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Abstract
Blocking synchronisation idioms, e.g. mutexes and barriers, play an important role in concurrent
programming. However, systems with semi-fair schedulers, e.g. graphics processing units (GPUs),
are becoming increasingly common. Such schedulers provide varying degrees of fairness, guar-
anteeing enough to allow some, but not all, blocking idioms. While a number of applications
that use blocking idioms do run on today’s GPUs, reasoning about liveness properties of such
applications is difficult as documentation is scarce and scattered.

In this work, we aim to clarify fairness properties of semi-fair schedulers. To do this, we
define a general temporal logic formula, based on weak fairness, parameterised by a predicate that
enables fairness per-thread at certain points of an execution. We then define fairness properties
for three GPU schedulers: HSA, OpenCL, and occupancy-bound execution. We examine existing
GPU applications and show that none of the above schedulers are strong enough to provide the
fairness properties required by these applications. It hence appears that existing GPU scheduler
descriptions do not entirely capture the fairness properties that are provided on current GPUs.
Thus, we present two new schedulers that aim to support existing GPU applications. We analyse
the behaviour of common blocking idioms under each scheduler and show that one of our new
schedulers allows a more natural implementation of a GPU protocol.
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1 Introduction

The scheduler of a concurrent system is responsible for the placement of virtual threads
onto hardware resources. There are often insufficient resources for all threads to execute in
parallel, and it is the job of the scheduler to dictate resource sharing, potentially influencing
the temporal semantics of concurrent programs. For example, consider a two threaded
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program where thread 0 waits for thread 1 to set a flag. If the scheduler never allows thread
1 to execute then the program will hang due to starvation. Thus, to reason about liveness
properties, developers must understand the fairness guarantees provided by the scheduler.

GPUs are highly parallel co-processors found in many devices, from mobile phones to
super computers. While these devices initially accelerated graphics computations, the last
ten years have seen a strong push towards supporting general purpose computation on GPUs.
Today, through programming models such as OpenCL [11], CUDA [15], and HSA [8] we have
mature frameworks to execute C-like programs on GPUs.

Current GPU programming models offer a compelling case study for schedulers for three
reasons: (1) some blocking idioms, e.g. barriers, are known to hang due to starvation on
current GPUs [20]; (2) other blocking idioms, e.g. mutexes, run without starvation on current
GPUs; yet (3) documentation for some GPU programming models explicitly states that no
guarantees are provided, while others state only minimal guarantees that are insufficient
to ensure starvation-freedom even for mutexes. Because GPU schedulers are embedded in
closed proprietary frameworks, we do not look at concrete scheduling logic, but instead aim
to derive formal fairness guarantees from prose documentation and observed behaviours.

GPUs have a hierarchical programming model: in OpenCL threads are partitioned into
workgroups. Threads in the same workgroup can synchronise via intrinsic instructions (e.g.
the OpenCL barrier instruction [10, p. 99]). Yet, despite practical use cases (see Section 4),
there are no such intrinsics for inter-workgroup synchronisation. Instead, inter-workgroup
synchronisation is achieved by building constructs, e.g. mutexes, using finer-grained prim-
itives, e.g. atomic read-modify-write instructions (RMWs). However, reasoning about such
constructs is difficult as inter-workgroup thread interactions are relatively unstudied, espe-
cially in relation to fairness. Given this, we focus only on inter-workgroup interactions and
threads will be assumed to be in disjoint workgroups. Under this constraint, it is cumber-
some to use the word workgroup. Because we can think of a workgroup as being a “composite
thread”, we henceforth use the word thread to mean workgroup.

The unfair OpenCL scheduler and non-blocking programs. OpenCL is a programming
model for parallel systems with wide support for GPUs. Due to scheduling concerns,
OpenCL disallows all blocking synchronisation, stating [11, p. 29]: “A conforming imple-
mentation may choose to serialize the [threads] so a correct algorithm cannot assume that
[threads] will execute in parallel. There is no safe and portable way to synchronize across the
independent execution of [threads] . . . .” Such weak guarantees are acceptable for many GPU
programs, e.g. matrix multiplication, as they are non-blocking. That is, these programs will
terminate under an unfair scheduler, i.e. a scheduler that provides no fairness guarantees.

Blocking idioms and fair schedulers. On the other hand, there are many useful block-
ing synchronisation idioms, which require fairness properties from the scheduler to ensure
starvation-freedom. Three common examples of blocking idioms considered throughout this
work, barrier, mutex and producer-consumer (PC), are described in Table 1. Intuitively, a
fair scheduler provides the guarantee that any thread that is able to execute will eventually
execute. Fair schedulers are able to guarantee starvation-freedom for the idioms of Table 1.

1.1 Semi-fair schedulers: HSA and occupancy-bound execution
We have described two schedulers: fair and unfair, under which starvation-freedom for
blocking idioms is either always or never guaranteed. However, some GPU programming
models have semi-fair schedulers, under which starvation-freedom is guaranteed for only
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Table 1 Blocking synchronisation constructs considered in this work.

Barrier Mutex Producer-consumer (PC)

Aligns the execution of all
participating threads: a
thread waits at the barrier
until all threads have reached
the barrier. Blocking, as a
thread waiting at the barrier
relies on the other threads
to make enough progress to
also reach the barrier.

Provides mutual exclusion for a
critical section. A thread acquires
the mutex before executing the
critical section, ensuring exclusive
access. Upon leaving, the mutex
is released. Blocking, as a thread
waiting to acquire relies on the
the thread in the critical section
to eventually release the mutex.

Provides a handshake between
threads. A producer thread pre-
pares some data and then sets a
flag. A consumer thread waits
until the flag value is observed
and then reads the data. Block-
ing, as the consumer thread re-
lies on the the producer thread
to eventually set the flag.

