GrayC: Greybox Fuzzing of Compilers and Analysers for C

Karine Even-Mendoza* T
karine.even_mendoza@kcl.ac.uk
Department of Informatics, King’s College London
London, United Kingdom

Alastair F. Donaldson
alastair.donaldson@imperial.ac.uk
Department of Computing, Imperial College London
London, United Kingdom

ABSTRACT

Fuzzing of compilers and code analysers has led to a large number
of bugs being found and fixed in widely-used frameworks such as
LLVM, GCC and Frama-C. Most such fuzzing techniques have taken
a blackbox approach, with compilers and code analysers starting
to become relatively immune to such fuzzers.

We propose a coverage-directed, mutation-based approach for
fuzzing C compilers and code analysers, inspired by the success
of this type of greybox fuzzing in other application domains. The
main challenge of applying mutation-based fuzzing in this context
is that naive mutations are likely to generate programs that do not
compile. Such programs are not useful for finding deep bugs that
affect optimisation, analysis, and code generation routines.

We have designed a novel greybox fuzzer for C compilers and
analysers by developing a new set of mutations to target common C
constructs, and transforming fuzzed programs so that they produce
meaningful output, allowing differential testing to be used as a test
oracle, and paving the way for fuzzer-generated programs to be
integrated into compiler and code analyser regression test suites.

We have implemented our approach in GrRAYC, a new open-
source LiBFuzzER-based tool, and present experiments showing
that it provides more coverage on the middle- and back-end stages
of compilers and analysers compared to other mutation-based ap-
proaches, including CLANG-FuzzER, PoLYGLOT, and a technique
similar to LANGFuZz.

We have used GRaYC to identify 30 confirmed compiler and
code analyser bugs: 25 previously unknown bugs (with 22 of them
already fixed in response to our reports) and 5 confirmed bugs re-
ported independently shortly before we found them. A further 3 bug
reports are under investigation. Apart from the results above, we
have contributed 24 simplified versions of coverage-enhancing test
cases produced by GrAYC to the CLANG/LLVM test suite, targeting
78 previously uncovered functions in the LLVM codebase.

“Both authors contributed equally to this research.
A major part of this work was done as an Imperial College London employee.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598130

1219

Arindam Sharma*
arindam.sharma@imperial.ac.uk
Department of Computing, Imperial College London
London, United Kingdom

Cristian Cadar
c.cadar@imperial.ac.uk
Department of Computing, Imperial College London
London, United Kingdom

CCS CONCEPTS

« Software and its engineering — Compilers; Maintaining soft-
ware; Software testing and debugging.

KEYWORDS

Greybox fuzzing, compilers, program analysers, code mutators,
LibFuzzer, Clang, LLVM, GCC, MSVC, Frama-C

ACM Reference Format:

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian
Cadar. 2023. GrayC: Greybox Fuzzing of Compilers and Analysers for C. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’23), July 17-21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598130

1 INTRODUCTION

Over the last decade or so, randomised compiler testing, often
termed compiler fuzzing, has seen an explosion of interest, with
compiler fuzzers leading to the finding and fixing of thousands of
bugs in C compilers such as Clang/LLVM and GCC [65, 82, 105],
as well as in compilers for other languages such as OpenCL [67],
OpenGL [17], SQL [92] and Verilog [57]. Similar efforts have been
proposed for testing code analysers, leading to the discovery of bugs
in popular frameworks such as model checkers, static analysers
and symbolic executors [16, 61, 63].

During roughly the same period, fuzzing has revolutionised the
field of software testing. However, most compiler fuzzers operate
very differently from mainstream general-purpose fuzzers, such
as AFL [106] and LiBFuzzer [75], which are coverage-directed and
mutation-based. Taking inspiration from genetic algorithms, such
general-purpose fuzzers synthesise new inputs by mutating exist-
ing ones, and use coverage feedback as a fitness function: inputs
that yield new coverage of the software under test are prioritised
for further mutation. Due to their use of coverage information,
these fuzzers are often termed greybox. Such fuzzers are equipped
with built-in mutation operators that are very simple, involving
byte-level transformations such as adding, removing or chang-
ing individual bytes. In contrast, most compiler and code analyser
fuzzers either generate programs from scratch (e.g. [16, 68, 105])
or transform existing programs (e.g. [17, 65]). In either case, they
are blackbox: their execution is not guided by information about
coverage of the compiler codebase.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-3099-1189
https://orcid.org/0000-0001-5361-1057
https://orcid.org/0000-0002-7448-7961
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.1145/3597926.3598130
https://doi.org/10.1145/3597926.3598130

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

The main reason greybox fuzzing is hard to apply effectively
to compilers,! particularly those for statically-typed languages,
is that naive code mutations tend to produce invalid programs:
programs that either do not conform to the language’s syntax or
disobey the language’s static semantic rules (e.g. calling functions
with inappropriately-typed arguments in C). Starting with a valid
input that exercises a compiler all the way from lexing to analysis
and/or code generation, naive greybox fuzzing (using byte-level
mutations) is likely to produce a large stream of invalid programs
that are rejected by the compiler’s lexer, parser or type checker.
Such invalid inputs can help find edge cases where the compiler
crashes instead of gracefully rejecting a malformed program, but
cannot find deeper errors in the compiler’s middle- and back-ends,
where the vast majority of optimisations are performed (the middle-
end being responsible for platform-independent optimisations and
the back-end for code generation and optimisations specific to the
target architecture).

In contrast, blackbox grammar-based compiler fuzzers can be
designed to emit valid programs by construction, allowing them
to detect middle- and back-end bugs: crashes, or (when used in
conjunction with a pseudo-oracle such as differential testing [78])
miscompilations (where the compiler emits incorrect object code).
But despite these appealing properties, blackbox compiler fuzzers
are prone to problems of immunity: once they have enabled the
finding and fixing of a substantial number of bugs in a compiler,
they tend to be unable to generate programs that trigger further
bugs [86]. Lacking feedback, the fuzzers have no way of adapting
their generation strategy to find more bugs.

This leads to an interesting research challenge which we address
in this paper: how to devise greybox compiler fuzzing techniques
that yield valid programs capable of detecting deep compiler bugs,
and that can enhance the regression test suites of mature compilers.

Mutation-based approaches have been very successful in the
context of dynamic languages such as JavaScript: LangFuzz [59]
is a pioneering work in this space which found critical bugs in
JavaScript and PHP interpreters, and more recent efforts, such as Su-
perion [103] for JavaScript and XML and Nautilus [1] for JavaScript,
Lua, PHP and Ruby, have added coverage-guidance. However, code
mutations are less likely to result in invalid programs for dynamic
languages, and front-end bugs are often equally valuable in the
context of web security.

For statically-typed languages like C, preliminary steps towards
mutations that have some chance of preserving static validity in-
clude the use of keyword dictionaries [52, 75], protobuf descrip-
tions of programming language structure [96], and regular expres-
sions and partial grammars for recognising common programming
language-like features [53, 55, 101]. However, such methods still
produce a high rate of invalid programs. For example, the LLVM
project’s CLANG-PROTO-FUZZER tool, which relies on a protobuf
description of a fragment of C/C++, was abandoned because it only
found obscure front-end crash bugs that developers were reluctant
to fix [94]; a presentation on the work reports “Bugs are being fixed
too slow (if at all)” [96]. Indeed, we reported several front-end crash
bugs triggered by invalid programs produced via naive mutation

!For succinctness, we will use the term compilers to refer to both compilers and code
analysers, unless we make the distinction explicit.

1220

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

methods, and found they were not received positively by devel-
opers, either being closed as “won’t fix”, or ignored (see §5.4). A
recent tool, PoLyGrot [11], for generic language processor testing
pays special attention to improving the likelihood that the test
programs it creates are valid, yet achieves only limited coverage
on the middle- and back-end compiler components, restricting its
ability to find bugs in C compilers mainly to front-end crashes (see
§5 for more details).

Our contribution. In an attempt to get the best of both worlds—
the validity guarantees associated with grammar-based blackbox
compiler fuzzing and the targeted search offered by a greybox
approach—we present GRAYC,? a greybox fuzzer for C compilers.
The key innovation of GrRaYC is the use of semantics-aware mu-
tation operators: mutation operators that preserve validity of the
input program (including the typing rules of the language) with
high probability.? These mutations work at the abstract syntax tree
(AST) level, and include mutations that modify individual programs,
as well as mutations that combine elements of multiple programs.
The programs generated via semantics-aware mutation exercise
the compiler codebase end-to-end, and can be used to find crashes
deep in optimisation passes.

Rather than directly applying coverage-directed fuzzing to each
compiler of interest, GRAYC takes a “fuzzing by proxy” approach,
akin to that taken in recent work on fuzzing instruction set sim-
ulators [56] and deployed CPUs [97]. We run coverage-directed
fuzzing with GrayC’s semantics-aware mutators on a particular
compiler under test (compiled with suitable coverage instrumen-
tation), collecting all the test programs that are generated during
the fuzzing process. We then feed this output corpus to a range of
different compilers under test, operating at various optimisation
levels, to see whether they induce compiler crashes. This workflow,
summarised in Figure 1, has the advantage that only the compiler
used for generation of the output corpus needs to be compiled in a
manner suitable for greybox fuzzing. The compilers and analysers
subsequently tested using the output corpus can be arbitrary bina-
ries, allowing closed-source compilers (e.g. MSVC) and tools not
written in C/C++, to be tested (e.g. the FRAMA-C analyser [15], one
of the experimental subjects in this paper, is written in OCaml).

Overview of results. We have used GRAYC (at various stages of
development) to test the CLang, GCC and MSVC compilers and the
FraMa-C code analyser. This led to us finding 30 confirmed bugs: 25
previously unknown compiler and analyser bugs, out of which 22
have already been fixed in response to our reports and a further 5
bugs that turned out to have already been reported by other users.*
Importantly, of these 30 bugs, 22 are middle- or back-end bugs that
can only be triggered by valid programs. It is due to a very high
percentage of the programs that GRAYC generates being valid that
our technique was able to find these bugs; this is in contrast to
other techniques that apply mutation-based fuzzing to C compilers.

ZPronounced “Grace”, GRaYC is a pun on greybox fuzzing for C, at the same time
paying homage to compiler pioneer Grace Hopper.

3As discussed further in §3.1, there are strong practical reasons for tolerating a suitably
low rate of invalid programs.

4Our reports of a further 3 bugs found by GraYC are waiting investigation.

