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We describe a thread-modular technique for proving termination of massively parallel GPU 
kernels. The technique reduces the termination problem for these kernels to a sequential 
termination problem by abstracting the shared state, and as such allows us to leverage 
termination analysis techniques for sequential programs. An implementation in KITTeL is 
able to show termination of 94% of 604 kernels collected from various sources.
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1. Introduction

Termination analysis for sequential programs has made significant progress in the last two decades, owing to the dis-
covery of transition invariants [1], forming the basis for tools like Terminator [2], and advances in termination analysis 
techniques for term rewriting systems, as implemented by tools like AProVE [3] and KITTeL [4,5]. Researchers are now 
turning their attention to termination analysis for concurrent programs, which can be difficult due to the need for inter-
thread reasoning to establish that computational progress is not unbounded.

The main contribution of this paper is to show that, despite the general difficulty of termination analysis in the presence 
of concurrency, in the domain of graphics processing unit (GPU) programming, existing methods for establishing termination 
of sequential programs can be successfully re-used to enable termination arguments for GPU programs to be established.

GPUs are highly parallel shared-memory processors that can accelerate computationally intensive applications such as 
medical imaging [6] and computational fluid dynamics [7]. To leverage the power of a GPU, a programmer identifies a part 
of an application that exhibits parallelism. This part can then be extracted into computational kernel and offloaded to execute 
on a GPU.

As GPUs are separate devices to which kernels are offloaded, it is generally difficult to perform live debugging. Hence, 
different means are needed to identify bugs. For this reason, many researchers (including us [8,9]) have looked at proving 
safety properties of kernels, in particular ones related to data races (see [8] for a recent overview of the work in this area). 
The current paper is the first to consider termination.1

Termination is important from a theoretical perspective, e.g., because the data race detection method described in [8], 
which underpins our GPUVerify tool, is only sound for terminating kernels. However, it is even more important from a 
practical perspective. Unlike CPU applications, which may be reactive, GPU kernels are required to terminate: any data com-
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puted by a kernel is inaccessible from the CPU as long as the kernel has not terminated. Besides the data being inaccessible, 
kernels with accidental infinite loops can have a severe impact on the systems on which they run: while working on 
the experiments from [11], we accidentally introduced infinite loops on numerous occasions; this often made our systems 
unresponsive, and sometimes caused transient hardware failures and spontaneous reboots.

The termination technique we describe below is thread-modular. It operates by abstracting the state shared between the 
threads of a kernel and by considering each thread in isolation. As such, we reduce a concurrent termination problem to a 
sequential one, and are able to build on and re-use existing techniques and tools for proving termination. In fact, the sequen-
tial termination problem we end up with is somewhat easier than usual in that there is no reason to consider recursive calls 
and dynamically changing data structures; these features are generally not supported by kernel programming languages.

The contributions of this paper are as follows:

1. We leverage termination analysis techniques for sequential programs to obtain an analysis technique for GPU kernels. 
The analysis technique considers the execution of a kernel for a single arbitrary thread, using abstraction to over-
approximate the possible effects of other threads; we show that if the arbitrary thread terminates in this abstract 
setting, then the GPU kernel is also guaranteed to terminate.

2. We adapt an existing termination analysis tool—KITTeL [4,5]—and leverage the Clang/LLVM compiler to obtain a largely 
automatic source code-level termination analysis tool for CUDA [12] and OpenCL [13], the most widely used GPU pro-
gramming languages.

3. We present an evaluation of our method on a set of 604 CUDA and OpenCL kernels, of which 386 have loops. Ter-
mination analysis is naturally fully automatic for the loop-free kernels, as well as for 90% of the kernels with loops, 
backing up our claim that methods for sequential termination analysis are effective when applied in the domain of GPU 
programming. We note that the success is in large part due to the fact that termination of GPU kernels rarely depends 
on values in shared memory.

4. We consider various features of KITTeL and evaluate their effectiveness over our set of 604 kernels. The evaluation 
highlights that more research into bitvector modelling and invariant inference seems appropriate in the context of 
sequential termination analysis.

In our view, the fact that sequential termination analysis techniques can be pushed towards providing automated termi-
nation analysis for GPU kernels is an encouraging result that shows how far the termination analysis field has come.

2. Anatomy of a GPU kernel

Kernel programming languages such as CUDA [12] and OpenCL [13] are data-parallel languages that use barriers for 
synchronisation. When a thread reaches a barrier, it waits until all other threads have also reached the barrier. Once the 
barrier has been reached by all threads, execution stalls until all outstanding writes to shared memory have been committed. 
Committing the writes ensures that any write to shared memory that occurs before the barrier is visible to all threads after 
the barrier; this enables the threads to communicate.

As a running example throughout this paper we use the kernel depicted in Fig. 1. This kernel, written in the CUDA 
kernel programming language [12], implements a Kogge–Stone prefix-sum [14]. Given an array in with values n0, n1, . . . , 
ni , . . . , nm , the kernel computes an array out with values

n0, n0 + n1, . . . ,
∑

0≤k≤i

nk, . . . ,
∑

0≤k≤m

nk .

Computation of these values proceeds by having a thread block consisting of blockDim.x threads execute the prefix-sum 
algorithm. The array parameters in and out are shared between all threads, i.e., they are global arrays in CUDA terminology. 
The variable temp is local, meaning that every thread has a private copy not accessible to any other thread. The execution of 
a thread may depend on its unique identifier threadIdx.x, and threads may synchronise by calling the __syncthreads
function, which represents a barrier in CUDA.

__global__ void KoggeStone(int ∗in, int ∗out) {
out[threadIdx.x] = in[threadIdx.x];
__syncthreads();
for(unsigned offset = 1; offset < blockDim.x; offset ∗= 2) {

int temp;
if(threadIdx.x >= offset)

{temp = out[threadIdx.x − offset];}
__syncthreads();
if(threadIdx.x >= offset)

{out[threadIdx.x] = temp + out[threadIdx.x];}
__syncthreads();

}
}

Fig. 1. The Kogge–Stone prefix-sum in CUDA.
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out[tid] := in[tid];
barrier;
offset := 1;
while (offset < N) {

if (tid ≥ offset)
{ temp := out[tid − offset]; }

barrier;
if (tid ≥ offset)

{out[tid] := temp + out[tid]; }
barrier;
offset := offset ∗ 2;

}
Fig. 2. The kernel from Fig. 1 represented in our simple kernel programming language.

Although the kernel in Fig. 1 is intended to be executed by a single 1-dimensional thread block, thread blocks may 
be multi-dimensional, and multiple blocks may be grouped into a grid to perform a computation. Moreover, there is an 
additional layer of memory, called shared memory, which sits in between global and local memory and which is shared 
solely between the threads in a single block.