Table 2 Blocking synchronisation idioms guaranteed starvation-freedom under various sched-
ulers.

fair HSA OBE unfair (e.g. OpenCL)

barrier yes no occupancy-limited no
mutex yes no yes no
PC yes one-way occupancy-limited no

some blocking idioms. We describe two such schedulers and informally analyse the idioms of
Table 1 under these schedulers (summarised in Table 2). If starvation-freedom is guaranteed
for all threads executing idiom i under scheduler s then we say that i is allowed under s.

Similar to OpenCL, Heterogeneous System Architecture (HSA) is a parallel programming
model designed to efficiently target GPUs [8]. Unlike OpenCL however, the HSA scheduler
conditionally allows blocking between threads based on thread ids, a unique contiguous
natural number assigned to each thread. Namely, thread B can block thread A, if: “[thread]
A comes after B in [thread] flattened id order” [8, p. 46]. Under this scheduler: a barrier
is not allowed, as all threads wait on all other threads regardless of id; a mutex is not
allowed, as the ids of threads are not considered when acquiring or releasing the mutex; PC
is conditionally allowed if the producer has a lower id than the consumer.

Occupancy-bound execution (OBE) is a pragmatic GPU execution model that aims to
capture the guarantees that current GPUs have been shown experimentally to provide [20].
While OBE is not officially supported, many GPU programs (discussed in Section 4) depend
on its guarantees. OBE guarantees fairness among the threads that are currently occupant
(i.e., are actively executing) on the hardware resources. The fairness properties are de-
scribed as [20, p. 5]: “A [thread that has executed at least one instruction] is guaranteed to
eventually be scheduled for further execution on the GPU.” Under this scheduler: a barrier
is not allowed, as all threads wait on all other threads regardless of whether they have been
scheduled previously; a mutex is allowed, as a thread that has previously acquired a mutex
will be fairly scheduled such that it eventually releases the mutex; PC is not allowed, as
there is no guarantee that the producer will be scheduled relative to the consumer.

While general barrier and PC idioms are not allowed under OBE, constrained variants
have been shown to be allowed by using an occupancy discovery protocol [20] (described in
Section 5.1). The protocol works by identifying a subset of threads that have been observed
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to take an execution step, i.e. it discovers a set of co-occupant threads1. Barrier and PC
idioms are then able to synchronise threads that have been discovered; thus we say OBE
allows occupancy-limited variants of these idioms.

It is worth noticing that the two variants of PC shown in Table 2 (occupancy-limited
and one-way) are incomparable. That is, one-way is not occupancy-limited, as the OBE
scheduler makes no guarantees about threads with lower ids being scheduled before threads
with higher ids. Similarly, occupancy-limited is not one-way, as the OBE scheduler allows
bi-directional PC synchronisation if both threads have been observed to be co-occupant.

I Remark (CUDA). Like OpenCL, CUDA gives no scheduling guarantees, stating [15, p.
11]: “[Threads] are required to execute independently: It must be possible to execute them
in any order, in parallel or in series.” Still, some CUDA programs rely on OBE or HSA
guarantees (see Section 4). The recent version 9 of CUDA introduces cooperative groups [15,
app. C], which provide primitive barriers between programmer specified threads. Because
only barriers are provided, we do not consider cooperative groups. Indeed, we aim to reason
about fine-grained fairness guarantees, as required by general blocking synchronisation.

1.2 Contributions and outline

The results of Table 2 raise the following points, which we aim to address:
1. The temporal correctness of common blocking idioms varies under different GPU sched-

ulers; however, we are unaware of any formal scheduler descriptions that are able to
validate these observations.

2. Two GPU models, HSA and OBE, have schedulers that are incomparable. However, for
each scheduler, there are real programs that rely on its scheduling guarantees. Thus,
neither of these schedulers captures all of the guarantees observed on today’s GPUs.

To address (1), we develop a formalisation, based on weak fairness, for describing the fairness
guarantees of semi-fair schedulers. This formula is parameterised by a thread fairness cri-
terion (TFC), a predicate over a thread and the program state, that can be tuned to provide
a desired degree of fairness. We illustrate our ideas by defining thread fairness criteria for
HSA and OBE (Section 3).

To address (2), we first substantiate the claim by examining blocking GPU programs that
run on current GPUs. We show that there are real programs that rely on HSA guarantees,
as well as programs that rely on OBE guarantees (Section 4). That is, neither the HSA nor
the OBE schedulers entirely capture guarantees on which existing GPUs applications rely.

Thus, we define fairness properties for two new schedulers: HSA+OBE, a combination
of HSA and OBE, and LOBE (linear OBE), an intuitive strengthening of OBE based on
contiguous thread ids. Both provide the guarantees required by current programs (Section 5),
however we argue that LOBE corresponds to a more intuitive scheduler. We then present
an optimisation to the occupancy discovery protocol [20] that exploits exclusive LOBE
guarantees (Section 5.1). The schedulers we discuss are summarised in Figure 1.

To summarise, our contributions are as follows:
We formalise the notion of semi-fair schedulers using a temporal logic formula and use
this definition to describe the HSA and OBE GPU schedulers (Section 3).

1 Some prior work uses co-occupant to describe the over-subscription of threads (workgroups) on a phys-
ical GPU core. In this work, we use co-occupant to mean threads (workgroups) that are logically
executed in parallel on the GPU, potentially spanning many physical cores.
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W. Fairness
True
general barrier
(Example 6)

LOBE
∃t′ ∈ T : ex(t′)∧t′ ≥ t

LOBE disc. barrier
(Example. 6)

HSA+OBE
TFCHSA∨TFCOBE
1-way PC+mutex
(Section 5)

HSA
¬∃t′ ∈ T : (t′ < t)∧en(t′)
1-way PC (Example 4)

OBE
ex(t)

mutex and disc. barrier
(Examples 3 and 6)

Unfair
False
CUDA reduction
(Section 4)

stronger weaker
fairness guarantees

Figure 1 The semi-fair schedulers we define in this work from strongest to weakest. The first line
in the box shows the scheduler’s TFC (over a thread t), followed by the idiom(s) allowed under the
scheduler and where the idiom is analysed. For any scheduler: any idiom to the right of a scheduler
is allowed by the scheduler and any idiom to the left is disallowed. HSA and OBE are vertically
aligned as they are not comparable.