GrayC: Greybox Fuzzing of Compilers and Analysers for C

Custom

mutators ProQ ram

generation via
coverage-
guided fuzzing
of a particular
compiler

Instrumented
compiler
version

Initial
corpus

LibFuzzer

Subsequent
testing of many
compilers/tools
using generated
programs

Several
off-the-shelf
compilers and
analysers

Figure 1: Overview of greybox fuzzing with GrRayC.

In parallel, we also performed extensive testing using the state-
of-the-art blackbox fuzzer CsmiTH [105], and were unable to find
any of the bugs that GRAYC could find. This provides evidence that
greybox compiler fuzzing has the potential to find bugs in compilers
that have already been subjected to extensive blackbox fuzzing.

We also present a set of controlled experiments comparing the
semantics-aware mutators of GRAYC with naive byte-level muta-
tion (via CLANG-FUzzER [13]), grammar-based fuzzing (via GRAM-
MARINATOR [58]), fragment-based fuzzing (via a tool similar to
LanGFuzz [59]), regular expression-based mutation (via UNIVERSAL
MUTATOR [53] and AFL-COMPILER-FUZZER [55]), and a greybox ap-
proach for generic language processor testing (via PoLyGrot [11]).
Our results show that GrayC provides better coverage of middle-
and back-end compiler components, and is able to find crashes in
these components that are not found when the other methods are
used, since they tend to generate invalid programs.

Finally, we have demonstrated how GRAYC can have impact
beyond just finding bugs by using it as the basis for contributing
new tests to the LLVM test suite. By combining GrayC with an off-
the-shelf test case reducer, and designing a novel tool, ENHANCER,
to equip reduced programs with a test oracle, we produced a set of
small, well-defined programs that achieve coverage of particular
LLVM optimisations that is not achieved by the LLVM test suite. We
contributed these test cases back to the LLVM project to improve
the coverage of regression testing, and the developers reviewed and
accepted the test cases.

In summary, our main contributions are:

(1) A technique for coverage-directed mutation-based greybox com-
piler fuzzing that yields valid programs thanks to semantics-
aware mutators specially designed for static languages;

(2) The implementation of this idea in a greybox compiler fuzzer,
GraYC, which uses fuzzing by proxy to generate C programs
that can be used as inputs to a range of compilers and analysers
under test;

(3) A large testing campaign and experimental evaluation showing
that GrayC finds more bugs and achieves higher coverage than
other mutation-based approaches, and can generate programs
that enhance the regression test suites of mature compilers.

1221

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

2 BACKGROUND

This section provides an overview of the main concepts (§2.1) and
tools (§2.2) necessary to understand our technique

2.1 Compiler Bugs and Program Validity

Our primary focus in this work is on crash bugs, where the com-
piler aborts unexpectedly. Specifically, we are interested in finding
crashes deep in a compiler’s codebase (e.g. in the optimiser or code
generator). For this purpose, we distinguish between statically-
valid and statically-invalid programs. Essentially, statically-valid
programs are those that should be expected to compile according
to the language specification, without reference to any particular
compiler. Therefore, statically-valid programs are more likely to
exercise deep parts of the compiler than statically-invalid programs.

We say that a program is dynamically-valid if it produces a well-
defined deterministic result when executed. In particular, it must
not trigger undefined behaviour (such as an out-of-bounds access,
or division by zero) at runtime. Dynamically-valid programs can be
used to find miscompilations via differential testing and enhance
compiler test suites.

The focus of GRaYC is on producing statically-valid programs
but, as discussed in §3.2, sanitizer tools can be used to filter pro-
grams that are dynamically-invalid; we have used this to restrict
attention to programs that might be useful for test suite augmenta-
tion (see §4.3).

2.2 LiBFuzzeR and CLANG-FUZZER

LiBFuzzER [66] is a greybox in-process mutation-based fuzzing
engine. It treats test cases as sequences of bytes, and the user must
write a fuzz target function that uses a given byte sequence to
invoke their system under test (SUT) in a meaningful way. LiB-
Fuzzer is fully integrated with the LLVM [64] infrastructure; using
it requires using a special compilation flag.

Starting from a user-provided initial corpus, LIBFuzzER produces
new tests by mutating existing ones. By default, this is achieved
using a set of byte-level mutations. If a mutated test results in new
coverage, it is fed back into the corpus for future mutation. This
process runs iteratively while the engine keeps track of any tests
that cause the SUT to crash.

LiBFuzzERr provides an API that allows a custom mutator to be
provided: a function that accepts an existing input as a sequence of
bytes, and returns a mutated version of the input. The function can
use domain-specific logic to interpret the input sequence of bytes
according to the application domain of the system under test, and
thus perform a semantically-meaningful mutation.

CranG-Fuzzer [13] allows fuzzing of the CLANG compiler using
LiBFuzzER, by providing a fuzz target that interprets a sequence
of bytes as text and feeds this text to CLANG. CLANG-FUZZER uses
LiBFuzzER’s built-in byte-level mutations, so the mutated programs
that it generates are very unlikely to be statically-valid C/C++ pro-
grams. As described in detail in §3, our GRAYC tool augments the
CranG-Fuzzer fuzz target with a custom mutator that parses an
input into an AST and performs semantics-aware, AST-level muta-
tions, returning the mutated program as a string. This leads to a
high rate of statically-and dynamically-valid programs.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

3 GRAYC

The GrayC approach involves using mutation-based fuzzing as
a program generation technique, and then using the generated
programs to test compilers and analysers.

The high-level flow of GrRaYC is sketched in Figure 1. Starting
with an initial corpus of valid test programs, GRAYC uses LIBFUZZER
to perform coverage-guided mutation-based fuzzing ((1) in Fig-
ure 1). The fuzz target of CLANG-FUZZER is used to exercise the
Clang/LLVM codebase, and our semantics-aware mutators are pro-
vided as LIBFUZZER custom mutators, to maximise the chance that
mutated programs are statically-valid. Unconventionally, the pur-
pose of this stage is not to find bugs, but rather to generate a large
corpus of diverse test programs, which are saved to an external
directory, called the fuzzed corpus (@) The programs in the fuzzed
corpus can then be used for deep testing of a range of off-the-shelf
compilers (at various optimisation levels) and code analysers (@)
which do not need to be compiled in a special manner; in fact they
may be closed-source (this allowed us to find bugs in a proprietary
compiler from Microsoft, see §4). The idea of this “fuzzing by proxy”
approach is that coverage-guided fuzzing on a particular compiler
of interest should lead to programs that are interesting and diverse,
and thus useful for testing C compilers and analysis tools in general.
This is supported by the bugs we have found using GrayC, affecting
a range of targets (§4).

We first discuss the custom mutators employed by GRAYC, whose
key objective is to produce statically-valid programs (§3.1). We
then describe our ENHANCER tool that allows GRAYC to be used for
differential testing and compiler test suite augmentation (§3.2), and
describe pertinent implementation details (§3.3).

3.1 Custom Mutators

Our custom mutators are semantics-aware, which enables them
to generate statically-valid programs. GRAYC receives—from Lis-
Fuzzer—a program to transform. It parses the program into an
AST, and then selects, uniformly at random, a transformation and
an appropriate AST node at which to apply the transformation.
GRAYC is based on the CLANG L1BTooLING framework [12], which
facilitates type-aware mutations by giving access to a fine-grained,
typed AST for the program being mutated. This allows GRAYC’s
custom mutators to have additional checks based on, but not limited
to, types, variable names and scopes.

The transformations are summarised in Table 1, and are cate-
gorised into mutations, which take individual programs as input,
and recombiners, which work on two programs, the second program
selected from the corpus uniformly at random.

Mutators (lines 1-11 in Table 1). A mutator takes as input a pro-
gram and transforms it based on a certain template. GRAYC’s muta-
tors can add new statements, as well as edit or delete expressions
and statements. For instance, INJECT-CONTROL-FLOW adds a break,
continue or return statement, REPLACE-BY-CONSTANT replaces
an arithmetic expression by a constant (e.g. replacing a=(a+1)%7;
with a=6;) and CHANGE-TYPE changes the type of an expression
(via explicit casting).

Using two examples, we illustrate how DELETE-STATEMENT works
in isolation, and together with DUPLICATE-STATEMENT.

1222

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

Example 1. Consider this simple example:
for (int i=0; i<5; i++) {
i+=2; printf("itr: \%d",

3

i);

The DELETE-STATEMENT mutator acting on the for-loop block
can either remove a statement:
for (int i=0;
printf("itr:
}
or replace a block with the empty statement (via two consecutive
applications):

i<5; i++) {
\%d", i);

for (int i=0; i<5; i++) {

}

Example 2. GRaYC applies a series of mutators to the original
program on the left (a program from the CLANG/LLVM test suite)
to synthesise the program on the right:

1 typedef struct {

1 typedef struct { 2 e G

2 unsigned w[3];

3y v 3%} Y,

1Y arr[32]; : Y arr[?z];

5 int main() { > 1nt_ ma%n() i

6 int i=0; o lnt.l = 0

7 unsigned x=0; / unmgned x =9 .
8 for (i=0; i<32; ++i) 8 for(i=o; i<32; ++i)
9 arr[i].wl1]=1 == 1; ’ e il
10 for (ize; i<32; ++i) 10 x+=arr[11.wl1];

11 x+=arr[11.wl1]; 1 x+=arr[11.wl1d;

12 if (x1=232) 12 if (x!=32)

13 abort (); 13 abort ();

14 return 0; 14 return o;

15 } Y 15 }

To do so, GRAYC invokes: (i) DELETE-STATEMENT, to remove
the inner statement of the first loop (in blue: left-program, line 9),
and (ii) DUPLICATE-STATEMENT, to duplicate the inner statement of
the second loop (in green: left-program, line 11 to right-program,
lines 10-11). The two separate loops in the original program have
now converted to a nested loop in the fuzzed program due to the
deletion of line 9 via two different DELETE-STATEMENT mutations:
replacing the inner statement with the empty statement, and then
also removing the empty statement. The DUPLICATE-STATEMENT
mutation can occur before, in-between or after the two DELETE-
STATEMENT mutations.

Recombiners (lines 12-13 in Table 1). A recombiner takes as input
two programs—a source program and a destination program—and
transforms the destination program by adding parts of the source
program. To allow for increased code diversity, the source programs
can be picked from a larger set compared to the original corpus
provided to LiBFuzzer. GRAYC’s recombiners can then replace
the body of a function with the body of another function from a
different program, or combine the bodies of two functions from
two different programs. We use a careful renaming scheme to work
around name clashes between variables and functions in the source
and destination programs.

Example 3. We illustrate how CoMBINE-FUNCTIONS recombines
the following two programs: Ppy,, (the destination program) and
Pygreen (the source program).

GrayC: Greybox Fuzzing of Compilers and Analysers for C

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 1: GRAYC’s code mutators and recombiners.

