Our second contribution involves putting our formalisation

to work.

First, we use it for a form of ‘scenario verification’: we use a

number of litmus tests (some derived frommessage-sequence

charts in the CXL specification) and run them through our

model to confirm that legal interactions are indeed allowed

and illegal interactions are indeed forbidden. This helps gain

confidence in the faithfulness of our model to the standard.

We also use scenario verification to show that if some require-

ments imposed by the standard are relaxed, then coherence is

not met—this establishes confidence that the CXL standard is

not overly ‘strong’; i.e., that it does not impose requirements

on CXL implementations without good reason.

Second, we prove that it satisfies the ‘single writer, multi-

ple reader’ (SWMR) property [21, p. 11]. The SWMR property

states that if one device has write access to a location, then

no other device can simultaneously have read or write access

to the same location. SMWR is one of the two properties

that are, together, sufficient to establish cache coherence; the

other is the ‘data-value invariant’ [21, p. 13], which we leave

as future work.

Contribution 3: Better automation for large proofs.
Our proof that our model of CXL satisfies the SWMR prop-

erty is large. SWMR is not inductive on its own, so to com-

plete the proof, we needed to devise a stronger invariant (one

that implies SWMR), and prove that this invariant holds for

all legal initial states of the system and is preserved by every

transition rule. The invariant is made up of 796 conjuncts,

and there are 68 transition rules, hence we must prove 53,332

lemmas of the form given in Figure 1.

Most of these obligations can be automatically discharged

via a single call to Isabelle’s sledgehammer [25], but this

process still requires manual intervention to copy the proof

snippet discovered by sledgehammer into the overall theory

file. The situation is worsened by the fact that this is not a

one-shot effort: our invariant had to be revised many times

during the proof development process, becausewe frequently

found that an extra conjunct was needed in order to make

one of the lemmas hold. Moreover, each time a conjunct was

added, it was necessary to show that it is preserved by all of

the transition rules, which in turn often led to the need for

further conjuncts!

As such, robust proof automation is a necessity, and our

third contribution is a small but useful utility for Isabelle

that allows the sledgehammer to be used in a completely

unsupervised mode: the utility invokes sledgehammer on all

the sledgehammer commands in a given theory file, and if

a proof is found, substitutes it into the theory file directly.

We further improve on this by automatically invoking multi-

ple sledgehammer instances on a generated Isar (structured

Isabelle) proof skeleton, and filling in the skeleton with the

found proofs.We found this utility indispensable for complet-

ing our proof, and we have made it freely available for other

Isabelle users working with similarly cumbersome proofs.

Auxiliary material. Our Isabelle theory files, containing
the definitions of our CXL model and the proof that it meets

the SWMR property, are available on GitHub [31].

Paper outline. To provide intuition we first provide an

overview of CXL.cache (Section 2). We then present salient

details of our Isabelle formal model using standard mathe-

matical notation (Section 3), and describe the problems with

the CXL.cache standard identified during the construction

of this model, and our proposed fixes (Section 4). We then ex-

plain howwe validated our model using scenario verification

(Section 5) and by proving an important coherence-related

property—SWMR (Section 6). This large proof required some

innovations in proof engineering, which we describe (Sec-

tion 7). We recap the assumptions and limitations on which

our modelling and proof work is based (Section 8), and dis-

cuss related and future work (Section 9).

2 Overview of CXL.cache
Before describing our formal model in detail (Section 3), we

provide an intuitive overview of the CXL.cache protocol.

Multicore processors employ cache coherence protocols to

ensure that multiple copies of the same data across different

cores’ caches remain in sync. With the rise of heterogeneous

computing—where CPUs, GPUs, and specialized accelerators

must work closely together—there is also a need for a global

cache coherence protocol that manages data consistency

across heterogeneous processors. This is the problem that

CXL.cache is designed to solve.

CXL.cache allows devices like standaloneGPUs andASICs
to cache a CPU’s memory as if they are cores within the

CPU’s own multicore system. This facilitates correct and

fine-grained data sharing with low latency, as the complex

mechanisms that achieve cache coherence are managed at

the hardware level. For example, it might be desirable for an

Intel CPU to be connected with an AMDGPU and anNVIDIA

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

hostdevice 1 device 2

H2DReq1 H2DReq2

DBuffer1 H2DRsp1 H2DRsp2 DBuffer2

H2DData1 H2DData2

DCache1 HCache DCache2

D2HReq1 D2HReq2

D2HRsp1 D2HRsp2

DProg1 D2HData1 D2HData2 DProg2

Counter

Figure 2. An overview of our model of a two-device CXL

state

SmartNIC via some fast interconnect, allowing these acceler-

ators to cache and share the CPU’s memory within the same

cache-coherent domain. If these devices have CXL.cache en-
abled, then this would be seamless. Capabilities like these

are valuable for data centers that require composable infras-

tructure, where resources can be dynamically allocated and

combined to optimize performance for diverse workloads.

CXL.cache is an asymmetric protocol, with coherence-

related messages between devices (typically accelerators) all

going via a central host (CPU). Figure 2 shows the main

components of a CXL system with two devices, with arrows

indicating the direction of the messages that are passed be-

tween them, and coloured backgrounds to indicate which

components belong to a device and which belong to the host.

CXL.cache assumes that each device maintains the co-

herence of its own internal cache hierarchy, and hence is

able to treat each device as having a single cache (DCache1

and DCache2). The host also has a cache (HCache). Each

cacheline can be in one of four ‘stable’ states: modified (write-

access and dirty), exclusive (write-access and clean), shared

(read-access), and invalid.

There are various channels from the host to a device (H2D)

and from a device to the host (D2H) along which requests,

responses and data can be sent. These channels are separated

to allow them to be implemented with different latencies.

Transactions along these channels can be categorised as

follows:

• D2H Request: A device may send the host a request

for read-access (RdShared) or write-access (RdOwn)

to a location.

• H2D Request: The host may need to invalidate the

cacheline on a second device via a snoop-invalidate

(SnpInv) request.

• D2H Response: The second device may respond with

RspIHitSE to report that it is invalidating its cacheline

having previously enjoyed shared or exclusive access.

• H2D Response: Finally, the host replies to the first

device with a GO-Shared or GO-Modifiedmessage to

grant the desired access.

Our model of the CXL state in Figure 2 also includes

buffers, programs, and a counter, all of which will be ex-

plained in Section 3.2.

To improve performance and reduce latency, CXL.cache
permits weaker ordering guarantees than traditional inter-

connects like PCIe [26]. Specifically, it does not enforce or-

dering between different memory locations and provides

minimal ordering on the same cache block [10]. This allows

scenarios where a device reads updated data before a syn-

chronization flag is set, enabling more concurrency on the

same physical network.

3 A formal model of CXL
Our formal model of CXL is expressed in the language of

the Isabelle proof assistant [22], and is provided as a set of

Isabelle theory files in our GitHub repository [31].

In this section, we present salient details of the model (us-

ing mathematical notation rather than Isabelle syntax). The

model has been carefully constructed from our reading of the

CXL.cache specification, and refined based on discussions

with cache coherence experts from the CXL consortium. The

creation of the model led to us identifying and proposing

fixes for several problems in CXL.cache, of which we elabo-

rate on a selection in Section 4. We have validated our model

using scenario verification (Section 5) and mechanised proof

(Section 6).

3.1 An overview of our CXL state model
The main components of our model are the host, the devices,

and the channels between them, as already shown in Figure 2.

The caches and channels in that figure are all directly taken

from the CXL specification [9, §3.2.1]. The program compo-

nents (DProg1 and DProg2) are an invention of ours—they

are solely used to control the sequence of state transitions

when exploring specific scenarios in Section 5. They only

serve to trigger coherence transactions, and do not modify

locations or read out values. The standard does not specify

how devices come up with unique transaction identifiers, so

we use a simple, globally accessible counter (Counter). The

buffers (DBuffer1 and DBuffer2) are another invention of

ours; they are used to simulate the dependence between the

H2D Response and H2D Request channels that is implied by

the standard [9, §3.2.5].

