
MOD2IR: High-Performance Code Generation for a
Biophysically Detailed Neuronal Simulation DSL

George Mitenkov∗
Imperial College London

UK

Ioannis Magkanaris∗
École Polytechnique Fédérale de

Lausanne (EPFL)
Switzerland

Omar Awile
École Polytechnique Fédérale de

Lausanne (EPFL)
Switzerland

Pramod Kumbhar
École Polytechnique Fédérale de

Lausanne (EPFL)
Switzerland

Felix Schürmann
École Polytechnique Fédérale de

Lausanne (EPFL)
Switzerland

Alastair F. Donaldson
Imperial College London

UK

Abstract
Advances in computational capabilities and large volumes
of experimental data have established computer simulations
of brain tissue models as an important pillar in modern neu-
roscience. Alongside, a variety of domain specific languages
(DSLs) have been developed to succinctly express properties
of these models, ensure their portability to different plat-
forms, and provide an abstraction that allows scientists to
work in their comfort zone of mathematical equations, dele-
gating concerns about performance optimizations to down-
stream compilers. One of the popular DSLs in modern neu-
roscience is the NEURON MODeling Language (NMODL).
Until now, its compilation process has been split into first
transpiling NMODL to C++ and then using a C++ toolchain
to emit the efficient machine code. This approach has several
drawbacks including the reliance on different programming
models to target heterogeneous hardware, maintainability
of multiple compiler back-ends and the lack of flexibility
to use the domain information for C++ code optimization.
To overcome these limitations, we present MOD2IR, a new
open-source code generation pipeline for NMODL. MOD2IR
leverages the LLVM toolchain to target multiple CPU and
GPU hardware platforms. Generating LLVM IR allows the
vector extensions of modern CPU architectures to be tar-
geted directly, producing optimized SIMD code. Additionally,
this gives MOD2IR significant potential for further optimiza-
tions based on the domain information available when LLVM
IR code is generated. We present experiments showing that
MOD2IR is able to produce on-par execution performance
∗These authors share first authorship.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CC ’23, February 25–26, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0088-0/23/02.
https://doi.org/10.1145/3578360.3580268

using a single compiler back-end implementation compared
to code generated via state-of-the-art C++ compilers, and
can even surpass them by up to 1.26×. Moreover, MOD2IR
supports JIT-execution of NMODL, yielding both efficient
code and an on-the-fly execution workflow.

CCS Concepts: • Software and its engineering → Com-
pilers;Domain specific languages; •Applied computing
→ Computational biology.

Keywords: DSL, NEURON, NMODL, Compiler, LLVM, SIMD
ACM Reference Format:
George Mitenkov, Ioannis Magkanaris, Omar Awile, Pramod Kumb-
har, Felix Schürmann, and Alastair F. Donaldson. 2023. MOD2IR:
High-Performance Code Generation for a Biophysically Detailed
Neuronal Simulation DSL. In Proceedings of the 32nd ACM SIGPLAN
International Conference on Compiler Construction (CC ’23), Febru-
ary 25–26, 2023, Montréal, QC, Canada. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3578360.3580268

1 Introduction
The last decade has seen a cambrian explosion of compute ar-
chitectures fueled by the breakdown of Dennard scaling [8]
and the insatiable appetite for compute resources [49]. Com-
puter architecture designs have proliferated, catering to both
mainstream applications and specialized domains. This trend
is expected to continue with more application-specialized
architectures [21]. It would be, however, difficult to write
software that is able to take advantage of these hardware
technologies without the help of modern compiler frame-
works. Compilers thus are constantly evolving to keep up
with evolving programming language standards, and incor-
porate optimizations techniques for new instruction set ar-
chitectures. Still, writing efficient, large-scale and portable
HPC applications poses unique challenges to the developer in
today’s environment of constant innovation in hardware ar-
chitectures. Parallel programming models like OpenMP, Ope-
nACC, CUDA, HIP, OneAPI, SYCL [19], and performance-
portability frameworks like RAJA [5] and Kokkos [17] are
trying to bridge the gap between new hardware architec-
tures and the needs of HPC software. But, there is no silver

https://doi.org/10.1145/3578360.3580268
https://doi.org/10.1145/3578360.3580268

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

bullet and developers need to retune their programs with
each new generation of hardware.

Domain-specific languages (DSLs) play an important role
in reducing the performance and knowledge gaps to write ef-
ficient programs. Here we focus on the field of computational
neuroscience, where DSLs have become particularly useful.
Examples include SBML [26], MorphML [15], LEMS [10], and
NESTML [43]. These DSLs allow scientists to express the
often complex neuron and synapse models in the most ap-
propriate form and leave the work of generating efficient and
hardware-optimized simulation code to a transpiler frame-
work [7]. This is particularly important for the study of bio-
physical models, where simulations have seen an enormous
increase in scale and complexity over the last two decades.
For example, researchers are building morphologically de-
tailed models of regions of the rodent brain to understand
important questions like synaptic plasticity [12], others ex-
plore possibilities to run human brain-scale simulations [55].
As demands for scalability increase, neuroscience simula-
tion frameworks undergo constant modernization [4, 11, 45],
often to take advantage of the evolving hardware landscape.

The NEURON simulation framework [23] is widely used in
the computational neuroscience community for simulating
detailed neuronal models. A core feature of NEURON is its
DSL, NEURON MOdel Description Language (NMODL) [24],
which allows the neuroscientist to describe membrane and
synapse mechanisms to model the diverse cell dynamics
present in neuronal tissue. While over the years several
NMODL transpilers have been proposed, all have in com-
mon that they generate C++, which must be then compiled
into a library used in the simulation. The NMODL frame-
work [33] is one such code-generation framework. It ensures
that NMODL programs run efficiently on modern architec-
tures, by employing a combination of ordinary differential
equation (ODE) simplifications, various AST transforma-
tions, and generation of C++ code that interfaces with pro-
gramming models including ISPC, OpenMP, OpenACC, and
CUDA. The AST transformations include standard optimiza-
tions like inlining, constant folding and loop-unrolling at the
DSL level, as discussed in Kumbhar et al. [33, Section 4.1].
This has helped to achieve speedups of up to 10× in pro-

duction simulations and up to 2× when compared to pro-
grams hand-tuned for SIMD processors [24]. Even though
NEURON is able to provide an extensible and optimized sim-
ulation environment, there are still multiple challenges for
developers as well as end-users. First, end-users need to have
a fully functional compiler toolchain even when using binary
distribution of NEURON. Second, limited auto-vectorization
capabilities and lack of SIMD vector math libraries in open-
source compilers add a dependency on vendor compilers for
achieving the best possible performance. Third, generating
C++ code with various back-ends for hardware optimiza-
tions means that the NMODL framework contains in effect
several code generators, which adds additional complexity

and maintenance efforts. Fourth, the ahead-of-time (AOT)
compilation used by the NMODL framework limits potential
optimizations when certain information about the model is
only available at runtime. In addition, it makes the compila-
tion workflow less interactive and attractive for end-users.

In order to address these challenges, in this paper we intro-
duce MOD2IR, an extensible multi-platform code generation
framework for NMODL, based on LLVM [34] The four main
contributions of the framework are:

1. Reducing the development cost and maintenance bur-
den by leveraging the LLVM infrastructure to target
existing and emerging hardware architectures, with-
out sacrificing the performance compared to existing
back-ends and compiler toolchains.

2. Building an end-to-end code generation pipeline by us-
ing LLVM’s code generation capabilities and integrat-
ing open-source vector math libraries like SLEEF [50].

3. Mapping NMODL’s abstract representation directly
into LLVM IR to generate as efficient or better code
for CPUs, including scalar and SIMD code, and GPUs.

4. Supporting dynamic code generation and on-the-fly
execution using LLVM’s JIT-execution infrastructure.

Thus, our approach lends itself to interactive yet high per-
formance use as other projects in other domains have es-
tablished, such as Julia [6] or JAX [9]. In our experiments,
MOD2IR achieves on-par performance when compared to
state-of-art compilers such as GCC, Clang, and Intel or NVHPC
C++ compilers. For certain benchmarks, MOD2IR outper-
forms existing solutions showing a speedup of more than
1.2× for both CPU and GPU platforms.