We examine blocking GPU applications and show that no existing GPU scheduler defini-
tion is strong enough to describe the guarantees required by all such programs (Section 4).
We present two new semi-fair schedulers that meet the requirements of current blocking
GPU programs: HSA+OBE and LOBE (Section 5). LOBE is shown to provide a more
natural implementation of a GPU protocol (Section 5.1).

We have discussed related work on programming models and GPU schedules above, while
applications that depend on specific schedulers are surveyed in Section 4.

2 Background

2.1 GPU programming
GPU programming models provide a hierarchical thread organisation. A GPU program, or
a kernel, is executed by a set of workgroups, which we refer to as threads for convenience.
Threads have access to a thread id, which can be used to partition inputs of data-parallel
programs. We assume these constraints, which are common to GPU applications:
1. Termination: Programs are expected to terminate under a fair scheduler. GPU programs

generally terminate, and in fact, they get killed by the OS if they execute for too long [19].
2. Static thread count: while dynamic thread creation has recently become available, e.g.

nested parallelism [11, p. 30], we believe static parallelism should be studied first.
3. Deterministic threads: we assume that the scheduler is the only source of nondetermin-

ism; the computation performed by a thread depends only on the program input and the
order in which threads interleave. This is the case for all GPU programs examined.

4. Enabled threads: we assume all threads are enabled, i.e. able to be executed, at the be-
ginning of the program and do not cease to be enabled until they terminate. While some
systems contain scheduler-aware intrinsics, e.g. condition variables [3], GPU program-
ming models do not. As a result, the idioms of Table 1 are implemented using atomic
operations and busy-waiting, which do not change whether a thread is enabled or not.

5. Sequential consistency: while GPUs have relaxed memory models (e.g. see [18]), we
believe scheduling under the interleaving model should be understood first.

2.2 Formal program reasoning
A sequential program is a sequence of instructions and its behaviour can be reasoned about
by step-wise execution of instructions. We do not provide instruction-level semantics, but
examples can be found in the literature (e.g. for GPUs, see [4]). A concurrent program is the
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1 void thread0(mutex m) {
2 // acquire
3 while(!CAS(m,0,1));
4 // release
5 store(m,0);
6 }
7 void thread1(mutex m) {
8 // acquire
9 while(!CAS(m,0,1));

10 // release
11 store(m,0);
12 }

(a)

0

1

2

3

4

5

6

7

0 CAS: T

1 CAS: T

0 store

1 CAS: F

0 CAS: F

1 CAS: T

1 store

1 store 0 CAS: T

0 store

(b)

Figure 2 Two threaded mutex idiom (a) program code and (b) corresponding LTS.

parallel composition of n sequential programs, for some n > 1. The set T = {0, 1, . . . , n−1}
provides a unique id for each thread, often called the tid. The behaviour of a concurrent pro-
gram is defined by all possible interleavings of atomic (i.e. indivisible) instructions executed
by the threads. Let A be the set of available atomic instructions.

For example, Figure 2a shows two sequential programs, thread0 (with tid of 0) and
thread1 (with tid of 1), which both have access to a shared mutex object (initially 0). The
set A of atomic instructions is {CAS(m,old,new), store(m,v)}, whose semantics are as
follows:

CAS(m,old,new) – atomically checks whether the value of m is equal to old. If so,
updates the value to new and returns true (T). Otherwise returns false (F).
store(m,v) – atomically stores the value of v to m.

Using these two instructions, Figure 2a implements a simple mutex idiom, in which each
thread loops trying to acquire a mutex (via the CAS instruction), and then immediately
releases the mutex (via the store instruction). While other mutex implementations exist,
e.g. see [7, ch. 7.2], the blocking behaviour shown in Figure 2a is idiomatic to mutexes.

Labelled transition systems. To reason about concurrent programs, we can use use a
labelled transition system (LTS). Formally, an LTS L is a 4-tuple (S, I, L,→) where

S is a finite set of states, with I ⊆ S the set of initial states. A state contains values for
all program variables and a program counter for each thread.
L ⊆ T × A is a set of labels. A label is a pair (t, a) consisting of a thread id t ∈ T and
an atomic instruction a ∈ A.
→ ⊆ S×L×S is a transition relation. For convenience, given (p, (t, a), q) ∈ →, we write
p

t−→ q. This is not ambiguous as we consider only per-thread deterministic programs.
We use dot notation to refer to members of the tuple; e.g., given α ∈ →, we write α.t to
refer to the thread id component of α.

Given a concurrent program, the LTS can be constructed iteratively. A start state s
is created with program initial values (0 unless stated otherwise). For each thread t ∈ T ,
the next instruction a ∈ A is executed to create state s′ to explore. L is updated to
include (t, a) and (s, (t, a), s′) is added to →. This process iterates until there are no more
states to explore. We show the LTS for the program of Figure 2a in Figure 2b. For ease
of presentation, we omit state program values; labels show the thread id followed by the
atomic action. If the action has a return value (e.g. CAS), it is shown following the action.
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For a thread id t ∈ T and state p ∈ S, we say that t is enabled in p, and write en(p, t), if
there exists a state q ∈ S such that p t−→ q. We call p a terminal state, and write terminal(p),
if no thread is enabled in p; that is, ¬en(p, t) holds for all t ∈ T . Intuitively, en(p, t) states
that it is possible for a thread t to take a step at state p and terminal(p) states that all
threads have completed execution at state p. The program constraints of Section 2.1 ensure
that all threads are enabled until their termination.