In an effort to keep the proof tractable, we have fixed

the number of devices to two. This means that our proof

cannot guarantee the absence of coherence violations that

only manifest when three or more devices interact; but for

analyzing and prototyping purposes it is common to start

with two devices [27].

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

3.2 Details of our CXL state model
Figure 3 presents the type of each of the twenty components

that appear in Figure 2. We now explain those types in detail.

There are three ‘stable’ cacheline states. We do not track

the distinction between exclusive state and modified state,

because transitions between these states have no effect on

ownership, and the SWMR property that we are interested

in proving is phrased only in terms of ownership. So, we use

M when the cacheline is in either of these states, alongside

S for shared and I for invalid.

While a transaction is being carried out, a cacheline can be

in one of several additional ‘transient’ states, depending on

whether it is held on a device (DTransientState) or on the host
(HTransientState). For instance, IMAD

refers to a cacheline

that is awaiting an acknowledgement (A) and some data

(D) in order to complete its transition from the invalid state

(I) to the modified state (M). These transient states are not

officially part of the CXL.cache specification, so we follow
the standard notation for them [21].

A cacheline (HCache or DCache) consists of a value (Val)
together with a stable or transient state. We are concerned

with coherence, which is a property of a single memory

location, so we assume without loss of generality that our

caches contain just a single location.

Messages can be grouped into transactions, and each trans-

action has an identifier Tid. A single transaction may involve

several request and response messages; for instance, a device

may send a request to the host, which requires the host to

send a request to another device, which then responds to the

host, finally allowing the host to respond to the first device.

A device can request from the host (D2HReq) read-only
access (RdShared) or write access (RdOwn). Additionally, it

can relinquish access to a location that has not been written

(CleanEvict) or that has been written (DirtyEvict). The mes-

sage CleanEvictNoData is the same as CleanEvict, but the

device is additionally signalling that it will refuse to provide

the (clean) data and the host must not request it.

There are additional device-to-host requests that we ex-

clude from our model: RdCurr simply checks the current

data value and does not affect ownership (nor coherence);

RdAny’s functionality is already covered by RdOwn and

RdShared; RdOwnNoData is no different from RdOwn from

the perspective of the SWMR property; and although mes-

sages ItoMWr,WrCur,CLFlush,WOWrInv,WOWrInvF and

WrInv are interesting from a memory-ordering point of view,

they are not interesting for coherence.

A host can respond to a device (H2DRsp) by sending a

‘global observation’ message (GO). This signifies that the

host believes the device’s request has now been seen by all

relevant parties, and can now be considered complete [9,

§3.2.2.1]. If the device has sent an evict request, the host can

respond by instructing the device to send its data to the host

(GO_WritePull), or to discard its data (GO_WritePullDrop)

StableState def

= {M, S, I}

DTransientState def

= {IMAD
, IM

A
, IM

D
, SM

AD
, SM

D
, SM

A
,

IS
D
, IS

AD
, IS

A
,MI

A
, SI

A
, II

A
, SI

AC}

HTransientState def

= {MAD
,M

A
,M

D
, S

AD
, S

D
, S

A
, I
D
, I
B
, S

B
,

M
B}

DState def

= DTransientState ∪ StableState

HState def

= HTransientState ∪ StableState

HCache def

= LVal : Val, State : HStateM
DCache def

= LVal : Val, State : DStateM
Tid def

= N

D2HReqType def

= {RdShared,RdOwn,CleanEvict,

DirtyEvict,CleanEvictNoData}

D2HReq def

= D2HReqType × Tid

D2HRspType def

= {RspIHitSE,RspIFwdM,RspSFwdM}

D2HRsp def

= D2HRspType × Tid

H2DReqType def

= {SnpData, SnpInv}

H2DReq def

= H2DReqType × Tid

H2DRspType def

= {GO,GO_WritePull,

GO_WritePullDrop}

H2DRsp def

= H2DRspType × DState × Tid

Data def

= Tid × Val

DBuffer def

= H2DRsp ∪ H2DReq ∪ {⊥}

Instruction def

= {Load, Store, Evict}

SystemState def

= LDProg1 : Instruction list,
DProg2 : Instruction list,
DCache1 : DCache,
DCache2 : DCache,
D2HReq1 : D2HReq list,
D2HReq2 : D2HReq list,
D2HRsp1 : D2HRsp list,
D2HRsp2 : D2HRsp list,
D2HData1 : Data list,
D2HData2 : Data list,
H2DReq1 : H2DReq list,
H2DReq2 : H2DReq list,
H2DRsp1 : H2DRsp list,
H2DRsp2 : H2DRsp list,
H2DData1 : Data list,
H2DData2 : Data list,
DBuffer1 : DBuffer ,
DBuffer2 : DBuffer ,
DProg1 : Instruction list,
DProg2 : Instruction list,
HCache : HCache,
Counter : N M

Figure 3. Our model of a CXL state

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[9, §3.2.4.2.14]. In all cases, a host-to-device response in-

cludes the new DState that the device’s cacheline should

enter. There are additional host-to-device responses that we

exclude from our model: WritePull is only used in response

to WrInv requests which, as mentioned above, we do not

model, and FastGOWritePull and ExtCmp provide an ad-

vanced optimisation where a device can indicate that an

update is partially observable (FastGOWritePull) and then

globally observable (ExtCmp). We currently do not model

non-ideal network conditions or error-handling and there-

fore leave out the GOErrWritePull message too.

A host-to-device request (H2DReq) is a snoop, used to

check (and change) the status of the device’s cacheline [9,

§3.2.4.4]. If the request is a SnpData, the device must down-

grade its cacheline state to either S or I, and if the request is

a SnpInv, the device must downgrade its cacheline state to

I. In both cases, the device must send its data to the host if

it is dirty. There exists also a SnpCur request for checking

a device’s cacheline without changing it, but we omit this

from our model because it does not affect coherence.

A device-to-host response (D2HRsp) can be a RspIHitSE

(which means that the device has downgraded from S or E to

I [9, §3.2.4.3.3]), a RspIFwdM (which means that the device

has downgraded from M to I and is also forwarding its dirty

data [9, §3.2.4.3.6]), or a RspSFwdM (which means that the

device has downgraded fromM to S and is also forwarding its

dirty data [9, §3.2.4.3.5]). There are additional device-to-host

responses that we exclude from our model. RspIHitI is not

used because our model’s host tracks device states and does

not send out snoops unnecessarily. The transaction flows

of RspVHitV, RspSHitSE and RspVFwdV are very similar to

those ofRspSHitSE,RspIHitSE andRspSFwdM, respectively;

we leave them out to avoid duplication in our proof.

Finally, each device’s buffer (DBuffer) contains a single

request or response message from the host, or is empty (⊥).

3.3 CXL transitions
Our model consists of 68 rules that describe transitions be-

tween CXL states. Figure 4 presents a selection of these rules.

Each rule consists of a name, a set of guards that must all

hold in order for a rule to fire, and a set of actions by which

some components of the state are (atomically) updated.

The InvalidLoad1 rule says that if device 1’s cache is in

the invalid (I) state (first guard) and it wishes to perform

a load (second guard), then it can request an upgrade to

the shared (S) state (first action), enter the IS
AD

state in the

meantime (second action), and increment the transaction-

identifier counter (third action).