We ignore multi-dimensional thread blocks in the remainder of this paper, as they only differ from 1-dimensional blocks 
in the availability of multi-dimensional thread identifiers, and these can easily be encoded as 1-dimensional identifiers. We 
also ignore grids, because their behaviour is identical to that of individual blocks, except that no synchronisation is possible 
between the threads in different blocks. As such, termination at the level of grids follows trivially once we are able to prove 
termination at the level of blocks.

Given that we only consider a single thread block, we bunch together global and shared memory, and simply call this 
memory shared memory from here onwards. Our implementation, discussed in Section 5, supports multi-dimensional thread 
blocks, grids, and global and shared memory in full, and is also able to handle kernels written in OpenCL [13].

3. Kernel programming language

We define a simple kernel programming language, with an interleaving operational semantics, with respect to which 
we will describe our thread-modular termination analysis in the next section. The language is a slight variation on the 
language from an earlier paper in which we investigate the correctness of prefix-sums [15]: the grammar of the language 
is taken as-is, but instead of considering a type system with multiple types, we consider only a single type Word, the 
type of all memory words. A single type suffices for our exposition, and adapting the analysis to handle multiple types is 
trivial.

The grammar of our language is as follows:

expr e ::= c | v | A[e] | e1 op e2
stmt s ::= v := e | A[e1] := e2 | if (e) {ss1} else {ss2} | while (e) {ss} | barrier
stmts ss ::= ε | s; ss

Here, c ranges over literal values, v and A range, respectively, over scalar and array variable names, and op ranges over an 
unspecified set of binary operators. The language is easily extended to cater for operators of other arities. Literals, variables, 
and array elements are all of type Word; each binary operator has type Word × Word → Word. We also assume the existence 
of two designated literal values true, false ∈ Word, representing the Booleans.

The statements v := e and A[e1] := e2 denote assignment to variables and array elements, respectively. The statement 
if (e) {ss1} else {ss2} represents conditional execution, and while (e) {ss} allows for iteration. The barrier statement enables 
synchronisation between threads. By ε we denote an empty sequence of statements, and s; ss prefixes a sequence of state-
ments ss with a statement s.

A kernel program P is a sequence of statements ss; all threads executing the kernel program execute ss. Fig. 2 shows 
a translation of the Kogge–Stone kernel of Fig. 1 into our simple kernel programming language, where we omit empty 
else-branches for brevity. Each call to __syncthreads is turned into a barrier statement. The CUDA built-in variables
threadIdx.x and blockDim.x map to the variables tid and N; these variables represent the unique identity of a thread 
and the total thread-count, respectively.

Operational semantics Let Var be a set of variables and Arr be a set of arrays. Our semantics is defined over variable stores 
σv, mapping variables v ∈ Var to elements of type Word, array stores σA, mapping arrays A ∈ Arr to maps M of type Word →
Word, and a finite set D ⊆ Word of thread identifiers. We assume D to be arbitrary but fixed in the remainder.

Each expression is evaluated under a variable store σv and an array store σA. Denoting the evaluation of an expression e
by �e�σv

σ ∈ Word, we define:
A
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x = �e�σv
σA

(σv, σA, v := e; ss′) →t (σv[v 	→ x], σA, ss′)
(T-Assign)

x1 = �e1 �σv
σA

x2 = �e2 �σv
σA

M = σA(A)[x1 	→ x2]
(σv, σA, A[e1] := e2; ss′) →t (σv, σA[A 	→ M], ss′)

(T-Array)

�e�σv
σA

(σv, σA, if (e) {ss1} else {ss2}; ss′) →t (σv, σA, ss1 · ss′)
(T-Ite-True)

¬�e�σv
σA

(σv, σA, if (e) {ss1} else {ss2}; ss′) →t (σv, σA, ss2 · ss′)
(T-Ite-False)

�e�σv
σA

(σv, σA,while (e) {ss}; ss′) →t (σv, σA, ss · while (e) {ss}; ss′)
(T-Loop-True)

¬�e�σv
σA

(σv, σA,while (e) {ss}; ss′) →t (σv, σA, ss′)
(T-Loop-False)

(a) The thread-level rules (specified over triples (σv, σA, ss))

K (t) = (σv,t, sst) (σv,t, σA, sst ) →t (σ ′
v,t, σ

′
A, ss′

t ) K ′ = K [t 	→ (σ ′
v,t, ss′

t )]
(σA, K ) →k (σ ′

A, K ′)
(K-Step)

(
∀t :

∨ (K (t) = (σv,t,barrier; sst ) ∧ K ′(t) = (σv,t, sst ))

(K (t) = (σv,t, ε) ∧ K ′(t) = (σv,t, ε))

)
∃ t : K (t) = (σv,t,barrier; sst )

(σA, K ) →k (σA, K ′)
(K-Barrier)

(b) The Kernel-level rules (specified over kernel states (σA, K ))

Fig. 3. Operational semantics of our kernel programming language.

�c�σv
σA

= c � A[e]�σv
σA

= σA(A)(�e�σv
σA

)

�v �σv
σA

= σv(v) �e1 op e2 �σv
σA

= �e1 �σv
σA

op �e2 �σv
σA

A variable store is paired with a sequence of statements to form a thread state (σv,t, sst), where σv,t represents the private 
memory of a thread t ∈ D , mapping private variables to values, and where sst is the sequence of statements that remains 
to be executed by t . An array store is combined with multiple thread states to form a kernel state (σA, K ). The array store 
σA represents the shared memory of a kernel, mapping shared array elements to values, and K is a map from D to thread 
states, specifying the current state of each thread executing the kernel.

Our operational semantics, as presented in Fig. 3, is an interleaving semantics defined over kernel states. The semantics 
consists of two parts:

• a thread-level semantics (Fig. 3a) describing the execution of a single statement by a single thread given a triple 
(σv, σA, ss), where σv is the current (private) variable store of the thread, σA is the current (shared) array store of 
the kernel, and ss is the sequence of statements that remains to be executed by the thread;

• a kernel-level semantics (Fig. 3b) describing the interleaving and synchronisation of the threads executing a kernel given 
a kernel state (σA, K ) representing the current execution state of the kernel.

The thread-level rules of Fig. 3a are standard for an imperative language, except that, instead of a single store, we have 
both a variable and an array store to account for private and shared memory. The assignment statements evaluate the 
relevant expressions and update the relevant store using the resulting values; the rules for the if- and while-statements 
evaluate the guard e under σv and σA and proceed accordingly. In the figure, σ [x 	→ y] denotes a map identical to σ except 
that σ [x 	→ y](x) = y. Furthermore, ss · ss′ denotes the concatenation of the sequences ss and ss′ .

The kernel-level rule K-Step of Fig. 3b facilitates the interleaving of threads by selecting a thread state K (t) = (σv,t, sst)

and performing a single thread-level step with respect to (σv,t, σA, sst). Observe that no thread-level rule applies when 
sst = ε or sst = barrier; ss′

t , i.e., when thread t has terminated or is at a barrier. Thus, rule K-Step can only fire when there 
is at least one active thread that is able to execute a non-barrier statement.