Program executions and temporal logic. The executions E of a concurrent program are
all possible paths through its LTS. Formally, a path z ∈ E is a (possibly infinite) sequence
of transitions: α0α1 . . ., with each αi ∈ →, such that: the path starts in an initial state,
i.e. α0.p ∈ I; adjacent transitions are connected, i.e. αi.q = αi+1.p; and if the path is finite,
with n transitions, then it leads to a terminal state, i.e. terminal(αn−1.q).
I Remark (Infinite paths). Because we assume programs terminate under fair scheduling
(Section 2.1), infinite paths are discarded by the fair scheduler, but not necessarily by semi-
fair schedulers. Indeed, these infinite paths allow us to distinguish semi-fair schedulers.

Given a path z and a transition αi in z, pre(αi, z) is used to denote the transitions up
to, and including, i of z, that is, α0α1 . . . αi. Similarly, post(αi, z) is used to denote the
(potentially infinite) transitions of z from αi, that is, αiαi+1 . . .. For convenience, we use
en(α, t) to denote en(α.p, t) and terminal(α) to denote terminal(α.q). Finally, we define a
new predicate ex(α, t) which holds if and only if t = α.t. Intuitively, ex(α, t) indicates that
thread t executes the transition α.

The notion of executions E over an LTS allows reasoning about liveness properties of
programs. However, the full LTS may yield paths that realistic schedulers would exclude,
illustrated in Example 1. Thus, fairness properties, provided by the scheduler, are modelled
as a filter over the paths in E.

I Example 1 (Mutex without fairness). The two-threaded mutex LTS given in Figure 2b
shows that it is possible for a thread to loop indefinitely waiting to acquire the mutex if the
other thread is in the critical section, as seen in states 1 and 2. Developers with experience
writing concurrent programs for traditional CPUs know that on most systems, these non-
terminating paths do not occur in practice!

Fairness filters and liveness properties can be expressed using temporal logic. For a path
z and a transition α in z, temporal logic allows reasoning over post(α, z) and pre(α, z), i.e.
reasoning about future and past behaviours. Following the classic definitions of fairness,
linear time temporal logic (LTL), is used in this work (see, e.g. [2, ch. 5] for an in-depth
treatment of LTL). For ease of presentation, a less common operator, , from past-time
temporal logic (which has the same expressiveness as LTL [12]) is used. Temporal operators
are evaluated with respect to z (a path) and α (a transition) in z. They take a formula φ,
which is either another temporal formula or a transition predicate, ranging over α.p, α.t, or
α.q (e.g. terminal). The three temporal operators used in this work are:

The global operator �, which states that φ must hold for all α′ ∈ post(α, z).
The future operator ♦, which states that φ must hold for at least one α′ ∈ post(α, z).
The past operator , which states that φ must hold for at least at one α′ ∈ pre(α, z).

To show that a liveness property f holds for a program with executions E, it is sufficient
to show that f holds for all pairs (z, α) such that z ∈ E and α is the first transition in z. For
example, one important liveness property is eventual termination: ♦terminal. Applying this
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formula to the LTS of Figure 2b, a counter-example (i.e. a path that does not terminate)
is easily found: 0 1−→ 2, (2 0−→ 2)ω. In this path, thread 0 loops indefinitely trying to acquire
the mutex. Infinite paths are expressed using ω-regular expressions [2, ch. 4.3].

However, many systems reliably execute mutex programs similar to Figure 2a. Such
systems have fair schedulers, which do not allow the infinite paths described above. A
fairness guarantee is expressed as a temporal predicate on paths and is used to filter out
problematic paths before a liveness property, e.g. eventual termination, is considered.

In this work, weak fairness [2, p. 258] is considered, which is typically expressed as:

∀t ∈ T : ♦�en(t) =⇒ �♦ex(t) (1)

Recall that en and ex are both evaluated over a transition α and a tid t. In this case,
both predicates are partially evaluated with respected to a t. Intuitively, weak fairness states
that if a thread is able to execute, then it will eventually execute.

I Example 2 (Mutex with weak fairness). We now return to the task of proving termination
for the LTS of Figure 2b. If the scheduler provides weak fairness, then we can discard all
paths that do not satisfy the weak fairness definition. Namely, the two problematic paths
are: 0 1−→ 2, (2 0−→ 2)ω and 0 0−→ 1, (1 1−→ 1)ω. Neither path satisfies weak fairness: in both
cases the thread that can break the cycle is always enabled, yet it is not eventually executed
once the infinite cycle begins. Thus, if executed on system which provides weak fairness,
the program of Figure 2a is guaranteed to eventually terminate.

3 Formalising semi-fairness

We now detail our formalism for reasoning about fairness properties for semi-fair schedulers.
Semi-fairness is parameterised by a thread predicate called the thread fairness criterion, or
TFC. Intuitively, the TFC states a condition which, if satisfied by a thread t, guarantees
fair execution for t.

Formally an execution is semi-fair with respect to a TFC if the following holds:

∀t ∈ T : ♦�(en(t) ∧ TFC (t)) =⇒ �♦ex(t) (2)

The formula is similar to weak fairness (Eq. 1), but in order for a thread t to be guaran-
teed eventual execution, not only must t be enabled, but the TFC for t must also hold.
Semi-fairness for different schedulers, e.g. HSA and OBE, can be instantiated by using dif-
ferent TFCs, which in turn will yield different liveness properties for programs under these
schedulers, e.g. as shown in Table 2.

The weaker the TFC is, the stronger the fairness condition is. Semi-fairness with the
the weakest TFC, i.e. true, yields classic weak fairness. Conversely, semi-fairness with the
strongest TFC, i.e. false, yields no fairness.

Formalising a specific notion of semi-fairness now simply requires a TFC. We illustrate
this by defining TFCs to describe the semi-fair guarantees provided by the OBE and HSA
GPU schedulers, introduced informally in Section 1.

