
Grammar Mutation for Testing Input Parsers
(Registered Report)

Bachir Bendrissou
Imperial College London
London, United Kingdom

b.bendrissou@imperial.ac.uk

Cristian Cadar
Imperial College London
London, United Kingdom
c.cadar@imperial.ac.uk

Alastair F. Donaldson
Imperial College London
London, United Kingdom

alastair.donaldson@imperial.ac.uk

ABSTRACT

Grammar-based fuzzing is an effective method for testing programs
that consume structured inputs, particularly input parsers. A pre-
requisite of this method is to have a specification of the input
format in the form of a grammar. Consequently, the success of a
grammar-based fuzzing campaign is highly dependent on the avail-
able grammar. If the grammar does not accurately represent the
input format, or if the system under test (SUT) does not conform
strictly to that grammar, there may be an impedance mismatch
between inputs generated via grammar-based fuzzing and inputs
accepted by the SUT. Even if the SUT has been designed to strictly
conform to the grammar, the SUT parser may exhibit vulnerabilities
that would only be triggered by slightly invalid inputs. Grammar-
based fuzzing, by construction, will not yield such edge case inputs.

To overcome these limitations, we present Gmutator, an ap-
proach that mutates an input grammar and leverages the Gram-
marinator fuzzer to produce inputs conforming to the mutated
grammars. As a result, Gmutator can find inputs that do not con-
form to the original grammar but are (wrongly) accepted by an
SUT. In addition, Gmutator-generated inputs have the potential to
increase SUT code coverage compared with the standard approach.
We present preliminary results applying Gmutator to two JSON
parsing libraries, where we are able to identify a few inconsistencies
and observe an increase in covered code.We propose a plan for a full
experimental evaluation over four different input formats—JSON,
XML, URL and Lua—and twelve SUTs (three per input format).

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Grammar-based fuzzing, mutant grammars, input parsers

ACM Reference Format:

Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson. 2023. Gram-
mar Mutation for Testing Input Parsers (Registered Report). In Proceedings
of the 2nd International Fuzzing Workshop (FUZZING ’23), July 17, 2023,
Seattle, WA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3605157.3605170

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FUZZING ’23, July 17, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0247-1/23/07.
https://doi.org/10.1145/3605157.3605170

1 INTRODUCTION

Thoroughly fuzz-testing a software system requires inputs that
get past its parser. Invalid inputs that are rejected by the parser
are valuable for testing error-handling code in the front-end, but
cannot exercise deeper functionality of the system under test (SUT).
A solution to the problem of generating valid inputs is grammar-
based fuzzing [2, 14, 23, 25, 35, 37], where inputs are generated
based on a grammar that should capture the intended input format.

A problem with grammar-based fuzzing is that there may be a
mismatch between the grammar of the input format that the SUT
is supposed to accept, and the implicit grammar associated with the
inputs that the SUT actually accepts in practice. One reason for
this is that writing a parser by hand is difficult and prone to errors;
for instance, various parsers have been shown not to implement
the JSON format correctly [21, 27]. Furthermore, as the SUT is
updated over time, there is the potential for the front-end of an
SUT to get out of sync with the input format it is supposed to
accept. An important and under-explored application of fuzzing
is to detect such inconsistencies—cases where the inputs actually
accepted by an SUT differ from the inputs described by a grammar
for the associated input format.

A related property of grammar-based fuzzing is that it is designed
to only produce valid inputs. While in many ways this property is
a feature—valid inputs have the potential to exercise deep parts of
the SUT—it is also a limitation: grammar-based fuzzing does not
produce “edge case” inputs that almost conform to the required
grammar, but deviate from the grammar in small, seemingly innocu-
ous ways. As well as the potential for such inputs to be incorrectly
accepted by an SUT (as discussed above), they have the potential
to trigger vulnerabilities in error-handling code paths in the SUT’s
front-end, and to find subtle defects that may not be triggered
by more drastically-invalid inputs (such as purely random input
strings, or inputs obtained by applying byte-level mutations to
originally-valid inputs in the style of mutation-based fuzzers such
as AFL [38] and libFuzzer [19]).

These problems with grammar-based fuzzing are particularly
acute in the context of blackbox fuzzing [14, 28, 33] where, without
any feedback signal from the SUT, one cannot learn the implicit
grammar that the SUT accepts by trial and error. Even when it is
possible to instrument the SUT, e.g. with coverage information, the
use of an upfront grammar can accelerate the fuzzing process [35],
but the use of such a grammar is subject to the above problems.

In this work, we investigate the idea of enhancing grammar-
based blackbox fuzzing with grammar mutations, so that inputs are
generated from slightly corrupted grammars. The aim is to generate
inputs that diverge to some degree from the correct specification
of an input format.

https://orcid.org/0000-0002-2864-1892
https://orcid.org/0000-0002-3599-7264
https://orcid.org/0000-0002-7448-7961
https://doi.org/10.1145/3605157.3605170
https://doi.org/10.1145/3605157.3605170
https://doi.org/10.1145/3605157.3605170

FUZZING ’23, July 17, 2023, Seattle, WA, USA Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson

In brief, our idea is as follows. Given a grammar 𝐺 specifying
the input format that an SUT is supposed to accept, we derive a
mutant grammar 𝐺 ′ by applying one or more mutations to the
production rules of 𝐺 . The grammar 𝐺 ′ can then be used as a basis
for generating inputs that do not conform to 𝐺 , but—due to the
close relationship between𝐺 and 𝐺 ′, are in large part very similar
to inputs that do conform to 𝐺 . These almost 𝐺-valid inputs can
then be applied to the SUT, with the potential to identify (a) inputs
that the SUT accepts when it should not (the very existence of these
inputs may constitute bugs in the SUT, and some of these inputs
might reveal additional coverage or trigger crashes in deeper parts
of the SUT), and (b) inputs that achieve additional coverage of the
SUT’s front-end error handling code paths (potentially revealing
crashes in those code paths).

To experiment with these ideas, we present a new blackbox
fuzzing tool, Gmutator, that takes as input an ANTLR [1] gram-
mar specifying a target input format. The ANTLR tool is first used
to produce a reference parser. Then, Gmutator mutates the gram-
mar, producing multiple mutant grammars. The Grammarinator
grammar-based fuzzing tool [13] is used to produce inputs for each
mutant grammar. Inputs that are accepted by the SUT but rejected
by the reference parser (i.e., they do not conform to the original
grammar) are flagged for investigation: these represent invalid in-
puts that are accepted by the SUT. This has two benefits: first, it
highlights discrepancies between input specification and implemen-
tation; secondly, it exercises the SUT in ways that would be missed
by a conforming grammar-based fuzzer.