Rule K-Barrier enables synchronisation between threads: no thread can proceed beyond a barrier until each thread t ∈ D
either

• has reached a barrier, i.e., K (t) = (σv,t, barrier; sst), or
• has terminated, i.e., K (t) = (σv,t, ε).
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In the first case, the barrier statement is removed from the sequence of statements that remains to be executed by t . In 
the second case, the state of t remains unchanged. The second premise of rule K-Barrier ensures that at least one thread 
is at the barrier. This guarantees that the rule does not fire once all threads have terminated. If we omit this condition, 
termination of all threads would not imply kernel termination (as defined below).

Remark 1 (Barrier semantics). As in [15], the kernel-level rule K-Barrier follows the MPI programming model [16] in which 
threads may synchronise at syntactically distinct barriers. In OpenCL and CUDA the rules for barrier synchronisation are 
stricter [13,12], requiring that (i) all threads synchronise at the same barrier, and that (ii) all threads have executed the 
same number of iterations of a loop l in case the barrier occurs inside l. A precise semantics for barrier synchronisation in 
GPU programming is presented in [8,9].

The less restrictive MPI-style synchronisation model makes our termination analysis and associated main theorem 
(Theorem 3) more widely applicable. Adding stricter conditions to rule K-Barrier to capture the specific synchronisation 
requirements for GPU kernels does not affect our approach to proving termination. In other words, if a separate technique 
is able to ascertain that barriers are used correctly under the stricter rules for GPU kernels, then our termination analysis 
method can be applied unmodified.

Remark 2 (Atomicity of statements). The interleaving semantics of Fig. 3 assumes that statements are executed atomically 
with respect to sequentially consistent memory [17]. This does not accurately reflect the execution and memory models of 
GPUs [11]. However, this only affects kernels with data-races.

We believe that racy kernels should be avoided, as it is not clear from the OpenCL and CUDA specifications [13,12]
whether such kernels are well-defined. A separate data race analysis, e.g., the one implemented by GPUVerify [8,18], can be 
used to assess race-freedom.

Execution and termination Let P be a kernel program. An initial state of P is any kernel state (σA, K ) such that for each 
thread identifier t ∈ D we have K (t) = (σv, P ) with σv(tid) = t and σv(N) = |D|. Thus, each thread starts executing from the 
same sequence of statements P , and the variables tid and N represent, respectively, the unique identity of a thread and the 
total thread-count. Our main result in the next section does not depend on tid and N , and, hence, our approach facilitates 
parameterised termination analysis for GPU kernels with respect to arbitrary thread counts. Nevertheless, we prefer to make 
tid and N explicit, because concrete kernels often rely on certain predicates to hold relating the number of threads and the 
values of certain kernel parameters. For example, in order to correctly compute a prefix-sum over an array of length n, the 
kernel of Fig. 2 requires |D| = n.

Given an initial state K0 of a kernel program P , an execution of P starting from K0 is any finite or infinite sequence

K0 →k K1 →k · · · →k Ki →k Ki+1 →k · · ·
with each Ki (i ≥ 0) a kernel state, and where the consecutive states are related by the →k-relation of Fig. 3b. A program 
P is said to terminate for an initial kernel state K0 of P , if all executions starting from K0 are finite. A kernel program P
terminates if it terminates for each of its initial kernel states.

4. Proving termination by thread-modular analysis

We now reduce the termination problem for kernel programs to a sequential termination problem. The reduction makes 
the termination analysis of kernel programs thread-modular by checking termination of a single, arbitrary thread under 
an environmental abstraction that over-approximates the effects of all other threads. This allows the termination analysis 
for GPU kernels to re-use the wealth of existing research into termination analysis for sequential programs, including the 
rewriting-based techniques that we re-use in our tool implementation (see Section 5).

Our environmental abstraction ignores the contents of the (shared) array store and instead assumes that accessing an ar-
ray element yields a nondeterministically selected value from Word. We achieve this by replacing the array-aware expression 
evaluation function �·�σv

σA : expr → Word by an array-oblivious function �·�σv
� : expr → 2Word defined as:

�c�σv
� = {c} � A[e]�σv

� = Word

�v �σv
� = {σv(v)} �e1 op e2 �σv

� = {x1 op x2 | x1 ∈ �e1 �σv
� ∧ x2 ∈ �e2 �σv

� }
Thus, �e�σv

� yields the set of all possible values an expression e may evaluate to given a variable store σv, and assuming 
that any array access may yield any value from Word.

Abstract operational semantics Employing our updated definition of expression evaluation, we specify an abstract operational 
semantics in Fig. 4. The semantics is defined over abstract states (σv, ss), with σv a variable store and ss a sequence of 
statements. Hence, the semantics can be thought of as executing a single thread while ignoring the array store.

We discuss the abstract rules and relate them to the concrete rules of Fig. 3. Rule A-Assign is the corresponding abstract 
version of rule T-Assign. The rule evaluates e under our abstract expression evaluation function before nondeterministically 
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x ∈ �e�σv
�

(σv, v := e; ss′) →a (σv[v 	→ x], ss′)
(A-Assign)

(σv, A[e1] := e2; ss′) →a (σv, ss′)
(A-Array)

true ∈ �e�σv
�

(σv, if (e) {ss1} else {ss2}; ss′) →t (σv, ss1 · ss′)
(A-Ite-True)

false ∈ �e�σv
�

(σv, if (e) {ss1} else {ss2}; ss′) →a (σv, ss2 · ss′)
(A-Ite-False)

true ∈ �e�σv
�

(σv,while (e) {ss}; ss′) →a (σv, ss · while (e) {ss}; ss′)
(A-Loop-True)

false ∈ �e�σv
�

(σv,while (e) {ss}; ss′) →a (σv, ss′)
(A-Loop-False)

(σv,barrier; ss) →a (σv, ss)
(A-Barrier)

Fig. 4. Abstract operational semantics of our kernel programming language.

assigning one of the values from �e�σv
� to v . As we abstract from the array store, rule A-Array is a simple no-op, unlike rule

T-Array, which updates the array store. The rules for the if- and while-statements generalise the corresponding rules from 
Fig. 3a by checking whether the appropriate truth value occurs in �e�σv

� . As the abstract semantics models the sequential 
semantics of a single thread, rule K-Step is disposed of, and K-Barrier is lowered to rule A-Barrier, which is a no-op. To 
summarise: our abstract semantics ensures that the contents of σA becomes irrelevant and that a thread no longer has to 
wait for any other thread once it reaches a barrier.