Formalising OBE semi-fairness. The prose definition for the OBE scheduler fits this form-
alism nicely, as it describes the per-thread condition for fair scheduling: once a thread has
been scheduled (i.e. executed an instruction), it will continue to be fairly scheduled. This is



T. Sorensen, H. Evrard, and A. F. Donaldson 23:9

straightforward to encode in a TFC using the temporal logic operator (see Section 2.2),
which holds for a given predicate if that predicate has held at least once in the past. Thus
the TFC for the OBE scheduler can be stated formally as follows:

TFC OBE(t) = ex(t) (3)

Formalising HSA semi-fairness. A TFC for the HSA scheduler is less straightforward
because the prose documentation is given in terms of relative allowed blocking behaviours,
rather than in terms of thread-level fairness. Recall the definition from Section 1: thread B
can block thread A if: “[thread] A comes after B in [thread] flattened id order” [8, p. 46].
Searching the documentation further, another snippet phrased closer to a TFC is found,
stating [8, p. 28]: “[Thread] i + j might start after [thread] i finishes, so it is not valid for
a [thread] to wait on an instruction performed by a later [thread].” We assume here that j
refers to any positive integer. Because these prose documentation snippets do not discuss
fairness explicitly, it is difficult to directly extract a TFC. We make a best-effort attempt
following this reasoning: (1) if thread i is fairly scheduled, no thread with id greater than
i is guaranteed to be fairly scheduled; and (2) threads that are not enabled (i.e. they have
terminated) have no need to be fairly scheduled. Using these two points, we can derive a
TFC for HSA: a thread is guaranteed to be fairly scheduled if there does not exist another
thread that has a lower id and is enabled. Formally:

TFC HSA(t) = ¬∃t′ ∈ T : (t′ < t) ∧ en(t′) (4)

Although this TFC is somewhat removed from the prose snippets in the HSA document-
ation, this formal definition has value in enabling precise discussions about fairness. For
example, we can increase confidence in our definition by showing that the idioms informally
analysed in Section 1 behave as expected; see Examples 3, 4 and 6. Our formalism for HSA
provides few progress guarantees, and as we discuss in Section 4, current GPUs appear to
offer stronger guarantees than HSA. The HSA programming model may offer such weak
guarantees to allow for a variety of devices to be targeted by this programming model and
also to allow flexibility in future framework implementations.

I Example 3 (Mutex with semi-fairness). Here we analyse the mutex LTS of Figure 2b
under OBE and HSA semi-fairness guarantees. Recall the two problematic paths (causing
starvation) are: 0 0−→ 1, (1 1−→ 1)ω. and 0 1−→ 2, (2 0−→ 2)ω

OBE: In both problematic paths, one thread t acquires the mutex, and the other thread t′
spins indefinitely. However, thread t has executed an instruction (acquiring the mutex)
and is thus guaranteed eventual execution under OBE; the problematic paths violate
this guarantee as thread t never executes after it acquires. Therefore both paths are
discarded, guaranteeing starvation-freedom for mutexes under OBE.
HSA: The second problematic path: 0 1−→ 2, (2 0−→ 2)ω, cannot be discarded as thread
0 waits for thread 1 to release. Thread 1 does not have the lowest id of the enabled
threads, thus there is no guarantee of eventual execution. Therefore starvation-freedom
for mutexes cannot be guaranteed under HSA.

I Example 4 (Producer-consumer with semi-fairness). Figure 3 illustrates a two-threaded
producer-consumer program. We use a new atomic instruction, load, which simply reads a
value from memory (the return value is given on the LTS edges). Thread 0 produces a value
via x0 and then spins, waiting to consume a value via x1. Thread 1 is similar, but with
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1 void thread0(int x0, int x1) {
2 // produce to tid 1
3 store(x0,1);
4 // consume from tid 1
5 while(load(x1) != 1);
6 }
7 void thread1(int x0, int x1) {
8 // produce to tid 0
9 store(x1,1);

10 // consume from tid 0
11 while(load(x0) != 1);
12 }

(a)

0

1

2

3

4

5

6

0 store

1 store

1 store

0 load: 0

0 store

1 load: 0

0 load: 1

1 load: 1

1 load: 1

0 load: 1

(b)

Figure 3 Two threaded PC idiom (a) code and (b) LTS. Omitting in (a) lines in gray and in (b)
states and transitions in gray and dashed lines yields the one-way variant of this idiom.

the variables swapped. A subset of this program, omitting lines 4, 5, 8, and 9, shows the
one-way producer-consumer idiom, where threads only consume from threads with lower
ids, i.e., only thread 1 consumes from thread 0. The LTS for the one-way variant omits
states 0, 1, 5, and 6 and the start state changes to state 2.

There are two problematic paths for the general test, in which one of the threads spins
indefinitely waiting for the other thread to produce a value: 0 0−→ 1, (1 0−→ 1)ω, and 0 1−→
2, (2 1−→ 2)ω. For the one-way variant, there is one problematic path: (2 1−→ 2)ω. We now
analyse this program under OBE and HSA semi-fairness.

OBE: Consider the problematic path 0 1−→ 2, (2 1−→ 2)ω. Because thread 0 has not
executed an instruction, OBE does not guarantee eventual execution for thread 0 and
thus this path cannot be discarded. Similar reasoning shows that the problematic path
for the one-way variant cannot be discarded either. Thus, neither general nor one-way
producer consumer idioms are allowed under OBE.
HSA: Consider the problematic path 0 0−→ 1, (1 0−→ 1)ω. Because thread 1 does not have
the lowest id of the enabled threads, HSA does not guarantee eventual execution for
thread 1 and this path cannot be discarded. On the other hand, consider the problematic
path for the one-way variant: (2 1−→ 2)ω. Because thread 0 has the lowest id of the enabled
threads, HSA guarantees thread 0 will eventually execute, thus causing this path to be
invalid. Therefore, general producer-consumer is not allowed under HSA, but one-way
producer-consumer, following increasing order of thread ids, is allowed.