The ModifiedStore1 rule says that if device 1’s cache is

already in the modified (M) state (first guard) and it intends

to do a store (second guard), then no coherence messages are

necessary; it need only write to its own cache (first action)

and consider the instruction complete (second to fourth ac-

tions). To provide the reader with an intuitive store semantics

InvalidLoad1

guards: DCache1.State = I

head(DProg1) = Load
actions: D2HReq1 := D2HReq1@[(RdShared,

Counter)]
DCache1.State := IS

AD

Counter := Counter+ 1

ModifiedStore1

guards: DCache1.State = M

head(DProg1) = Store
actions: DCache1.Val := v

DProg1 := tail(DProg1)
DBuffer1 := EmptyBuffer

Counter := Counter+ 1

SharedSnpInv1

guards: DCache1.State = S

head(H2DReq1) = (SnpInv, txid)
H2DRsp1 = []

actions: DCache1.State := I

H2DReq1 := tail(H2DReq1)
DBuffer1 := (SnpInv, txid)
D2HRsp1 := D2HRsp1@[(RspIHitSE, txid)]

HostModifiedDirtyEvict1

guards: HCache.State = M

DCache1.State = MI
A

head(D2HReq1) = (DirtyEvict, txid)
H2DData1 = D2HRsp1 = []

actions: HCache.State := I
D

D2HReq1 := tail(D2HReq1)
H2DRsp1 := H2DRsp1@[(GO_WritePull, I,

txid)]
DBuffer1 := EmptyBuffer

Figure 4. A selection of our transition rules.

we include the value written here, but we drop this during

our proof because the SWMR property is independent of

values; it cares only about ownership.

The SharedSnpInv1 rule describes how a device deals

with snoop requests from the host. If device 1’s cache is in

shared (S) state (first guard) and the head of its H2D Requests

channel is a SnpInv (guard 2), then its cache is invalidated

(action 1), the H2D Request is removed (action 2) and put into

the device’s buffer (action 3), and a response is sent back to

the host using the same transaction-identifier (action 4). This

rule only fires if there are no outstanding H2D Responses

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

(guard 3); this requirement captures the ‘Snoop-pushes-GO’

rule, which dictates that an H2D Request (snoop) message

cannot overtake an H2D Response (GO) message to the same

device:

When the host returns a GO response to a device, the

expectation is that a snoop arriving to the same address

of the request receiving the GO would see the results of

that GO. [9, §3.2.5.2]

We will show how relaxing this rule leads to a coherence

violation in Section 5.

The HostModifiedDirtyEvict1 rule describes a device

requesting to evict dirty data. The rule fires if the host’s

cache is in modified (M) state (first guard), the device’s cache

is in the process of changing state from modified (M) state to

invalid (I) state (MI
A
, second guard), and the device has sent

a DirtyEvict request (third guard). The host’s cache enters

the I
D
state because it will enter the invalid state once data

arrives (first action), the D2H Request is removed (second

action) and a corresponding H2D Response is issued (third

action). The requirement that there are no H2D Data or D2H

Response messages in-flight (fourth guard) is derived from

the following ‘GO-cannot-tailgate-snoop’ rule:

When the host is sending a snoop to the device, the re-

quirement is that no GO response will be sent to any

requests with that address in the device until after the

Host has received a response for the snoop and all im-

plicit writeback (IWB) data [. . .] has been received. [9,

§3.2.5.2]

This requires the H2D Request, D2H Response, and D2H

Data channels to contain no messages to the same address

when sending a GO message.

4 Fixing problems in the standard
The weight of industrial support behind CXL makes it likely

that the standard will be implemented by multiple vendors

over the coming years. To ensure compatibility between

implementations from different vendors, it is thus essential

that the standard is precise and unambiguous.

Unfortunately, we have found that the current CXL.cache
standard [9] suffers from numerous inaccuracies and am-

biguities. We give some examples, which were discovered

during the process of creating the formal model described

in Section 3. We have proposed fixes to address these short-

comings, and have discussed them with members of the CXL

consortium who lead drafting of the CXL.cache protocol. As
detailed below, in most cases our proposed fixes have been

agreed and will be adopted in future versions of the standard.

4.1 Ambiguity/inaccuracy regarding multiple snoops
We believe that the following rule

The host is only allowed to have one snoop pending at a

time per cacheline address per device. [9, §3.2.5.5]

is ambiguous because ‘per’ appears more than once. If a host

has two snoops pending, must they be to different addresses

and different devices? Or must they be to different addresses

or different devices? In fact, neither of these interpretations

is quite correct, because what the rule does not mention that

it can be legal to have multiple pending snoops on the same

cacheline, as long as they belong to the same transaction.

Proposed fix. We propose to amend the text as follows:

The host is only allowed to have one snoop pending

at a time per cacheline address per device. At no time

is the host allowed to have two or more snoops on the

same cacheline address pending, unless they use the same

transaction identifier and target different devices.

Our proposal has tentatively been agreed by the CXL con-

sortium and we are working with them to fine-tune the

wording.

4.2 Redundant rule about multiple snoops
There is some redundancy between rules about sending mul-

tiple snoops to the same address. Specifically, the following

rule:

11. The Host must not send a second snoop request to

an address until all responses, plus data if required, for

the prior snoop are collected. [9, §3.2.5.14]

repeats what is already specified earlier (we note that we

have faithfully transcribed quotes from the specification,

which inconsistently capitalises “host”):

The host must wait until it has received both the snoop

response and all IWB data (if any) before dispatching the

next snoop to that address. [9, §3.2.5.5]

Proposed fix. To avoid confusion, we propose removing

Rule 11 from §3.2.5.14. Our proposal has been accepted by

the CXL consortium and is due to be adopted.

4.3 Clarification about WritePull responses
The following rule:

Conversely, the host may not launch a WritePull for a

write until it has received the snoop response (including

data in case of RspFwd) for any snoops to the pending

write’s address. [9, §3.2.5.3]

enjoys a subtle interaction with a rule in §3.2.5.2 that restricts

the launching of GO messages. Restricting GO messages is

almost enough on its own; the only ‘gap’ that the restriction

on WritePull messages fills relates to WrInv requests, to

which hosts can respond with a WritePull rather than a GO.

Proposed fix. To clarify this subtlety to the reader, we

suggest the following amendment:

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Conversely, the host may not launch a WritePull (in re-

sponse to a WrInv) for a write until it has received the

snoop response (including data in case of RspFwd) for

any snoops to the pending write’s address.

Our proposal has tentatively been agreed by the CXL con-

sortium and we are working with them to fine-tune the

wording.

4.4 Potential optimisation when evicting stale data
CXL requires that:

if a device Evict transaction has been issued [. . .] but

has not yet processed its WritePull from the host, and a

snoop hits the writeback, the device must [. . .] set the

Bogus field in all the D2H data messages sent to the host.

The intent is to communicate to the host that [. . .] the

data from the Evict is potentially stale. [9, §3.2.5.4]

In other words, if a device has requested to evict some

data, and the host has determined via a snoop that this data

is already stale, then the device should not send the data

back to the host; it should instead mark its data messages as

‘bogus’. An alternative in this situation could be for the host

to send aWritePullDrop to the device rather than aWritePull,

which instructs the device not to send any data messages

at all. This could offer an efficiency gain by avoiding some

D2H data traffic.

Proposed fix. In Table 3-23 (“D2H Request (Targeting

Non Device-attached Memory) Supported H2D Responses”),

add a ‘⋆’ in the “DirtyEvict / GO_WritePullDrop” cell. The

meaning of the ‘⋆’ shall be:

if the Host has been able to determine that the device’s

data is stale, bymeans of a prior snoop, then theHost may

issue a GO_WritePullDrop rather than a GO_WritePull.

This proposal remains under discussion with the CXL con-

sortium, who are evaluating its backward-compatibility and

whether it represents a meaningful opportunity for improv-

ing performance.

4.5 Other clarifications
We have also discussed some other minor clarifications to the

specification with the CXL consortium, such as adding a note

to the beginning of the Device-to-Host Requests section [9,

§3.2.4.2] to clarify that certain requests are only legal when

the device’s cache is in a certain state (as this is currently

not explained until about 20 pages later [9, §3.2.5.15]).

5 Scenario verification
In Section 6 we turn our attention to using Isabelle to prove

that our model of CXL.cache satisfies the SWMR property.

Before that, in this section, we describe the scenario verifica-
tion activities we undertook before embarking on this proof.