Abstract execution and termination Recall that D is a finite set of thread identifiers. If P is a kernel program, then an abstract 
initial state of P is defined as any pair (σv, P ) such that σv(tid) ∈ D and σv(N) = |D|. Given an abstract initial state A0 of P , 
an abstract execution of P starting from A0 is any finite or infinite sequence

A0 →a A1 →a · · · →a Ai →a Ai+1 →a · · ·
with each Ai (i ≥ 0) an abstract state, and where the consecutive states are related by the →a-relation of Fig. 4. A program 
P is said to terminate for an initial abstract state A0 of P , if all abstract executions starting from A0 are finite. A kernel 
program P terminates under the abstract semantics if it terminates for each of its initial abstract states.

Thread-modular analysis We now present our main result, which shows that termination analysis can be performed by 
considering the termination of each thread in isolation with respect to our abstract semantics.

Theorem 3. Let P be a kernel program. If P terminates under the abstract semantics of Fig. 4, then P terminates under the interleaving 
semantics of Fig. 3.

Proof. Given a thread t and a kernel state K = (σA, K ), define abst(K) = K (t). Trivially, we have that abst(K) = abst(K′) if 
K →k K′ by rule K-Step and when the rule is not instantiated by thread t . Moreover:

1. If K →k K′ by rule K-Step and the rule is instantiated by thread t , then we have that abst(K) →a abst(K′) by the 
abstract rule corresponding to thread-level rule employed in the application of K-Step. This follows once we observe 
that for any expression e, variable store σv, and array store σA, we have �e�σv

σA ∈ �e�σv
� (as � A[e]�σv

σA ∈ Word).
2. If rule K-Barrier is applied, then there are two cases to consider, as t may either be at a barrier or may have terminated. 

If t is at a barrier, we have that abst(K) →a abst(K′) by rule A-Barrier. This follows as K (t) = (σv,t, barrier; sst) and 
K ′(t) = (σv,t, sst). If t has terminated, we have that abst(K) = abst(K′), as K (t) = K ′(t).

We now prove the contrapositive of our theorem. Thus, suppose there exists a kernel program P which has an infinite 
execution under our interleaving semantics. Rule K-Step must fire infinitely often in the course of this execution, because if 
only rule K-Barrier would fire from some K = (σA, K ) onwards, then we have for at least one thread t that the sequence 
of statements sst in K (t) = (σv,t, sst) equals an infinite sequence of barrier statements, which is impossible as sst is finite.

Suppose that the infinite execution of P starts from K0. As the number of threads is finite, we have by the pigeon-hole 
principle that there exists at least one thread t ∈ D for which rule K-Step fires an infinite number of times as part of the 
infinite execution. By the observations at the beginning of this proof, it is now immediate that there also exists an infinite 
abstract execution starting from abst(K0), and the theorem follows. �
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if (tid = 0)

{ A[0] := 1; }
temp := 0;
while (temp < N) {

if (tid = 0)

{ A[0] := A[0] + 1; }
barrier;
temp := A[0];
barrier;

}
Fig. 5. A kernel that cannot be shown terminating using Theorem 3.

With the above theorem in hand, we can show that the kernel of Fig. 2 terminates. As the variable offset is thread-private 
and as its value does not depend on any shared array access, its value is uniquely determined in the abstract semantics 
by the abstract expression evaluation function. More specifically, assuming no overflow occurs, the value of offset strictly 
increases during each loop-iteration, as the variable is initially set to a positive value and multiplied by 2 at the end of each 
iteration. Hence, as N is a private variable with a constant value, termination of the program under the abstract semantics 
follows, and by Theorem 3 the same holds true under the concrete semantics.

In general, the reverse of the above theorem does not hold: termination might depend on shared memory sub-
expressions evaluating to specific values. Consider, e.g., the kernel of Fig. 5, where we omit empty else-branches. Termination 
of this kernel depends on thread 0 assigning increasingly larger values to A[0]. However, in our abstract semantics, the value 
assigned to temp during each loop-iteration will be chosen nondeterministically and, hence, may always be chosen to be 
smaller than N . Although this is the case, we show experimentally in Section 6 that for the vast majority of kernels in open 
source benchmark suites, termination does not depend on the values of shared memory sub-expressions.

5. Implementation in KITTeL

The KITTeL termination analysis tool [4,5] consists of a front-end, named llvm2KITTeL, which takes LLVM bitcode2

and translates this into an integer-based rewrite system, and a back-end which tries to automatically prove termination of the 
generated rewrite system.

In integer-based rewriting, rules are of the following form:

f (x1, . . . , xm) → g(e1, . . . , en) [C] .
Here, f and g are function symbols, x1, . . . , xm are variables of type Int (the type of mathematical integers), e1, . . . , en

are expressions of type Int, and C is a Boolean expression. The expressions e1, . . . en , and C may contain variables of 
type Int; these variables may be fresh and need not come from x1, . . . , xm . Rewriting f (i1, . . . , im) to g( j1, . . . , jn) with 
i1, . . . im, j1, . . . jn ∈ Int requires C to be satisfied. Specifically, there must exist a substitution σ mapping variables to math-
ematical integers such that σ( f (x1, . . . , xm)) = f (i1, . . . , im) and σ(g(e1, . . . , en)) = g( j1, . . . , jn), and such that σ(C) holds. 
We refer the reader to [4] for further details; an example of an integer-based rewrite system is presented in Fig. 6, and 
discussed below.

Changes to KITTeL We adapted llvm2KITTeL to handle GPU kernels (compiled to LLVM bitcode by Clang3); we did not 
make any changes to the termination analysis back-end. As llvm2KITTeL models only a single thread and already ab-
stracts from most memory operations (yielding nondeterministic values for loads from memory), the changes we needed 
to make were minimal: (i) we ensured that llvm2KITTeL abstracts loads even in the cases where it usually would not 
(e.g., when a pointer points to a unique global variable representing a single integer), (ii) we disabled the hoisting of loop-
invariant loads from loops (due to concurrency the loaded values may differ between loop iterations), and (iii) we made
llvm2KITTeL aware of the fact that the number of threads executing a kernel is constant for the duration of an execu-
tion (the number of threads is often referred to in loop guards; hence, awareness that this number is constant—or at least 
bounded—is often critical for showing termination).

Given the above changes, llvm2KITTeL transforms the kernel from Fig. 1 into the rewrite system of Fig. 6, where we 
omit empty conditions. As in Section 3, tid and N correspond, respectively, to the CUDA built-in variables threadIdx.x
and blockDim.x. Observe that the shared arrays in and out have been removed in accordance with Theorem 3. Barriers 
have also been removed, as they correspond to no-ops in our abstract semantics. The translation is otherwise straightfor-
ward. The top-most rule showcases the fact that not all variables need to occur on the left-hand side of a rule: tid only 
occurs on the right-hand side and in the condition 0 ≤ tid < N .