We present preliminary results investigating the effectiveness of
our idea and tool for the JSON input format. Using Gmutator we
have found JSON-like inputs that do not conform to the JSON gram-
mar, but that are accepted by off-the-shelf JSON parsing libraries.
We reported these issues to the library developers. One of them is
under discussion as a potential bug, showing that Gmutator has
the potential to find bugs that traditional grammar-based fuzzing
would miss. The other bug was closed as intended behaviour, with
the developer of the parsing library in question stating their inten-
tion to be permissive with respect to the inputs that are accepted;
this shows thatGmutator can be useful for identifying cases where
thorough grammar-based testing of a particular SUT would require
a more permissive grammar. We also present experimental results
showing that Gmutator is able to achieve additional code coverage
on these JSON parsing libraries compared to using straightforward
grammar-based fuzzing.

We then describe a planned set of controlled experiments to
evaluate our idea at a larger scale with respect to four input formats
in total, varying in their complexity (JSON, XML, URL and Lua)
and three SUTs per input format. We will investigate the number
and nature of discrepancies that Gmutator can find, and the effect
on code coverage associated with grammar-based fuzzing using
mutant grammars.

This registered report makes the following contributions:

(1) The idea of using mutant grammars to extend the reach of
grammar-based fuzzing, allowing fuzzing with respect to multi-
ple approximations of an input format, to enable the identifi-
cation of discrepancies between the specification of the input
format and the implementation of the SUT;

(2) The implementation of this idea as a blackbox fuzzing tool,Gmu-
tator, that works on the widely-used ANTLR grammar format
and leverages the Grammarinator grammar-based fuzzer;

(3) A preliminary investigation of the practical effectiveness of
the idea using the JSON format, including details of identified
discrepancies and developer responses to these discrepancies;

(4) A plan for a larger experimental evaluation over twelve SUTs
covering four input formats in total.
The rest of the paper is structured as follows. We first illustrate

our approach on the JSON format and discuss our preliminary
results in §2. We then describe our Gmutator approach in detail in
§3. We present the full evaluation plan in §4, including the research
questions we want to address and the experimental methodology.
We discuss related work in §5, and conclude the paper in §6.

2 PRELIMINARY RESULTS FOR JSON

Before going into details of our Gmutator tool, we illustrate the
idea of grammar mutation and its effectiveness using an example.

JavaScript Common Object Notation (JSON) [6] is a standard
format for representing structured data, and is commonly used as
an interchange format between software tools. An ANTLR gram-
mar for part of JSON is shown in Figure 1a, where the notation
uses the Backus-Naur Form (BNF). To keep our grammar examples
compact and simple to read, we omit rules and constructs that are
not relevant for this example. The highlighted parts of the grammar
relate to mutations that we will describe in due course.

As shown in the grammar, a JSON document consists of a value,
which can be of multiple types. For example, an array (arr) is
defined as a sequence of one or more values, separated by commas,
and surrounded by square brackets. As a second example, UNICODE
encodes a UNICODE character, which is specified by the letter ’u’
followed by four HEX numbers.

Given this grammar, Gmutator applies mutations to its rules to
construct mutant grammars. Figure 1b shows one of the possible
mutant grammars, which was obtained via three mutations:
• Mutation 1 (line 2): With this mutation applied, a JSON file
can now consist of multiple roots rather than a single one. For
instance, the input {} {} is accepted by the mutant grammar,
but not by the original one.

• Mutation 2 (line 9): With this mutation applied, an array may
have values that are not correctly comma-separated. For instance,
the input [true,] is accepted by the mutant grammar, but not
by the original one.

• Mutation 3 (line 19): With this mutation applied, a UNICODE
value may start with an arbitrary string. E.g., the input ur282 is
accepted by the mutant grammar, but not by the original one.
For our preliminary evaluation, we used Gmutator to create

such mutant grammars and employed them to generate inputs for
testing two JSON parsers: cJSON [9] and Parson [8], both written
in C. The evaluation was run for one hour with 3 repetitions. For
comparison, we also run Grammarinator [13], an open source
blackbox grammar-based fuzzer, for the same amount of time on
the same original JSON grammar.

Grammarinator generated 137,440 inputs in one hour. By con-
trast, Gmutator generated only 82,465 inputs, reflecting the ad-
ditional overhead it incurs to create mutant grammars (1,268 for

Grammar Mutation for Testing Input Parsers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

1 json

2 : value EOF ;

3 obj

4 : '{' pair (',' pair)* '}'

5 | '{' '}' ;

6 pair

7 : STRING ':' value ;

8 arr

9 : '[' value (',' value)* ']'

10 | '[' ']' ;

11 value

12 : STRING | NUMBER | obj | arr

13 | 'true' | 'false ' | 'null' ;

14 STRING

15 : '"' (ESC | CHAR)* '"' ;

16 ESC

17 : '\\' (["\\/ bfnrt] | UNICODE) ;

18 UNICODE

19 : 'u' HEX HEX HEX HEX ;

(a)

1 json

2 : value (obj | EOF) ;

3 obj

4 : '{' pair (',' pair)* '}'

5 | '{' '}' ;

6 pair

7 : STRING ':' value ;

8 arr

9 : '[' value (',' value ∗)* ']'

10 | '[' ']' ;

11 value

12 : STRING | NUMBER | obj | arr

13 | 'true' | 'false ' | 'null' ;

14 STRING

15 : '"' (ESC | CHAR)* '"' ;

16 ESC

17 : '\\' (["\\/ bfnrt] | UNICODE) ;

18 UNICODE

19 : 'u' (STRING | HEX) HEX HEX HEX ;

(b)

Figure 1: Simplified version of the JSON grammar (left) and one of its mutant grammars (right). The highlighted parts show the

mutations applied.

this experiment). However, Gmutator managed to generate 7,793
inputs that are unique to the mutant grammars, i.e. they are not
accepted by the original grammar.1

Extra coverage. The Grammarinator-generated inputs achieve
branch coverage of 24% and 19% on cJSON and Parson, respec-
tively. Despite generating fewer inputs, the inputs unique to mutant
grammars allow Gmutator to increase branch coverage by 2% on
cJSON and 3% on Parson.