2 Background
2.1 NEURON and NMODL DSL
NEURON is a simulation environment which allows users to
represent the diversity of electrical and biophysical proper-
ties of nerve cells, and to model the dynamics of individual
membrane channels and synapses. Developed over the last
four decades, NEURON is one of the most popular software
simulators in computational neuroscience, as evidenced by
citations from more than 2,500 scientific works, collectively
featuring more than 750 models that range from single-cell
studies to large networks simulating entire brain regions.
In NEURON, individual nerve cells are treated as a tree

of branched cables and the electrical activity of cells is mod-
eled using a discretization of the cable equation [54], giving
rise to a set of coupled ODEs. To model the ion channels in
membrane and synapses, one needs to consider additional
ODEs that the simulator must solve at every time integra-
tion step. These ion channel and synapse types including
their differential equations are specified in NMODL. This
abstraction via a DSL is crucial as it allows domain experts to
focus on the scientific problem at hand rather than low-level
programming details. Figure 1 shows an example of such a

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

1 TITLE T-calcium channel
2
3 NEURON {
4 SUFFIX cat
5 USEION ca READ cai, cao WRITE ica
6 RANGE gcatbar, ica, gcat, hinf, minf
7 }
8
9 PARAMETER {
10 celsius = 25 (degC)
11 cao = 2 (mM)
12 }
13
14 STATE { m h }
15
16 DERIVATIVE states {
17 m' = (minf - m) / mtau
18 }
19
20 BREAKPOINT {
21 SOLVE states METHOD cnexp
22 gcat = gcatbar*m*m*h
23 ica = gcat*ghk(v,cai,cao)
24 }

MOD Files

Transpiler
Framework

Code Files
(C++/CUDA/ISPC/OpenACC)

CPU/GPU

Compiler

Model EXE

Model Library

Hardware
Targets

OS
Platforms

Compiler
Toolchains

Mingw64

AppleClang

GNU

Intel oneAPI

NVHPC

AMD OCC

Programming Models

Libraries

OpenMP

Runtime

Vector Math

OpenACC

CUDA

ISPC

Random123

Figure 1.On the left, a simplified example of an NMODL program describing an ion-channel. In the middle, the code generation
workflow translating the model to C++ and then creating a model-specific binary that is used for the simulation. On the right,
the complexity of supporting various CPU and GPU architectures with different compiler toolchains and programming models.
Software portability and maintenance are an additional challenge when supporting different operating systems.

channel specification using NMODL. This specific example
and NMODL specification are already discussed in [33].
From a code generation and simulator performance per-

spective the runtime execution profile of NEURON simula-
tions is typically dominated by compute kernels of the ion
channel and synapse models generated from NMODL. The
computational cost and performance properties of such ker-
nels and simulations have been extensively studied in [13,
14]. In this work we are interested in the DERIVATIVE and
BREAKPOINT blocks in the Figure 1 that are converted to
a compute-intensive state update kernel (nrn_state) and a
memory-bound current update kernel (nrn_cur). The first
calculates voltage updates, while the latter calculates the
changes in various ionic currents and their contribution to
the total current within each discretization element of the
neuron. The cumulative runtime of all nrn_state and nrn_cur
kernels typically accounts for more than 90% of the total
simulation time and hence are the targets for optimal code
generation in our work.

2.2 Code Generation Workflow and Complexity
To run the simulation, a model written in NMODL is tran-
spiled to create a model-specific library (see Figure 1). A
channel or synapse model is written in NMODL as a collec-
tion of MOD files, which are transpiled into C++ files, and then
compiled into a model-specific library. Depending on the
target hardware, this involves compiling for a host architec-
ture (CPU) and additionally an accelerator (e.g. GPU). When
simulating a model, this model-specific library is loaded by
the NEURON distribution that is installed by a user.

Figure 1 also depicts the complexity arising from support-
ing such a DSL code generation workflow on different OS

platforms, compiler toolchains, programming models to tar-
get CPU/GPU architectures, and underlying dependencies
with vendor-specific libraries. As discussed in Section 1, com-
piler toolchains like GCC and Clang are commonly available
and used by end-users. But until now the NMODL transpiler
framework has largely relied on vendor compilers for effi-
cient SIMD code generation and GPU offload support. This
leads to a significant maintenance burden to support such a
complex software stack.

3 Design and Implementation of MOD2IR
We now describe the architecture of MOD2IR, implementa-
tion of code generation pipelines, and integration with open
source and vendor vector-math libraries. We also discuss
how, by leveraging LLVM’s JIT infrastructure, MOD2IR pro-
vides a Python API that enables on-the-fly model execution.

3.1 Architecture
MOD2IR follows a conventional modular design with three
major components, depicted in Figure 2: 1) an AST visitor
that prepares the NMODL AST for code generation; 2) an
AST visitor that produces LLVM IR; and 3) multiple passes
that specialize and optimize the IR. The optimized IR can
then be compiled ahead-of-time, or JIT-compiled at runtime.
Lexing and parsing to yield the AST for an NMODL program
is performed by the NMODL framework on which MOD2IR
is built, and hence are not shown in the architecture diagram.
As the first step, MOD2IR populates a CodegenConfig

object (1) which holds information about the target archi-
tecture and guides the code generation workflow. MOD2IR
then takes the AST generated by the NMODL framework and
passes it to the Lowering visitor (2), which yields code in a

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

CodegenConfig

AST Visitors IR Passes JIT Engine

AST Lowering

IR Code Generation

Math
Function
Replacement

Module
Annotating

IR
Optimizations

JIT Driver
1. outlining of computational kernels
2. loop generation
3. type inference

BaseBuilder

BaseBuilder

SIMDBuilder

GPUBuilder

DebugBuilder

CUDADriver

IRBuilder

virtual void
generate_X(…)

Value* create_X(…)

virtual
void replace(…)

virtual
void annotate(…)

virtual
void optimize(…)

BaseDriver

AOT Execution

Python API

bytecode or executables

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

BaseReplacer

SIMDReplacer

GPUReplacer

BaseAnnotator

GPUAnnotator

BaseOptimizer

GPUOptimizer

Figure 2. Architecture of MOD2IR: On the left, AST visitors which are used to prepare the NMODL AST for code generation
and to emit LLVM IR for various back-ends. In the middle, IR passes to further specialize and optimize the generated IR. On
the right, two execution workflows for JIT- and AOT-compilation.

C-like target-agnostic abstract representation ready for code
generation (see Section 3.2.1) and includes all computational
kernels (nrn_state, nrn_cur). We refer to this as the lowered
NMODL AST. Next, the lowered NMODL AST is passed to
IRCodegen visitor (3), which is responsible for generating
LLVM IR for computational kernels. IR generation logic re-
sides in builders: classes with a common code generation
interface but aimed at different target platforms (4). Cur-
rently, MOD2IR provides three code generation builders: 1)
a default builder that generates serial, non-vectorized code;
2) a SIMD builder tailored for vector code generation; and
3) a GPU builder that targets NVIDIA GPUs. MOD2IR also
allows adding debug information to the generated IR (5).

Once the IR is generated, it undergoes further transforma-
tions via three major MOD2IR passes. The first pass replaces
transcendental math functions with appropriate library calls
from vector- or GPU-math libraries (6) (see Section 3.3).
The second pass annotates the IR module and functions
with metadata (7). These annotations help subsequent LLVM
passes with alias analysis or decide which functions will be
offloaded to the GPU, and are inserted based on the domain
information. Finally, the optimization pass is scheduled (8),
which runs different existing LLVM optimization passes.

In the end, the optimized IR can be consumed in two ways:
direct JIT-compilation for on-the-fly execution (9) or conver-
sion to bytecode/assembly code for AOT-compilation (10)
(see Section 3.4). The JIT engine is designed to be easily ex-
tensible, and MOD2IR currently provides an implementation
suitable for executing LLVM IR on CPUs, or NVIDIA GPU
platforms.

3.2 Code Generation
3.2.1 Target-Agnostic AST Lowering. The NMODLAST
does not explicitly define computational kernels, nor the un-
derlying data structure that describes nerve cells including
physical properties such as compartments, their areas, ion
concentrations, voltage, etc. Instead, many AST nodes implic-
itly define the semantics of updating the state of a nerve cell.
Mapping such AST nodes to corresponding IR operations
would make low-level IR generation difficult, with a single
AST node mapping to hundreds of LLVM IR instructions.

To avoid this, MOD2IR introduces a small set of new AST
nodes specific to code generation, allowing to progressively
lower high-level domain-specific NMODL AST nodes to
newly-introduced IR-friendly abstractions and finally to IR
itself. MOD2IR adds new AST nodes to represent: 1) a func-
tion, which is used to construct nrn_state and nrn_cur kernels
from DERIVATIVE and BREAKPOINT blocks; 2) a Mechanism
object storing physical properties of the nerve cell; and 3)
a for loop which encapsulates all computations. Figure 3
shows an example of how these new nodes can be used to
lower the AST for a simple state update kernel.
In order to make target-specific code generation from

target-agnostic AST scalable and extensible, MOD2IR anno-
tates expressions with traits, which describe the behavior
of an expression with respect to vectorization (shown as
{{trait-type}} in Figure 3).