2 http :/ /llvm .org/.
3 http :/ /clang .llvm .org/.

http://llvm.org/
http://clang.llvm.org/
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start → loop_head(tid,1) [0 ≤ tid < N]
loop_head(tid,offset) → loop_body1(tid,offset) [offset < N]
loop_head(tid,offset) → loop_tail [offset ≥ N]

loop_body1(tid,offset) → if1(tid,offset) [tid ≥ offset]
loop_body1(tid,offset) → loop_body2(tid,offset, temp) [tid < offset]

if1(offset) → loop_body2(tid,offset, temp)

loop_body2(tid,offset, temp) → if2(tid,offset, temp) [tid ≥ offset]
loop_body2(tid,offset, temp) → loop_body3(tid,offset) [tid < offset]

if2(tid,offset, temp) → loop_body3(tid,offset)
loop_body3(tid,offset) → loop_head(tid,offset ∗ 2)

loop_tail → end

Fig. 6. The kernel from Fig. 1 represented as an integer-based rewrite system.

Although the changes made to llvm2KITTeL are straightforward, using the tool requires awareness of loop invariants 
and the limitations of mathematical integers.

Loop invariants To prove termination, it may be necessary to specify certain loop invariants—ideally automatically inferred 
by the employed termination tool [19]. For example, in the case of the kernel from Fig. 1, proving termination requires one 
to observe that offset is always greater than 0.

In KITTeL, loop invariants can either be specified by hand, or inferred with the help of the Apron numerical abstract 
domain library [20]. We experimented with both strategies, as detailed in the next section. In the case of manually provided 
loop invariants, we ensured correctness by proving the validity of the invariants with the help of GPUVerify prior to running 
our experiments. In principle, we could extend GPUVerify’s invariant inference engine to generate the required invariants 
automatically. However, this would require infrastructure to feed the generated invariants into KITTeL, which is currently 
lacking.

GPUVerify uses the Houdini algorithm [21] to infer invariants using a template-based approach [8,22]. Candidate invari-
ants are first guessed using a set of predefined templates, and an iterative process is then used to eliminate candidates 
that do not hold, converging on a set of mutually inductive invariants. As discussed in the next section, we have identified 
several classes of invariants that work well for termination analysis. From these classes, we could in principle derive a set 
of templates for GPUVerify’s invariant inference engine, so as to automatically infer many of the loop invariants required for 
proving termination.

Bitvectors Integer-based rewrite systems are defined over mathematical integers. This offsets them from the hardware that 
executes GPU kernels, which represents integers as finite bitvectors. As a result, we can construct kernels that can be shown 
to be terminating with KITTeL, but which will fail to terminate when executed on actual hardware, and vice versa. To guard 
against this, llvm2KITTeL offers the possibility to enrich the rewrite systems it generates with additional constraints that 
mimic bitvector behaviour [5]. We experimented with this option as detailed in the next section, although in line with most 
termination research we defaulted to using mathematical integers.

6. Evaluation

To evaluate the effectiveness of Theorem 3, we applied KITTeL to a suite of 604 OpenCL and CUDA kernels, 386 of 
which have loops. To demonstrate that our approach works out-of-the-box (bar the manual specification of loop invariants), 
with the kernel code itself being the only source of information about the presence of (potentially non-terminating) loops, 
we included the loop-free kernels in our evaluation. The kernels have on average 86 lines of code4 and originate from nine 
sources:

• The AMD Accelerated Parallel Processing SDK v2.6 [23] (79 kernels, 55 of which have loops).
• The NVIDIA GPU Computing SDK v5.0 [24] (184 kernels, 110 of which have loops); we also included 8 kernels from v2.0 

of the SDK, 7 of which have loops.
• The C++ AMP Sample Projects [25] hand-translated to CUDA (20 kernels, 16 of which have loops)
• The gpgpu-sim benchmarks [26] (33 kernels, 24 of which have loops)
• The Parboil benchmarks v2.5 [27] (25 kernels, 19 of which have loops)
• The Rodinia benchmark suite v2.4 [28] (40 kernels, 25 of which have loops)
• The SHOC benchmark suite [29] (87 kernels, 55 of which have loops)
• A set of kernels generated from the PolyBench/C benchmarks v3.2 [30] by the PPCG [31] parallel code generator (64 ker-

nels, 49 of which have loops)
• Basemark’s (previously Rightware’s) Basemark CL v1.1 [32] (64 kernels, 26 of which have loops)

4 Counted using cloc 1.60 (http :/ /cloc .sourceforge .net).

http://cloc.sourceforge.net
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Table 1
Observed thread counts for the kernels in our benchmark set.

Thread count 1 2–100 101–10,000 10,001–1,000,000 >1,000,000

Number of kernels 17 37 149 258 143

//@ invariant(i > 0)
for(i = 1; i < n; i ∗= 2)
{ . . .}

(a)

int s = blockDim.x;

//@ invariant(s > 0)
for(i = 0; i < n; i += s)
{ . . .}

(b)

int n = 100;

//@ invariant(i ≤ n)
for(i = 0; i != n; i++)
{ . . .}

(c)

Fig. 7. Code fragments exemplifying the forms of the invariants we specified manually.

The kernel counts above do not include 4 kernels that we manually removed because they use CUDA surfaces [12], 
which we currently do not support. Each suite is publicly available except for Basemark CL which was provided to us under 
an academic license. The collection covers all the publicly available GPU benchmark suites we are aware of except for 
LonestarGPU [33].

Thread counts Recall from Section 3 that the correctness of a kernel often depends on the number of threads that execute 
the kernel. In principle, this also applies to termination. Hence, stopping short of manually inspecting each kernel to see 
whether the thread count impacts termination, we took a pragmatic approach and ran every benchmark on a GPU to 
determine the number of threads each kernel is usually executed with. The obtained numbers were then used to fix the 
thread counts for the duration of our experiments.

As can be seen in Table 1, the concrete thread counts for the kernels varied widely, with the majority of the kernels 
having a thread count of over 10,000. This underlines the need for a scalable thread-modular analysis: the state spaces that 
would need to be considered when modelling all threads explicitly would be exceedingly large.

Experimental setup All experiments were performed on a workstation with a 4-core Intel Xeon E5-2609 2.4 GHz and 16 GB 
of RAM running Ubuntu 14.04 and Clang/LLVM 3.5.1. The reported times are averages over five runs and include the time 
needed to compile a kernel to bitcode. The timeout used was 5 minutes.

We adapted llvm2KITTeL as described in the previous section and invoked the tool with the -solver option, 
which eliminates rewrite rules with unsatisfiable constraints as early as possible during the generation of a rewrite system, 
generally resulting in smaller systems. As default we used manually specified loop invariants and passed the -increase-
strength option to llvm2KITTeL. The -increase-strength option turns left and right shifts into, respectively, 
multiplications and divisions by 2. This transformation facilitates termination analysis of GPU kernels where the loop counter 
is being shifted, which is common in kernels implementing reductions and prefix-sums. The underlying SMT solver used 
was Yices 2.3.0. Both llvm2KITTeL5 and KITTeL6 were downloaded on the 12th of February 2015.

