Metamorphic Testing of Android Graphics Drivers

Alastair F. Donaldson
Google
London, UK
Email: afdx@google.com

Abstract—My MET 2019 invited talk will focus on Graph-
icsFuzz, a technique and tool for automated metamorphic
testing of the shader compiler components of graphics drivers.
Starting out as a research project at Imperial College London,
GraphicsFuzz led to a spin-out company of the same name,
which was acquired by Google in 2018. The technology has
since been open sourced and is being used by Google to test
Vulkan and OpenGL ES graphics drivers and supporting tools.

Keywords-software testing; compilers; device drivers;

Graphics drivers are hard to build and hard to test, yet
their correct operation is critical. They are hard to build
because (a) they must be highly optimized in order to
serve the competing demands of multiple processes and the
operating system, and (b) graphics architectures and APIs
are constantly moving targets. They are hard to test because
graphics APIs, such as Vulkan and OpenGL ES, deliberately
under-specify the required results of computations. While
this facilitates efficient API implementations from a range
of hardware vendors, it makes it hard or impossible to dictate
with certainty what counts as an acceptable result for a
computation. And they are critical because they are the
interface between the operating system, graphics hardware
and display: a mobile device that is functioning perfectly
well with the exception of its display is not very useful!

In this talk I will describe our experience building and us-
ing GraphicsFuzz [1], an automated testing tool for graphics
drivers based on metamorphic testing [2], [3]. GraphicsFuzz
originated as a research project at Imperial College London,
which led to the GraphicsFuzz spin-out company that was
acquired by Google in 2018. GraphicsFuzz is now a central
line of defence in ensuring the quality of graphics drivers
for the Android platform.

Originally presented at MET 2016 [4] and later elaborated
into a full paper [5], GraphicsFuzz focuses on finding bugs
in shader compilers. A shader is a program that runs on GPU
hardware, and shader compilers, which translate shaders
from high level and intermediate representations such as
GLSL and SPIR-V to low-level GPU machine code, are
among the most complex components in a graphics driver.
Inspired by work on equivalence modulo inputs testing
for C compilers [6], in turn extended to test OpenCL
compilers [7], GraphicsFuzz automatically finds cases where
a shader compiler has generated wrong code by: (1) starting

with an original, high-value shader (e.g. captured from a
game); (2) applying semantics-preserving transformations to
this shader to produce a family of equivalent shaders that
should render identical or very similar images to the original
when executed on the same GPU; (3) calling out compiler
bugs by identifying significant mismatch between images;
(4) homing in on the root causes of bugs by automatically
reducing a transformed shader until the difference between
the original and transformed shaders is as small as possible
whilst still preserving the mismatch.

The key strength of metamorphic testing relates to step
3 above: by comparing images for semantically-equivalent
shaders, we can identify cases where the shader compiler
has generated wrong code via a mismatch between images,
without requiring an oracle to tell us what the correct image
should actually be.

As well as providing technical details of how the approach
works, I will discuss some of the main open problems
and opportunities related to applying metamorphic testing
automatically at scale, including how to cope with potential
false alarms related to floating-point round-off error, how to
automatically triage and de-duplicate bug reports, and how
to test the metamorphic testing tool itself.

REFERENCES

[1] The GraphicsFuzz Authors, “GraphicsFuzz testing framework,”
2019, https://github.com/google/graphicsfuzz.

[2] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a
new approach for generating next test cases,” Department of
Computer Science, The Hong Kong University of Science and
Technology, Tech. Rep. HKUST-CS98-01, 1998.

[3] S. Segura, G. Fraser, A. B. Sanchez, and A. R. Cortés, “A
survey on metamorphic testing,” IEEE Trans. Software Eng.,
vol. 42, no. 9, pp. 805-824, 2016.

[4] A. F. Donaldson and A. Lascu, “Metamorphic testing for
(graphics) compilers,” in MET. ACM, 2016, pp. 44-47.

[5] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson,
“Automated testing of graphics shader compilers,” PACMPL,
vol. 1, no. OOPSLA, pp. 93:1-93:29, 2017.

[6] V. Le, M. Afshari, and Z. Su, “Compiler validation via equiv-
alence modulo inputs,” in PLDI. ACM, 2014, pp. 216-226.

[7] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-
core compiler fuzzing,” in PLDI. ACM, 2015, pp. 65-76.