4 Inter-workgroup synchronisation in the wild

We now examine existing GPU applications to determine what scheduling guarantees they
assume. This provides a basis for understanding (1) what scheduling guarantees are actually
provided by existing GPUs, as these applications run without issues on current devices,
and (2) the utility of schedulers, i.e. whether their fairness guarantees are exploited in
current applications. We limit our exploration to GPU applications that use inter-workgroup
synchronisation, and we perform a best-effort search through popular works in this domain.
We manually examined the programs, searching for the idioms in Table 1, and relate them
to the corresponding scheduler under which they are guaranteed to not starve.

OBE programs. We begin by looking at applications that assume guarantees from the
OBE scheduler. The most prevalent example seems to be the occupancy-limited barrier
(see Section 1). That is, developers use a priori knowledge about how many threads can be
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simultaneously occupant on a given GPU, and only run the program with at most that many
threads. The first work on such barriers is a 2010 paper by Xiao and Feng [22]. This work
has many citations, many of which describe applications that use the barrier. Additionally, a
barrier implementation following this work appears in the popular CUDA library CUB [14].
Thus, the OBE scheduler guarantees appear to be well-tested and useful on current GPUs.

In 2012, Kupta et al. present the persistent thread model [6], which more clearly char-
acterises the scheduling guarantees required by the Xiao and Feng Barrier and proposes
work-stealing as a potential use case under this model. This work again, has many cita-
tions describing use cases. One such work-stealing application that requires OBE scheduling
guarantees was published in a 2011 GPU programming cookbook GPU Computing Gems [9,
ch. 35]. Recent interest in barriers appears in graph analytic applications (e.g. BFS, SSSP),
where the 2016 IRGL application benchmark suite is reported to have competitive perform-
ance in this domain and uses both barriers and mutexes [17].

HSA programs. We found only four applications that use the one-way PC idiom: two
scan implementations, a sparse triangular solve (SpTRSV) application, and a sparse matrix
vector multiplication (SpMV) application. While there are few applications in this category,
we argue that they are important, as they appear in vendor-endorsed libraries.

The two scan applications, one found in the popular Nvidia CUB GPU library [14] and
the second presented in [23], use a straightforward one-way PC idiom. Both scans work by
computing workgroup-local scans on independent chunks of a large array. Threads compute
chunks according to their thread id, e.g. thread 0 processes the first chunk. A thread t then
passes its local sum to its immediate neighbour, thread t+1, who spins while waiting for this
value. The neighbour factors in this sum and then passes an updated value to its neighbour,
and so forth.

The SpMV application, presented in [5], has several workgroups cooperate to calculate
the result for a single row. Before any cooperation, the result must first be initialised, which
is performed by the workgroup with the lowest id out of the cooperating workgroups. The
other workgroups spin, waiting for the initialisation. This algorithm is implemented in the
clSPARSE library [1], a joint project between AMD and Vratis.

The SpTRSV application, presented in [13], allows multiple producers to accumulate
data to send to a consumer. However, in the triangular solver system, all producers will
have lower ids than the relative consumers. Thus the PC idiom remains one-way.

OpenCL programs. We also searched for applications that contain non-trivial inter-work-
group synchronisation and are non-blocking, and thus guaranteed starvation-freedom under
any scheduler. By non-trivial synchronisation, we mean inter-workgroup interactions that
cannot be achieved by a single atomic read-modify-write (RMW) instruction. While we
found examples of non-blocking data-structures (e.g. in the work-stealing example of [9, ch.
35]), the top level loop was blocking as threads without work waited on other threads to com-
plete work. Interestingly, we found only one application that appeared to be globally non-
blocking: a reduction application in the CUDA SDK [16], called threadFenceReduction,
in which the final workgroup to finish local computations also does a final reduction over all
other local computations.
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5 Unified GPU semi-fairness.

The exploration of applications in Section 4 shows that there are current applications that
rely on either HSA or OBE guarantees, and that these applications run without starvation
on current GPUs. Hence, it appears that current GPUs provide stronger fairness guarantees
than either HSA or OBE describe. In this section, we propose new semi-fairness guarantees
that unify HSA and OBE guarantees, and as such, potentially provide a more accurate
description of current GPUs scheduling guarantees.

HSA+OBE semi-fairness. A straightforward approach to create a unified fairness property
from two existing semi-fair properties is to create a new TFC defined as the disjunction of
the two existing TFCs. Thus, threads guaranteed fairness under either existing scheduler
are guaranteed fairness under the unified scheduler. We can do this with the HSA and OBE
semi-fair schedulers to create a new unified semi-fairness condition, called HSA+OBE, i.e.,

TFC HSA+OBE(t) = TFC HSA(t) ∨ TFC OBE(t) (5)

Thinking about the set of programs for which a scheduler guarantees starvation-freedom,
let PHSA be the set of programs allowed under HSA, with POBE and PHSA+OBE defined
similarly. We note that PHSA∪POBE ⊂ PHSA+OBE ; that is, there are programs in PHSA+OBE
that are neither in PHSA nor POBE . For example, consider a program that uses one-way
producer-consumer synchronisation and also a mutex. This program is not allowed under
the OBE or HSA scheduler in isolation, but is allowed under the semi-fair scheduler defined
as their disjunction. However, this idiom combination seems contrived as the applications
discussed in Section 4 that exploit the one-way PC idiom do not require mutexes.

LOBE semi-fairness. The HSA+OBE fairness guarantees are useful for reasoning about
existing applications, but these guarantees do not seem like they would naturally be provided
by a system scheduler implementation. Namely, HSA+OBE guarantees fairness to (1) the
thread with the lowest id that has not terminated (thanks to HSA) and (2) threads that
have taken an execution step (thanks to OBE). For example, it might allow relative fair
scheduling only between threads 0, 23, 29, and 42, if they were scheduled at least once in
the past. Thus, HSA+OBE allows for “gaps”, where threads with relative fairness do not
have contiguous ids. We believe a more intuitive scheduler would guarantee that threads
with relative fairness have contiguous ids.