Below, we first discuss the performance of the default setup over our benchmark set, and analyse the kernels for which 
termination could not be shown. Thereafter, we consider the impact of the -increase-strength option on the termi-
nation analysis, and the effectiveness of KITTeL’s automatic invariant inference capabilities based on Apron 0.9.10, which 
are not used by default. Finally, we consider llvm2KITTeL’s bitvector modelling capabilities.

Manually specified loop invariants We manually specified loop invariants for 53 kernels, as KITTeL would otherwise fail to 
prove termination of these kernels. The required invariants stated that (i) the loop counter is positive (32 kernels), that (ii) 
the variables defining the step value of the loop counter are positive (19 kernels), and that (iii) the loop counter is less than 
or equal to the value it is tested against for inequality in the loop guard (2 kernels). As mentioned in the previous section, 
we proved all of these invariants correct with the help of GPUVerify prior to running our experiments.

Fig. 7 gives an example of each kind of manually specified invariant, using JML-style notation [34]. We note that the 
specified invariants provide sufficient information for KITTeL to be able to prove termination. To understand the examples, 
it is important to be aware that KITTeL’s termination analysis works on a loop-by-loop basis while ignoring variable 
initialisations that occur outside these loops. In the case of the loop of Fig. 7a, this means that absence of the invariant 
would imply that KITTeL would analyse the loop assuming both i > 0 and i ≤ 0 (for i is initialised outside the loop). 
However, in the latter case the loop counter would either decrease or remain zero, leading to nontermination. Similarly, 
for the loop of in Fig. 7b, omitting the loop invariant would imply that KITTeL would assume s to have a completely 
arbitrary value. Hence, i would not necessarily increase with each iteration, again leading to nontermination. Finally, in the 

5 https :/ /github .com /s-falke /llvm2kittel.
6 https :/ /github .com /s-falke /kittel-koat.

https://github.com/s-falke/llvm2kittel
https://github.com/s-falke/kittel-koat
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Fig. 8. Cumulative histogram showing the time taken to prove termination of the 386 kernels with loops in the default setup.

for(float i = 1.0; i < n; i += 1.0)
{ . . .}

(a)

while(atomicInc(p) < n)
{ . . .}

(b)

Fig. 9. Loops that could not be shown terminating by KITTeL.

case of Fig. 7c, absence of the invariant would imply that KITTeL could assume that i > n on entry to the loop. As such, 
incrementing i would never yield the loop exit condition i!= n.

6.1. Results for the default setup

Unsurprisingly, KITTeL managed to prove termination of each of the 218 loop-free kernels: for these kernels
llvm2KITTeL always outputs the single-rule integer-based rewrite system

start → end ,

where loop-freeness of a kernel is determined by querying the control-flow graph of the kernel for cycles. On average 
termination of the loop-free kernels was shown in 0.40 s, with the maximum time required being 0.56 s.

The cumulative histogram of Fig. 8 plots the analysis time for the 386 kernels with loops on a log–log scale. A point 
at (x, y) indicates that for x kernels with loops, termination could be shown within y seconds. Of the 386 kernels with 
loops, 348 could be shown to be terminating, with the analysis taking less than 1 s in the case of 266 kernels. On average, 
termination was shown in 1.69 s and the maximum time needed was 65.88 s. Of the 38 kernels for which termination 
could not be shown, 34 reached the timeout of 5 minutes. In 4 cases KITTeL indicated that the constructed rewrite system 
was nonterminating (this does not imply that the original kernels are nonterminating, as the constructed rewrite system in 
general over-approximates the behaviour of a thread).

We manually inspected the 38 kernels to see why termination could not be shown. All 4 cases where KITTeL indicated 
nontermination would require reasoning over floating point numbers, which KITTeL does not support (see Fig. 9a for an 
example, where termination follows as i+1.0 > i for small floating point numbers, assuming i is not updated in the 
loop body).

In 4 cases, kernel termination depends on the behaviour of built-in atomic increment operations (see Fig. 9b for an 
example, where p points to a shared memory word, and where termination follows as atomicInc returns monotoni-
cally increasing values, assuming the shared memory word pointed to by p is not updated in the loop body). Currently,
llvm2KITTeL models atomic increment operations as returning unconstrained, arbitrary values and, hence, termination 
cannot be shown.

In 20 cases, termination would require reasoning about shared memory and, hence, the over-approximation from Theo-
rem 3 is too coarse (see Fig. 5 for an example). Of these 20 cases, there are 5 where the value tested against in the loop 
guard lives in shared memory, although this value is never changed during execution. In 11 cases, termination depends on 
some constant data in shared memory being of a specific form, e.g., a graph without cycles or a null-terminated string. 
In the 4 remaining cases, a thread may only terminate once it knows that all threads have finished performing a certain 
computation; this information is communicated through shared memory.

The above leaves 10 kernels, all timing out, with 5 timeouts in llvm2KITTeL and 5 in the KITTeL back-end. Of the 
5 kernels timing out in llvm2KITTeL, 4 could be shown terminating by turning off the -increase-strength option 
(see below). For the remaining kernel timing out in llvm2KITTeL, no combination of options could be found that let
llvm2KITTeL produce an integer-based rewrite system within the 5 minute timeout period. For the 5 kernels timing out 
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Fig. 10. Scatter plot comparing the time taken to prove termination of kernels with loops in the default setup and with the -increase-strength option 
turned off.

in KITTeL, the generated rewrite systems could be shown terminating by hand, indicating that the analysis techniques 
used by KITTeL could be improved.

6.2. Impact of the increase strength option

As the -increase-strength option does not change the shape of the control-flow graph of a kernel, turning off the 
option did not affect KITTeL’s ability to prove termination of all 218 loop-free kernels. Each loop-free kernel could still be 
shown terminating within 0.56 s. For this reason we focus on kernels with loops in the remainder.

By default, llvm2KITTeL’s modelling of left and right shifts is imprecise, with the operations yielding unconstrained 
nondeterministic values. This is improved upon by the -increase-strength option by lifting left and right shifts to 
multiplication and division by 2, which llvm2KITTeL models more accurately. Hence, we hypothesised that turning off 
the -increase-strength option would (i) cause KITTeL to no longer be able to show termination of kernels that use 
shifts to update loop counters, leading instead to timeouts due to the use of unconstrained nondeterministic values, and 
would (ii) reduce analysis time for kernels that do not use shifts to update loop counters, as the less accurate modelling 
generally yields integer-based rewrite systems that still terminate, but which have fewer constraints.

The scatter plot of Fig. 10 compares the default setup with the setup that has the -increase-strength option turned 
off. A point at (x, y) indicates that the analysis took x seconds in the default setup vs. y seconds with the option turned off. 
Points lying below the diagonal thus indicate cases where it was beneficial to disable the -increase-strength option. 
The axes are plotted using log scales.