• induction – Expression must remain scalar, even in
presence of vector instructions. Most common use case
of this trait is to annotate induction variables.

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

• broadcast – Expression is broadcasted when vector-
ized. This helps to specify how to vectorize constants.

• direct (default) – Expression with a memory access
can be vectorized directly. This is helpful to specify
how standard loads and stores are handled.

• indirect – Expression with a memory access has to
be gathered/scattered and may have write conflicts on
parallel access.

Availability of traits and a for loop AST node greatly
simplifies code generation. Figure 4 shows C++ which is a
direct translation from LLVM IR generated by MOD2IR for
a range of platforms (1) – (3). We observe that it is sufficient
to specialize the code generation for the for loop and the
expression traits, leaving other code generation logic intact.

It is worth pointing out that somemodels, such as synapses,
may issue multiple writes to the same memory location.
When generating vectorized or GPU code, these writes must
be atomic to maintain program correctness. Many down-
stream C++ compilers are too conservative and do not vector-
ize the code in presence of such atomic operations. MOD2IR
exploits domain knowledge and trait annotations to iden-
tify conflicting writes, and has an additional AST node to
represent such atomic operations to facilitate vectorization.

3.2.2 Target-Aware Code Generation. Generation of IR
code is performed by the IRCodegen AST visitor (Figure 2),
which uses an IRBuilder instance to generate target-specific
IR. The IRCodegen visitor dictates the overall structure of
the generated IR, in terms of basic blocks and high-level
logic, and the IRBuilder provides concrete implementations
of IR-generating functionality. This allows IR for different
platforms to be generated with minimal effort; e.g., targeting
a vector architecture merely requires an IRBuilder instance
capable of emitting LLVM instructions on vector types.

By default, MOD2IR uses the BaseBuilder class to gener-
ate scalar code. It allows MOD2IR users to generate code for
CPUs as well as extend it to support custom platforms. The
builder has a set of creation methods that provide services
such as accessing mechanism data members and looking
up values in the symbol table, and are accessible to the sub-
classes of BaseBuilder. Also, the builder defines a set of
code generation methods – virtual C++ functions allowing
subclasses of BaseBuilder to customise the code generation
rules, e.g. for atomic statements.
In addition to scalar code generation, we provide the

functionality to generate SIMD code and target GPUs (only
NVIDIA at the moment) via subclasses of BaseBuilder:
SIMDBuilder and GPUBuilder respectively. As SIMD and
GPU code generation requires specific considerations, here
we summarise key implementation details:

SIMDBuilder: facilitates generation of vectorized code,
overriding generationmethods to ensure that: 1) the stopping
condition and increment of a for loop are adjusted to account
for the vector width; 2) scalar constants with broadcast trait

1 STRUCT Mechanism {
2 INTEGER* node_index
3 DOUBLE* voltage
4 DOUBLE* m
5 INTEGER size
6 }
7 VOID state_update(Mechanism& data){
8 {{induction}} INTEGER id
9 INTEGER node_id
10 DOUBLE v
11 FOR (id = START; id < END; id += INC) {
12 node_id = data.node_index[id]
13 v = {{indirect}} data.voltage[node_id]
14 data.m[id] = {{broadcast}} 2 + v * data.m[id]
15 }
16 }

Figure 3. The NMODL AST generated by the Lowering
visitor for a simple state update kernel. All expression traits
are automatically generated. In red – target-agnostic AST
nodes specializing the for loop, which can be converted into
different IR based on the target platform.

8 void state_update(Mechanism& data){
9 int id;
10 int node_id;
11 double v;
12 for (id = 0; id < m.size; id += 1) {
13 node_id = data.index[id];
14 v = data.voltage[node_id];
15 data.m[id] = 2 + v * data.m[id];
16 }
17 }

8 void state_update(Mechanism& data){
9 int id;
10 __mm256i node_id;
11 __mm512d v;
12 for (id = 0; id < m.size - 7; id += 8) {
13 node_id = _mm256_load_si256(&data.index[id]);
14 v = _mm512_i32gather_pd(node_id,
15 &data.voltage[node_id], 8);
16 __mm512d t1 = __mm512_load_pd(&data.m[id]);
17 __mm512d t2 = __mm512_set1_pd(2);
18 __mm512d t3 = __mm512_fmadd_pd(t1, v, t2);
19 __mm512_store_pd(&data.m[id], t3);
20 }
21 }

8 __global__
9 void state_update(Mechanism& data){
10 int id;
11 int node_id;
12 double v;
13 for (id = blockIdx.x * blockDim.x + threadIdx.x;
14 id < m.size;
15 id += blockDim.x * gridDim.x) {
16 node_id = data.index[id];
17 v = data.voltage[node_id];
18 data.m[id] = 2 + v * data.m[id];
19 }
20 }

(1)

(2)

(3)

1 // This struct is included in all code snippets below
2 struct Mechanism {
3 int* index;
4 double* voltage;
5 double* m;
6 int size;
7 };

Figure 4. Direct translation from the LLVM IR generated by
MOD2IR into C++ for different target platforms: 1) CPUs;
2) CPUs with AVX-512 support; and 3) NVIDIA GPUs. Note
that C++ is presented here for brevity only.

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

1 import numpy as np
2 import nmodl.dsl as nmodl
3 from neuron import h
4 # two models represented as strings
5 hh = "NEURON { SUFFIX hh …"
6 expsyn = "NEURON { SUFFIX expsyn …"
7 models = [hh, expsyn]
8 # parse NMODL mechanisms and create ASTs
9 models_ast = []
10 driver = nmodl.NmodlDriver()
11 for mod in models:
12 models_ast.append(driver.parse_string(mod))
13 # create model to simulate
14 h.load_file('model.ses’)
15 # model setup [code]

16 sim_model = h.get_model()
17 # copy model to target device [code]
18 # code generation and JIT configuration
19 cfg = nmodl.CodeGenConfig()
20 cfg.llvm_gpu_target = "nvptx64"
21 cfg.llvm_gpu_target_arch = "sm_70"
22 jit = nmodl.Jit(cfg)
23 # set dt, tstop [code]
24 # representative simulator loop
25 for t in np.arange(0, tstop, dt):
26 # timestep setup [code]
27 for ast in models_ast:
28 jit.run(ast, sim_model)
29 # solver and communication [code]
30 # copy results back to host [code]

Codegen
Config

NMODL Driver
(lexer and parser)

AST Transformations

CPU & GPU
 IR

Open-Source Vector
Math

Vendor Vector Math LLVM IR
Optimizations LLVM JIT

x86

Aarch64

NVIDIA

NEURON Simulator Model

MOD

AST

Runtime Libraries

Figure 5. An end-to-end example using MOD2IR’s Python API with JIT Driver. At the top, a representative example to
demonstrate on-the-fly execution using the Python API of MOD2IR. It shows how mechanisms (hh, expsyn) written in NMODL
DSL are instantiated and executed using JIT engine. Comments with [code] markers indicate the implementation details that
are not shown for brevity. At the bottom, the underlying workflow in MOD2IR showing full pipeline from the lexer, parser,
AST creation, AST transformations and IR generation to JIT execution on different hardware targets.

are indeed broadcasted; 3) gather and scatter instructions are
issued in presence of indirect traits; 4) reading and writing
with direct trait involvesmasked instructions to account for
non-uniform execution of conditional statements; and finally
5) code generated for atomic statements issues a sequence
of scalar writes to avoid write-write conflicts.

GPUBuilder: targets NVIDIA platforms, largely reusing
the scalar builder functionality. The start and stop conditions
of the for loop are adjusted based on thread, block and grid
ids. Also, code generation for atomic statements is changed
to issue GPU atomics (e.g. atomicAdd). In addition, when
performing the annotations pass, we mark certain LLVM IR
functions as kernels which are offloaded to GPU, enabling
the reuse of LLVM NVPTX back-end1. This allows MOD2IR
to use NVPTX-specific optimizations, as well as infer where
in the GPU memory hierarchy the data must reside.