Type Construct Short Name Description

1 DUPLICATE-STATEMENT Duplicate a statement within the same block excluding variable declarations.

2 Mutator Statement =~ DELETE-STATEMENT Delete a non-declaration statement; randomly decide whether to keep the semicolon.

3 INyECT-CONTROL-FLOW Add a break, continue or return statement inside a loop. The statement is guarded by a condition based on an
auxiliary loop counter so that it is only invoked on certain iterations.

4 DELETE-EXPRESSION Delete sub-expressions from a given expression in a corpus program.

5 EXPAND-EXPRESSION Expand sub-expression with other sub-expressions from the corpus program; e.g. in an assignment or loop
condition.

6 REPLACE-BY-CONSTANT Replace an expression with a random valid constant expression of the same data type; e.g. replace a condition in
awhile to 0, making its body dead code.

7 Mutator Expression FLip-BiT Flip a bit in a constant expression.

8 REPLACE-DIGIT Similar to Flip-Bit but on the number’s decimal representation: either flip the sign or change a single digit.

9 CHANGE-TYPE Change the type of an expression (short, long, unsigned, float, etc.).

10 REPLACE-UNARY-OPERATOR Replace unary operator with an assignment using the same variable; e.g. replace i++ in a for statement to i=i+2
or i=i-3.

11 FLIP-OPERATOR Replace one operator with another (arithmetic operators).

12 . . REPLACE-FUNCTION-BODY Replace the body of a function with that of another function with the same number of arguments.

Recombiner Function

13 CoMBINE-FUNCTIONS Combine the body of a function with another function with the same number of arguments, either by concate-

nating bodies or interleaving their statements.
Program Ppjy,e: Program Pgreen:

1 int dest_func(int x_dest
, int y_dest) {

1 int a=0;
2 int source_func(int

2 int b_dest=x_destxy_dest; josrc, int k_src) {
3 b_dest=b_dest+5; 3 int m_src=j_src+k_src;

4 return b_dest; +y return m_src;

5} 573

6 int main() { 6 int main() {

7 int ret=dest_func(6,7); 7 int ret=source_func(2,3);
8 return ret; 8 return a;

9} 9}

The recombiner merges the body of source_func in Pgpeen into
the body of dest_func in Ppy,. There are several options to merge
the bodies of these functions. The programs P; and P, below are two
of the possible programs that ComBINE-FUNCTIONS could output.
We mark the lines used in the output programs in blue if they
originate from Pypy,,, and in green if they originate from Pgreen.

Output program P;: Output program Py:
1 int dest_func(int x_dest
int y_dest) {

1 int dest_func(int x_dest
, int y_dest) { ,

2 int j_src=x_dest; 2 int j_src=x_dest;

3 int k_src=y_dest; 3 int k_src=y_dest;

4 int m_src=j_src+k_src; 1 int m_src=j_srctk_src;
5 int b_dest=x_dest+y_dest; 5 int b_dest=x_dest+y_dest;
6 b_dest=b_dest+5; 6 b_dest=b_dest+5;

7 return b_dest; 7 return m_src;

8} 8}

9 int main() { 9 int main() {

10 int ret=dest_func(6,7); 10 int ret=dest_func(6,7);
11 return ret; 11 return ret;

12 } 12 }

ComBINE-FUNCTIONS combines functions with the same number
of arguments, and the first thing it does is to initialise the vari-
ables corresponding to the function arguments of the source func-
tion with the values of the arguments in the destination function
(lines 2—4 in P; and P). The return statement is handled separately:
CoMmBINE-FUNcTIONS randomly selects one of the two return values

1223

(P1 uses the return statement from Ppy,e, while P that from Pgyreen)
and adds it as a single return statement of the merged function.

Aggressiveness. Recall from §2.1 that we make a distinction be-
tween statically- and dynamically-valid programs. The main objec-
tive of GRAYC is to generate programs that, with high probability,
turn out to be statically-valid. Such programs are suitable for find-
ing compiler crash bugs, which is our main use case for GRAYC.
As discussed further in §3.2, dynamic analysis tools can be used
to filter out programs that they observe to be dynamically-invalid,
such that (modulo limitations of available dynamic analysers) the
programs that pass this filtering step can be used to augment com-
piler regression test suites, or used for differential testing to search
for miscompilation bugs.

We experimented with adding a special conservative mode to
GrayC that applies mutations less aggressively with the aim of
generating dynamically-valid programs with higher probability. In
this mode, certain mutators behave in a more restricted fashion.
For example, with respect to Table 1, REPLACE-BY-CONSTANT adds
checks to avoid undefined behaviour based on the constant’s loca-
tion, e.g. the replaced constant should be non-negative if used as an
array index, while DELETE-EXPRESSION avoids selecting expressions
using pointers, to reduce the chances of memory-related undefined
behaviour. Because the CsmITH program generator is designed to
produce code that is free from undefined behaviour [105], we added
another mutator in conservative mode, ADD-CsmiTH-Brock. This
uses CsMITH (configured to limit expression complexity and use
no global variables, user-defined types or memory allocations) to
generate a program with a single function, and pulls a block from
the function into a corpus program.

Unfortunately, despite these efforts, we concluded—based on
extensive experimental evaluation—that the conservative mode of
GrayC did not pay off. We found it to be inferior to GRaYC’s stan-
dard aggressive mode both with respect to bug-finding ability and

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

compiler code coverage. Furthermore, the overhead of performing
additional checks and invoking CsmiTH made GRAYC operate more
slowly in this mode, so that although the chances of each generated
program being dynamically-valid were higher, the slower rate of
program generation overall meant that running GRAYC in its ag-
gressive mode and using sanitizers to filter out dynamically-invalid
programs proved to be a more economical source of dynamically-
valid programs.

3.2 ENHANCER

To make the GRAYC-generated programs suitable for differential
testing and compiler test suite augmentation, we designed a new
post-processing tool, ENHANCER, that transforms these programs
to produce a single output. That way, the output of the enhanced
program can easily be compared during differential testing or added
to an expected output file.

Inspired by the way CsmrTH [105] programs are designed, the
single output hashes all the global variables in the program.’ In
addition, ENHANCER: (1) adds to the global hash value all the strings
printed by the program during execution, and (2) replaces any ter-
mination function, such as abort and exit, by an operation that
adds to the global hash a unique string representing the termination
function, and then replaces the operation by a return statement.
The reason for which we eliminate termination functions is to en-
sure that the global hash is always printed at the end of a program
execution. (Note that CsMITH programs never contain calls to such
functions by design, but in our case we start from existing programs
that might contain them.) Finally, ENHANCER includes other trans-
formations, such as ensuring that the signature of main is always
int main(void).

Recall that programs produced by GRayC are not guaranteed to
be dynamically-valid. Furthermore, it is possible that eliminating
termination functions might introduce undefined behaviour to pro-
grams that were previously dynamically-valid. To guard against
this, after transforming a given program, ENHANCER invokes sani-
tizers to detect undefined behaviour. Programs that turn out to be
dynamically-invalid are then discarded, so that they do not con-
found differential testing or lead to the possibility of programs that
exhibit undefined behaviour being added to the set of end-to-end
tests in a compiler’s regression test suite.

3.3 Implementation Details

Our implementation is divided into several parts: GRAYC, ENHANCER,
and a set of Bash and Python scripts for crash and differential test-
ing. We make use of LLVM 12.0.1, with our mutators implemented
on top of CLANG-FuzzER/LIBTOOLING.

To detect undefined behaviour, ENHANCER invokes FRamA-C [15],
an open-source industrial-strength framework dedicated to the for-
mal analysis of C programs, and the CLANG/LLVM compiler sani-
tizers: ADDRESSSANITIZER [95], a dynamic analysis tool to detect
invalid memory accesses, MEMORYSANITIZER [98] to detect unini-
tialised memory accesses, and UNDEFINEDBEHAVIORSANITIZER [99]
to detect a wide range of undefined behaviours.

SIf the program already produces a single output, ENHANCER makes no changes.

1224

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

4 USING GRAYC IN THE WILD

We divide our evaluation into two parts: a long-term fuzzing cam-
paign used to find compiler and analyser bugs (presented in this
section) and a series of controlled experiments designed to better
understand the strengths and weaknesses of GRAYC compared to
other approaches (presented in §5).

During the development of GrayC, we applied it to several
versions of a number of compilers and analysers. Our fuzzing cam-
paigns (§4.1) led to the discovery of 30 confirmed bugs (§4.2), with
another 3 bug reports still under investigation, and the contribution
of 24 programs to the CLANG/LLVM test suite (§4.3).

In parallel, we applied CsmiTH [105] continuously over a pe-
riod of six months to look for bugs in GCC 11 and CLANG-13 on
x86_64. It did not find any bugs, adding weight to our hypothe-
sis that compilers eventually become immune to blackbox fuzzing
approaches [86].

Our artifact [18] contains data associated with these experiments,
including links to bug reports and relevant logs.

4.1 Experimental Setup

We now summarise how we approached our open-ended fuzzing
campaigns, with the aim of finding previously-unknown bugs in
compilers and analysers.

Initial Corpus. GrRaYC’s initial corpus was a collection of single-
file programs from various sources: automatically-generated pro-
grams, compiler test suites, and C tutorials. In addition, we used
CsMITH to create a set of automatically-generated programs. We
minimised the set of CsmITH programs using C-REDUCE [87] to
have at least one reduced and dynamically-valid program cover-
ing each function in the fuzzed compiler that was covered by the
original set of programs.

Fuzzing Campaigns. We applied our tool throughout its develop-
ment, running it occasionally during 2021 and 2022. Overall, we
estimate that we ran GRAYC on various compiler versions for a
total of several weeks. Each fuzzing campaign ran until it reached
a time or disk space limit, or no new coverage was achieved for
some time; as this was a series of long-running experiments, the
details of these limits varied. Similarly to CLANG-FuzzER, GRAYC
terminates the fuzzing process when the mutation attempt fails
100 times.

Compilers and Analysers Tested. We tested recent versions of
LLVM (10,11,12,13,14 and 15), GCC (10,11, 12 and 13) and the
code analyser FRamA-C (21,22, 23 and 24) on UBUNTU LINUX 18.04
LTS x86_64. We found bugs in GCC and LLVM on LiNux by com-
piling each mutated program with and without sanitizer flags and
using each of the standard -00, -01, -02, -03, and -Os optimisation
levels. We also conducted a short evaluation on WiNpDows with a
small set of mutated programs generated on LINUX to test the Mi-
crosoft Visual Studio Compiler (MSVC 19.28.29915) with the /0d
(no optimisations) and /02 (maximise speed) optimisation settings.