In the case of 41 kernels where termination could be shown in the default setup, timeouts occurred once the
-increase-strength option was turned off. These 41 kernels are precisely those kernels in our benchmark set that 
use shifts to update loop counters, confirming our hypothesis that termination of these kernels can no longer be shown.

In the case of 4 kernels, the opposite happened: although termination could not be shown in the default setup, turning 
the -increase-strength option off allowed KITTeL to prove termination. Closer inspection revealed that the 4 kernels 
implement cryptographic hash functions (variants of the MD5 and SHA-256 algorithms), which extensively use shifts, but 
not to update loop counters. The less precise modelling caused llvm2KITTeL to generate fewer constraints and allowed it 
to produce integer-based rewrite systems, where it was not able to do so before (see above).

Disregarding the 41 kernels for which termination could no longer be shown once the -increase-strength option 
was turned off, the Wilcoxon signed ranks test [35] (T = 19250, n = 345, p < 0.05) indicated that there is a significant 
difference in running time with and without the option. The sum of the negative difference ranks (

∑
R− = 22366) was 

larger than the sum of positive difference ranks (
∑

R+ = 19250), indicating that less running time was required when the
-increase-strength option was turned off. Moreover, the effect size for the matched-pair samples was 0.31.7 Hence, 
our analysis provides some evidence that running time improves for kernels that do not use shifts to update loop counters 
when -increase-strength is turned off, confirming our second hypothesis.

The above suggests it would be beneficial to refine the -increase-strength option by introducing a static analysis 
that determines whether a shift is used to update a loop counter. This would enable llvm2KITTeL to selectively transform 
shifts based on their use.

7 The effect size [35] determines the degree of association, similar to a correlation coefficient, and ranges between 0 and 1. Conventions define the effect 
size to be small = 0.10, medium = 0.30, or large = 0.50.
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Fig. 11. Scatter plot comparing the time taken to prove termination of kernels with loops in the default setup and with automatic invariant inference.

6.3. Automatic invariant inference

To experiment with the automatic inference of invariants, we removed all manually specified invariants from our kernels 
and turned on invariant inference in KITTeL. As in the case of the previous two experiments, KITTeL managed to prove 
termination of all 218 loop-free kernels, where the maximum time required was again 0.56 s. Hence, we again ignore all 
loop-free kernels in the remainder.

As KITTeL does not know a priori which kernels require inference of loop invariants, it indiscriminately applies Apron

to each kernel it is asked to prove termination of. Hence, as invariant inference takes time and as each inferred invariant 
increases the size of constraints in the integer-base rewrite system, we hypothesised that inferring invariants would signif-
icantly increase the overall running time. Moreover, Apron is only able to infer loop invariants of the first two forms we 
discussed above (positive loop counter and positive step value), and we thus also hypothesised that KITTeL would not be 
able to prove termination of the 2 kernels requiring an invariant of the third form (loop counter less than or equal to the 
value it is tested against for inequality).

The scatter plot of Fig. 11 compares the default setup (with manually supplied invariants) and the setup with automatic 
invariant inference. A point at (x, y) indicates that the analysis took x seconds in the default setup vs. y seconds with 
automatic invariant inference. Thus, a point lying above the diagonal denotes a benchmark for which the default options led 
to faster analysis than when automatic invariant inference was turned on. The axes are plotted using log scales.

In the case of 15 kernels that did not require manually supplied invariants, KITTeL failed to prove termination within 
the 5 minute timeout period once automatic invariant inference was turned on, while it was able to show termination in 
the default setup. In 45 of the 53 cases where manual invariants were required, KITTeL managed to prove termination 
once automatic inference was turned on. In 2 of the remaining 8 cases, KITTeL managed to infer the correct invariant 
but timed out nevertheless. The remaining 6 kernels included the 2 kernels requiring an invariant stating that the loop 
counter is less than or equal to the value it is tested against for inequality, confirming our second hypothesis. In the case 
of the other 4 kernels, it is not clear to us why KITTeL failed to infer the correct invariants. This might possibly be due to 
limitations of Apron, but giving a definitive answer to this question requires a more thorough understanding of Apron than 
we currently have.

In one case termination could be shown once automatic invariant inference was turned on, while KITTeL was not able 
to show termination of the kernel in either the default setup or in the -increase-strength experiment, while the 
invariants we added manually to this kernel should have sufficed. Hence, the additional inferred invariants simplified the 
task of proving termination.

Disregarding the 2 kernels that required invariants Apron is not capable of generating, the Wilcoxon signed ranks test 
(T = 8365, n = 384, p < 0.05) indicated that there is a significant difference in running time with and without automatic 
inference. The sum of the positive difference ranks (

∑
R+ = 47915) was larger than the sum of negative difference ranks 

(
∑

R− = 8365), indicating that more running time was required once automatic inference was turned on. Moreover, the 
effect size for the matched-pair samples was 0.67. Hence, our analysis provides evidence that running time suffers when 
automatic invariant inference is used, confirming our first hypothesis. Note, however, that the times reported for the default 
setup did not include the time an expert needed to manually provide the necessary invariants. On the other hand, the 
invariants inferred by Apron were not checked for correctness, while the manually provided invariants were.

6.4. Impact of bitvector modelling

For our final experiment we considered the bitvector modelling mode of llvm2KITTeL [5]. In this mode llvm2KIT-
TeL generates additional constraints mimicking bitvector behaviour. As we expected the additional constraints to cause 
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Fig. 12. Scatter plot comparing the time taken to prove termination of kernels with loops in the default setup and with bitvector modelling (C++ AMP 
Sample Projects only).

significant slowdown, we only considered the 20 kernels from the C++ AMP Sample Projects collection (16 of which have 
loops), which in the default setup could all be shown to be terminating without the help of manually supplied invariants.

As in our previous experiments, KITTeL was able to prove termination of all loop-free kernels within 0.56 s. Hence, we 
focus on the 16 kernels with loops in the remainder.

The scatter plot of Fig. 12 compares the default setup and the setup with bitvector modelling. A point at (x, y) indicates 
that the analysis took x seconds in the default setup vs. y seconds with bitvector modelling. A point lying above the diagonal 
thus indicates that the analysis is faster in the default setup. The axes are plotted using a log scale.

Of the 16 kernels with loops, KITTeL only managed to prove termination of 6 within the 5 minute timeout period, and 
in each case proving termination was slower than in the default setup, as we expected.

We manually inspected the remaining 10 kernels to see whether KITTeL should in principle be able to prove termi-
nation, or whether this is hindered by the bitvector modelling (e.g., due to the occurrence of bitvector overflows). In 9 
cases we did not find any reason why termination should not be provable, and we attribute the occurrence of timeouts to 
the increased number of constraints in the generated rewrite system. In the remaining case, a loop bound was an input 
parameter to the kernel and the loop counter would always be incremented by 2. This means that, if the loop bound would 
be chosen equal to the maximum integer value, termination would not occur. Hence, the difference between bitvectors and 
mathematical integers is not just a theoretical oddity, but shows up in concrete edge cases.