3.3 Integration of Vector Math Libraries
The NMODL DSL can use many transcendental math func-
tions such as exp and log. For the open-source compilers
such as GCC, the lack of a cross-platform vector-math li-
brary has been a limiting factor for the auto-vectorization

1https://llvm.org/docs/NVPTXUsage.html

performance of NMODL. As discussed in [13], the use of
SIMD-optimized math functions is important. To interface
with vector-math libraries, MOD2IR features a Math Func-
tion Replacement Pass (MFRP). Once the builder generates
LLVM’s math intrinsics, the pass replaces them with appro-
priate function calls from the vector-math library. Currently
MFRP supports five CPU libraries and one GPU library cov-
ering all hardware and OS platforms that NEURON is most
commonly used today: Accelerate [3], Libdevice [53], Lib-
mvec [44], MASSV [27], SVML [28] and SLEEF. Internally,
MFRP reuses an existing LLVM pass2 and only extends it to
support more replacement patterns, e.g. for Libdevice. Also,
the use of an open-source library like SLEEF allows us to
integrate it as part of the binary distribution of NEURON
and avoid dependency on external, vendor-specific libraries
but also take advantage of them when they are present.

3.4 JIT Execution and Interfacing With Python APIs
MOD2IR offers two compilation workflows: ahead-of-time
and just-in-time. With AOT compilation, MOD2IR converts
NMODL into LLVM IR, optimizes it, and then converts it
into either LLVM bytecode or assembly file. The generated

2https://llvm.org/doxygen/ReplaceWithVeclib_8h_source.html

https://llvm.org/docs/NVPTXUsage.html
https://llvm.org/doxygen/ReplaceWithVeclib_8h_source.html

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

code can then be used to create a model-specific executable
by the regular code generation workflow discussed in Sec-
tion 2.2. With JIT-compilation, instead of creating assembly
or bytecode files, the optimized IR is directly converted to
machine code for the specified target hardware and executed
just-in-time. To achieve this, we have implemented a JIT-
compilation engine based on the ORC JIT3. The availability
of this JIT compilation in MOD2IR paves the way for a new
type of simulation workflow in the NEURON , and enables
implementations of easy-to-use programmatic interfaces for
MOD2IR. We have extended the NMODL Python API to pro-
vide access to the LLVM code-generation visitors and the
JIT engine, allowing dynamic execution of mechanisms.
Figure 5 shows a representative example of such a new

workflow using MOD2IR’s Python API and JIT-based execu-
tion. First, using the nmodl Python module, the mechanisms
(hh, expsyn) are parsed and their AST objects are created.
Using the neuron Pythonmodule we instantiate a simulation
object. Then, we can configure the code generation target
and execute all mechanisms using MOD2IR’s JIT engine.
While this workflow is not yet fully implemented in the pro-
duction toolchain as some integration between NEURON
and NMODL is still missing, the MO2DIR’s Python API is
an important step towards the final goal of simplifying the
code generation and making it more interactive.

4 Benchmarks
4.1 Benchmarking Methodology
We have set up a number of benchmarks to compare the
performance of MOD2IR with the latest vendor compilers
and math libraries on CPU and GPU platforms. The main ob-
jective of MOD2IR is to eliminate the need for maintaining
multiple compiler back-ends with different programming
models and third-party compilers while maintaining perfor-
mance competitiveness. Hence, the goal of these benchmarks
is to attain performance equal to or better than the code gen-
erated from the state-of-the-art compilers used today. Note
that the AST transformations from Kumbhar et al. [33, Sec-
tion 4.1] are implemented in NMODL framework and hence
they equally benefit MOD2IR as well as existing back-ends.
For our benchmarks, we use the two standard neuronal

mechanisms shipped with NEURON: the Hodgkin-Huxley
(hh) and the ExpSyn (expsyn) models. The Hodgkin-Huxley
model [25] is a set of nonlinear differential equations that de-
scribes the electrical properties of neurons and is commonly
found in electrical models of neurons. The ExpSyn [22] is
an exponential decay synapse that is deterministic and com-
monly used to model synaptic dynamics. As discussed in
Section 2.1, when these mechanisms are transpiled, there are
two kernels that account for more than 90% of simulation
time: nrn_state and nrn_cur . These two kernels are laid out

3https://llvm.org/docs/ORCv2.html

in such a way that the innermost loop iterates over all dis-
cretized elements in the neuronal model and the mechanisms
of the same type stored together. This makes performance
optimizations via loop vectorization possible.

The three compute kernels from the hh and expsynmech-
anisms benchmarked here are representative of the vast
majority of mechanisms found in NEURON simulations in
terms of their computational characteristics and vectoriza-
tion patterns: 1) the state update kernel of the hhmechanism
(nrn_state_hh) has high arithmetic intensity due to use of
division operations and transcendental math functions like
exp. Hence, for vectorization performance the use of vector
math libraries is important. 2) the current update kernel of
hh (nrn_cur_hh) is a memory streaming kernel, having a
low arithmetic intensity. In these kernels, the use of prefetch
instructions or memory bandwidth saturation impacts the
performance. 3) the current update kernel of the expsyn
synapse is similar to nrn_cur_hh but it has the peculiar-
ity of involving a reduction step in the main compute loop.
This is necessary to accumulate synaptic currents within
the same discretization element as there could be more than
one synapse located at a specific location of a nerve cell.
For these types of kernels, the auto-vectorization performed
by general-purpose C++ compilers is unsuccessful as loop
iterations are not independent.
In order to run our benchmarks in a realistic setting, we

instantiate many instances of a mechanism with random
parameters, execute them andmeasure the runtime.Wemake
sure to allocate > 6 GBs of memory for each execution to
avoid caching effects. Each benchmark is executed five times
and the average runtime is reported, while the variance in
all cases is very small. All benchmarks are run in double
precision. Since MOD2IR supports on the fly execution via
JIT-compilation, our benchmarks include results for both the
AOT- and JIT-compilation workflows in the case of MOD2IR
but only the AOT workflow for other compilers.

4.2 Benchmarking Platforms
All CPU benchmarks were performed on an Intel Xeon Cas-
cade Lake CPU (see Table 1). Furthermore, we compare our
implementation against four popular state-of-the-art com-
pilers: Intel C++ Compiler Classic (icpc), GCC, NVHPC C++
Compiler (nvc++) and Clang. The use of mathematical li-
braries is essential to achieving optimal code performance,
especially due to the use of transcendental math functions,
as their implementation can be highly sensitive to hardware
platform details. Because of this, we use Intel’s SVML library
and the open-source SLEEF library. We also run benchmarks
on an NVIDIA GPU, comparing MOD2IR performance with
OpenACC code compiled with NVHPC Compiler. Table 1
summarizes all the details of our benchmarking setup includ-
ing hardware, compiler toolchains, and math libraries.

The compiler flags used for various benchmarking configu-
rations discussed in Section 4.3 are based on production build

https://llvm.org/docs/ORCv2.html

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

Table 1. Benchmarking System and Compiler Toolchains.

CPU Intel Xeon Gold 6248, L2 20MiB, L3 27.5MiB,
2.5 GHz (Cascade Lake)

GPU NVIDIA V100 32GB HBM2
Compilers icpc 2021.4.0, g++ 11.2.0, clang++ 13.0.0, nvc++

22.3, nvcc 11.6.1
Math libraries SVML 2021.4.0, SLEEF 3.5.1, libdevice 11.6.1

configurations and ensure typical target specific optimiza-
tion are enabled (e.g. -march=skylake-avx512 -mtune=skylake
-mavx512f). In every case, we additionally enable OpenMP
SIMD for explicit vectorization via the omp simd pragmas,
pass the most beneficial optimization level flag for each com-
piler (level 2 for Intel due to aggressive math library optimiza-
tions that generate numerically different results and level
3 for others), and enable fastmath and tree-vectorize flags
when applicable. The obtained results with the optimization
flags are within acceptable accuracy range.

4.3 Benchmarking Results
4.3.1 CPU Results. Figure 6 presents the performance
evaluation of the hh and expsyn benchmarks on the x86
CPU platform. We compare the runtime of AOT compiled
kernels. As MOD2IR supports JIT execution, additionally
we measure performance with JIT workflow. We use Intel
compiler with SVML math library as our baseline (speedup =
1) as it is often the optimal configuration used in production
simulations. We show relative speedup (> 1) or degradation
(< 1) compared to this baseline.