These serve as important smoke tests to confirm that our

DCache1.State HCache.State DCache2.State

I I I

RdOwn

G
O
-
S
+
D
a
t
a

RdSha
red

SnpInv

R
sp
IH
it
I

GO
-M

+D
at
a

Violation

occurs here

C
orrect

flow

S
M

Figure 5.Amessage sequence chart from [33] demonstrating

a coherence violation if the snoop-pushes-GO rule is relaxed

formal model of CXL.cache actually behaves as one would

expect in a variety of scenarios; if this were not the case then

our formal proof would be meaningless. Additionally, sce-

nario verification allows us to scrutinise various restrictions

that the CXL.cache protocol imposes to assess whether they

are really necessary—i.e. whether relaxing these restrictions

can lead to coherence violations. This represents an impor-

tant use case for our model beyond being a vehicle for formal

proofs: it has the potential to allow protocol designers to

rigorously understand the implications of the protocol rules

and the consequences of relaxing them.

All three of the scenarios described in this section are

produced in a semi-automatic way by Isabelle using its value
command. We provide the programs that the two devices

should run, and give Isabelle a bound on the path depth to

explore. We say semi-automatic because in some cases it is

also necessary to manually prune the tree of possible paths

by adding extra predicates, in order to guide Isabelle towards

a solution that we already have in mind. Without this, the

search space can be so large that Isabelle does not terminate

within a reasonable time bound.

5.1 Smoke testing via litmus tests
To smoke test our model, we created a series of litmus tests.

Each litmus test initialises the system in a state where the

two devices are poised to issue a particular series of requests,

and confirms that, regardless of how nondeterminism in the

transition rules is resolved, the model ends up in an expected

final state and that no coherence violations occur in this or

any intermediate states. We illustrate this by describing two

such litmus tests.

• Litmus test: clean_evict_test. Table 1 illustrates
this litmus test, showing the sequence of transitions

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

that our model makes starting from an initial state.

Intuitively, this test confirms that an eviction from a

clean cache ends successfully. In the initial state, both

devices are in the S state, with device 1 having multiple

evictions as instructions. The transitions show that the

first Evict first triggers a CleanEvict in the D2HReq1

channel, and causes a downgrade to the SI
A
state. Then

the request is processed by the host. The host sends

a GO_WritePullDrop message, which marks the over-

all state of all caches as S since another device also

has a copy at that point. Finally, the device receives

the GO_WritePullDrop message, and downgrades to I

state. The Evict instruction is removed from the in-

struction list (DProg1). Subsequent Evicts have no

effect on DCache1 because it is already invalid.

• Litmus test: dirty_evict_test. Similarly, Table 2

illustrates the dirty_evict_test litmus test. This test

involves a sequence with a writer issuing a DirtyEvict,

to which the host responds with a GO_WritePull. This

triggers a writeback from the eviction device, which

the host copies in, marking the completion of this

operation.

Our GitHub repository [31] includes 8 litmus tests that

cover scenarios such as a read and a write being issued con-

currently by two devices, multiple reads, multiple writes

and multiple evicts, and alternating reads, writes and evicts.

We have evaluated all intermediate states in the execution

traces, ensuring that tests complete successfully, maintaining

a coherent state throughout.

5.2 Assessing the CXL.cache restrictions
Recall from Section 3.3 that CXL.cache imposes various re-

strictions on implementations, such as the ‘Snoop-pushes-

GO’ rule that we discussed in relation to the SharedSnpInv1

transition rule (Figure 4). These restrictions are formalised

as predicates on system states that appear in the guards of

various transition rules.

Because such restrictions place constraints on implemen-

tations of CXL.cache, one would reasonably expect that each
of these restrictions is necessary—i.e. that removing a restric-

tion would compromise the correctness of the protocol. We

show that scenario verification using our Isabelle model can

confirm this: that if a particular restriction is relaxed, addi-

tional states become reachable, and coherence violations can

be observed. This helps to establish confidence that CXL is

not imposing restrictions unnecessarily.

We illustrate this for one such restriction.

Restriction test: snoop_pushes_go_test. Table 3 shows
how a coherence violation can be reached if the rule from

section 3.3 that SnpInv messages cannot overtake GO mes-

sages is relaxed. The violation recreates a scenario that was

explained in the form of a message-sequence chart in a CXL

webinar [33].

In the initial state, both devices’ cachelines are invalid, and

program 1 has a pending write and program 2 a pending read.

Both devices start requests, and device 2’s RdShared gets

processed first, causing the host to send a (GO, S) message

and the associated data. Before device 2 takes these two

messages, device 1’s RdOwn gets processed, causing the host

to send a SnpInv to the device, invalidating its cacheline.

ISADSnpInv2()

guards: DCache2.State = IS
AD

head(H2DReq2) = (SnpInv, txid)
H2DRsp2 = []

actions: H2DReq2 := tail(H2DReq2)
D2HRsp2 := D2HRsp2@[(RspIHitI, txid)]
DBuffer2 := (SnpInv, txid)

The modified ISADSnpInv2 () rule above allows a snoop

to be processed before the H2DRsp2 queue is empty. The

rest of the steps are just the host forwarding the response to

device 1, and both devices taking the GO and data messages.

Observe that in the final row of Table 3 both devices hold

their cachelines in theM state, violating coherence. In our

correct model, DCache2 would not take the snoop until it

has received the GO message and upgraded to IS
D
.

6 Proving the SWMR property
In this section, we present our proof that our model satisfies

the Single-Writer-Multiple-Reader (SWMR) property.

The proof as a whole consists of 73 theory files totalling

around 211k lines of code. Most of these lines are taken up

by 68 giant rule lemmas, each lemma taking up about 2.5k

lines of code with its 796 subgoals. It took us about 12 person-

months to reach this. Most of the code has been generated

by our super_sketch tool (as we explain in Section 7), and

only the definitions are purely handwritten, taking up less

than ten thousand lines of code. It takes approximately 1–

2 minutes to check each rule file, and 3–5 hours to build a

session consisting of all rule files on an Intel Core i9-14900HX

running at 2.20 GHz.

The SWMR property states that if one device has write

access (M) to a location, then no other device can have read

access (S) or write access to the same location.

Definition 6.1 (SWMR).

∧i≠j ¬
(
DCachei.State = M∧ DCachej.State ∈ {S,M}

)
Let us write Σ −→ Σ ′

if state Σ can evolve in one step to state

Σ ′
via any of our transition rules. Unfortunately SWMR is

not inductive; that is, the following does not hold:

If Σ −→ Σ ′
and SWMR(Σ) then SWMR(Σ ′).

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. A transition sequence witnessing clean_evict_test, a clean eviction from device 1.

transition rule DProg1 DCache1 D2HReq1 H2DRsp1 HCache DCache2 Counter

(initial state) [Evict, Evict] (0, S) [] [] (0, S) (0, S) 0

SharedEvict1 [Evict, Evict] (0, SIA) [(CleanEvict, 1)] [] (0, S) (0, S) 1

Shared_CleanEvict_NotLastDrop1 [Evict, Evict] (0, SIA) [] [(GO_WritePullDrop, 1)] (0, S) (0, S) 1

SIA_GO_WritePullDrop1 [Evict] (0, I) [] [] (0, S) (0, S) 1

SIA_GO_WritePullDrop1 [Evict] (0, I) [] [] (0, S) (0, S) 1

Table 2. A transition sequence witnessing dirty_evict_test, a writeback triggered by GO_WritePull.

transition rule DProg1 DCache1 D2HReq1 D2HRsp1 H2DData1 HCache DCache2 Counter

(initial state) [Evict] (1,M) [] [] [] (0,M) (0, I) 0

ModifiedEvict1 [Evict] (0,MI
A) [(DirtyEvict, 1)] [] [] (0,M) (0, I) 1

HostModifiedDirtyEvict1 [Evict] (0,MI
A) [] [(GO_WritePull, 1)] [] (0, ID) (0, I) 1