Issues discovered. The inputs that are unique to the mutant gram-
mars discovered several issues in the JSON parsers.

Mutation 3 led to the discovery of an issue in cJSON, which
accepts invalid UNICODE values such as ur282. We are discussing
this issue with the developers, who acknowledged that the accepted
input has an invalid UTF-8 character.

Mutations 1 and 2 led to the discovery of two issues in Parson.
Inputs such as {} {} and [true,] are accepted by Parson, al-
though they do not conform to the JSON format. However, while
the developers acknowledged the issues, they have decided not to
fix them, citing the robustness principle, also known as Postel’s
law [36]. According to this principle, programs should be permissive
in what they accept, and conservative (format-conforming) in what
they generate. We argue here that programs that follow this design
guideline cannot be adequately tested with a precise grammar, and
a more permissive grammar is needed to exercise the full range of

1Despite the fact that each mutant grammar features at least one mutation, gen-
erating an input that is not accepted by the original grammar requires a mutated part
of the grammar to be used during generation, and in a manner that actually causes a
deviation from what the original grammar accepts.

inputs. The examples discovered show how Gmutator can be use-
ful in identifying where the JSON grammar used for grammar-based
fuzzing of Parson would need to be more permissive.

3 GMUTATOR

We now describe Gmutator, our prototype tool for grammar mu-
tation, and give details of the mutation operators that Gmutator
incorporates.

Gmutator takes as input an ANTLR grammar, for example the
(full version of the) grammar in Figure 1a. We chose to support the
ANTLR format for two reasons: first, the ANTLR repository [1] fea-
tures well-maintained grammar files for a number of input formats;
secondly, the ANTLR tool can be used to automatically generate
a reference parser for a given grammar, a feature that Gmutator
makes use of as described below.

Gmutator applies a number of mutations to the rules of the
given grammar, randomly selecting which types of mutation to ap-
ply and where to apply them. This leads to a new mutant grammar,
as illustrated by the grammar in Figure 1b.

The following types of mutations are supported by Gmutator:

(1) Repetition: Change the number of allowed repetitions of an
expression to zero-or-more. This can be done by changing an
existing repetition operator to *, or introducing * when there is
no existing repetition operator. Examples of this mutation are:
• Repeat a terminal, e.g. ']' −→ ']'*

• Change the number of repetitions of a non-terminal from
one-or-more to zero-or-more, e.g. foo+ −→ foo*

• Change an optional subrule to zero-or-more repetitions of
the subrule, e.g. (...)? −→ (...)*

FUZZING ’23, July 17, 2023, Seattle, WA, USA Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson

L(𝐺) L(𝐺′)

Figure 2: L(𝐺) is the set of inputs derivable from grammar

𝐺 , while L(𝐺 ′) is the set of inputs derivable from a mutant

grammar 𝐺 ′
. L(𝐺 ′) is a superset of L(𝐺)

(2) Concatenation: Allow the concatenation of two rules that
would normally be alternatives, e.g. change foo | bar to foo |

bar | foo bar, so that in addition to the choice of foo or bar,
the sequence foo bar is allowed.

(3) Relax excluded character set: Replace a top-level regular
expression defining the complement of a set of characters—
i.e. a regular expression of the form ~𝑅 where 𝑅 defines a set
of characters—with the full character range; e.g. ~[0-9] −→ .,
which changes the regular expression that accepts any non-digit
character to a regular expression that accepts any character.2

(4) Introduce choice: Replace a use of a lexer/parser rule with a
choice between this or another lexer/parser rule appearing in
the grammar; e.g. HEX −→ (STRING | HEX).
We chose these mutations because they are self-contained; that

is, they do not introduce any new constructs that are not contained
in the original grammar. This makes the mutation process depen-
dent only on the original grammar. Additionally, self-contained
mutations are normally subtle and do not lead to drastic changes,
as they reuse existing grammar parts. In addition, the mutations are
grammar-agnostic: they are straightforward to apply to an ANTLR
description of any grammar. Our preliminary evaluation (§2) has
already shown that these mutations can be effective at uncovering
parsing discrepancies. In §6 we discuss the investigation of further
mutations as an avenue for future work.

Given a grammar𝐺 , Gmutator produces a mutant grammar𝐺 ′

by randomly applying one or more mutations of the types described
above. The default configuration is three mutations, which can be
modified by the user. Each mutant grammar is transformed to a
generator by Grammarinator, from which a sample of inputs can
be generated. These inputs can then be executed on SUTs of interest.
As is common in grammar-based fuzzing, Grammarinator (and
thus also Gmutator) supports blackbox testing: the process of
generating inputs is not guided by feedback from the SUT(s) in
relation to previously-generated inputs.

2This mutation could be generalised so that it would consider replacing any top-
level regular expression with a more permissive one. We chose to implement the more
restricted form of the mutation to maximise the chances of generating inputs that
involve characters that are explicitly disallowed by the original grammar.

By design, the mutations that Gmutator perform preserve the
syntactical and semantic validity of ANTLR grammars; i.e. given an
original well-formed ANTLR grammar, the mutant grammars that
Gmutator produces are also well-formed and can thus be used by
Grammarinator to drive the input generation process.

The grammar mutations we have designed have the property
that each mutation monotonically increases the space of inputs that
the grammar represents. As a concrete example, Mutation 1 in our
running example (see §2) can generate both single-rooted JSON
inputs and multi-rooted JSON inputs, while the original grammar
can only generated single-rooted JSON inputs. As a more general
example, the concatenation mutation outlined above does not re-
place a choice foo | bar with the concatenation foo bar; it instead
adds foo bar as an additional choice, so that the grammar still has
the potential to yield any input it could yield pre-mutation, as well
as additional inputs corresponding to the new alternative.

More formally, given a grammar mutator𝑀 that takes as input a
grammar𝐺 and produces a grammar𝐺 ′,𝑀 satisfies the monotonic
acceptance property if and only if, for any string 𝑠:

𝑠 ∈ L(𝐺) ⇒ 𝑠 ∈ L(𝐺 ′),

where L(𝐺) denotes the set of inputs derivable from a grammar𝐺 .
This is illustrated graphically in Figure 2.