For the AOT workflow, we first generate C++ code using
the NMODL framework, which is then compiled and, if spec-
ified, linked against the SVML math library (_svml suffix
in the legends). The resulting shared library is then loaded
at runtime by the MOD2IR benchmarking tool. MOD2IR
can use either SVML (_svml suffix in the legends) or SLEEF
(_sleef suffix in the legends) math libraries and then can be
executed via JIT. The mod2ir_svml and mod2ir_sleef follow
the AOT compilation workflow as well, using the Clang com-
piler to compile the LLVM IR code generated by MOD2IR
and then creating a shared library. Finally, mod2ir_jit_svml
and mod2ir_jit_sleef follow the JIT compilation workflow.
First, we observe the importance of using a math library,

specifically in the state update kernel, which makes heavy
use of transcendental math functions and benefits from op-
timized and vectorized implementations. This can be easily
observed in the nrn_state_hh kernel that uses transcenden-
tal functions in which the performance of GCC as well as
Clang is about 6.5× slower. But when the SVML math library
is used, we see that Clang is able to generate better code
and outperforms Intel compiler by ∼1.12×. The performance
of MOD2IR with SVML is on par or faster than the Intel

compiler baseline. For the nrn_state_hh kernel, MOD2IR
performs ∼1.1× faster.
Second, even though using the SLEEF library leads to a

∼1.28× slow-down compared to the baseline, this is an im-
portant result as it provides significantly better performance
than toolchains like GCC and Clang without having to rely
on a vendor specific, proprietary math library (e.g. SVML).

Third, in the case of the nrn_cur_hh kernel, Intel compiler,
GCC and MOD2IR have similar performance independent of
the math library used. This is because current update kernels
typically have memory streaming characteristics. Notably,
we see that Clang is about 1.43× slower and NVHPC is about
3.8× slower than the baseline. For Clang, we looked into
generated LLVM IR and assembly code and found that Clang
generates more memory-related instructions. In the case of
NVHPC compiler, even though necessary compiler flags and
loop annotations are used, it reports that the vectorization
is not profitable and does not vectorize the loop [29].

Fourth, even more interestingly, for the nrn_cur_expsyn
kernel MOD2IR achieves an improvement of ∼1.26× com-
pared to other compilers. This performance advantage in
MOD2IR is due to the fact that the MOD2IR framework is
able to use the domain knowledge of the needed reduction
operation in AST for synapse mechanisms, while the gen-
erated C++ code for the general purpose compilers must
rely on an additional reduction loop in order to enable vec-
torization. In many neuronal models, synapse mechanisms
are a dominant part of simulation time and hence this is a
significant performance improvement using MOD2IR.

Finally, we note that the JIT workflow has on average no
runtime overhead over the AOT workflow and hence using
the JIT is to be preferred since it brings additional flexibility
at no performance cost.

4.3.2 GPU Results. Figure 7 presents the performance
evaluation on an NVIDIA GPU platform. We compare the
performance of MOD2IR to the NVHPC compiled C++ Ope-
nACC code. We use the same strategy as in Section 4.3.1: for
AOTworkflow, a shared library is created using NVHPC com-
piler and for JIT workflow, CUDA JIT back-end of LLVM is
used to execute the LLVM IR. The OpenACC implementation
is used as a baseline because it is the default programming
model in NEURON for GPU execution and has a similar
performance to CUDA implementation [32]. As MOD2IR
does not add significant overhead with JIT, MOD2IR with
JIT workflow was used for simplicity of benchmarking. For
all benchmarks, the libdevice library that implements math
primitives for NVIDIA GPU devices is used. The presented
benchmarks only take into account the execution time of
kernels on GPU and do not include the data transfer. This is
because NEURON transfers the in-memory model to GPU
during the initialization step and subsequent timestep eval-
uations do not need to move data between CPU and GPU

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

0.125

0.25

0.5

1

2
nrn_state_hh

0.125

0.25

0.5

1

2
nrn_cur_hh

0.125

0.25

0.5

1

2
nrn_cur_expsyn

intel
intel_svml
gcc
gcc_svml
nvhpc
clang
clang_svml
mod2ir_svml
mod2ir_sleef
mod2ir_jit_svml
mod2ir_jit_sleefSp

ee
du

p
re

la
tiv

e
to

 in
te

l_s
vm

l

Figure 6. Performance comparison of MOD2IR on Intel Cascade Lake CPU (Intel compiler with SVML is used as baseline i.e.
speedup = 1), plotted using a logarithmic scale. The color legend is ordered left to right; top to bottom. MOD2IR performs on
par or faster than the baseline for state and current update kernel of hh, while it outperforms by 1.26× all other compilers for
the current update kernel of expsyn.

memories. Also, this data transfer is handled outside of the
code generated from NMODL DSL.
The GPU performance results show a similar trend to

CPU benchmarks discussed in the previous section. First,
the nrn_state_hh kernel shows the same performance with
bothMOD2IR andNVHPC compiler. Second, the nrn_cur_hh
shows ∼1.07× better performance when using MOD2IR com-
pared to NVHPC compiler. The detailed profiling analysis
shows that the MOD2IR code has larger warp occupancy
due to fewer registers used by the generated code. Third, the
nrn_cur_expsyn of for expsyn synapsemechanism achieves
∼1.2× better performance with MOD2IR. The profiling anal-
ysis shows that this is due to the higher arithmetic intensity,
fewer loads from global memory, and more cache hits for
the MOD2IR generated code than NVHPC compiler. In sum-
mary, MOD2IR performs on par or faster than the baseline
performance of NVHPC compiler. Additionally, using JIT
execution workflow MOD2IR provides better flexibility than
the AOT compilation workflow with NVHPC compiler.

4.4 Discussion
With the code generation support of CPU as well as GPU
platforms, we believe that MOD2IR serves as a good example
for future domain-specific compilers in the field of neuro-
science. The progressive lowering approach of the NMODL
AST helps with the code maintainability and allows the sup-
port of new platforms in the future more easily.
We also believe that targeting intermediate representa-

tions like LLVM IR opens many new doors for code genera-
tion. In particular, MOD2IR can target almost all back-ends
supported by LLVM, including GPUs, as well as enjoy many
LLVM-specific tools like llvm-mca [2] or explore conversions
to other representations like SPIR-V [30] or MLIR [35]. One
other important aspect of MOD2IR is explicit vectorization.
In the previous attempts with an embedded DSL library like
Cyme [18], one needed to implement support for different
SIMD instruction set extensions for each ISA. Using IR vector

nrn_state_hh nrn_cur_hh nrn_cur_expsyn
0.5

1

2

Sp
ee

du
p

re
la

tiv
e

to
 n

vh
pc

nvhpc
mod2ir_jit

Figure 7. Performance comparison of MOD2IR on NVIDIA
V100 GPU (NVHPC compiler is used as baseline i.e. speedup
= 1), plotted using a logarithmic scale. The color legend is
ordered left to right; top to bottom. MOD2IR performs on
par with the baseline for state update kernel and ∼1.07×
better for the current update kernel of hh mechanism. It
achieves ∼1.2× better performance for current update kernel
of expsyn.

instructions helps us to avoid vendor-specific vector intrin-
sics, once again improving the maintainability of the code
while achieving on-par performance.

Another important aspect of code vectorization is the
availability of vector math libraries. MOD2IR supports a
range of high-performance SIMD libraries with fast imple-
mentation of transcendental math functions, including both
vendor and open-source libraries. Also, integration of li-
braries like SLEEF will help us to create binary distributions
without dependency on vendor libraries like SVML.

For MOD2IR, performance is also an important consid-
eration. In the benchmarks section, we have shown that
MOD2IR achieves on par performance with the state-of-the-
art compilers like Intel, GCC, NVHPC or Clang on most

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

of the computational benchmark kernels, and sometimes
even outperforms them by up to 1.26×. On NVIDIA GPUs
MOD2IR exhibits a similar performance trend. We believe
that in the future, directly generating intermediate repre-
sentation will allow MOD2IR to exploit the knowledge at
the DSL level to generate more optimized code, leading to
greater speedups.

5 Related Work
In computational science, DSLs have found many uses to
generate optimized solver codes. Liszt [16] is an early exam-
ple of a DSL enabling performance portability of mesh-based
partial differential equation (PDE) solvers. FEniCS [37] and
Firedrake [47] are examples of frameworks which automati-
cally generate PDE solvers using the finite-element method.
The Open Earth Compiler [20] is a recent example of multi-
level IR generation in weather and climate modeling. Other
examples of stencil computation DSLs include Pochoir [52],
SDSLc [48] and Devito [38, 39]. Dawn [42] is a LLVM-based
code generation library for geophysical fluid dynamics mod-
els. Halide [46] and Polymage [41] are examples of DSLs
allowing the user to tune image processing pipelines. Imple-
menting DSLs often involves writing the same components
such as a lexer, a parser, and AST visitors. To simplify the
design and implementation of DSLs, frameworks such as
MontiCore [31] and AnyDSL [36] have been proposed.