MIAGO_WritePull1 [] (1, I) [] [] [(Data, 1)] (1, ID) (0, I) 1

IDData1 [] (1, I) [] [] [] (1, I) (0, I) 1

Table 3. A transition sequence witnessing snoop_pushes_go_test, leading to an incoherent state if rule ISADSnpInv2 is

broken. In each row, DProg1 = [Store] and DProg2 = [Load].

transition rule DCache1 D2HReq1 H2DRsp1 H2DData1 HCache D2HReq2 D2HRsp2 H2DReq2 H2DRsp2 H2DData2 DCache2 Counter

(initial state) (−1, I) [] [] [] (0, I) [] [] [] [] [] (−1, I) 0

InvalidStore1 (−1, IM
AD) [(RdOwn, 0)] [] [] (42, I) [] [] [] [] [] (−1, I) 1

InvalidLoad2 (−1, IM
AD) [(RdOwn, 0)] [] [] (42, I) [(RdShared, 1)] [] [] [] [] (−1, IS

AD) 2

InvalidRdShared2 (−1, IM
AD) [(RdOwn, 0)] [] [] (42, S) [] [] [] [(GO, S, 1)] [(Data(42), 1)] (−1, IS

AD) 2

SharedRdOwn1 (−1, IM
AD) [] [] [(Data(42), 0)] (42,MA) [] [] [(SnpInv, 0)] [(GO, S, 1)] [(Data(42), 1)] (−1, IS

AD) 2

ISADSnpInv2(o) (−1, IM
AD) [] [] [(Data(42), 0)] (42,MA) [] [(RspIHitI, 0)] [] [(GO, S, 1)] [(Data(42), 1)] (−1, IS

AD) 2

ISADGO+Data2 (−1, IM
AD) [] [] [(Data(42), 0)] (42,MA) [] [(RspIHitI, 0)] [] [] [] (42, S) 2

MARspIHitI1 (−1, IM
AD) [] [(GO,M, 0)] [(Data(42), 0)] (42,M) [] [] [] [] [] (42, S) 2

IMADGO+Data1 (42,M) [] [] [] (42,M) [] [] [] [] [] (42, S) 2

A straightforward counterexample is a state that is about to

become incoherent, such as:

L DCache1 = L0, IMAM,
H2DRsp1 = [LGO,M, txidM],
DCache2 = L0,MM M

However, this state is not reachable from any valid initial

state. We need a stronger property than SWMR to rule out

erroneous and unreachable states like this one. That is, we

require an invariant inv such that:

• If initial_state(Σ) then inv(Σ).
• If Σ −→ Σ ′

and inv(Σ) then inv(Σ ′).
• If inv(Σ) then SWMR(Σ).

With this invariant in-hand, we can show that our sys-

tem indeed satisfies the SWMR property (writing→∗
for a

sequence of zero or more transitions):

Theorem 6.2 (SWMR_CXL_cache). Assume that Σ →∗ Σ ′

and initial_state(Σ). Then SWMR(Σ ′).

The process of obtaining the invariant that enables this

proof required a few dozen iterations to converge. We started

with SWMR and then successively added conjuncts to rule

out erroneous and unreachable states as they became appar-

ent. Whenever we added a conjunct, we sought to make it as

simple and general as possible, in order to rule out as many

bad states as possible in one go, while not excluding any

reachable states.

We now present four of the conjuncts of inv to give the
reader a flavour of the entire invariant.

Transient states need similar SWMR constraints. The
following conjunct of our invariant:(
DCache1.State ∈ {IMD

, SM
D} ∨

DCache1.State ∈ {IMAD
, SM

AD} ∧ H2DRsp1 ≠ []

)
=⇒

head(H2DReq2) ≠ (SnpInv, _) =⇒

DCache2.State ∉ {ISD, IMD
, SM

D
, IS

A
,

IM
A
, SM

A
, S, M} ∧

H2DData2 = []∧(
DCache2.State ∉ {ISAD, IMAD

, SM
AD} ∨

H2DRsp2 = []
)


says that if device 1 has almost upgraded to theM state, and

is just awaiting an acknowledgement, then the other device

must not be in any valid (or about to be valid) states, unless
a SnpInv is on its way to invalidate that valid cache.

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

Snoop responses need to be honest. If a device responds
to a snoop that it has invalidated its cacheline, then it must,

unsurprisingly, be in an invalid state:

head(D2HRsp1) ∈ {(RspIFwdM, _), (RspIHitSE, _)} =⇒
DCache1.State ∈ {I, ISDI, ISAD, IMAD

, II
A}

Channels are singleton lists. As a result of our restric-
tion to a single location, it is the case that each channel can

contain at most one message at any given time:

length(H2DReq1) ⩽ 1∧ length(H2DReq2) ⩽ 1∧

length(H2DRsp1) ⩽ 1∧ length(H2DRsp2) ⩽ 1∧

length(H2DData1) ⩽ 1∧ length(H2DData2) ⩽ 1∧ . . .

Host and device data channelsmust not conflict. This

is a stronger restriction than the previous conjunct. It says

that each of the different data message channels H2DDatai

and D2HDataj has at most one data message pending:

i ≠ j =⇒ (D2HDatai = []∨ H2DDataj = [])

7 Better automation for large proofs
The difficulty associated working with large proofs of prop-

erties of computer systems is well known, and has been

discussed e.g. in the context of the IronFleet project on prov-

ing correctness properties of distributed systems [16], and

the L4.verified project on verify an OS microkernel [4]. Proof

scalability was a key challenge that we faced in working to-

wards our proof of the SWMR property for our model of

CXL.cache. This is because deriving an inductive invariant

that implied the SWMR property required many iterations

of proof attempts, with each iteration taking a significant

amount of human and machine time, and the time required

increasing as the invariant grew.

We now outline the iterative process that we used to work

towards an inductive invariant, explaining why this pro-

cess was difficult and time-consuming (Section 7.1). We be-

lieve our report on this experience will be valuable for re-

searchers interested in embarking on a formal verification

project who do not yet have experience working on large

inductive proofs.

We then describe a simple Isabelle utility, super_sketch,
which we have created to accelerate the iterative develop-

ment of inductive invariants (Section 7.2). This contribution

is targeted more specifically at researchers intending to use

the Isabelle prover for their verification efforts.

7.1 The challenge of iterative inductive invariant
development

Recall from Section 6 that our proof of the SWMR property

hinges on an inductive invariant, inv. In practice, it was

relatively easy to prove that the SWMR property was implied

by inv and that all initial states of the system satisfied inv.
Much more challenging was to prove that inv was actually

inductive—i.e. that every successor of a state satisfying inv
also satisfies inv.
Viewing inv as a conjunction of sub-invariants, so that

inv(Σ) = inv1(Σ) ∧ inv2(Σ) ∧ . . . invn(Σ), we can treat

the proofs we need to do to show the inductiveness of inv as
an n×mmatrix, where n is the number of conjuncts andm
is the number of transition rules. Cell (i, j) of this matrix rep-

resents the obligation to prove that inv(Σ) =⇒ invi(Σ
′)

whenever the transition Σ −→ Σ ′
is enabled by rule j (we

shall write Σ
j−→ Σ ′

for this). Demonstrating inductiveness

involves generating proofs for all cells.

When we find that the proof for a cell (i, j) does not go
through—i.e. we cannot prove that inv(Σ) =⇒ invi(Σ

′)

holds for Σ
j−→ Σ ′

—we strengthen the invariant: we devise

a new conjunct invn+1 such that we are able to prove that

inv(Σ)∧ invn+1(Σ) =⇒ invi(Σ
′) holds for Σ

j−→ Σ ′
.

Let inv ′ denote the strengthened invariant we get by

conjoining invn+1 to inv. Having added this new conjunct

means we must now prove that inv ′(Σ) =⇒ invn+1(Σ
′)

for all Σ −→ Σ ′
, adding a new row consisting of cells (n +

1, 1), (n+ 1, 2), . . . , (n+ 1,m) for rules 1 to m in our proof

obligation matrix. However, there is no guarantee that proofs

for these new cells (other than for the (n + 1, j) cell) will
go through. If the proof for one such cell fails to go through

we might add a new conjunct invn+2 in response, introduc-

ing another row of proof obligations, which in turn may

necessitate further conjuncts, and so on.