During our fuzzing campaigns, we used C-REDUCE, the LLVM
sanitizers and FRaMA-C as part of investigating the bugs that we
found. This led to us to report 11 additional bugs in these tools as a
by-product of our work [2-6, 24-26, 70, 72, 73].

GrayC: Greybox Fuzzing of Compilers and Analysers for C

Table 2: Compiler and code analyser bugs found by GrayC.

Previously-unknown | Independently-reported

Confirmed Fixed | Confirmed Fixed
GCC 9 8 3 3
LLVM 2 2 1 0
MSVC 3 1 0 0
Frama-C 11 11 1 1
TOTAL 25 22 | 5 4

Table 3: Number of confirmed compiler and code analyser
bugs found by GrRaYC in each high-level component.

Front-end Middle-/Back-end
GCC 2 10
LLVM 1 2
MSVC 3 0
Frama-C 2 10
TOTAL 8 22

4.2 Bugs Found

Table 2 gives an overview of the compiler and code analyser dis-
covered. GRaYC found 30 confirmed bugs [19-23, 27-33, 35-46,
69, 74, 79-81, 88]: 25 previously unknown (out of which 22 bugs
have already been fixed in response to our reports), and 5 bugs con-
firmed and/or fixed independently shortly before we found them.
Additionally, 3 bug reports (not included in Table 2) are pending
investigation [89-91].

Table 3 classifies these bugs into those occurring in the front-end
and those occurring in the middle- or back-end. Most of the bugs
found by GRAYC are in the middle- or back-end, demonstrating
its ability to find deep bugs. The front-end bugs could in principle
be found using more naive mutation approaches. However, the
fact that GRAYC generates statically-valid programs means that
these bugs are taken seriously and fixed by developers; by contrast,
front-end bugs triggered by statically-invalid programs are often
left unaddressed by developers (see §5.4).

All the bugs we found are crash bugs, except for two which cause
the compiler under test to hang. In particular, our use of GRAYC
plus ENHANCER did not lead to us finding any miscompilation bugs
using differential testing. However, we were successful in using
GRAYC plus ENHANCER to generate coverage-enhancing test cases
that have been accepted into the LLVM test suite (see §4.3).

To give a flavour of the kind of bug reports produced by GrRayC,
we now discuss one of them.

ICE (Internal Compiler Error) in GCC during constant folding optimi-
sation. The following program fuzzed by GRAYC led to an ICE in
GCC 11 and GCC 12:

struct a d;
struct a {
int b;
int c[]
} main() {
d.c[268435456]

1
2
3
4
5

|l d.cl1];

7%

1225

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

This program was obtained using ExpAND-EXPRESSION, which re-
placedd.c[1]withd.c[1] || d.c[1], and then using REPLACE-By-
CoNsTANT, which modified d.c[1] || d.c[1] tod.c[268435456]

|| d.c[1]. During constant folding (middle-end), the decomposi-
tion of d.c[268435456] triggered the bug; this was fixed by adding
extra checks.

4.3 Compiler Test Case Contributions

We used GrayC’s ability to generate dynamically-valid programs,
with the help of ENHANCER, to improve the LLVM test suite. In
particular, we contributed test programs generated by GRAYC which
increase the function coverage achieved by the LLVM test suite.

Once we identified such programs, we transformed and reduced
them further using ENHANCER and C-REDUCE and manually cleaned
them up. So far, 16 of these programs were accepted into the
LLVM test suite [83, 84]° and 8 of these programs are under re-
view [85]. These tests targeted 78 previously uncovered functions in
Transforms, IR, AST and other parts of clang 1lib. All contributed
test cases are available at [18, 49, 60].

5 CONTROLLED EXPERIMENTS

We next compare GRAYC with other fuzzing methods, using con-
trolled experiments.

5.1 Experimental Setup

Tools. We consider the following tools in our evaluation:

(1) GraxC. The tool introduced in this paper.”

(2) GRAYC-No-Cov-GUIpANCE. Fuzzing with no coverage guid-
ance to assess a main claim of the paper, which is that coverage
guidance is useful. We adapted GrayC to work without cover-
age guidance but with all its available mutators.

(3) GRaYC-FRaGMENTS-FuzzING. We adapted GRAYC to run with-
out coverage guidance, and only use code fragment injection
(namely the ApDD-CsMmITH-BLocK mutator described in §3.1).
This is the closest we can get to what LANGFuzz® does: it is
not coverage-guided, and only uses code fragment injection
mutation [59].

(4) CLAaNG-FuzzeR. Default CLANG-FUZzZER [13, 66] (see §2).

(5) CsmrTH. Default CsmrTH [105] (see §1).

(6) GRAMMARINATOR. Default GRAMMARINATOR (v19.3) [50, 58]:
a general purpose grammar-based open-source fuzzer.

(7) PoLYGroT. The tool is taken from the artifact associated with
the paper [11]: PoLYGLOT is a general-purpose AFL-based fuzzer
that aims to generate statically-valid programs via a semantic
error-fixing mechanism.

®Ten of the contributed tests were generated during the very early stages of the project,
using prototype tools that predated GRAYC and ENHANCER in their current forms.
"This refers to GRaYC running its standard aggressive mode. We also performed our
full set of controlled experiments using the conservative mode described in §3.1. As
discussed in §3.1, these experiments revealed that the conservative mode performed
substantially worse than the aggressive mode. Due to the large number of other ap-
proaches we compare with experimentally, we omit results for the conservative mode
in this section, to simplify figures and associated discussion. However, our artifact
includes the means to reproduce the conservative mode experiments in addition to the
other experiments we describe.

8LanGFuzz was applied to JavaScript and PHP interpreters, and the tool is not publicly
available for direct comparison.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

(8) REGEXxPMUTATOR. A LiBFUzZER-based tool that uses UNI-
VERSAL MUTATOR [53], a regexp-based mutator, instead of Lis-
FuzzgRr’s default mutator.

We have also experimented with ideas from a recent paper on
“no-fuss compiler fuzzing” [55], by assembling a LiBFuzzer-based
tool that replaces the default mutators with those of AFL-COMPILER-
FUZZER [102]. These mutators are taken from mutation testing and
program splicing and also rely on regular expressions. However,
we were unsuccessful in generating a meaningful number of non-
duplicate programs in our experiments, as the mutators only rarely
trigger on our program corpus.

Implementation notes. To avoid coverage guidance, GRAYC-No-
Cov-Guipance and GRAYC-FRAGMENTs-FUZZING are not based on
LiBFuzzER. Instead, they are based on a simple script that repeatedly
picks a program from the working corpus at random, applies the
relevant mutators, and writes the mutated program back to the
working corpus.

We implemented REGEXPMUTATOR by invoking the UNIVERSAL
MUTATOR tool as an external Python process. This leads to a variety
of mutated programs being generated, of which one is chosen at
random. We note that this is a rather inefficient way to perform
regex-based mutation, and that by re-implementing the logic of the
UNIVERSAL MUTATOR in C++, it would likely be possible to achieve
higher throughput.

Collecting test programs. We used each tool to construct a cor-
pus of test programs for subsequent offline testing and coverage
analysis of various compilers and analysers. For the tools that are
coverage-guided, this is an example of “fuzzing by proxy” (see §3):
the corpus of programs that arise during coverage-guided fuzzing
of a particular system under tests is saved, and then used to test a
number of different systems under test.

We allocated 24 h per tool for program collection, and to account
for variance we repeated the collection process 10 times per tool.
This resulted in 10 sets of generated programs per tool. The through-
put and coverage results reported in §5.2 and §5.3 are averages over
10 sets.

For the tools that require an initial corpus (all tools except
CsmiTH and GRAMMARINATOR), we assembled an initial corpus
as described in §4.1. Our corpus snapshot for these controlled ex-
periments contains 1,767 dynamically-valid single-file programs.
The reader can consult our artifact for full details on the programs
included. For the coverage-guided tools, fuzzing was performed
against LLVM 12.0.1.

For CLANG-FUZZER, saving all mutated programs proved imprac-
tical: CLANG-FUZZER generates approximately one million programs
every 24 h, with many duplicate programs having no effect on cov-
erage. We considered filtering duplicates during or after fuzzing,
which either reduced the tool efficiency (when spending time de-
tecting duplicates) or led to excessively long post-processing times.
As a result, for CLaNG-FuzzeR we decided to only save the mu-
tated programs for which CLANG-FUZzZER reports extra coverage
(i.e. CLANG-FUzzER’s default settings).

We now discuss our results with respect to throughput and static
validity rate (§5.2), coverage (§5.3), and bug finding (§5.4).

1226

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

Table 4: Average throughput (across 10 repetitions, over 24 h)
by each tool and the percentage which are statically-valid.
Numbers refer to unique programs after filtering duplicates.

Programs/h Statically-valid (%)
CsMITH 1,144 99.96%
GrayC 2,906 99.47%
GRraYC-FrRaGMENTs-FuzzIiNGg 4,152 99.08%
PoLyGroT 641 91.26%
GRrAYC-No0-Cov-GUIDANCE 4,629 75.04%
REGEXPMUTATOR 1,392 19.21%
CLANG-FuzzER 1,183 1.55%
GRAMMARINATOR 5,391 0.0%

5.2 Throughput and Static Validity Rate

The key metric when comparing fuzzers is their bug-finding ability—
and coverage as a proxy for that. However, it is instructive to in-
terpret data on coverage and bug-finding ability in the context of
the throughput achieved by each fuzzer. We present results related
to throughput, with a particular emphasis on how it evolves over
time and how many statically-valid programs are generated.

Throughput. The second column of Table 4 shows, for each tool,
the average throughput over 24 h of fuzzing. GrayC’s through-
put is somewhere in the middle. The mutation-based black-box
fuzzers (GRAMMARINATOR, GRAYC-No-Cov-GUIDANCE and GRAYC-
FrRAGMENTS-FuzzING) have the highest overall throughput, with
GRAMMARINATOR on top. At the other end of the spectrum, Pory-
GLoT has the lowest overall throughput, with CLANG-FuZzZzER sec-
ond to last (however, recall from §5.1 that we capture only a subset
of the programs that CLANG-FUZZER generates, because otherwise
its throughput rate would be too high to be manageable). After
a closer inspection, we found that PoLyGroTt and CLANG-FUZZER
have the highest throughput in the beginning, but this decreases
significantly, falling into the last places by the fourth and the eighth
hour of fuzzing, respectively. This declining trend (shared in various
degrees by all LiBFuzzeRr-based tools) is mostly due to the corpus
reduction functionality in L1BFuzzER, which consumes more time
as the corpus grows, leaving less time for program mutation.