Given these intuitions, we describe a new semi-fair guarantee, which we call LOBE
(linear occupancy-bound execution). Similar to OBE, LOBE guarantees fair scheduling to
any thread that has taken a step. Additionally, LOBE guarantees fair scheduling to any
thread t if another thread t′ (1) has taken a step, and (2) has an id greater than or equal to
t (hence the word linear). Formally, the LOBE TFC can be written:

TFC LOBE(t) = ∃t′ ∈ T : ex(t′) ∧ t′ ≥ t (6)

We will now show that LOBE is a unified scheduler, i.e. any program allowed under HSA
or OBE is allowed under LOBE. It is sufficient to show that TFC OBE =⇒ TFC LOBE and
TFC HSA =⇒ TFC LOBE . First, we consider TFC OBE =⇒ TFC LOBE : this is trivial as
the comparison check in TFCLOBE includes equality, thus any thread that has taken a step
is guaranteed to be fairly scheduled.

Considering now TFCHSA =⇒ TFCLOBE : we first recall a property of executions
from Section 2.2, namely that an execution either ends in a state where all threads have
terminated, or it is infinite. Thus, at an arbitrary non-terminal point in an execution, some
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thread t must take a step. If t has the lowest id of the enabled threads, then both LOBE
and HSA guarantee that t will be fairly executed. If t does not have the lowest id of the
enabled threads, then LOBE guarantees that all threads with lower ids than t will be fairly
executed, including the thread with the lowest id of the enabled threads, thus satisfying the
fairness constraint of HSA.

5.1 LOBE discovery protocol
Because the TFC HSA+OBE is defined as the disjunction of TFC HSA and TFC OBE , the
reasoning in Section 5 is sufficient to show that LOBE fairness guarantees are at least as
strong as HSA+OBE. A practical GPU program is now discussed for which correctness relies
on the stronger guarantees provided by LOBE compared to HSA+OBE. This example shows
that (1) LOBE guarantees are strictly stronger than HSA+OBE, and (2) fairness guarantees
exclusive to LOBE can be useful in GPU applications.

Our example is a modified version of the discovery protocol from [20], which dynamically
discovers threads that are guaranteed to be co-occupant, and are thus guaranteed relative
fairness by OBE. The protocol works using a virtual poll, in which threads have a short time
window to indicate, using shared memory, that they are co-occupant. The protocol acts as
a filter: discovered co-occupant threads execute a program, and undiscovered threads exit
without performing any meaningful computation. Because only co-occupant threads execute
the program, OBE guarantees that blocking idioms such as barriers can be used reliably.

GPU programs are often data-parallel, and threads use their ids to efficiently partition
arrays; thus having contiguous ids is vital. Because OBE fairness does not consider thread
ids, in order to provide contiguous ids, the discovery protocol dynamically assigns new ids
to discovered threads. While functionally this approach is sound, there are two immediate
drawbacks: (1) programs must be written using new thread ids, which can require intrusive
changes, and (2) the native thread id assignment on GPUs may be optimised by the driver for
memory accesses in data-parallel programs; using new ids would forgo these optimisations.
Exploiting the scheduling guarantees of LOBE, we modify the discovery protocol to preserve
native thread ids and also ensuring contiguous ids.

I Example 5 (thread ids and data locality). It is possible that the protocol discovers four
threads (with tids 2-5) and creates the following mapping for their new dynamic ids: {(5 −→
0), (2 −→ 1), (3 −→ 3), (4 −→ 4)}. The GPU runtime might have natively assigned threads
2 and 3 to one processor (often called a compute unit on GPUs) and threads 4 and 5 to
another. Because these compute units often have caches, data-locality between threads on
the same compute unit could offer performance benefits [21]. In data-parallel programs,
there is often data-locality between threads with consecutive ids. Thus, in our example
mapping, the (native) threads, 2 and 5 could not exploit data locality, as their new ids are
consecutive, but their native ids are not.

While it may seem straightforward to remap the ids of discovered threads to facilitate
data locality, as is done in [21], we note that this depends on the ability to query the physical
core id of a thread. Nvidia provides this functionality in CUDA, which is exploited in [21],
but OpenCL offers no support for such a feature. Thus, the relation between thread ids
and data locality is hidden by the OpenCL framework. We assume the natively assigned ids
take data locality into account and that dynamically assigned ids might not be as efficient.

We show the algorithm for the discovery protocol in Algorithm 1. The changes we
make to exploit LOBE guarantees are indicated by dashed boxes for removed code and
solid boxes for added code. We first describe the original protocol. The algorithm has two
phases, both protected by the mutex m. The first phase is the polling phase (lines 2-10),
where threads are able to indicate that they are currently occupant (i.e. executing). The
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Algorithm 1 Occupancy discovery protocol. Applying LOBE optimisation removes the
code in dashed boxes and adds the code in solid boxes .

1: function Discovery_protocol(open, count, id_map, m)
2: Lock(m)
3: if open ∨(tid < count) then
4: id_map[tid]← count

5: count← count + 1
6: count← max(count, tid + 1)
7: Unlock(m)
8: else
9: Unlock(m)
10: return F alse

11: Lock(m)
12: if open then
13: open ← F alse

14: Unlock(m)
15: return T rue

discovery
protocol 0 1 2 3

all threads
can leave
barrier

0, 2 wait0 wait

0 arrive 2 arrive 1 arrive

Figure 4 Sub-LTS of a barrier, with an optional discovery protocol preamble.

open shared variable is initialised to true to indicate that the poll is open. A thread first
checks whether the poll is open (line 3). If so, then the thread marks itself as discovered;
this involves obtaining a new id (line 4) and incrementing the number of discovered threads,
via the shared variable count (line 5). The thread can then continue to the closing phase
(starting line 11). If the poll was not open, the thread indicates that it was not discovered
by returning false (lines 8-10). In the closing phase, a thread checks to see if the poll is open;
if so, the thread closes the poll and no other threads can be discovered at this point (lines
12-13). All threads who enter the closing phase have been discovered to be co-occupant,
thus they return true (line 15). The number of discovered threads will be stored in count.