The rationale for our design decision to use mutations that mono-
tonically increase the input space that the grammar can generate
is to allow localised mutations of any inputs that could be gen-
erated by the original grammar. Considering the concatenation
mutation type again, suppose we have a grammar that defines add
expressions, using the rule AddExpr -> AddExpr + AddExpr | Const

where Const defines a numerical constant. If the rule would be mu-
tated to AddExpr -> AddExpr + AddExpr Const instead of AddExpr ->

AddExpr + AddExpr | Const | AddExpr + AddExpr Const then one
could not generate large, mostly-valid expressions where only some
subtrees would be mutated. For instance, the expression 1 + 3 +

4 + 5 4, which uses a mixture of the original and mutated rule,
could not be generated.

Another advantage of our design decision that could prove useful
in the future is that it leaves the door open for grammar-based
fuzzing that operates on initial seed inputs. For seed inputs to be
usable when fuzzing with a mutant grammar, it must be the case
that they can be expressed using the mutant grammar so that they
can be parsed. While Gmutator does not yet make use of seed
inputs, our approach ensures that this would be possible to support
in the future.

4 PLANNED EVALUATION

We now detail the evaluation that we intend to conduct to assess
the effectiveness of our techniques for grammar mutation and the
Gmutator tool. We start by outlining the research questions our
evaluation aims to answer (§4.1). We then discuss the target input
formats we plan to study (§4.2), and the SUTs that consume these
input formats that we plan to test (§4.3). Finally, we explain the
procedure we plan to use for generating inputs and using generated
inputs for testing (§4.4), and the metrics we plan to use in order to
relate our findings back to our research questions (§4.5).

Grammar Mutation for Testing Input Parsers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

4.1 Research Questions

As a first baseline for our experiments, we use Grammarinator,
because it is open source and well maintained, and has been used in
several recent papers related to grammar-based fuzzing [26, 28, 32].
Importantly, it operates directly on the popular ANTLR format,
which Gmutator also supports.

As a second baseline, we use the following approach, which we
call Grammarinator+Mutations: Grammarinator is used to
generate an input using a standard (non-mutated) grammar, then
standard byte-level mutation operators, as implemented by fuzzers
such as AFL, are used to modify the generated input before feeding
it to an SUT.

We design our evaluation experiments to answer the following
research question:

• RQ1: To what extent can Gmutator and Grammarinator+Mu-
tations identify discrepancies between the inputs that an SUT
accepts, and inputs that conform to the grammar associated with
the input format the SUT claims to consume?

• RQ2: What are the reasons for such discrepancies, and in partic-
ular do they relate to unintended acceptance of invalid inputs by
the SUT, intentional acceptance due to the SUT being permissive
by design, or a lack of precision in the available ANTLR grammar
for the input format?

• RQ3: How does grammar-based fuzzing using Grammarinator,
Gmutator and Grammarinator+Mutations compare in terms
of the SUT code coverage that is achieved, and in terms of the
SUT crashes that are identified?

4.2 Target Input Formats

We plan to evaluate Gmutator with respect to grammars for four
different input formats, with varying levels of complexity, rang-
ing from regular to context-sensitive: URL, JSON, XML and Lua.
We have obtained grammar definitions of these formats from the
ANTLR GitHub repository [1].

The default ANTLR grammars are context-free and do not in-
clude any context-sensitive constraints. We have already started
preliminary investigation into these grammars, and found that
the lack of context-sensitivity makes Grammarinator generate
many Lua and XML inputs that do not satisfy semantic validity
constraints (even though they conform to the syntax specified by
the grammar). This prompted us to add some constraints and make
some simplifications to the XML and Lua grammars:

(1) XML:We added constraints to the grammar to ensure that: a
closing tag name must match the corresponding opening tag
name; if the declaration tag is present (of the form <?xml ...>),
then it must include the version attribute.

(2) Lua:We added constraints to the grammar to ensure that: the
break token can only appear inside loops; the <close> attribute
should not appear more than once in an attribute name list. We
also simplified the grammar by removing the goto construct,
as adding constraints to model it fully would have complicated
the grammar.

These adaptations and simplifications do not relate to our inves-
tigation of grammar mutation; they are needed even for standard
grammar-based fuzzing to be useful for these input formats. When

we present our full results, we will report on any further grammar
adaptations that turn out to be needed.

4.3 Systems under Test

Original and mutated grammars for the input formats of §4.2 will be
used to generate test inputs for a number of target SUTs. For each
input format, we have identified three relevant SUTs, summarised
in Table 1. Even though our approach is a blackbox method, we
show the total number of lines of code (LOC) for each SUT (gathered
using the cloc tool) as an indication of their varying complexity.
We chose recent versions of SUTs and, for reproducibility, indicate
which versions we will use in our full evaluation.

Our choice of SUTs was guided by: restricting to open-source
software (for ease of communication with developers, and so that
we can gain insight into fixes to bugs that we report); including some
programs written in C/C++ (the unsafe nature of C/C++ means that
SUTs written in C/C++ have the potential to benefit greatly from
fuzzing, especially when compiled with sanitisers); and choosing
at least one SUT per input format that is widely-used (in particular,
cJSON has 8.8k stars on GitHub, luac is part of the official imple-
mentation of the widely-used Lua language, curl is a standard
tool for URL-based data transfer, and libxml2 has been actively
developed and maintained for more than two decades).

4.4 Procedure for Generation and Testing

TheGmutator tool serves as a complementary approach to existing
grammar-based fuzzers. The primary objective of Gmutator is to
explore the input space of a given program that is at the “edge” of
what is defined by the input grammar. In particular, we seek to
evaluate how effective Gmutator is at discovering inputs that the
SUT accepts but the original grammar does not, and whether it can
reach program code that is unreachable with inputs generated from
the original grammar.

Grammarinator generation.Grammarinator takes anANTLR
grammar and transforms it into generator code written in Python,
then it produces inputs using the generator. The tool supports a
maximum depth option, which sets the maximum length of any
generation path from the root node to a leaf in the tree. To avoid
generating overly large inputs or get stuck during execution, we
set the maximum depth to 60 for all input formats except Lua, for
which we use a maximum depth of 20 (due to the more complex
nature of this grammar).

Grammarinator+Mutations generation. For this setup, which
involves generating inputs using a standard grammar and sub-
sequently mutating them, the same process will be used as for
Grammarinator above, except that after each input is generated,
between one and three random mutations will be applied to the
input (where the number of mutations is also chosen at random).
We will consider the following mutation operators, inspired by
those used in coverage-guided fuzzers (such as AFL and libFuzzer):

• Deleting a randomly-chosen contiguous sequence of bytes from
the input;

• Duplicating a randomly-chosen contiguous sequence of bytes at
a random position in the input;

FUZZING ’23, July 17, 2023, Seattle, WA, USA Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson

Table 1: The systems under test on which we plan to perform our full evaluation.