Static validity rate. The last column of Table 4 shows, for each tool,
the percentage of generated programs that are statically-valid. We
consider a program to be statically-valid if it is compiled successfully
by GCC 11.1.0 while imposing a compilation timeout of 45 s and
a stack limit of 4 MB (we impose a stack limit because compiler
crashes caused by programs with large stack allocations are usually
due to resource exhaustion rather than compiler bugs).

Over 99% of the programs generated by CsmitH, GRAYC and
GravC-fragments-fuzzing are statically-valid.” PoryGro achieved
a high compilation rate of 91.26% with the initial corpus in this
evaluation, much higher than originally reported with PoLyGLoT’s
initial corpus, which was a mixture of statically valid and invalid
programs [11]. GRAYC-No-Cov-GUIDANCE’s lack of coverage guid-
ance resulted in a significantly lower compilation rate of 75.04%. We
suspect this is because without coverage guidance, similar statically-
invalid programs that cover the same front-end code do not get

9CsmrTH-generated programs are by construction compilable; however, some files hit
our compilation timeout.

GrayC: Greybox Fuzzing of Compilers and Analysers for C

de-prioritised. Only 19.21% programs compile for REGEXPMUTATOR
and only 1.55% for CLANG-FuzzER. None of the GRAMMARINATOR
programs generated during this evaluation passes compilation.

5.3 Coverage

We measured coverage for GCC 12 on Ubuntu 18.04 LTS x86_64 and
LLVM 13 on Ubuntu 20.04 LTS x86_64. We compiled the generated
programs with -03, to exercise a large number of optimisations,
and we imposed a timeout of 50 s for compiling a program. We used
the Gcov-based tool gfauto [51] to generate the coverage results
in a human-readable format.

We compare GRAYC with other mutation-based tools, which all
start from an initial corpus. Including CsmrTH and GRAMMARINATOR
in this comparison would be unfair, as they are generation-based
tools that cannot benefit from the coverage of an initial corpus. Nev-
ertheless, we measured coverage for CsMiTH and GRAMMARINATOR
as well, and in both cases the coverage is smaller than the one for
our initial corpus, with GRAMMARINATOR achieving particularly low
coverage (with essentially no coverage in the middle- and back-end,
given that all the generated programs are statically-invalid).

Results. Figure 2 (best viewed in colour) shows the line coverage
achieved in GCC (left) and LLVM (right) by the mutation-based
tools, plotting the mean and standard error over the hourly sampled
rate per tool. In addition, we show the coverage achieved by the
initial corpus, from which all these tools benefit. (Note that in the
beginning, the coverage achieved by all tools is that of the initial
corpus.) The hourly sampled rate of coverage per tool and the
calculation of the average mean and standard error from the raw
data are available in our artifact [18].

GCC Coverage: Figure 2 shows that GRaYC achieves the highest
coverage, with 348,362 lines covered after 24 h of fuzzing. GRAYC-
No-Cov-GUIDANCE is in second place (345,386 lines), followed by
Cranc-Fuzzer (324,101), PoryGroT (323,770), REGEXPMUTATOR
(323,250), GRAYC-FRAGMENTS-FUZZING (315,287) and the initial cor-
pus (314,467).

LLVM Coverage: Figure 2 shows that for LLVM, it is GRayC-
No-Cov-Guipance which achieves the highest overall coverage
(192,139 lines), followed by CLanG-Fuzzer (191,305), GrRayC (190,781),
PoryGroT (186,620), REGEXPMUTATOR (186,308), GRAYC-FRAGMENTS-
Fuzzing (181,360 lines) and the initial corpus (180,551).

We believe CLANG-FuzzER and GRAYC-No-Cov-GUIDANCE achieve
higher overall coverage in LLVM because (an older version of)
LLVM is the compiler used for analysing and parsing programs dur-
ing program generation. It is likely that CLANG-FuzzER’s statically-
invalid programs achieve substantial coverage of error-handling
code in the front-end, which remain unchanged in the newer ver-
sion of LLVM against which we measure coverage. Indeed, as dis-
cussed next, most of the coverage achieved by CLANG-FUZZER is in
the front-end, while GrRaYC exercises the more challenging middle-
and back-end. These two factors likely have a similar effect in
GrayC-No-Cov-GUIDANCE, which also generates a large number
of statically-invalid programs.

Middle- and Back-End Coverage in LLVM: Recall that a key
design goal of GraYC is to produce programs that are statically-
valid, in order to exercise the middle- and back-end components
of compilers and analysers. Thus, for LLVM, we also measured the

1227

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

coverage achieved by each fuzzing tool in the middle- and back-end
of the compiler, based on a best-effort classification of LLVM source
directories into front-end, middle-end and back-end components.
Our hypothesis was that because GRayC is effective at generating
diverse valid programs, it would achieve better coverage of the
middle- and back-end components compared to other techniques.

Figure 3 shows the middle- and back-end coverage achieved
by each tool after 24 h of fuzzing. We plot the mean and standard
error over the hourly sampled rate per tool, while making avail-
able the raw data in our artifact [18]. GRAYC achieves the high-
est coverage (middle-end: 66,914 lines, back-end: 71,053 lines), fol-
lowed by GrayC-No-Cov-GUIDANCE (66,594 and 70,553), PoLYGLOT
(64,455 and 67,621), CLANG-FUZZER (63,367 and 67,651), REGExPMU-
TATOR (63,269 and 67,323), GRAYC-FRAGMENTS-FUZzZING (62,469 and
66,742), and the initial corpus (62,441 and 66,738).

Unlike for the overall coverage results, CLANG-FuzzER performs
significantly worse than GRAYC here, because it mostly generates
statically-invalid programs that are rejected by the front-end. For
similar reasons, the coverage difference between GrRayC configura-
tions and the rest of the fuzzers (REGExPMuTATOR and PoLyGLOT)
is more pronounced.

5.4 Bug Finding

To better understand the bug finding abilities of each tool, we used
the sets of programs gathered via our 24 h fuzzing runs to test
LLVM 12 and GCC 12 with optimisation levels -00, -01, -02, -03
and -0s, and FRAMA-C-24 on Ubuntu 18.04 LTS x86_64.

We imposed a per-program timeout of 45 s for compilation and
200 s for FRAMA-C analysis.

We used the following process to de-duplicate the crashes trig-
gered by these programs, to identify a set of unique bugs discovered
by each fuzzing tool. First, we bucketed the crashes based on error
messages printed by the compiler/analyser, e.g. “internal compiler
error: tree check: expected array_type”. We then searched the bug
trackers of LLVM, GCC and Frama-C to look for an existing bug
report corresponding to each bucket. Where we could find no re-
lated report, we checked whether the crash still manifested with
the latest version of the compiler/analyser. This was the case for all
but one crash. In these cases, we filed a new bug report and awaited
feedback from developers. In a few cases, crashes that appeared to
be due to distinct bugs (based on bucketing) turned out (accord-
ing to developer feedback) to be due to the same underlying bug.
One issue we reported to FRaAMA-C was closed as “won’t fix”; we
discarded crashes corresponding to this bug from further consider-
ation. All other bugs were confirmed by developers. Our complete
set of unique bugs comprises the bugs we found that were already
reported, plus the new bugs we reported (excluding the one that
was closed as “won’t fix”), plus the remaining bug that must have
been independently fixed.

Results. Table 5 summarises the number of distinct middle-end
and front-end bugs found by each fuzzing tool (none of the bugs
found was classified as back-end bugs). GRAYC is the most success-
ful at finding middle-end bugs, with GRAYC-No-Cov-GUIDANCE
also succeeding at finding such bugs. The middle-end bugs found
by CLANG-FuzzER and REGEXPMUTATOR are bugs in the analysis
component of FRama-C; these tools did not find any middle-end

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

B GravC

|| GRaYC-No-Cov-GUIDANCE
B GravC-FraGmENTs-FUzZING
B CranG-Fuzzer

@ PoLyGroT

[REGEXPMUTATOR

[No-Fuss-Fuzzer

[IntTIAL CORPUS

350000 195000
o 5
© 340000 > 190000
e =}
))
£ 330000 £ 185000
3 3
o o
2 320000 @ 180000
— o
| 3

310000 +———————T———] 175000

0 4 8 12 16 20 24 0
Hours

UL B AL SRR N
12 16 20 24

Hours

Figure 2: GCC and LLVM line coverage over 24 h of fuzzing.

B GraxC

|| GRaYC-No-Cov-GUIDANCE
B GravC-FragmENTs-FuzzING
B CranG-Fuzzer

@ PoLyGroT

[REGEXPMUTATOR

[| No-Fuss-Fuzzer

o e e e ol e e e e e e W e - e S S S N

[IntTIAL CORPUS

£ 68000 g 72000
3 - 4
=5 o]
[;’]
2 66000 g, 70000
5 g7
3 g 1./
[}

O 64000 © 68000 /
£ PEE TR LT T T EEE LS RS e 1/
e 3]
B 62000 T 66000

] o .
¢] o]
@] ? 1
T 4 [4
T 60000 & 64000}
= 0 4 8 12 16 20 24 0 4

Hours

12 16 20 24
Hours

Figure 3: LLVM middle- and back-end coverage over 24 h of fuzzing.

Table 5: Confirmed unique bugs found by each tool during
24 h of fuzzing (union over 10 repetitions) in the middle- and
front-end components.

Fix Bug Report

Tool Component Rate References
Middle Front

GrayC 6 - 100% [21, 30, 37, 38, 40, 46]
GRAYC-No-Cov-GUIDANCE 4 - 100% [30, 38, 40, 46]
REGEXPMUTATOR 2 1 67% [29, 30, 34]
CLANG-FUZZER 1 4 60% [29, 34, 47, 48, 71]
PoLyGroT - 1 0% Not reproducible
CsmITH - - 0% None
GRAMMARINATOR - - 0% None
GRrRAYC-FRAGMENTs-FuzzING - - 0% None

compiler bugs. The other fuzzing tools either found no bugs, or
only front-end bugs.

In response to one of the front-end crashes in GCC found by both
ReEGExPMUTATOR and CLANG-FUZZER, triggered by statically-invalid
programs, the developers responded: “fuzzing source is going to turn
up a lot of error-recovery cases - while somewhat interesting they
will inevitably be [a] very low priority since GCC has mechanisms to
present the user with a nicer error message..." [47]. In LLVM, CLANG-
Fuzzer identified an incomplete program that led to a compiler hang
and PorLyGroT found a statically-invalid program that triggered a
front-end ICE when parsing array types.