An even more problematic scenario is when we need to

change or delete a conjunct invi from inv because it turned
out to be incorrectly excluding valid states. In that case,

we must invalidate not just the row i, but also any proofs

that may depend on invi. Because we cannot be sure which
proofs these are, it is necessary to re-check proofs for the

entire matrix of proof obligations.

In practice, this iterative development proved to be very

expensive both in terms of the machine time required to

search for proofs and re-check existing proofs, and the hu-

man effort required when working with the proof assistant

to coordinate this process.

7.2 The super_sketch tool
When manually writing the rule lemmas for the obligation

matrix discussed above, we observed that the proof obli-

gations for most cells of the matrix were relatively sim-

ple to prove individually using Isabelle’s automated proof-

generation tool, sledgehammer. In our proof, we usually in-

voke dozens of sledgehammer calls simultaneously. Sledge-

hammer is a rather expensive command: it encodes the cur-

rent goal into solver inputs and invoke many instances of

various solvers concurrently to maximize the chance of find-

ing a proof quickly. This means that one sledgehammer call

can result in hundreds of automatic prover and SMT solver

queries, and take several seconds to a minute to terminate.

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

lemma
assumes "goal1∧ goal2 ∧ goal3 ∧ goal4"
shows "goal1 ′ ∧ goal2 ′ ∧ goal3 ′ ∧ goal4 ′"

proof -
show ?thesis
proof (intro conjI)

show g1p: "goal1 ′" Proof 1 using smt queries
next

show g2p: "goal2 ′" Proof 2 using metis
next

show g3p: "goal3 ′" Proof 3 using smt queries
next

show g4p: "goal4 ′" Proof 4 using smt queries
qed

qed

Figure 6. An example of our super_sketch utility

Once a proof is found, a manual click is needed to adopt

sledgehammer’s proof into the script. This needs to be done

with care; for instance, we must adopt the proof from bottom

to top, to prevent the insertion of earlier calls invalidating

the results of later ones.

An easy automation step was to redirect sledgehammer’s

output to a file and then use a Python script to insert gener-

ated proofs into our overall proof script. Each lemma took

30-60 minutes to generate the proofs, but at least the process

is automatic. This allowed us to scale our invariant up to

about 300 conjuncts.

Still, we faced challenges when a simple sledgehammer

call turned out to be insufficient for discharging a subgoal.

In our proof we have around a dozen rules that require an

initial case analysis to become tractable for Isabelle. In that

case, we might need to split subgoals into sub-subgoals and

make sledgehammer work on those. Making this automatic

via external scripting at this nested depth of subgoal is rather

clumsy and error-prone, and is very fragile under changes

to the inv invariant.

In response, we developed a tool, super_sketch, which
breaks down a goal into (possibly) multiple subgoals using a

method supplied by the user, concurrently calls sledgeham-

mer on each of subgoal with several user-supplied heuristics,

and finally generates a complete proof script with all the

generated sub-proofs filled in. This utility is based on Haft-

mann’s Sketch tool [15]. Sketch generates a proof skeleton

that shows what needs to be proven for each subgoal (the

blue text in Figure 6), leaving out the actual proofs for the

user to manually put in. What super_sketch does in addi-

tion is that it invokes sledgehammer to search for proofs for

the user (highlighted in pink in Figure 6).

In the case where a subgoal cannot be solved automatically,

super_sketch emits a sorry to indicate that no proof was

found, in which case human intervention is required. In our

setting this happened less than 1% of the time. This tool

allowed us to continue refining the inductive invariant from

300 conjuncts to almost 800, so that it finally converged.

Although developed in response to our particular use case,

super_sketch can be applied more generally to prove Is-

abelle lemmas and theorems that can be efficiently broken

down into subgoals that can be handled by automated the-

orem provers. The idea on which super_sketch is based—
closing the loop between a proof assistant (Isabelle in our set-

ting) and a proof search tactic (sledgehammer in our setting)—

could be applied in the context of other proof assistants.

We provide more details about the design and implemen-

tation of super_sketch in a separate paper [32].

8 Assumptions and limitations
We summarise the assumptions made by our work and corre-

sponding limitations of our proof and modelling effort, most

of which have been discussed earlier in the paper.

Restriction to coherence and the SWMR property. Our
proof efforts have focused on the SWMRproperty—a key part

of proving coherence. We do not consider other properties

such as deadlock freedom and liveness properties. Because

our focus is on coherence, we have not needed tomodel silent

upgrades from the E to M state, and have hence collapsed

these states together.

Two devices, one location. As discussed in Section 3, our

model considers two devices and one location. Restricting to

a single location is standard practice when reasoning about

the SWMR property, which was our goal, but other proper-

ties such as deadlock-freedom and liveness would require

consideration of multiple locations [21]. By restricting to two

devices, certain scenarios are excluded such as invalidating

multiple sharers and waiting for all their acknowledgements

for an ownership-obtaining request. A few rules and a frac-

tion of the conjuncts in our inductive invariant rely on there

being just two devices, e.g. if a device is upgrading to the M

state, it can be immediately granted ownership if the other

device’s cache is in the I state. It should be straightforward

to extend the model to cater for more devices, which would

immediately allow more elaborate scenario verification (see

Section 5). However, adapting our proof to this setting would

require suitable abstraction and generalisation efforts.

A restricted set of CXL.cachemessages. As discussed in
Section 3.2, our model omits certain device-to-host requests

that form part of the CXL.cache protocol: RdCurr, RdAny,

RdOwnNoData, ItoMWr,WrCur, CLFlush,WOWrInv,WO

WrInvF, WrInv, and CacheFlushed [9, §3.2.4.2.5]. We ex-

clude these because they are not normally part of a cache-

coherence protocol. RdCurr simply checks the most up-to-

date data value and does not change cache state (and coher-

ence). RdAny’s functionality can be achieved by RdOwn and

RdShared already. RdOwnNoData is no different to RdOwn

from the perspective of the SWMR property.WrCur does not

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

affect coherence. ItoMWr, CLFlush, WOWrInv, WOWrInvF

andWrInv all require modelling more levels of memory hi-

erarchies, and are left for future work.

Tracking mechanisms. The host and devices sometimes

need information about other system components to deter-

mine how to respond to messages. For instance, in some

cases the host needs to check whether the currently-evicting

device is the last sharer in the system. Such tracking is often

achieved via bit-vectors in a physical implementation. Our

model assumes that the host does perfect tracking as if it

can look at the state of the device caches (which would not

be feasible in practice for efficiency reasons). Currently 14

rules rely on this “perfect tracking” assumption; details are in

the PerfectTrackingRules.txt document in our GitHub

repository [31].

Additional validity threats. We may have transcribed

parts of the intention of the CXL standard incorrectly into

Isabelle; however, we have mitigated this risk by carefully

justifying where in the standard each of our modelling de-

cisions comes from, and by consulting several experts on

the CXL committee when we had doubts. Finally, although a

mechanised proof in a proof assistant such as Isabelle is con-

sidered the gold standard of correctness, it is always a remote

possibility that software bugs in Isabelle or hardware bugs

in the machine running it could undermine its guarantees.

9 Related and future work
There have been several efforts to reason about a variety of

cache-coherence protocols over the years [27, 29]. Oswald

et al. have developed a domain-specific language called Pro-

toGen [23], which automatically generates and verifies a

cache-coherence protocol given a stable-state specification.

It would be interesting to try to use their tool to specify

CXL.cache and generate a complete protocol and then com-

pare our model to that. Oswald et al. have also developed

HeteroGen [24], which, like CXL, seeks to bridge heteroge-

neous systems for cache coherence, but uses “proxy caches”

instead; it would be interesting to compare the functionali-

ties of a CXL host and a proxy cache. Goens et al. [11] have

developed operational and axiomatic models for the memory

ordering behind such heterogeneous systems. They abstract

away the role of the interconnect; our work is complemen-

tary as we have modelled the interconnect in detail.