SUT Input format Language Version LOC Notes

cJSON [9] JSON C 1.7.8 2,348 Ultralightweight JSON parser
Parson [8] JSON C 1.4 2,179 Lightweight JSON library
simdjson [18] JSON C++ 3.2.0 10,356 Fast parser for large JSON files

luac [15] Lua C 5.4.4 17,327 Parser component of the official
Lua implementation

LuaJIT [24] Lua C 2.1.0 49,725 Just-In-Time (JIT) compiler for
the Lua programming language

py-lua-parser [7] Lua Python 3.1.1 3,823 Lua parser and AST builder
written in Python

aria2 [31] URL C++ 1.36.0 93,223 Utility for downloading files
curl [29] URL C 8.0.0 146,879 Command-line tool for transfer-

ring data with URLs
Wget [22] URL C 1.21.3 79,974 Program that retrieves content

from web servers

fast-xml-parser [12] XML JavaScript 4.2.2 1,857 Tool that validates XML and
parses XML to JS Object

libxml2 [30] XML C 20902 215,759 XML parser and toolkit origi-
nally developed for the GNOME
Project

pugixml [16] XML C++ 1.13 22,853 XML processing library

• Inserting a keyword drawn from an input format-specific dictio-
nary at a random position in the input. The dictionary for each
input format will be constructed based on fixed tokens appearing
in the associated grammar.

Gmutator generation.Gmutator, on the other hand, repeats the
process of creating a mutant grammar and then generating inputs
using that grammar. Each mutant grammar is obtained by applying
three mutations to the original grammar, at random. A mutant
grammar is used to generate 40 inputs before Gmutator moves
to the next mutant grammar. We have found that this number of
inputs typically allows all the rules of the ANTLR grammars we
have experimented with to be exercised at least once. Again, we set
maximum depth to 20 for Lua and 60 for other input formats.

Differential testing between the SUT and the parser gener-

ated from the original grammar. For Gmutator-, Grammari-
nator- and Grammarinator+Mutations-generated inputs, we
will record how many are valid vs. invalid according to the orig-
inal grammar. This will be achieved by attempting to parse each
input using the ANTLR-generated parser derived from the original
(non-mutated) grammar.

All Grammarinator-generated inputs should be valid, by con-
struction. In contrast, Gmutator-generated inputs might not be
valid, since the mutations that Gmutator applies to a grammar
monotonically increase the set of inputs the grammar can generate
(see §3). We expect many Grammarinator+Mutations-generated
inputs to be invalid, but the mutations that are applied to Gram-
marinator-generated inputs are not guaranteed to affect validity.

For each SUT, we will then identify inputs for which the SUT
and the ANTLR-generated parser disagree on validity. Cases where

invalid inputs are accepted by an SUT are of particular interest.
(The opposite case, where grammar-valid inputs are rejected by an
SUT are more likely to be due to missing semantic constraints in the
grammar.) This form of testing will allow RQ1 above to be answered.
Of particular interest will be the relative ability of our supposedly-
smarter Gmutator approach vs. the simple Grammarinator+Mu-
tations baseline in identifying discrepancies.

Differential testing across SUTs. Recall from §4.3 that we con-
sider three SUTs per input format. This allows us to perform dif-
ferential testing across SUTs, to identify cases where an input is
accepted by some but not all of the SUTs, despite the fact the SUTs
advertise that they consume the same input format. In practice,
having performed differential testing between each SUT and the
grammar-generated parser (as described above), we can mine these
results to identify mismatches between SUTs.

This analysis adds colour to the findings for RQ1, as it is interest-
ing to know whether mismatches are SUT-specific or common to
multiple SUTs. It will also be useful in answering RQ2; for example,
if all SUTs for an input format accept a particular input that does
not conform to the original grammar, this may suggest that the
original grammar is too strict, which we can then investigate. Alter-
natively, if a non-conforming input is accepted by one SUT but not
the others, this will likely be a useful point to raise when reporting
the issue to an SUT developer to get their feedback. Again, a com-
parison of discrepancies between SUTs identified by Gmutator vs.
Grammarinator+Mutations will be of interest.

Manual investigation of discrepancies. The next step after per-
forming differential testing is debugging. For every input format,
we will first de-duplicate all instances of discrepancies between

Grammar Mutation for Testing Input Parsers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

grammar and SUTs, or discrepancies between SUTs. This can be
achieved by classifying inputs by their (mutant) grammar source.
For each unique issue, we will investigate whether the fault is in
the SUT or in the grammar, or if the issue is a false alarm, e.g.
where an input is rejected by an SUT due to violating a seman-
tic constraint. Our references will be the official specifications for
JSON [6], Lua [15], URL [11], and XML [34]. When we are confident
the discrepancy constitutes non-conformance to the specification,
we will communicate the issue to the relevant SUT developers and
report their answers.

This manual investigation will provide answers to RQ2.

Recording crashes and coverage. When running each SUT over
the sets of inputs generated by Grammarinator, Gmutator and
Grammarinator+Mutations, we will record all crashes that occur.
In addition, since we do have source code for each SUT, we will
collect branch coverage information, using standard code coverage
utilities for C/C++, JavaScript and Python.

The data we gather on crashes and coverage, for inputs generated
using all three approaches, will allow us to answer RQ3. When we
find inputs that lead to SUT crashes we will de-duplicate and report
them. Cases where an input that crashes an SUT also turns out to
be a non-conforming input (i.e. one that does not conform to the
original grammar) will additionally contribute to answering RQ2.

Experimental settings.We will run experiments on a cluster of
multicore Linux workstations (we will provide details of machine
specifications when presenting our full results).

The SUTs will run in a Docker container without a network
connection, so that our URL-processing SUTs (curl, Wget and
aria2) will be expected to terminate gracefully with a “no net-
work connection” error if they do manage to parse a given input
successfully.