Numerous examples of DSLs and code-generation frame-
works can be found in computational neuroscience. The
NMODL framework, on which this work is based, is a tran-
spiler for the homonymous DSL being developed within
the NEURON simulator. It supports different CPU and GPU
back-ends but uses a source-to-source translation technique
and relies on different programming models like C++, ISPC,
CUDA, and OpenACC. Arbor [1] is another simulator, which
supports the NMODL language with its own transpiler –
modcc 4. Similar to the NMODL framework, it has different
back-ends like C++, CUDA, and HIP to target different hard-
ware architectures. For SIMD execution on CPUs, instead
of relying on auto-vectorization capabilities of compilers, it
implements various SIMD classes to support back-ends like
AVX, AVX-512, NEON, and SVE. Other computational neu-
roscience DSLs like NESTML, NeuroML2 and NineML use
similar source-to-source translation techniques to convert
higher-level DSL specifications to Python, C++, or CUDA
code. The code generation techniques of these neuroscience
DSLs are discussed in detail in Blundell et al. [7]. All these
DSL frameworks require constant maintenance and tuning
with the evolving programming models and hardware ar-
chitectures. To our knowledge, MOD2IR is the first example
of an LLVM-based code generation framework for detailed
brain modeling in the computational neuroscience domain.

4https://github.com/arbor-sim/arbor/tree/v0.7/modcc

6 Conclusion
In this work, we presented MOD2IR, an LLVM-based code
generation frameworkwith optional JIT-compilation support
for detailed neurosimulations. Our approach builds on top of
the NEURON simulator and the NMODL DSL, a declarative
language allowing domain scientists tomodel the biophysical
processes in neurons. We show how our framework allows
to generate LLVM IR or compile to machine code rather than
first generating a high-level language, such as C++, as has
been done in previous implementations. This allows us to
simplify the code-generation process while not sacrificing
the performance – our approach generates code that is up
to 1.26× faster than state-of-the-art compilers in terms of
execution speed for performance-critical kernels. Thanks to
the JIT infrastructure we offer a high-level Python interface
with the potential to simplify the simulation workflow.

The progressive NMODL AST lowering method and JIT-
based execution capabilities of MOD2IR, open up many opti-
mization opportunities that were not possible with an AOT
compilation. For example, runtime introspection capabilities
for mechanism types and their locality will help to better
expose parallelism, reduce the need for reductions or atomic
instructions and generate optimized code.
In its current state, MOD2IR will require additional de-

velopment to fully integrate with the NEURON simulator.
Furthermore, we would like to support additional hardware
platforms such as GPUs from other vendors and platforms
with scalable vector width ISA, such as ARM Scalable Vector
Extension [51] (SVE). While different in nature from tradi-
tional vector instruction sets, SVE can be easily supported
by extending MOD2IR’s builders and passes.

Based on the results achieved by MOD2IR, we believe that
compiler frameworks such as LLVM or MLIR can become the
new standard in developing simulators for computational
neuroscience. This will enable making the compilation work-
flow more interactive and friendly for domain scientists,
while running simulations of brain models faster.

7 Data Availability Statement
The results presented in this paper (Figures 6 and 7) can be
reproduced using provided artifact package [40].

Acknowledgments
Thisworkwas supported by funding to the Blue Brain Project
(a research center of EPFL) from the Swiss government,
National Institutes of Health (NIH) under the Grant No.
R01NS11613, the European Union’s Horizon 2020 Framework
Programme Grant Agreement No. 785907 (HBP SGA2) and
IRIS EPSRC Programme Grant (EP/R006865/1). We would
like to thank James Gonzalo King, Nicolas Cornu, Giacomo
Castiglioni and NMODL developers for fruitful discussions
and contributions.Wewould also like to thank George Bisbas
for providing feedback on an earlier draft of this work.

https://github.com/arbor-sim/arbor/tree/v0.7/modcc

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

References
[1] Nora Abi Akar, Ben Cumming, Vasileios Karakasis, Anne Kusters,

Wouter Klijn, Alexander Peyser, and Stuart Yates. 2019. Arbor —
A Morphologically-Detailed Neural Network Simulation Library for
Contemporary High-Performance Computing Architectures. In 2019
27th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE, Pavia, Italy, 274–282. https:
//doi.org/10.1109/EMPDP.2019.8671560

[2] Andrea Di Biagio. 2018. llvm-mca - LLVM Machine Code Analyzer.
Available at https://llvm.org/docs/CommandGuide/llvm-mca.html.

[3] Apple. 2018. Accelerate. Available at https://developer.apple.com/
accelerate/.

[4] Omar Awile, Pramod Kumbhar, Nicolas Cornu, Salvador Dura-Bernal,
James Gonzalo King, Olli Lupton, Ioannis Magkanaris, Robert A. Mc-
Dougal, Adam J. H. Newton, Fernando Pereira, Alexandru Săvulescu,
Nicholas T. Carnevale, William W. Lytton, Michael L. Hines, and Fe-
lix Schürmann. 2022. Modernizing the NEURON Simulator for Sus-
tainability, Portability, and Performance. , 2022.03.03.482816 pages.
https://doi.org/10.1101/2022.03.03.482816

[5] David A. Beckingsale, Thomas RW Scogland, Jason Burmark, Rich
Hornung, Holger Jones, William Killian, Adam J. Kunen, Olga Pearce,
Peter Robinson, and Brian S. Ryujin. 2019. RAJA: Portable Performance
for Large-Scale Scientific Applications. In 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC).
IEEE, Denver, CO, USA, 71–81. https://doi.org/10.1109/P3HPC49587.
2019.00012

[6] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017.
Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (Jan.
2017), 65–98. https://doi.org/10.1137/141000671

[7] Inga Blundell, Romain Brette, Thomas A. Cleland, Thomas G. Close,
Daniel Coca, Andrew P. Davison, Sandra Diaz-Pier, Carlos Fernan-
dez Musoles, Padraig Gleeson, Dan F. M. Goodman, Michael Hines,
Michael W. Hopkins, Pramod Kumbhar, David R. Lester, Bóris Marin,
Abigail Morrison, Eric Müller, Thomas Nowotny, Alexander Peyser,
Dimitri Plotnikov, Paul Richmond, Andrew Rowley, Bernhard Rumpe,
Marcel Stimberg, Alan B. Stokes, Adam Tomkins, Guido Trensch, Mar-
maduke Woodman, and Jochen Martin Eppler. 2018. Code Genera-
tion in Computational Neuroscience: A Review of Tools and Tech-
niques. Frontiers in Neuroinformatics 12 (Nov. 2018), 68. https:
//doi.org/10.3389/fninf.2018.00068

[8] Mark Bohr. 2007. A 30 Year Retrospective on Dennard’s MOSFET
Scaling Paper. IEEE Solid-State Circuits Newsletter 12, 1 (2007), 11–13.
https://doi.org/10.1109/N-SSC.2007.4785534

[9] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX:
Composable Transformations of Python+NumPy Programs.

[10] Robert C. Cannon, Padraig Gleeson, Sharon Crook, Gautham Ganapa-
thy, Boris Marin, Eugenio Piasini, and R. Angus Silver. 2014. LEMS: A
Language for Expressing Complex Biological Models in Concise and
Hierarchical Form and Its Use in Underpinning NeuroML 2. Frontiers
in Neuroinformatics 8 (Sept. 2014). https://doi.org/10.3389/fninf.2014.
00079

[11] Weiliang Chen, Tristan Carel, Omar Awile, Nicola Cantarutti, Gia-
como Castiglioni, Alessandro Cattabiani, Baudouin Del Marmol, Iain
Hepburn, James G. King, Christos Kotsalos, Pramod Kumbhar, Jules
Lallouette, Samuel Melchior, Felix Schürmann, and Erik De Schut-
ter. 2022. STEPS 4.0: Fast and Memory-Efficient Molecular Sim-
ulations of Neurons at the Nanoscale. , 2022.03.28.485880 pages.
https://doi.org/10.1101/2022.03.28.485880

[12] Giuseppe Chindemi, Marwan Abdellah, Oren Amsalem, Ruth
Benavides-Piccione, Vincent Delattre, Michael Doron, András Ecker,
Aurélien T. Jaquier, James King, Pramod Kumbhar, Caitlin Monney,
Rodrigo Perin, Christian Rössert, Anil M. Tuncel, Werner Van Geit,