The low fix rate associated with front-end bugs (Table 5, “Fix
Rate” column), the negative remarks and lack of action in relation

1228

to most of these somewhat pathological bugs which are triggered
by statically-invalid programs, supports our hypothesis that for
greybox fuzzing to work well in the domain of optimising compilers,
mutation operators that yield statically-valid programs, such as
those incorporated in GRAYC, are essential.

CsmiTH, GRAMMARINATOR and GRAYC-FRAGMENTS-Fuzzing did
not find bugs during the controlled experiment. As discussed in
§4, we did not find any bugs during a long-running testing cam-
paign using CsMITH; hence, it is unsurprising that Csmits did not
uncover any bugs during this controlled experiment. We note that
FraMa-C has been extensively tested using CsMmITH in the past [16].
GRAMMARINATOR detected no bugs, probably due to its extremely
low compilation rate and the fact the mature ahead-of-time compil-
ers’ front-ends have already been heavily tested. Similarly, GrRayC-
FRAGMENTs-FUZZING’s poor coverage delta (from the initial corpus)
in both LLVM and GCC can explain these results.

6 RELATED WORK

As discussed in §1, randomised testing techniques have been suc-
cessful in finding bugs in compilers for a range of languages, with
a recent major focus on C (e.g. [65, 82, 105]), but also on other
languages such as OpenCL [67], OpenGL [17], SQL [92] and Ver-
ilog [57]. There has also been significant work on applying similar
techniques to testing code analysers (see e.g. [7, 16, 61, 63]).
Randomised compiler testing techniques mainly work by cross-
checking multiple compilers (e.g. [57, 67, 105], a form of differential
testing [54, 78], or checking expected equivalences between pro-
grams (e.g. [17, 65]), a form of metamorphic testing [9, 93]. We

GrayC: Greybox Fuzzing of Compilers and Analysers for C

refer the reader to a survey for an overview of state-of-the-art
techniques [8] and to a recent paper for a discussion of the impor-
tance of fuzzer-found bugs [77]. The main difference between these
existing works and ours is that GRAYC employs greybox fuzzing.

In §1 we have already discussed mutation-based fuzzing tech-
niques in the context of dynamic languages such as JavaScript,
particularly the pioneering work on LangFuzz [59] and more recent
work on Superion [103] and Nautilus [1]. The recent PoLyGLoT
technique [11] caters for generic language processor fuzzing, and is
applicable to both dynamic and static languages, including C. Our
evaluation against a variant of GRAYC resembling LangFuzz (since
the LangFuzz tool is unavailable) and against PoLyGLoT demon-
strates the advantages of our approach.

A similar language-agnostic work is on “no-fuss fuzzing” of
compilers [55], which investigates applying AFL-based greybox
fuzzing to compilers for a number of smart contract languages and
the Zig language [107]. Instead of building per-language custom
mutators, this work investigates using regular expression based
mutation, based on (a partial re-implementation of) the UNIVERSAL
MUTATOR tool [53], and mutation based on approximate parsing of
input programs using simple features common to many languages,
such as balanced parentheses [101]. The authors of [55] remark
that their approach is geared towards languages that aim to be total,
so that the compiler should behave gracefully for any input, and
they explicitly comment that such approaches are less likely to be
useful in the context of C/C++ compilers. This is supported by our
experiments in §5.1, using a UNIVERSAL MUTATOR-based LiBFuzzER
custom mutator.

An avenue for generating test cases via grammar-based tech-
niques is explored in [100] in the context of “little languages”. They
reported their observations based on the evaluation with 61 single-
pass student compilers and a grammar-based technique. Their find-
ings have suggested the value of having an automated test case
generation technique conjunctly used with the developer-populated
test suite. Kifetew et al. [62] applied a stochastic context-free gram-
mar to generate valid sentences and achieve high system-level
branch coverage. They experimentally compared their suggestion
of combining genetic programming with probabilities learned from
corpora versus a semi-manual alternative approach of applying
grammar annotations with genetic operators (when using a cor-
pus for learning is not affordable) on six open-source Java systems
containing hundreds of thousands of lines at most. Neither [100]
nor [62] have evaluated a system equivalent in scale to mature C
compilers with massive codebases: GCC has about 15 million lines
of code [104], while LLVM is even larger [76].

GRAYC builds on the (very basic) CLANG-FuzzERr tool [13], which
provides a fuzz target for Clang and uses LiBFuzzeRr’s default byte-
level mutators. Our experimental results showed that, due to the
naivety of byte-level mutators, CLANG-FUZZER is ineffective at find-
ing deep compiler bugs. We attempted to compare with CLANG-
ProTO-FUZZER [14], an extension of CLANG-FUzzER that features
partially semantics-aware mutators based on a protobuf description
of a fragment of C++, but found that this project is no longer main-
tained and is not currently in a usable state. A presentation on the
work already reported that developers have not been responsive to
the bugs that it found (see §1).

1229

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

An approach to differential testing of Java Virtual Machine (JVM)
implementations also takes a coverage-guided approach [10]. Un-
like our work, this approach does not focus on mutations that
produce valid programs; in fact, the focus is on looking for discrep-
ancies where one JVM accepts a class file, while another rejects it
as being malformed.

7 CONCLUSION AND FUTURE WORK

We have presented the design of our coverage-directed mutation-
based compiler fuzzing approach and its implementation, GrayC.
Our evaluation demonstrates that GRAYC can achieve better cover-
age of the middle- and back-end components of compiler codebases
compared with other mutation-based approaches, leading to the
discovery of numerous previously unknown bugs and to the contri-
bution of new tests to the Clang/LLVM test suite. Future work will
focus on revisiting the conservative mode of the tool which, as dis-
cussed in §3.1 turned out to perform poorly in terms of bug-finding
ability and code coverage compared with GRAYC’s standard aggres-
sive mode, and improving GrayC’s facilities for potentially finding
miscompilation bugs, e.g. by augmenting GRayC with mutations
inspired by particular compiler optimisations of interest.

8 DATA AVAILABILITY

GrayC, ENHANCER and the experimental infrastructure, data, and
results are available as open source at [18, 49, 60].

9 ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement 819141) and from the UK
Engineering and Physical Sciences Research Council through grants
EP/R011605/1 and EP/R006865/1.

REFERENCES

[1] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In Proc. of the 26th Network and Distributed System Security
Symposium (NDSS’19) (San Diego, CA, USA). https://doi.org/10.14722/ndss.
2019.23412

C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
and Fixed Jan. 16, 2022. https://www.flux.utah.edu/listarchives/creduce-
bugs/msg00555.html.

C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
and Fixed Jan. 4, 2022. https://www.flux.utah.edu/listarchives/creduce-
bugs/msg00553.html.

C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
Jun. 7, 2021 and Fixed Jun. 20, 2021. https://www.flux.utah.edu/listarchives/
creduce-bugs/msg00537.html.

C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Confirmed
November 2, 2022. https://www.flux.utah.edu/listarchives/creduce-bugs/
msg00563.html.

C-Reduce Bug - clang delta (found as a by-product of fuzzing). Date Reported Dec.
17, 2021. https://www.flux.utah.edu/listarchives/creduce-bugs/msg00551.html.
Cristian Cadar and Alastair Donaldson. 2016. Analysing the Program Analyser.
In Proc. of the 38th International Conference on Software Engineering, New Ideas
and Emerging Results (ICSE NIER’16) (Austin, TX, USA).

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A Survey of Compiler Testing. Comput. Surveys 53, 1
(2020), 4:1-4:36. https://doi.org/10.1145/3363562

TY. Chen, S.C. Cheung, and S.M. Yiu. 1998. Metamorphic testing: a new approach
for generating next test cases. Technical Report HKUST-CS98-01. Hong Kong
University of Science and Technology.

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In Proc. of the

[10]

https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.14722/ndss.2019.23412
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00555.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00555.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00553.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00553.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00537.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00537.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00563.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00563.html
https://www.flux.utah.edu/listarchives/creduce-bugs/msg00551.html
https://doi.org/10.1145/3363562

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

[11

[12

[13

=
=t

(15

[16

[17

=
&

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

@
=

[31

(32

[33

[34

(35]
(36]

[37

(39

[40

[41]

Conference on Programing Language Design and Implementation (PLDI'16) (Santa
Barbara, CA, USA). https://doi.org/10.1145/2908080.2908095

Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao
Wu, and Wenke Lee. 2022. One Engine to Fuzz ’em All: Generic Language
Processor Testing with Semantic Validation. In Proc. of the IEEE Symposium on
Security and Privacy (IEEE S&P’22) (San Francisco, CA, USA). https://doi.org/
10.1109/SP40001.2021.00071

Clang LibTooling 2023. LibTooling. https://clang.llvim.org/docs/LibTooling.
html.

clangfuzzer [n.d.]. clang-fuzzer. https://github.com/llvm/llvm-project/tree/
main/clang/tools/clang-fuzzer.
clangprotofuzzer [n.d.]. clang-proto-fuzzer.
FuzzingLLVM.html#clang- proto-fuzzer.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. 2012. Frama-C: A software analysis perspective.
In Proc. of the 10th International Conference on Software Engineering and Formal
Methods (SEFM’12) (Thessaloniki, Greece). https://doi.org/10.1007/s00165-014-
0326-7

Pascal Cuoq, Benjamin Monate, Anne Pacalet, Virgile Prevosto, John Regehr,
Boris Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Ran-
domly Generated Programs. In Proc. of the 4th International Conference on NASA
Formal Methods (NFM’12) (Norfolk, VA, USA).

Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated Testing of Graphics Shader Compilers. Proceedings of the ACM
on Programming Languages (PACMPL) 1, OOPSLA (2017), 93:1-93:29. https:
//doi.org/10.1145/3133917

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian
Cadar. 2023. Artifact of GrayC: Greybox Fuzzing of Compilers and Analysers
for C. https://doi.org/10.5281/zenodo.7976254. Zenodo.

Frama-C Bug - Eva plugin. Date Confirmed Mar. 13, 2022 and Closed and fixed
Jul. 11, 2022. https://git.frama-c.com/pub/frama-c/-/issues/2595.

Frama-C Bug - Eva plugin. Date Confirmed May 10, 2022 and Fixed Jun. 10,
2022. https://git.frama-c.com/pub/frama-c/-/issues/2610.

Frama-C Bug - Eva plugin. Date Confirmed Nov. 8, 2021 and Fixed Sept. 15, 2022.
https://git.frama-c.com/pub/frama-c/-/issues/2585.

Frama-C Bug - Eva plugin, kernel, abstract interpretation. Date Confirmed and
Fixed Jun. 10, 2021. https://git.frama-c.com/pub/frama-c/-/issues/2563.
Frama-C Bug - Front-end. Date Confirmed Oct. 14, 2021 and Date Fixed Dec. 3,
2021. https://git.frama-c.com/pub/frama-c/-/issues/2576.

Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
May 28, 2022 and Fixed Oct. 20, 2021. https://git.frama-c.com/pub/frama-c/-
/issues/2559.

Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
Sept. 14, 2021 and Fixed Jul. 11, 2022. https://git.frama-c.com/pub/frama-c/-
/issues/2573.

Frama-C Bug - Front-end (found as a by-product of fuzzing). Date Confirmed
Sept. 16, 2021 and Fixed Oct. 20, 2021. https://git.frama-c.com/pub/frama-c/-
/issues/2574.

Frama-C Bug - Kernel. Date Confirmed Apr. 20, 2021 and Fixed Apr. 30, 2021.
https://git.frama-c.com/pub/frama-c/-/issues/2551.

Frama-C Bug - Kernel. Date Confirmed Apr. 6, 2021 and Fixed Oct. 13, 2021.
https://git. frama-c.com/pub/frama-c/-/issues/2550.

Frama-C Bug - kernel. Date Confirmed Jan. 11, 2022 and Fixed Jul. 11, 2022.
https://git.frama-c.com/pub/frama-c/-/issues/2592.

Frama-C Bug - kernel, abstract interpretation. Date Confirmed and Fixed Jan.
24, 2022. https://git.frama-c.com/pub/frama-c/-/issues/2588.

Frama-C Bug - kernel, abstract interpretation. Date Confirmed May 18, 2021
and Fixed May 21, 2021. https://git.frama-c.com/pub/frama-c/-/issues/2556.
Frama-C Bug - kernel, Front-end. Date Confirmed Jan. 10, 2022 and Fixed Feb.
9, 2022. https://git.frama-c.com/pub/frama-c/-/issues/2590.

Frama-C Bug - Parsing, EVA-plugin. Date Confirmed May 18, 2021 and Fixed
May 21, 2021. https://git.frama-c.com/pub/frama- c/-/issues/2555.

GCC Bug. Date Reported Aug. 6, 2016. https://gcc.gnu.org/bugzilla/show_bug.
cgi?id=72825.

GCC Bug - Front-end. Date Confirmed Apr. 9, 2021 and Fixed Apr. 22, 2021.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99990.

GCC Bug - Front-end. Date Confirmed Aug. 8, 2022 and Fixed Nov. 21, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106560.

GCC Bug - ipa. Date Confirmed Dec. 23, 2021 and Fixed Apr. 20, 2022. https:
//gce.gnu.org/bugzilla/show_bug.cgi?id=103818.

GCC Bug - Middle-end. Date Confirmed Dec. 22, 2021 and Fixed Jan. 24, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103813.

GCC Bug - Middle-end. Date Confirmed May 02, 2022 and Fixed May 27, 2022.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104402.

GCC Bug - Middle-end (reported independently before we found it). Date Con-
firmed Mar. 20, 2018 and Fixed Apr. 14, 2022. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=84964.

GCC Bug - Middle-end (reported independently shortly before we found it).
Date Confirmed Nov. 18, 2022 and Fixed Nov. 19, 2022. https://gcc.gnu.org/

https://llvm . org / docs /

1230

Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian Cadar

[42]

[43

[44

[45

[46

[47

[48

[49
[50

[51

[52

[53

[54]

[55]

[56

[57

[58

[59

[60]

[61

[62

[63

[64

[65

[66
[67

bugzilla/show_bug.cgi?id=103314.

GCC Bug - rtl-optimization, middle-end. Date Reported Jun. 9, 2022 and Con-
firmed May 17, 2023. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105910.
GCC Bug - Tree optimization. Date Confirmed and Fixed Apr. 12, 2022. https:
//gcc.gnu.org/bugzilla/show_bug.cgi?id=105232.

GCC Bug - Tree optimization. Date Confirmed and Fixed Jun. 10, 2022. https:
//gce.gnu.org/bugzilla/show_bug.cgi?id=107170.

GCC Bug - Tree optimization. Date Confirmed Dec. 23, 2021 and Fixed Jan. 5,
2022. https://gce.gnu.org/bugzilla/show_bug.cgi?id=103816.

GCC Bug - Tree-optimization (reported independently before we found it). Date
Confirmed Jul. 27, 2021 and Fixed Mar. 23, 2022. https://gcc.gnu.org/bugzilla/
show_bug.cgi?id=101636.

GCC Bug: incomplete program (several duplicate reports exist). Date Reported
Aug. 28, 2022. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106764.

GCC Bug (several related reports exist). Date Reported May 11, 2021, and Fixed
15 November 2022. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100525.
GitHub. 2023. Git Repository of GrayC. https://github.com/srg-imperial/GrayC.
GitHub. Date Accessed December 31, 2022. Git Repository of Grammarinator.
https://github.com/renatahodovan/grammarinator.git.

GitHub. Date Accessed March 23, 2022. Git Repository of gfauto. https://github.
com/google/graphicsfuzz.git.

Google. 2020. AFL dictionaries. https://github.com/google/AFL/blob/master/
dictionaries/README.dictionaries.

Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-Expression-Based Tool for Multi-language Mutant
Generation. In Proc. of the 40th International Conference on Software Engineering
(ICSE’18) (Gothenburg, Sweden). https://doi.org/10.1145/3183440.3183485
Alex Groce, Gerard J. Holzmann, and Rajeev Joshi. 2007. Randomized Differential
Testing as a Prelude to Formal Verification. In Proc. of the 29th International
Conference on Software Engineering (ICSE’07) (Minneapolis, MN, USA). https:
//doi.org/10.1109/ICSE.2007.68

Alex Groce, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, and
Claire Le Goues. 2022. Making No-Fuss Compiler Fuzzing Effective. In Proc. of
the 31st International Conference on Compiler Construction (CC’22) (Seoul, Korea).
https://doi.org/10.1145/3497776.3517765

Vladimir Herdt, Daniel Grofle, Hoang M. Le, and Rolf Drechsler. 2019. Verifying

Instruction Set Simulators using Coverage-guided Fuzzing*. In Proc. of the 22nd
Design, Automation & Test in Europe Conference & Exhibition (DATE’19) (Florence,
Italy). IEEE, 360-365. https://doi.org/10.23919/DATE.2019.8714912

Yann Herklotz and John Wickerson. 2020. Finding and Understanding Bugs
in FPGA Synthesis Tools. In Proc. of the 28th International Symposium on Field-
Programmable Gate Arrays (FPGA’20). ACM/SIGDA, 277-287. https://doi.org/
10.1145/3373087.3375310

Renata Hodovan, Akos Kiss, and Tibor Gyiméthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proc. of the 9th ACM SIGSOFT Interna-
tional Workshop on Automating TEST Case Design, Selection, and Evaluation (A-
TEST’18) (Lake Buena Vista, FL, USA). https://doi.org/10.1145/3278186.3278193
Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proc. of the 21st USENIX Security Symposium (USENIX Security’12)
(Bellevue, WA, USA).

GRrAYC Homepage. Date Accessed May 23, 2022. https://srg.doc.ic.ac.uk/
projects/grayc/.

Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Execu-
tion Engines via Program Generation and Differential Testing. In Proc. of the
32nd IEEE International Conference on Automated Software Engineering (ASE’17)
(Urbana-Champaign, IL, USA).

Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. 2017. Gener-
ating Valid Grammar-Based Test Inputs by Means of Genetic Programming
and Annotated Grammars. Empirical Softw. Engg. 22, 2 (apr 2017), 928-961.
https://doi.org/10.1007/510664-015-9422-4

Christian Klinger, Maria Christakis, and Valentin Wiistholz. 2019. Differen-
tially Testing Soundness and Precision of Program Analyzers. In Proc. of the
International Symposium on Software Testing and Analysis (ISSTA’19) (Beijing,
China).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04) (Palo Alto, CA, USA).
https://doi.org/0.1109/CG0.2004.1281665

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via
Equivalence Modulo Inputs. In Proc. of the Conference on Programing Language
Design and Implementation (PLDI'14) (Edinburgh, UK). https://doi.org/10.1145/
2594291.2594334

LibFuzzer 2022. http://llvm.org/docs/LibFuzzer.html.

Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F. Donaldson.
2015. Many-core compiler fuzzing. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’15) (Portland, OR, USA). https:
//doi.org/10.1145/2737924.2737986

https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1109/SP40001.2021.00071
https://doi.org/10.1109/SP40001.2021.00071
https://clang.llvm.org/docs/LibTooling.html
https://clang.llvm.org/docs/LibTooling.html
https://github.com/llvm/llvm-project/tree/main/clang/tools/clang-fuzzer
https://github.com/llvm/llvm-project/tree/main/clang/tools/clang-fuzzer
https://llvm.org/docs/FuzzingLLVM.html#clang-proto-fuzzer
https://llvm.org/docs/FuzzingLLVM.html#clang-proto-fuzzer
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3133917
https://doi.org/10.5281/zenodo.7976254
https://git.frama-c.com/pub/frama-c/-/issues/2595
https://git.frama-c.com/pub/frama-c/-/issues/2610
https://git.frama-c.com/pub/frama-c/-/issues/2585
https://git.frama-c.com/pub/frama-c/-/issues/2563
https://git.frama-c.com/pub/frama-c/-/issues/2576
https://git.frama-c.com/pub/frama-c/-/issues/2559
https://git.frama-c.com/pub/frama-c/-/issues/2559
https://git.frama-c.com/pub/frama-c/-/issues/2573
https://git.frama-c.com/pub/frama-c/-/issues/2573
https://git.frama-c.com/pub/frama-c/-/issues/2574
https://git.frama-c.com/pub/frama-c/-/issues/2574
https://git.frama-c.com/pub/frama-c/-/issues/2551
https://git.frama-c.com/pub/frama-c/-/issues/2550
https://git.frama-c.com/pub/frama-c/-/issues/2592
https://git.frama-c.com/pub/frama-c/-/issues/2588
https://git.frama-c.com/pub/frama-c/-/issues/2556
https://git.frama-c.com/pub/frama-c/-/issues/2590
https://git.frama-c.com/pub/frama-c/-/issues/2555
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72825
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72825
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99990
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106560
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103818
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103818
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103813
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=104402
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84964
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=84964
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103314
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103314
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105910
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105232
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105232
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107170
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107170
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=103816
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101636
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101636
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106764
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100525
https://github.com/srg-imperial/GrayC
https://github.com/renatahodovan/grammarinator.git
https://github.com/google/graphicsfuzz.git
https://github.com/google/graphicsfuzz.git
https://github.com/google/AFL/blob/master/dictionaries/README.dictionaries
https://github.com/google/AFL/blob/master/dictionaries/README.dictionaries
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1109/ICSE.2007.68
https://doi.org/10.1145/3497776.3517765
https://doi.org/10.23919/DATE.2019.8714912
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3373087.3375310
https://doi.org/10.1145/3278186.3278193
https://srg.doc.ic.ac.uk/projects/grayc/
https://srg.doc.ic.ac.uk/projects/grayc/
https://doi.org/10.1007/s10664-015-9422-4
https://doi.org/0.1109/CGO.2004.1281665
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/2737924.2737986

GrayC: Greybox Fuzzing of Compilers and Analysers for C

(68]

[69]
[70]

(71]

(81

(82

(83

(84

oo
2

(86

[87

(88

(89]

[90]

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing
for C and C++ compilers with YARPGen. In Proc. of the ACM on Programming
Languages (OOPSLA’20) (Chicago, IL, USA). https://doi.org/10.1145/3428264
LLVM Bug - Arrays. Date Reported Jun. 9, 2021 and Closed Jan. 7, 2022. https:
//github.com/llvim/llvm-project/issues/49983.