For each (generation tool, SUT) pair (where the generation tools
are Grammarinator, Gmutator and Grammarinator+Muta-
tions), we will perform three 24 h runs. Each run will repeat the
process of (1) generating an input using the generation tool, (2)
running the input against a coverage-instrumented version of the
SUT, logging the output and exit code for subsequent analysis,
and (3) in the case where the generation tool is Gmutator or
Grammarinator+Mutations, attempting to parse the input using
an ANTLR-generated parser for the original grammar (to record
whether or not the input is valid). To account for inputs that trigger
infinite loop bugs in our SUTs, or that lead to excessive SUT runtime,
we will use a timeout of 3 seconds per input.

Performing three repeat runs allows us to present averaged cover-
age data, whilst keeping the CPU time required for our experiments
tractable. Our planned experiments will require (4 input formats) ×
(3 SUTs per input format) × (3 generation tools) × (3 repeat runs)
× (24 h per repeat run) = 2,592 hours of CPU time.

Recall that an important part of our evaluation involves look-
ing for discrepancies between different SUTs that accept the same
input format. It is therefore important that we generate identical
sequences of inputs for the SUTs we wish to compare. Each gen-
eration tool can be made deterministic by being provided with a
pseudo-random number generator seed. To ensure that SUTs are
tested with identical inputs, in the first 24 h run for a (generation
tool, SUT) pair, the sequence of seeds [0, 3, 6, 9, . . .] will be used

to initialise the generation tool. On the second and third repeat
runs, the seed sequences [1, 4, 7, 10, . . .] and [2, 5, 8, 11, . . .] will be
used, respectively. This means that, for example, the first repeat
run in which Grammarinator is used to tests cJSON (one of our
JSON-consuming SUTs; see Table 1) will involve exactly the same
generated inputs as for the first repeat run in which Grammarina-
tor is used to test Parson (another of our JSON-consuming SUTs),
allowing the results of these runs to be compared across the SUTs.

A downside of this method is that CPU time will be devoted to re-
dundantly generating identical inputs to feed to different SUTs, and
checking whether these inputs are valid. However, these overheads
are part of the true cost associated with testing via our method, so
it is fair that they absorb part of the time budget associated with
each run. The approach also avoids the need to guess in advance
an upper bound on how many inputs it will be possible to generate
and process within a 24 h time period (which may vary across input
formats and SUTs), and also avoids the problem of testing proceed-
ing at the speed of the slowest SUT (which would be a problem if
we instead generated an input and then executed the input against
all relevant SUTs before moving on to the next input).

4.5 Evaluation Metrics

For clarity, we now recap the metrics that will be used to help in
answering RQs 1–3, based on the data gathered from the generation
and testing process described in §4.4.

For each benchmark, we plan to measure the following:

Accept-invalid. An invalid input is an input that is rejected by the
original grammar, that is, it is not derivable by this grammar. An
accept-invalid input is an invalid input that is accepted by an SUT
for the associated input format. We will measure the number of
accept-invalid inputs for each SUT, and categorise them, in order
to answer RQ1.

Reject-valid. A valid input is an input accepted by the original
grammar. Another interesting measurement is the number of valid
inputs that are rejected by an SUT—we call these reject-valid in-
puts. With respect to evaluating Gmutator this category is less
important than the accept-invalid category above, because both
Grammarinator and Gmutator have the potential to discover
reject-valid inputs while only Gmutator has the potential to dis-
cover accept-invalid inputs. Still, reporting on reject-valid inputs is
important to fully answer RQ1.

Cross-SUT disagreement. Recall that we consider three SUTs per
input format (see Table 1). Counting and classifying the inputs for
which there is disagreement between the three associated SUTs on
whether the input should be accepted is important in the context
of RQ2, because when reporting a discrepancy to developers it is
informative to remark on cases where a comparable SUT does not
exhibit the discrepancy.

Grammar-based faults. For each distinct category of accept-
invalid or reject-valid inputs that we discover, we will investigate
whether the issue is in fact due to a problem with the ANTLR
grammar for the input format. This will inform RQ2.

SUT-based faults. If an accept-invalid or reject-valid input is not
due to a problem with the grammar, we investigate if the error

FUZZING ’23, July 17, 2023, Seattle, WA, USA Bachir Bendrissou, Cristian Cadar, and Alastair F. Donaldson

originates from the SUT. For every distinct class of issue,3 based
on feedback from developers we will classify the issue as one of:
intended (the discrepancy is a feature of the SUT, e.g. as in the case
for the discrepancy in Parson discussed in §2, where the parson
developers cited Postel’s law), unintended (the discrepancy is a fault
in the SUT implementation, as appears to be the case with the issue
discussed in §2 where cJSON accepts inputs that contain invalid
UTF-8 characters), or unresolved (where despite discussion with
developers, or due to lack of developer feedback, we do not manage
to gain clarity on the issue). This classification of issues relates to
answering RQ2.

Code coverage. For each input format, and for each set of asso-
ciated inputs generated using Grammarinator, Gmutator and
Grammarinator+Mutations, we will measure the total branch
coverage achieved when each SUT for the input format is run across
the input set. This will allow us to report, on average, how much
Gmutator can improve on code coverage compared to Grammari-
nator and Grammarinator+Mutations, answering part of RQ3.

Program crashes. To assess the extent to which Gmutator can
identify additional SUT crashes compared with Grammarinator
and Grammarinator+Mutations, we will study logs of crashes
identified when testing each SUT over the sets of inputs generated
for each input format. Based on a best-effort de-duplication of
crashes from details contained in their logs, we will report average
results on the new crashes that Gmutator induces. It possible that
Gmutator may fail to find certain crashes that Grammarinator
exposes: even thoughGmutator can generate any input thatGram-
marinator can generate in principle, it may do so with a lower
probability in practice (due to the space of possible inputs that it
can generate being larger). We will analyse whether such cases
occur during our experiments. The data we collect on crashes will
answer the remainder of RQ3.

5 RELATEDWORK

Our approach builds upon grammar-based fuzzing [2, 14, 23, 25,
35, 37] and the Grammarinator [13] tool in particular. The effec-
tiveness of grammar-based fuzzing depends on the quality of the
grammar; because the generator is blackbox, it is unable to exploit
knowledge of the program’s implementation. While it is possible
to build grammar-based fuzzers that enforce semantic constraints
to generate valid inputs [14, 37], this requires significant effort and
such fuzzers are only available for a few domains.