We can optimise this protocol by exploiting fairness guarantees of LOBE. In particular,
because LOBE guarantees that threads are fairly scheduled in contiguous id order, the
protocol can allow a thread with a higher id to discover all threads with lower ids. As a
result, threads are able to keep their native ids, although the number of discovered threads is
still dynamic. The optimisation to the discovery protocol is simple: first the id_map, which
originally mapped threads to their new dynamic ids is not needed (lines 1 and 4). Next,
the number of discovered threads is no longer based on how many threads were observed
to poll, but rather on the highest id of the discovered threads (line 6). Finally, even if
the poll is closed, a thread entering the poll may have been discovered by a thread with
a higher id; this is now reflected by each thread comparing its id with count (line 3). In
Example 6, we show that a barrier prefaced by the LOBE optimised protocol is not allowed
under HSA+OBE guarantees, and thus illustrate that LOBE fairness guarantees are strictly
stronger than HSA+OBE.

I Example 6 (Barriers under semi-fairness). We now analyse the behaviour of barriers, with
optional discovery protocols, under our semi-fair schedulers. Figure 4 shows a subset of
an LTS for a barrier idiom that synchronises three threads with tids 0, 1, and 2. For the
sake of clarity, instead of using atomic actions that correspond to concrete GPU atomic
instructions, we use abstract instructions arrive and wait, which correspond to a thread
marking its arrival at the barrier and a thread waiting at the barrier, respectively.
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The sub-LTS shows one possible interleaving of threads arriving at the barrier, in the
order 0, 1, 2. The final thread to arrive (thread 1) allows all threads to leave. The sub-LTS
shows the various spin-waiting scenarios that can occur in a barrier at states 1 and 2. A
discovery protocol can optionally be used before the barrier synchronisation.

We analyse the sub-LTS using the LOBE optimised discovery protocol (Section 5.1)
here. A similar analysis for the general barrier and original discovery protocol is done in
Appendix A. Recall that the LOBE discovery protocol discovers a thread if it has seen a step
from a thread with an equal or greater id. In our example with three threads, the fewest
behaviours the protocol is guaranteed to have seen is a step by thread 2, denoted: DP 2−→ 0.

HSA+OBE: consider the starvation path: DP 2−→ 0, 0 0−→ 1, 1 0−→ 2, (2 0−→ 2, 2 2−→ 2)ω.
This path cannot be disallowed by HSA+OBE as at state 2, HSA+OBE guarantees fair
scheduling for the thread with the lowest id (thread 0) and any threads that have taken
a step (threads 0 and 2). This path requires fair execution from thread 1 to break the
starvation loop. Thus, barrier synchronisation using the LOBE discovery protocol is not
allowed under HSA+OBE.
LOBE: The above starvation path is disallowed by LOBE, as LOBE guarantees fair
execution for any thread t that has executed and any thread with a lower id than t.
Thus, at state 0, the LOBE discovery protocol has observed a step from thread 2, we are
guaranteed fair scheduling for threads 2, 1, and 0. Thus barriers with LOBE discovery
protocol are allowed under LOBE.

6 Conclusion

While general purpose usage of GPUs is on the rise, current GPU programming models
provide loose scheduling fairness guarantees in English prose. In practice, GPUs feature
semi-fair schedulers. Our goal is to clarify the fairness guarantees that GPU programmers
can rely on, or at least the ones they assume. To this aim, we have introduced a formalism
that combines the classic weak fairness with a thread fairness criterion (TFC), enabling
fairness to be specified at a per-thread level. We have illustrated this formalism by defining
the TFC for HSA (from its specification) and OBE (from its description based on empirical
evidence) and by reasoning with such TFCs on three classic concurrent programming idioms:
barrier, mutex and producer-consumer.

We notice that while some popular existing GPU programs rely on either HSA or OBE
guarantees, these two models are not comparable, hence current GPUs must support stronger
guarantees that neither HSA nor OBE entirely capture. Our formalism lets easily combine
the TFCs of HSA and OBE to define the HSA+OBE scheduler; and we additionally craft
the LOBE scheduler which offers slightly stronger fairness guarantees than HSA+OBE. We
illustrate that LOBE guarantees can be useful by showing a GPU protocol optimisation for
which other GPU semi-fair schedulers do not guarantee starvation-freedom, but LOBE does.
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A Barrier example cont.

We continue the analysis of the barrier sub-LTS of Figure 4 that was started in Example 6.
That is, we analyse the general barrier (i.e. with no discovery protocol) and the the barrier
using the original discovery protocol (as described in Section 5.1).

general barrier:
LOBE - The starvation path 0 0−→ 1, (1 0−→ 1)ω is not disallowed by LOBE, as LOBE
cannot guarantee fair execution for any thread other than thread 0 at state 1 where the
infinite starvation path begins. Thus, general barriers are not allowed under LOBE.
Because LOBE is stronger than HSA+OBE, HSA and OBE, we know that the general
barrier is not allowed under these schedulers either.

original discovery protocol: This discovery protocol ensures that all three threads,
i.e. threads 0, 1, and 2, have taken a step before state 0. We denote this transition as
DP 0,1,2−−−→ 0.

HSA - The starvation path DP 0,1,2−−−→ 0, 0 0−→ 1, (1 0−→ 1)ω is not disallowed by HSA, as
HSA only guarantees fair execution to the lowest enabled thread (i.e. thread 0). To
break this starvation loop in the sub LTS, thread 2 would need fairness guarantees.
Thus barriers using the original discovery protocol are not allowed under HSA.
OBE - Because the original discovery protocol guarantees all threads have taken a
step before the barrier execution (i.e. state 0), OBE guarantees all three threads fair
scheduling. Thus all starvation loops in the sub LTS are guaranteed to be broken,
and the barrier using the original discovery protocol is allowed under OBE. Because
HSA+OBE and LOBE are stronger than OBE, this synchronisation idiom is also
allowed under those schedulers.
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