LLVM Bug - Clang codegen (found as a by-product of fuzzing). Date Confirmed
Jan. 15, 2022. https://github.com/llvm/Illvm-project/issues/53105.

LLVM Bug - Clang Front-end. Date Reported May 6, 2022. https://github.com/
llvm/llvm-project/issues/55312.

LLVM Bug - compiler-rt:ubsan (found as a by-product of fuzzing). Date Con-
firmed Jan. 16, 2022. https://github.com/llvm/llvim-project/issues/51421.
LLVM Bug - IR (found as a by-product of fuzzing). Date Reported Jul. 5, 2021.
https://github.com/llvm/llvm-project/issues/50332.

LLVM Bug - Union declaration. Date Reported Jun. 10, 2021 and Closed Jan. 13,
2022. https://github.com/llvim/llvm-project/issues/49993.

LLVM Project. Date Accessed July 21, 2022. libFuzzer — a library for coverage-
guided fuzz testing. https://llvm.org/docs/LibFuzzer.html.

LLVM website [n.d.]. LLVM website. http://llvm.org/.

Michaél Marcozzi, Qiyi Tang, Alastair Donaldson, and Cristian Cadar. 2019.
Compiler Fuzzing: How Much Does It Matter?. In Proc. of the ACM on Program-
ming Languages (OOPSLA’19) (Athens, Greece). https://doi.org/10.1145/3360581
W. M. McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10 (1998), 100-107. Issue 1.

MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021. https:
//developercommunity. visualstudio.com/t/internal - compiler - error- when-
compiling-program-wit/1427557.

MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021 and Closed
Nov. 24, 2021. https://developercommunity. visualstudio.com/t/internal -
compiler-error-when-compiling-program-wit/1427553.

MSVC Bug - CppCompiler, Front-end. Date Confirmed May 20, 2021 and Fixed
Nov. 9, 2021. https://developercommunity.visualstudio.com/t/syntactically-
invalid-c-program- causes-microsoft-c/1427550.

Kazuhiro Nakamura and Nagisa Ishiura. 2016. Random testing of C compilers
based on test program generation by equivalence transformation. In 2016 IEEE
Asia Pacific Conference on Circuits and Systems (APCCAS). https://doi.org/10.
1109/APCCAS.2016.7804063

Phabricator-LLVM. 2020. Requests D88931 and D97686. https://reviews.llvm.
org/D88931. Date Approved March 3, 2021.

Phabricator-LLVM. 2022. Request D118234. https://reviews.llvm.org/D118234.
Date Approved October 11, 2022.

Phabricator-LLVM. 2023. Requests D142638 and D150857. https://reviews.llvm.
org/D150857. Under review: date January 26, 2023 (re-open: May 18, 2023).
John Regehr. 2020. The Saturation Effect in Fuzzing. https://blog.regehr.org/
archives/1796.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. 2012. Test-case reduction for C compiler bugs. In Proc. of the Conference
on Programing Language Design and Implementation (PLDI’12) (Beijing, China).
https://doi.org/10.1145/2254064.2254104

LLVM Bug - Front-end (reported independently before we found it). Date Con-
firmed Jan. 26, 2022. https://github.com/llvm/llvm- project/issues/49081.
LLVM Bug - ASan (reported independently before we found it). Date Reported
Feb. 20, 2021. https://github.com/llvm/llvm- project/issues/48633.

LLVM Bug - Front-end (reported independently before we found it). Date Re-
ported Jun. 26, 2021. https://github.com/llvm/llvm-project/issues/50222.
LLVM Bug - Front-end (reported independently before we found it). Date Re-
ported Nov. 12, 2015 and Fixed on early 2022. https://github.com/llvm/llvm-

1231

[92

[93

[94
[95

[96

[97

[98

[99

[100

[101

[102

[103

[104

[105

[106

[107

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

project/issues/25871.

Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-optimizing Reference Engine Construction. In Proc. of the
Joint Meeting of the European Software Engineering Conference and the ACM
Symposium on the Foundations of Software Engineering (ESEC/FSE’20) (Online).
https://doi.org/10.1145/3368089.3409710

Sergio Segura, Gordon Fraser, Ana Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. (2016).

Kostya Serebryany. 2022. Personal communication.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proc. of the
2012 USENIX Annual Technical Conference (USENIX ATC’12) (Boston, MA, USA).
https://doi.org/10.5555/2342821.2342849

Kostya Serebryany, Vitaly Buka, and Matt Morehouse. 2017. Structure-aware
fuzzing for Clang and LLVM with libprotobuf-mutator. In 2017 US LLVM Devel-
opers’ Meeting. https://llvm.org/devmtg/2017-10/slides/.

Kostya Serebryany, Maxim Lifantsev, Konstantin Shtoyk, Doug Kwan, and Peter
Hochschild. 2021. SiliFuzz: Fuzzing CPUs by proxy. CoRR abs/2110.11519 (2021).
arXiv:2110.11519

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In Proc. of the International Sympo-

sium on Code Generation and Optimization (CGO’15) (San Francisco, CA, USA).
https://doi.org/10.1109/CGO.2015.7054186

UBSan 2017. Undefined Behavior Sanitizer. https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html.

Phillip van Heerden, Moeketsi Raselimo, Konstantinos Sagonas, and Bernd
Fischer. 2020. Grammar-Based Testing for Little Languages: An Experience
Report with Student Compilers. In Proceedings of the 13th ACM SIGPLAN In-
ternational Conference on Software Language Engineering (Virtual, USA) (SLE
2020). Association for Computing Machinery, New York, NY, USA, 253-269.
https://doi.org/10.1145/3426425.3426946

Rijnard van Tonder and Claire Le Goues. 2019. Lightweight multi-language
syntax transformation with parser parser combinators. In Proc. of the Conference
on Programing Language Design and Implementation (PLDI’19) (Phoenix, AZ,
USA). https://doi.org/10.1145/3314221.3314589

Rijnard van Tonder and Alex Groce. 2022. Making No-Fuss Compiler Fuzzing
Effective: CC 2022 Artifact (0.1.0). https://doi.org/10.5281/zenodo.5982794.
Zenodo.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In Proc. of the 41st International Conference on Software
Engineering (ICSE’19) (Montreal, Canada). https://doi.org/10.1109/ICSE.2019.
00081

Wikipedia: GNU Compiler Collection. Date Accessed May 18, 2022. https:
//en.wikipedia.org/wiki/GNU_Compiler_Collection#cite_note-loc-4.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’'11) (San Jose, CA, USA). https:
//doi.org/10.1145/1993498.1993532

Michal Zalewski. [n.d.]. Technical “whitepaper” for afl-fuzz. http://lcamtuf.
coredump.cx/afl/technical details.txt.

Zig Software Foundation. Date Accessed September 1, 2022. Zig programming
language. https://ziglang.org/.

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1145/3428264
https://github.com/llvm/llvm-project/issues/49983
https://github.com/llvm/llvm-project/issues/49983
https://github.com/llvm/llvm-project/issues/53105
https://github.com/llvm/llvm-project/issues/55312
https://github.com/llvm/llvm-project/issues/55312
https://github.com/llvm/llvm-project/issues/51421
https://github.com/llvm/llvm-project/issues/50332
https://github.com/llvm/llvm-project/issues/49993
https://llvm.org/docs/LibFuzzer.html
http://llvm.org/
https://doi.org/10.1145/3360581
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427557
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427553
https://developercommunity.visualstudio.com/t/internal-compiler-error-when-compiling-program-wit/1427553
https://developercommunity.visualstudio.com/t/syntactically-invalid-c-program-causes-microsoft-c/1427550
https://developercommunity.visualstudio.com/t/syntactically-invalid-c-program-causes-microsoft-c/1427550
https://doi.org/10.1109/APCCAS.2016.7804063
https://doi.org/10.1109/APCCAS.2016.7804063
https://reviews.llvm.org/D88931
https://reviews.llvm.org/D88931
https://reviews.llvm.org/D118234
https://reviews.llvm.org/D150857
https://reviews.llvm.org/D150857
https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://doi.org/10.1145/2254064.2254104
https://github.com/llvm/llvm-project/issues/49081
https://github.com/llvm/llvm-project/issues/48633
https://github.com/llvm/llvm-project/issues/50222
https://github.com/llvm/llvm-project/issues/25871
https://github.com/llvm/llvm-project/issues/25871
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.5555/2342821.2342849
https://llvm.org/devmtg/2017-10/slides/
https://arxiv.org/abs/2110.11519
https://doi.org/10.1109/CGO.2015.7054186
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1145/3426425.3426946
https://doi.org/10.1145/3314221.3314589
https://doi.org/10.5281/zenodo.5982794
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://en.wikipedia.org/wiki/GNU_Compiler_Collection#cite_note-loc-4
https://en.wikipedia.org/wiki/GNU_Compiler_Collection#cite_note-loc-4
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://ziglang.org/

	Abstract
	1 Introduction
	2 Background
	2.1 Compiler Bugs and Program Validity
	2.2 LibFuzzer and Clang-Fuzzer

	3 GrayC
	3.1 Custom Mutators
	3.2 enhanCer
	3.3 Implementation Details

	4 Using GrayC in the Wild
	4.1 Experimental Setup
	4.2 Bugs Found
	4.3 Compiler Test Case Contributions

	5 Controlled Experiments
	5.1 Experimental Setup
	5.2 Throughput and Static Validity Rate
	5.3 Coverage
	5.4 Bug Finding

	6 Related Work
	7 Conclusion and Future Work
	8 Data Availability
	9 Acknowledgements
	References