Automatically mining input grammars from programs can re-
duce the manual effort required in building grammars. With no
specification or seed inputs, pFuzzer [20] can mine an input gram-
mar of a program, by instrumenting the program and tracking byte
comparisons at runtime. However pFuzzer only works with recur-
sive descent parsers, written in C. Grammars can also be synthesised
grammars from sample inputs [4, 5, 10, 17]. These techniques are
useful when the program source code is not available, however a
seed corpus exercising all of the target grammar rules is needed.

Instead of mining grammars from scratch, Gmutator builds on
top of existing grammars, and attempts to generate inputs at the
“edge” of what the input grammar allows.

3If a particular SUT turns out to suffer from a high rate of discrepancies we may
report only a limited number of issues to avoid bombarding developers with reports.

A similar approach to ours is Ccoft [32], which is a mutator that
operates on Protobuf objects. Ccoft converts an input grammar into
a Protobuf format, then uses the libprotobuf-mutator to mutate
instantiations of the Protobuf format. Although the tool detected
many reject-valid and accept-invalid bugs, it was only targeted
towards testing of C++ compiler front-ends and was not shown to
generalise beyond C++ subsets.

FuzzTruction [3] is another approach that introduces subtle mu-
tations to generator applications. The approach is successful at gen-
erating almost-valid inputs. The tool is effective with highly struc-
tured formats, especially those that go through complex transfor-
mations like compression and encryption. However, the approach
only works when a generator application is available, which is not
the case for most program parsers.

Unlike byte-level mutators, such as AFL [38], Gmutator per-
forms mutations at the structure level. Random byte mutations
typically break the syntax of an input, whereas we seek to produce
inputs with similar structures.

6 CONCLUSION

We have presented Gmutator, a prototype tool that takes advan-
tage of existing input grammars, and uses a combination of gram-
mar mutation and grammar-based fuzzing as the basis for generat-
ing both well-formed and almost-well-formed inputs. Through a
case study on JSON, we have presented preliminary evidence that
the latter may be effective in identifying discrepancies between the
inputs that systems under test actually accept vs. the inputs that
they are supposed to accept according to the input format.

We have presented a plan for a larger experimental evaluation
to assess the effectiveness of our idea on twelve different SUTs
covering four different input formats. Through this evaluation we
will measure and report on the rate of discrepancies Gmutator can
discover, the improvement in code coverage and crash detection
afforded by exploring a richer space of inputs, and the response
from SUT developers to reports of inputs that trigger discrepancies.

In future work it would be interesting to extend our grammarmu-
tation strategy to include new mutations, including experimenting
with less conservative mutations. One direction would be the use
of grammar fragments to derive new types of grammar mutations.
Grammar fragments can be mined from the ANTLR repository,
where over 200 grammars are available.

Another research direction is to exploit the fact that our mono-
tonic mutation strategy (see §6 and Figure 2) enables the use of seed
inputs, which have the potential to lead to more effective fuzzing.

7 DATA AVAILABILITY

TheGmutator implementation and experimental data are available
at https://srg.doc.ic.ac.uk/projects/gmutator/

ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement 819141) and from the UK
Engineering and Physical Sciences Research Council through grant
EP/R006865/1.

https://srg.doc.ic.ac.uk/projects/gmutator/

Grammar Mutation for Testing Input Parsers (Registered Report) FUZZING ’23, July 17, 2023, Seattle, WA, USA

REFERENCES

[1] Antlr. 2020. ANTLR v4 Grammars. https://github.com/antlr/grammars-v4. On-
line; accessed 7 May 2023.

[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,
Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In Proc. of the 26th Network and Distributed System Security
Symposium (NDSS’19) (San Diego, CA, USA). https://doi.org/10.14722/ndss.2019.
23412

[3] Nils Bars, Moritz Schloegel, Tobias Scharnowski, Schiller Nico, and Thorsten Holz.
2023. Fuzztruction: Using Fault Injection-based Fuzzing to Leverage Implicit
Domain Knowledge. In Proc. of the 32nd USENIX Security Symposium (USENIX
Security’23) (Boston, MA, USA).

[4] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017. Synthesizing
Program Input Grammars. In Proc. of the Conference on Programing Language
Design and Implementation (PLDI’17) (Barcelona, Spain). https://doi.org/10.1145/
3062341.3062349

[5] Bachir Bendrissou, Rahul Gopinath, and Andreas Zeller. 2022. “Synthesizing
Input Grammars”: A Replication Study. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’22) (San Diego, CA, USA). https:
//doi.org/10.1145/3519939.3523716

[6] Douglas Crockford. 2017. cjson. https://json.org.
[7] Eliott Dumeix. 2023. A Lua parser and AST builder written in Python. https:

//github.com/boolangery/py-lua-parser.
[8] Krzysztof Gabis. 2023. Lightweight JSON library written in C. https://github.

com/kgabis/parson.
[9] Dave Gamble. 2023. Ultralightweight JSON parser in ANSI C. https://github.

com/DaveGamble/cJSON.
[10] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2020. Mining Input Grammars

from Dynamic Control Flow. In Proc. of the Joint Meeting of the European Software
Engineering Conference and the ACM Symposium on the Foundations of Software
Engineering (ESEC/FSE’20) (Online). https://doi.org/10.1145/3368089.3409679

[11] Network Working Group. 2005. Uniform Resource Identifier (URI): Generic
Syntax. https://datatracker.ietf.org/doc/html/rfc3986.

[12] Amit Kumar Gupta. 2023. Fast XML Parser. https://github.com/
NaturalIntelligence/fast-xml-parser.

[13] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2018. Grammarinator: A
Grammar-Based Open Source Fuzzer. In Proc. of the 9th ACM SIGSOFT Inter-
national Workshop on Automating TEST Case Design, Selection, and Evaluation
(A-TEST’18) (Lake Buena Vista, FL, USA). https://doi.org/10.1145/3278186.3278193

[14] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In Proc. of the 21st USENIX Security Symposium (USENIX Security’12)
(Bellevue, WA, USA).

[15] Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo. 2023.
Lua. https://www.lua.org/manual/5.3/manual.html.

[16] Arseny Kapoulkine. 2022. Light-weight C++ XML processing library. https:
//pugixml.org.

[17] Neil Kulkarni, Caroline Lemieux, and Koushik Sen. 2021. Learning Highly
Recursive Input Grammars. In Proc. of the 36th IEEE International Conference
on Automated Software Engineering (ASE’21) (Melbourne, Australia). https:
//doi.org/10.1109/ASE51524.2021.9678879

[18] Daniel Lemire, Geoff Langdale, and John Keiser. 2023. Fast parser for large JSON
files. https://simdjson.org.