Javier DeFelipe, Michael Graupner, Idan Segev, Henry Markram, and
Eilif B. Muller. 2022. A Calcium-Based Plasticity Model for Predicting
Long-Term Potentiation and Depression in the Neocortex. Nature Com-
munications 13, 1 (Dec. 2022), 3038. https://doi.org/10.1038/s41467-
022-30214-w

[13] Francesco Cremonesi, Georg Hager, Gerhard Wellein, and Felix Schür-
mann. 2020. Analytic Performance Modeling and Analysis of De-
tailed Neuron Simulations. The International Journal of High Per-
formance Computing Applications 34, 4 (July 2020), 428–449. https:
//doi.org/10.1177/1094342020912528

[14] Francesco Cremonesi and Felix Schürmann. 2020. Understanding Com-
putational Costs of Cellular-Level Brain Tissue Simulations Through
Analytical Performance Models. Neuroinformatics (Feb. 2020). https:
//doi.org/10.1007/s12021-019-09451-w

[15] Sharon Crook, Padraig Gleeson, Fred Howell, Joseph Svitak, and R. An-
gus Silver. 2007. MorphML: Level 1 of the NeuroML Standards for
Neuronal Morphology Data and Model Specification. Neuroinformatics
5, 2 (April 2007), 96–104. https://doi.org/10.1007/s12021-007-0003-6

[16] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley,
Montserrat Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex
Aiken, Karthik Duraisamy, Eric Darve, Juan Alonso, and Pat Hanra-
han. 2011. Liszt: A Domain Specific Language for Building Portable
Mesh-Based PDE Solvers. In SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1–12. https://doi.org/10.1145/2063384.2063396

[17] H. Carter Edwards and Christian R. Trott. 2013. Kokkos: Enabling
Performance Portability Across Manycore Architectures. In 2013 Ex-
treme Scaling Workshop (Xsw 2013). IEEE, Boulder, CO, USA, 18–24.
https://doi.org/10.1109/XSW.2013.7

[18] Timothée Ewart, Fabien Delalondre, and Felix Schürmann. 2014. Cyme:
A Library Maximizing SIMD Computation on User-Defined Contain-
ers. In Supercomputing, Julian Martin Kunkel, Thomas Ludwig, and
Hans Werner Meuer (Eds.). Vol. 8488. Springer International Publish-
ing, Cham, 440–449. https://doi.org/10.1007/978-3-319-07518-1_29

[19] Jianbin Fang, Chun Huang, Tao Tang, and Zheng Wang. 2020. Parallel
Programming Models for Heterogeneous Many-Cores: A Comprehen-
sive Survey. CCF Transactions on High Performance Computing 2, 4
(Dec. 2020), 382–400. https://doi.org/10.1007/s42514-020-00039-4

[20] Tobias Gysi, Christoph Müller, Oleksandr Zinenko, Stephan Herhut,
Eddie Davis, Tobias Wicky, Oliver Fuhrer, Torsten Hoefler, and Tobias
Grosser. 2021. Domain-Specific Multi-Level IR Rewriting for GPU: The
Open Earth Compiler for GPU-accelerated Climate Simulation. ACM
Transactions on Architecture and Code Optimization 18, 4 (Dec. 2021),
1–23. https://doi.org/10.1145/3469030

[21] John L. Hennessy and David A. Patterson. 2019. A New Golden Age
for Computer Architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60.
https://doi.org/10.1145/3282307

[22] Michael L. Hines. 2007. NEURON: Point Processes and Artificial Cells.
[23] M. L. Hines and N. T. Carnevale. 1997. The NEURON Simulation

Environment. Neural Computation 9, 6 (Aug. 1997), 1179–1209. https:
//doi.org/10.1162/neco.1997.9.6.1179

[24] M. L. Hines and N. T. Carnevale. 2000. Expanding NEURON’s Reper-
toire of Mechanisms with NMODL. Neural Computation 12, 5 (May
2000), 995–1007. https://doi.org/10.1162/089976600300015475

[25] A. L. Hodgkin and A. F. Huxley. 1952. A Quantitative Description of
Membrane Current and Its Application to Conduction and Excitation
in Nerve. The Journal of Physiology 117, 4 (Aug. 1952), 500–544. https:
//doi.org/10.1113/jphysiol.1952.sp004764

[26] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
and the rest of the SBML Forum:, A. P. Arkin, B. J. Bornstein, D. Bray,
A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel,
V. Gor, I. I. Goryanin, W. J. Hedley, T. C. Hodgman, J.-H. Hofmeyr,
P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling, U. Kummer, N.
Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness,

https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/EMPDP.2019.8671560
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://developer.apple.com/accelerate/
https://developer.apple.com/accelerate/
https://doi.org/10.1101/2022.03.03.482816
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1137/141000671
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.1101/2022.03.28.485880
https://doi.org/10.1038/s41467-022-30214-w
https://doi.org/10.1038/s41467-022-30214-w
https://doi.org/10.1177/1094342020912528
https://doi.org/10.1177/1094342020912528
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.1007/s12021-019-09451-w
https://doi.org/10.1007/s12021-007-0003-6
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1109/XSW.2013.7
https://doi.org/10.1007/978-3-319-07518-1_29
https://doi.org/10.1007/s42514-020-00039-4
https://doi.org/10.1145/3469030
https://doi.org/10.1145/3282307
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/neco.1997.9.6.1179
https://doi.org/10.1162/089976600300015475
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1113/jphysiol.1952.sp004764

CC ’23, February 25–26, 2023, Montréal, QC, Canada Mitenkov, Magkanaris, Awile, Kumbhar, Schürmann, and Donaldson

Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff,
B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M.
Tomita, J. Wagner, and J. Wang. 2003. The Systems Biology Markup
Language (SBML): A Medium for Representation and Exchange of
Biochemical Network Models. Bioinformatics 19, 4 (March 2003), 524–
531. https://doi.org/10.1093/bioinformatics/btg015

[27] IBM. 2018. Mathematical Acceleration Subsystem (MASS) Libraries
for Linux. Available at https://www.ibm.com/support/pages/
mathematical-acceleration-subsystem-mass-libraries-linux-big-
endian-latest-version.

[28] Intel. 2019. Intel Short Vector Math Library (SVML). Available at
https://software.intel.com/en-us/node/523613.

[29] Ioannis Magkanaris. 2022. Forcing Loop Vectorization with NVHPC
Compiler. Available at https://forums.developer.nvidia.com/t/force-a-
loop-to-vectorize/134231/3.

[30] John Kessenich and Boaz Ouriel. 2018. SPIR-V Specification (The
Khronos Group). Available at https://registry.khronos.org/SPIR-V/
specs/1.0/SPIRV.pdf.

[31] Holger Krahn, Bernhard Rumpe, and Steven Völkel. 2010. MontiCore:
A Framework for Compositional Development of Domain Specific
Languages. International Journal on Software Tools for Technology
Transfer 12, 5 (Sept. 2010), 353–372. https://doi.org/10.1007/s10009-
010-0142-1

[32] Pramod Kumbhar. 2016. CoreNeuron: Morphologically Detailed Neu-
ron Simulations. Available at https://on-demand.gputechconf.com/
gtc/2016/presentation/s6213-pramod-kumbhar-coreneuron.pdf.

[33] Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Blanco Alonso,
James King, Michael Hines, and Felix Schürmann. 2020. An Opti-
mizing Multi-platform Source-to-source Compiler Framework for the
NEURON MODeling Language. In Computational Science – ICCS 2020
(Lecture Notes in Computer Science), Valeria V. Krzhizhanovskaya, Gá-
bor Závodszky, Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot,
Sérgio Brissos, and João Teixeira (Eds.). Springer International Pub-
lishing, Cham, 45–58. https://doi.org/10.1007/978-3-030-50371-0_4

[34] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE,
San Jose, CA, USA, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[35] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2021. MLIR: Scaling Compiler Infras-
tructure for Domain Specific Computation. In 2021 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO). 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308

[36] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot,
RichardMembarth, Philipp Slusallek, André Müller, and Bertil Schmidt.
2018. AnyDSL: A Partial Evaluation Framework for Programming
High-Performance Libraries. Proceedings of the ACM on Programming
Languages 2, OOPSLA (Oct. 2018), 1–30. https://doi.org/10.1145/
3276489

[37] Anders Logg, Kent-Andre Mardal, and Garth Wells (Eds.). 2012. Auto-
mated Solution of Differential Equations by the Finite Element Method:
The FEniCS Book. Number 84 in Lecture Notes in Computational
Science and Engineering. Springer, Heidelberg.