7. Related work

Although the literature on termination analysis is vast, only limited effort has been directed towards proving termination 
of multi-threaded programs. A technique for proving termination of individual threads is described in [36]. Whole program 
termination of multi-threaded programs using atomic operations is considered in [37,38], and termination of programs 
consisting of “concurrent objects” (an instance of the actor model) is discussed in [39,40]. The current paper is the first to 
consider whole program termination for multi-threaded programs (kernels) where the main synchronisation mechanism is 
barrier synchronisation.8

The technique described in [38] assumes that a counterexample to termination exists and does case splitting over the 
counterexample using a set of proof rules. A case is eliminated when it is found to be contradictory, and termination is 
shown when no cases remain. In contrast, each of the other aforementioned techniques, including the one described in this 
paper, can be seen as an instance of rely/guarantee reasoning [41]. In [36] threads are abstracted in an environment that 
can be relied upon to behave in a certain way by the thread whose termination one wants to prove. A proof rule that 
facilitates proving termination in a rely/guarantee setting is discussed in [37]. In our case, the rely/guarantee conditions 
are extremely weak: a read from shared memory cannot be relied upon by a thread to yield any specific value, and no 
thread guarantees anything about the values it writes to shared memory. This is similar to the technique described in [39], 
which loses all the information about the shared state at each scheduling point. The technique described in [40] improves 
upon [39] by introducing rely/guarantee conditions that establish that shared data is only changed a finite number of times 
during program execution.

Besides being an instance of rely/guarantee reasoning, our method for proving termination is also related to the technique 
that underpins the soundness of GPUVerify. Similar to our method, the technique implemented in GPUVerify depends on a 
shared state abstraction. The abstraction allows race-freedom to be proved by considering two arbitrary threads [8,9].

8 A model of a single CUDA kernel is mentioned in [38]. Unfortunately, the model does not take into account thread identifiers and allows for threads to 
ignore certain barriers. Hence, termination of the model does not reflect termination of the original kernel.
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Our choice for KITTeL was motivated by the fact that Clang/LLVM is currently the only freely available compiler that 
is able to handle CUDA and OpenCL kernels. Hence, not wanting to spend significant effort developing a new compiler 
font-end, this limited us to termination analysis tools that accept LLVM bitcode as input. Of these there are currently two:
KITTeL and AProVE [3]. The latter is not open source and, hence, could not easily be adapted along the lines described in 
Section 5.

AProVE is also able to handle the integer-based rewrite systems generated by llvm2KITTeL. However, experimenting 
with this combination revealed that the systems generated by llvm2KITTeL are in general not of the kind AProVE is tuned 
towards, resulting in poor performance. Tailoring llvm2KITTeL more towards AProVE is virtually impossible, as there is 
no publicly available information detailing the kinds of systems for which AProVE does have satisfactory performance. For 
these reasons, we did not consider the combination of llvm2KITTeL and AProVE in our experimental evaluation. Other 
tools that are able to prove termination of integer-based rewrite systems, such as Ctlr [42], generally do not allow for fresh 
variables to occur on the right-hand sides of rewrite rules—which we use to model our shared state abstraction—and, hence, 
are not suitable for our purposes.

8. Conclusion and future work

We have presented a thread-modular technique for proving termination of massively parallel GPU kernels. The technique 
reduces the termination problem for these kernels to a sequential termination problem by abstracting the shared state. 
Implementing the technique in KITTeL, we were able to prove termination of 94% of the kernels in our benchmark set, 
and of 90% of the kernels with loops. Our experience shows that the excellent progress the rewriting community has 
made in relation to sequential termination analysis can be directly leveraged to enable efficient termination analysis in the 
emerging domain of GPU programming—an encouraging result.

Experimental conclusions The effectiveness of KITTeL [4,5] is partially due to the replacement of shifts by multiplications 
and divisions. Without these replacements the percentage of successful termination proofs drops to 88%, or to 81% for the 
kernels with loops. Our experiments suggest that we can obtain a higher success rate by making the replacements more 
selective, only replacing those shifts that affect loop counters.

All above percentages are based on kernels for which we manually specified loop invariants. Usability-wise it would be 
much preferred to automatically infer invariants. KITTeL supports this approach through its use of the Apron numerical 
abstract domain library [20]. However, as our experiments show, the use of this library increases running time, and it is 
not always the case that all necessary invariants are inferred. To limit these effects, KITTeL could potentially benefit from 
a bespoke invariant inference engine that solely generates invariants facilitating termination proofs (compared to Apron

which is fairly generic in its aims). A bespoke engine should infer at least the invariants of Fig. 7. A selected number of 
other invariants should possibly also be inferred, because these may help improve the chances of proving termination, as 
one kernel in our inference experiment indicates.

Although KITTeL is highly effective, the tool defaults to modelling integers as mathematical integers. Hence, there 
is a mismatch with actual hardware, which represents integers as bitvectors. Enabling bitvector modelling in KITTeL is 
possible, and this shows that the difference between integers and bitvectors is not just theoretical, but that concrete kernels 
exist for which the behaviour is different. Unfortunately, performance of bitvector modelling is currently poor, and further 
research is needed to make it perform as well as the approach using mathematical integers.

Future work The current main shortcoming of our approach is the very coarse shared state abstraction where accessing 
the shared state yields completely nondeterministically selected values. Hence, besides the future work suggested by our 
experiments, and as discussed above, we would like to investigate more precise shared state abstractions. In particular, 
we would like to investigate abstractions which model certain properties of constant data living in shared memory, e.g., by 
automatically identifying the constant data and making it private. This should facilitate termination proofs for kernels where 
either the constant value tested against in a loop guard lives in shared memory, or where the constant data is required to 
be of a specific form. Relatedly, we would like to apply our prior work on barrier invariants [43] to capture invariants of 
the shared state that are key to establishing termination; this will potentially enable proving termination of kernels where 
values communicated between threads during kernel execution affect termination.

We would also like to investigate abstractions that are able to handle the atomic increment operations supported by 
CUDA and OpenCL (see Fig. 9b). Termination of kernels using these operations could potentially be established by modelling 
these operations as returning monotonically increasing values; an idea also applied to the reasoning about data race-freedom 
of such kernels [44].

Finally, we would like to implement the described approach to proving of GPU kernels in other termination analysis tools 
to see how these compare with KITTeL. A prime candidate here is T2 [45], as llvm2KITTeL has been extended with the 
ability to generate input for this tool [46]. A comparison with the Arctor tool from [38] would also be interesting, as this 
tool currently seems to be the only tool that offers truly scalable termination analysis for concurrent programs. A significant 
difficulty with this latter comparison will be that Arctor accepts neither kernel sources nor LLVM bitcode as input and, 
hence, a front-end would need to be developed to be able to experiment with a benchmark suite of the size we considered 
in the current paper.
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