[19] LLVM Project. Date Accessed July 21, 2022. libFuzzer – a library for coverage-
guided fuzz testing. https://llvm.org/docs/LibFuzzer.html.

[20] Björn Mathis, Rahul Gopinath, Michaël Mera, Alexander Kampmann, Matthias
Höschele, and Andreas Zeller. 2019. Parser-Directed Fuzzing. In Proc. of the Con-
ference on Programing Language Design and Implementation (PLDI’19) (Phoenix,
AZ, USA).

[21] Jake Miller. 2021. An Exploration of JSON Interoperability Vulnera-
bilities. https://labs.bishopfox.com/tech-blog/an-exploration-of-json-
interoperability-vulnerabilities [Online; accessed 12-May-2021].

[22] Hrvoje Nikšić. 2023. Network utility to retrieve files from the World Wide Web.
https://www.gnu.org/software/wget/.

[23] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic Fuzzing with Zest. In Proc. of the International Sym-
posium on Software Testing and Analysis (ISSTA’19) (Beijing, China). https:
//doi.org/10.1145/3293882.3330576

[24] Mike Pall. 2022. Just-In-Time (JIT) compiler for the Lua programming language.
http://luajit.org.

[25] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru Răzvan Că-
ciulescu, and Abhik Roychoudhury. 2021. Smart Greybox Fuzzing. IEEE
Transactions on Software Engineering (TSE) 47, 9 (2021), 1980–1997. https:
//doi.org/10.1109/TSE.2019.2941681

[26] Hamad Ali Al Salem and Jia Song. 2019. A Review on Grammar-Based Fuzzing
Techniques. International Journal of Computer Science and Security 13, 3 (June
2019).

[27] Nicolas Seriot. 2016. Parsing JSON is a minefield. https://seriot.ch/parsing_json.
php [Online; accessed 15-Sep-2020].

[28] Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective grammar-
aware fuzzing. In Proc. of the International Symposium on Software Testing and
Analysis (ISSTA’21) (Online). https://doi.org/10.1145/3460319.3464814

[29] Daniel Stenberg. 2023. Command line tool and library for transferring data with
URLs. https://curl.se.

[30] The GNOME Project. 2023. XML toolkit implemented in C. https://gitlab.gnome.
org/GNOME/libxml2.

[31] Tatsuhiro Tsujikawa. 2021. Utility for downloading files. https://aria2.github.io.
[32] Haoxin Tu, He Jiang, Zhide Zhou, Yixuan Tang, Zhilei Ren, Lei Qiao, and Lingxiao

Jiang. 2023. Detecting C++ Compiler Front-End Bugs via Grammar Mutation and
Differential Testing. IEEE Transactions on Reliability 72, 1 (March 2023), 1–15.
https://doi.org/10.1109/TR.2022.3171220

[33] Spandan Veggalam, Sanjay Rawat, Istvan Haller, and Herbert Bos. 2016. IFuzzer:
An Evolutionary Interpreter Fuzzer Using Genetic Programming. In Proc. of the
(ESORICS’16). https://doi.org/10.1007/978-3-319-45744-4_29

[34] W3C. 2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). https:
//www.w3.org/TR/xml/.

[35] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
Aware Greybox Fuzzing. In Proc. of the 41st International Conference on Software
Engineering (ICSE’19) (Montreal, Canada). https://doi.org/10.1109/ICSE.2019.
00081

[36] Wikipedia. 2023. Robustness principle. https://en.wikipedia.org/wiki/
Robustness_principle.

[37] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Un-
derstanding Bugs in C Compilers. In Proc. of the Conference on Programing
Language Design and Implementation (PLDI’11) (San Jose, CA, USA). https:
//doi.org/10.1145/1993498.1993532

[38] Michal Zalewski. 2019. AFL Documentation. https://afl-1.readthedocs.io/_/
downloads/en/latest/pdf/.

Received 2023-05-15; accepted 2023-06-12

https://github.com/antlr/grammars-v4
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.14722/ndss.2019.23412
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3519939.3523716
https://doi.org/10.1145/3519939.3523716
https://json.org
https://github.com/boolangery/py-lua-parser
https://github.com/boolangery/py-lua-parser
https://github.com/kgabis/parson
https://github.com/kgabis/parson
https://github.com/DaveGamble/cJSON
https://github.com/DaveGamble/cJSON
https://doi.org/10.1145/3368089.3409679
https://datatracker.ietf.org/doc/html/rfc3986
https://github.com/NaturalIntelligence/fast-xml-parser
https://github.com/NaturalIntelligence/fast-xml-parser
https://doi.org/10.1145/3278186.3278193
https://www.lua.org/manual/5.3/manual.html
https://pugixml.org
https://pugixml.org
https://doi.org/10.1109/ASE51524.2021.9678879
https://doi.org/10.1109/ASE51524.2021.9678879
https://simdjson.org
https://llvm.org/docs/LibFuzzer.html
https://labs.bishopfox.com/tech-blog/an-exploration-of-json-interoperability-vulnerabilities
https://labs.bishopfox.com/tech-blog/an-exploration-of-json-interoperability-vulnerabilities
https://www.gnu.org/software/wget/
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
http://luajit.org
https://doi.org/10.1109/TSE.2019.2941681
https://doi.org/10.1109/TSE.2019.2941681
https://seriot.ch/parsing_json.php
https://seriot.ch/parsing_json.php
https://doi.org/10.1145/3460319.3464814
https://curl.se
https://gitlab.gnome.org/GNOME/libxml2
https://gitlab.gnome.org/GNOME/libxml2
https://aria2.github.io
https://doi.org/10.1109/TR.2022.3171220
https://doi.org/10.1007/978-3-319-45744-4_29
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://en.wikipedia.org/wiki/Robustness_principle
https://en.wikipedia.org/wiki/Robustness_principle
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/
https://afl-1.readthedocs.io/_/downloads/en/latest/pdf/

	Abstract
	1 Introduction
	2 Preliminary results for JSON
	3 Gmutator
	4 Planned evaluation
	4.1 Research Questions
	4.2 Target Input Formats
	4.3 Systems under Test
	4.4 Procedure for Generation and Testing
	4.5 Evaluation Metrics

	5 Related Work
	6 Conclusion
	7 Data Availability
	References