[38] Mathias Louboutin, Michael Lange, Fabio Luporini, Navjot Kukreja,
Philipp A. Witte, Felix J. Herrmann, Paulius Velesko, and Gerard J.
Gorman. 2019. Devito (v3.1.0): An Embedded Domain-Specific Lan-
guage for Finite Differences and Geophysical Exploration. Geosci-
entific Model Development 12, 3 (March 2019), 1165–1187. https:
//doi.org/10.5194/gmd-12-1165-2019

[39] Fabio Luporini, Mathias Louboutin, Michael Lange, Navjot Kukreja,
Philipp Witte, Jan Hückelheim, Charles Yount, Paul H. J. Kelly, Felix J.
Herrmann, and Gerard J. Gorman. 2020. Architecture and Performance
of Devito, a System for Automated Stencil Computation. ACM Trans.

Math. Software 46, 1 (March 2020), 1–28. https://doi.org/10.1145/
3374916

[40] George Mitenkov, Ioannis Magkanaris, Omar Awile, Pramod Kumb-
har, Felix Schürmann, and Alastair Donaldson. 2023. MOD2IR: High-
Performance Code Generation for a Biophysically Detailed Neuronal
Simulation DSL : Artifact. Zenodo. https://doi.org/10.5281/ZENODO.
7521260

[41] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. 2015. Poly-
Mage: Automatic Optimization for Image Processing Pipelines. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM,
Istanbul Turkey, 429–443. https://doi.org/10.1145/2694344.2694364

[42] Carlos Osuna. 2020. Dawn: A High Level Domain-Specific Lan-
guage Compiler Toolchain for Weather and Climate Ap Plications.
Supercomputing Frontiers and Innovations 7, 2 (June 2020). https:
//doi.org/10.14529/jsfi200205

[43] Dimitri Plotnikov, Bernhard Rumpe, Inga Blundell, Tammo Ippen,
JochenMartin Eppler, and Abigail Morrison. 2016. Nestml: AModeling
Language For Spiking Neurons. (March 2016). https://doi.org/10.5281/
ZENODO.1412345

[44] GNU Project. 2015. Libmvec in Glibc. Available at https://sourceware.
org/glibc/wiki/libmvec.

[45] Jari Pronold, Jakob Jordan, Brian J. N. Wylie, Itaru Kitayama, Markus
Diesmann, and Susanne Kunkel. 2022. Routing Brain Traffic Through
the Von Neumann Bottleneck: Parallel Sorting and Refactoring. Fron-
tiers in Neuroinformatics 15 (2022).

[46] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. ACM SIGPLAN Notices 48, 6
(June 2013), 519–530. https://doi.org/10.1145/2499370.2462176

[47] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange,
Fabio Luporini, Andrew T. T. Mcrae, Gheorghe-Teodor Bercea, Gra-
ham R. Markall, and Paul H. J. Kelly. 2017. Firedrake: Automating the
Finite Element Method by Composing Abstractions. ACM Trans. Math.
Software 43, 3 (Jan. 2017), 1–27. https://doi.org/10.1145/2998441

[48] Prashant Rawat, Martin Kong, Tom Henretty, Justin Holewinski, Kevin
Stock, Louis-Noël Pouchet, J. Ramanujam, Atanas Rountev, and P.
Sadayappan. 2015. SDSLc: A Multi-Target Domain-Specific Com-
piler for Stencil Computations. In Proceedings of the 5th Interna-
tional Workshop on Domain-Specific Languages and High-Level Frame-
works for High Performance Computing. ACM, Austin Texas, 1–10.
https://doi.org/10.1145/2830018.2830025

[49] Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius
Hobbhahn, and Pablo Villalobos. 2022. Compute Trends Across Three
Eras of Machine Learning. (2022). https://doi.org/10.48550/ARXIV.
2202.05924

[50] Naoki Shibata and Francesco Petrogalli. 2020. SLEEF: A Portable
Vectorized Library of C Standard Mathematical Functions. IEEE Trans-
actions on Parallel and Distributed Systems 31, 6 (June 2020), 1316–1327.
https://doi.org/10.1109/TPDS.2019.2960333

[51] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, and
Paul Walker. 2017. The ARM Scalable Vector Extension. IEEE Micro
37, 2 (March 2017), 26–39. https://doi.org/10.1109/MM.2017.35

[52] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung
Luk, and Charles E. Leiserson. 2011. The Pochoir Stencil Compiler. In
Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms
and Architectures - SPAA ’11. ACM Press, San Jose, California, USA,
117. https://doi.org/10.1145/1989493.1989508

[53] CUDA Toolkit. 2007. Libdevice User’s Guide. Available at https:
//docs.nvidia.com/cuda/libdevice-users-guide/index.html.

https://doi.org/10.1093/bioinformatics/btg015
https://www.ibm.com/support/pages/mathematical-acceleration-subsystem-mass-libraries-linux-big-endian-latest-version
https://www.ibm.com/support/pages/mathematical-acceleration-subsystem-mass-libraries-linux-big-endian-latest-version
https://www.ibm.com/support/pages/mathematical-acceleration-subsystem-mass-libraries-linux-big-endian-latest-version
https://software.intel.com/en-us/node/523613
https://forums.developer.nvidia.com/t/force-a-loop-to-vectorize/134231/3
https://forums.developer.nvidia.com/t/force-a-loop-to-vectorize/134231/3
https://registry.khronos.org/SPIR-V/specs/1.0/SPIRV.pdf
https://registry.khronos.org/SPIR-V/specs/1.0/SPIRV.pdf
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1007/s10009-010-0142-1
https://on-demand.gputechconf.com/gtc/2016/presentation/s6213-pramod-kumbhar-coreneuron.pdf
https://on-demand.gputechconf.com/gtc/2016/presentation/s6213-pramod-kumbhar-coreneuron.pdf
https://doi.org/10.1007/978-3-030-50371-0_4
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/3276489
https://doi.org/10.1145/3276489
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1145/3374916
https://doi.org/10.1145/3374916
https://doi.org/10.5281/ZENODO.7521260
https://doi.org/10.5281/ZENODO.7521260
https://doi.org/10.1145/2694344.2694364
https://doi.org/10.14529/jsfi200205
https://doi.org/10.14529/jsfi200205
https://doi.org/10.5281/ZENODO.1412345
https://doi.org/10.5281/ZENODO.1412345
https://sourceware.org/glibc/wiki/libmvec
https://sourceware.org/glibc/wiki/libmvec
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2998441
https://doi.org/10.1145/2830018.2830025
https://doi.org/10.48550/ARXIV.2202.05924
https://doi.org/10.48550/ARXIV.2202.05924
https://doi.org/10.1109/TPDS.2019.2960333
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1145/1989493.1989508
https://docs.nvidia.com/cuda/libdevice-users-guide/index.html
https://docs.nvidia.com/cuda/libdevice-users-guide/index.html

MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation . . . CC ’23, February 25–26, 2023, Montréal, QC, Canada

[54] Henry C. Tuckwell. 2005. Introduction to Theoretical Neurobiology. 2:
Nonlinear and Stochastic Theories. Number 8,2 in Cambridge Studies
in Mathematical Biology. Cambridge Univ. Pr, Cambridge.

[55] Tadashi Yamazaki, Jun Igarashi, and Hiroshi Yamaura. 2021. Human-
Scale Brain Simulation via Supercomputer: A Case Study on the Cere-
bellum. Neuroscience 462 (May 2021), 235–246. https://doi.org/10.

1016/j.neuroscience.2021.01.014

Received 2022-11-10; accepted 2022-12-19

https://doi.org/10.1016/j.neuroscience.2021.01.014
https://doi.org/10.1016/j.neuroscience.2021.01.014

	Abstract
	1 Introduction
	2 Background
	2.1 NEURON and NMODL DSL
	2.2 Code Generation Workflow and Complexity

	3 Design and Implementation of MOD2IR
	3.1 Architecture
	3.2 Code Generation
	3.3 Integration of Vector Math Libraries
	3.4 JIT Execution and Interfacing With Python APIs

	4 Benchmarks
	4.1 Benchmarking Methodology
	4.2 Benchmarking Platforms
	4.3 Benchmarking Results
	4.4 Discussion

	5 Related Work
	6 Conclusion
	7 Data Availability Statement
	Acknowledgments
	References