Hemiola [7] is another domain-specific language for de-

signing (and proving the correctness of) cache-coherence

protocols over ordered networks. An important innovation

is its ‘serializability proofs’, whereby a user can prove prop-

erties about a system assuming transactions happen one by

one, which can greatly reduce the number of concurrent

situations to be considered. We believe that our proof could

benefit from this technique once Hemiola has been extended

to handle unordered networks; still, Hemiola would likely do

little to reduce the complexity of our system-state invariant.

However, Bourgeat hints at a way to reduce the complexity of

invariants used for verifying pipelined processors [3, p. 131]

by making the invariant itself inductively-defined, and his

approach may be adaptable to cache-coherence protocols.

In ongoing work, Assa, Friedman, and Lahav [2] propose

a model for programming on top of CXL. One of the assump-

tions they make is that CXL provides cache coherence. Our

work can be seen as complementary to theirs in the sense

that it helps to justify that assumption.

In future work, we would like to strengthen our theo-

rem by relaxing our idealised tracking assumption. This will

involve refining our inductive invariant further, and one

mechanism for better managing the inevitable complexity

of this would be to make the invariant more hierarchical—

having more intermediate predicates between the top-level

invariant and the atomic formulas. We would also like to

extend our model to handle more than two devices, and to

handle more than one location so that the memory consis-
tency model can be investigated [21]. The sister protocol

CXL.mem, which enables disaggregated memory [18], is a

natural target for future formalisation efforts too, and being

a somewhat higher-level protocol, it should be amenable to

more traditional litmus testing [1].

Acknowledgements
We thank the anonymous reviewers for their valuable feed-

back, and Chris Hawblitzel for serving as our shepherd. This

work was supported by an EPSRC Programme Grant on In-
terface reasoning for interacting systems (EP/R006865/1). We

thank Martin Desharnais and Jasmin Blanchette for valuable

discussions, and for pointing us to the Sketch tool, which in-

spired super_sketch. We thank Christian Urban for trying

out super_sketch and providing useful feedback. We thank

Dan Iorga for sharing his insights on his investigation of CXL.

We thank Vijay Nagarajan for sharing his expertise in cache

coherence and heterogeneous protocols. We thank Deben-

dra Sharma, Rob Blankenship and Thibaut Palfer-Sollier for

helpful discussions related to the CXL standard.

A Artifact Appendix
A.1 Abstract
This artifact consists of the formal model of the cache coher-

ence protocol of Compute Express Link (CXL)–CXL.cache. It
contains the model and proof of the Single-Writer-Multiple-

Reader (SWMR) property of CXL.cache in the Isabelle/HOL

proof assistant, as described in the paper “Formalising CXL

Cache Coherence”. The protocol is modelled as a transition

system over system state, where a system state comprises

cacheline states, communication channels, buffers and other

auxiliary structures.

Formalising CXL Cache Coherence ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

A.2 Artifact check-list (meta-information)
• Algorithm: CXL.cache Cache Coherence Protocol
• Program: Isabelle theories
• Compilation: isabelle jedit
• Run-time environment:Windows, with Isabelle2023 in-

stalled. Double-click the “Cygwin-Terminal” .bat file in the

installation folder, and run the command (in the Execution

step) from that terminal.

• Execution: First change into the artifact top-level direc-

tory. Then run the command “isabelle jedit -l AllFixes -J

-Xmx8192m” in the artifact top-level directory.

• Output:messages shown on the proof state panel indicating

theory files have been successfully processed.

• Howmuch disk space required (approximately)?: 50GB
• How much time is needed to prepare workflow (ap-
proximately)?: 10 minutes.

• How much time is needed to complete experiments
(approximately)?: 3-10 hours (It is recommended to use a

machines with at least 32GB memory to achieve this lower

bound.)

• Publicly available?: Yes,
• Workflow automation framework used?: Isabelle ses-
sions.

A.3 Description
The file that contains the definitions of the system state

with type-1 devices (corresponding to the datatype defini-

tion in Figure 3 in Section 3) is Transposed.thy (see line

157 the record definition “Type1State”). Together with the

record type some functions for manipulating certain fields of

Type1State are also defined. The transition rules as shown

in Figure 4 in Section 3 of the system are defined in the file

BuggyRules.thy.
The coherence property that is shown to be an inductive

invariant of the system lies in CoherenceProperties.thy
(see line 199, definition SWMR_state_machine).

The BasicInvariants.thy file contains some basic in-

variants related to certain transitions and functions we al-

ready defined in BuggyRules.thy and Transposed.thy.
The proofs are in the rest of the .thy files in this artifact.

Each transition rule is proven to maintain the inductive prop-

erty (SWMR_state_machine). Since SWMR_state_machine is
quite large (consisting of around 800 conjuncts), the proof

of just a single rule is lengthy, each spanning more than

1,000 lines. They are therefore each stored in a dedicated file,

where the filename corresponds to the name of the rule (up

to a prefix).

As an example, the FixSIAGO_WritePull.thy file con-

tains the proof that the SIAGO_WritePull rule maintains

the SWMR_state_machine property. The main lemma stat-

ing this fact is at the end of the file (line 2915 with name

SIAGO_WritePull_coherent).
The most important auxiliary lemma leading to this is

SIAGO_WritePull’_coherent_aux_simpler (see line 233).

This auxiliary lemma breaks down the proof into hundreds

of subgoals. We call lemmas like this “rule lemmas” as they

each correspond to a rule.

The top level theorem stating the Single-Writer-Multiple-

Reader property of the transition system is the corollary

named SWMR_pplus_cache in TopLevelTheorem.thy (line

354). It corresponds to Theorem 6.2 in the paper. Some main

theorems lead to this corollary:

• If initial_state(Σ) then SWMR_state_machine(Σ)
(Theorem SWMR_state_machine_CXL_cache, line 321).

• If Σ −→ Σ ′
and SWMR_state_machine(Σ) then

SWMR_state_machine(Σ ′)
(Theorem all_transitions_coherent, line 103).

These two theorems correspond to the first two of the

three properties described in the paper just before Section 6.

A.3.1 How to access. The artifact is available on GitHub:

https://github.com/ChengsongTan/CXLcacheFormalisation

A.3.2 Software dependencies. The artifact depends on
Isabelle2023, available at:

https://isabelle.in.tum.de/website-Isabelle2023/index.html

A.4 Installation
See the “Running experiment” section on GitHub:

https://github.com/ChengsongTan/CXLcacheFormalisation?tab=

readme-ov-file#running-experiment

A.5 Evaluation and expected results
See the “Expected results” section on GitHub:

https://github.com/ChengsongTan/CXLcacheFormalisation?tab=

readme-ov-file#expected-results

References
[1] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:

Running tests against hardware. In TACAS, volume 6605 of Lecture
Notes in Computer Science, pages 41–44. Springer, 2011.

[2] Gal Assa, Michal Friedman, and Ori Lahav. A Programming Model

for Disaggregated Memory over CXL, 2024. https://arxiv.org/pdf/2407.

16300.

[3] Thomas Bourgeat. Specification and verification of sequential machines
in rule-based hardware languages. PhD thesis, MIT, 2023. .

[4] Timothy Bourke, Matthias Daum, Gerwin Klein, and Rafal Kolanski.

Challenges and experiences in managing large-scale proofs. In Johan

Jeuring, John A. Campbell, Jacques Carette, Gabriel Dos Reis, Petr So-

jka, Makarius Wenzel, and Volker Sorge, editors, Intelligent Computer
Mathematics - 11th International Conference, AISC 2012, 19th Sympo-
sium, Calculemus 2012, 5th International Workshop, DML 2012, 11th
International Conference, MKM 2012, Systems and Projects, Held as Part
of CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings, volume

7362 of Lecture Notes in Computer Science, pages 32–48. Springer, 2012.
[5] CCIX Consortium. CCIX Consortium Enables Next Generation Com-

pute Architectures with the Availability of Base Specification 1.0, 2018.

https://bwnews.pr/4ePcMLM.

[6] Richard Chirgwin. Intel’s Omni-Path InfiniBand-killer debuts at siz-

zling 100 Gb/sec, 2015. https://bit.ly/omnipath.

https://github.com/ChengsongTan/CXLcacheFormalisation
https://isabelle.in.tum.de/website-Isabelle2023/index.html
https://github.com/ChengsongTan/CXLcacheFormalisation?tab=readme-ov-file#running-experiment
https://github.com/ChengsongTan/CXLcacheFormalisation?tab=readme-ov-file#running-experiment
https://github.com/ChengsongTan/CXLcacheFormalisation?tab=readme-ov-file#expected-results
https://github.com/ChengsongTan/CXLcacheFormalisation?tab=readme-ov-file#expected-results
https://arxiv.org/pdf/2407.16300
https://arxiv.org/pdf/2407.16300
https://bwnews.pr/4ePcMLM
https://bit.ly/omnipath

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Chengsong Tan, Alastair F. Donaldson, and John Wickerson

[7] Joonwon Choi, Adam Chlipala, and Arvind. Hemiola: A DSL and

verification tools to guide design and proof of hierarchical cache-

coherence protocols. In CAV (2), volume 13372 of Lecture Notes in
Computer Science, pages 317–339. Springer, 2022.

[8] Ian Cutress. CXL Specification 1.0 Released: New Industry High-Speed

Interconnect From Intel, 2019. https://bit.ly/cxl-spec.

[9] CXL Consortium. Compute Express Link Specification, Revision 3.1,

2023. https://bit.ly/cxl31.

[10] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. An

Introduction to the Compute Express Link (CXL) Interconnect, 2023.

https://arxiv.org/pdf/2306.11227.

[11] Andrés Goens, Soham Chakraborty, Susmit Sarkar, Sukarn Agarwal,

Nicolai Oswald, and Vijay Nagarajan. Compound memory models.

Proc. ACM Program. Lang., 7(PLDI), jun 2023.

[12] Hiroshige Goto. AMD’s Infinity Fabric will be the foundation for all

of its chips from 2017 onwards, 2017. https://bit.ly/infinityfabric.

[13] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo

Jung. Direct access, High-Performance memory disaggregation with

DirectCXL. In 2022 USENIX Annual Technical Conference (USENIX ATC
22), pages 287–294, Carlsbad, CA, July 2022. USENIX Association.

[14] Thibault Grossi. Memory Processor Interface 2023, Focus on CXL,

2024. https://bit.ly/yole_cxl.

[15] Florian Haftmann. The Sketch and Explore library, 2023. https://bit.

ly/sketch_explore.

[16] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael Lowell Roberts, Srinath T. V. Setty, and Brian Zill.

IronFleet: proving practical distributed systems correct. In Ethan L.

Miller and Steven Hand, editors, Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015, Monterey, CA, USA, October
4-7, 2015, pages 1–17. ACM, 2015.

[17] Intel. Intel Ultra Path Interconnect, 2020. https://bit.ly/ultrapath.

[18] Intel. Orchestrating memory disaggregation with Compute Express

Link, 2024. https://intel.ly/48j1JIv.

[19] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,

Ishwar Agarwal, Mark D. Hill, Marcus Fontoura, and Ricardo Bianchini.

Pond: CXL-based memory pooling systems for cloud platforms. In

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS 2023, page 574–587, New York, NY, USA, 2023. Association

for Computing Machinery.

[20] Mellanox Technologies Inc. Introduction to InfiniBand, 2003. https:

//bit.ly/infiniband.

[21] Vijay Nagarajan, Daniel J. Sorin, Mark D. Hill, and David A. Wood. A
Primer on Memory Consistency and Cache Coherence, Second Edition.
Synthesis Lectures on Computer Architecture. Morgan & Claypool

Publishers, 2020.

[22] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of

Lecture Notes in Computer Science. Springer, 2002.
[23] Nicolai Oswald, Vijay Nagarajan, and Daniel J. Sorin. ProtoGen: Au-

tomatically Generating Directory Cache Coherence Protocols from

Atomic Specifications. In ISCA, pages 247–260. IEEE Computer Society,

2018.

[24] Nicolai Oswald, Vijay Nagarajan, Daniel J. Sorin, Vasilis Gavrielatos,

Theo Olausson, and Reece Carr. HeteroGen: Automatic Synthesis of

Heterogeneous Cache Coherence Protocols. In HPCA, pages 756–771.
IEEE, 2022.

[25] Lawrence C. Paulson. Three years of experience with Sledgehammer,

a practical link between automatic and interactive theorem provers.

In PAAR@IJCAR, volume 9 of EPiC Series in Computing, pages 1–10.
EasyChair, 2010.

[26] PCIE Consortium. PCIE specification library, 2023. https://pcisig.com/

specifications.

[27] Fong Pong and Michel Dubois. Verification techniques for cache

coherence protocols. ACM Comput. Surv., 29(1):82–126, March 1997.

[28] Agam Shah. Hardware makers unite to challenge Intel with Gen-Z

spec, 2016. https://bit.ly/gen-z-spec.

[29] Joseph E. Stoy, Xiaowei Shen, and Arvind. Proofs of correctness of

cache-coherence protocols. In FME, volume 2021 of Lecture Notes in
Computer Science, pages 43–71. Springer, 2001.

[30] Jeffrey Stuecheli, William J. Starke, John D. Irish, L. Baba Arimilli,

Daniel M. Dreps, Bart Blaner, Curt Wollbrink, and Brian Allison. IBM

POWER9 opens up a new era of acceleration enablement: OpenCAPI.

IBM J. Res. Dev., 62(4/5):8:1–8:8, 2018.
[31] Chengsong Tan. GitHub repository for formalisation of CXL.cache,

2025. Accessed: 2025-02-05.

[32] Chengsong Tan, Alastair F. Donaldson, Jonathan Julián Huerta y Mu-

nive, and John Wickerson. The burden of proof: Automated tooling

for rapid iteration on large mechanised proofs. In FormaliSE@ICSE.
ACM, 2025.

[33] Siamak Tavallaei, Kurt Lender, and Robert Blankenship. Compute

Express Link (CXL): Exploring Coherent Memory and Innovative Use

Cases. https://bit.ly/cxlwebinar, 2020.

[34] Jon Worrel. Nvidia NVLINK 2.0 arrives in IBM servers next year, 2016.

https://bit.ly/nvlink.

https://bit.ly/cxl-spec
https://bit.ly/cxl31
https://arxiv.org/pdf/2306.11227
https://bit.ly/infinityfabric
https://bit.ly/yole_cxl
https://bit.ly/sketch_explore
https://bit.ly/sketch_explore
https://bit.ly/ultrapath
https://intel.ly/48j1JIv
https://bit.ly/infiniband
https://bit.ly/infiniband
https://pcisig.com/specifications
https://pcisig.com/specifications
https://bit.ly/gen-z-spec
https://bit.ly/cxlwebinar
https://bit.ly/nvlink

	Abstract
	1 Introduction
	2 Overview of CXL.cache
	3 A formal model of CXL
	3.1 An overview of our CXL state model
	3.2 Details of our CXL state model
	3.3 CXL transitions

	4 Fixing problems in the standard
	4.1 Ambiguity/inaccuracy regarding multiple snoops
	4.2 Redundant rule about multiple snoops
	4.3 Clarification about WritePull responses
	4.4 Potential optimisation when evicting stale data
	4.5 Other clarifications

	5 Scenario verification
	5.1 Smoke testing via litmus tests
	5.2 Assessing the CXL.cache restrictions

	6 Proving the SWMR property
	7 Better automation for large proofs
	7.1 The challenge of iterative inductive invariant development
	7.2 The super_sketch tool

	8 Assumptions and limitations
	9 Related and future work
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results

	References

