Automated Testing of Graphics Shader Compilers

ALASTAIR F. DONALDSON, Imperial College London, UK
HUGUES EVRARD, Imperial College London, UK
ANDREI LASCU, Imperial College London, UK

PAUL THOMSON, Imperial College London, UK

We present an automated technique for finding defects in compilers for graphics shading languages. A key
challenge in compiler testing is the lack of an oracle that classifies an output as correct or incorrect; this is
particularly pertinent in graphics shader compilers where the output is a rendered image that is typically under-
specified. Our method builds on recent successful techniques for compiler validation based on metamorphic
testing, and leverages existing high-value graphics shaders to create sets of transformed shaders that should
be semantically equivalent. Rendering mismatches are then indicative of shader compilation bugs. Deviant
shaders are automatically minimized to identify, in each case, a minimal change to an original high-value
shader that induces a shader compiler bug. We have implemented the approach as a tool, GLFuzz, targeting the
OpenGL shading language, GLSL. Our experiments over a set of 17 GPU and driver configurations, spanning
the main 7 GPU designers, have led to us finding and reporting more than 60 distinct bugs, covering all tested
configurations. As well as defective rendering, these issues identify security-critical vulnerabilities that affect
WebGL, including a significant remote information leak security bug where a malicious web page can capture
the contents of other browser tabs, and a bug whereby visiting a malicious web page can lead to a “blue
screen of death” under Windows 10. Our findings show that shader compiler defects are prevalent, and that
metamorphic testing provides an effective means for detecting them automatically.
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1 INTRODUCTION

Real-time 2D and 3D graphics, powered by technologies such as OpenGL [Kessenich et al. 2016c¢],
Direct3D [Microsoft 2017a] and Vulkan [Khronos Group 2016], are at the heart of application
domains including gaming and virtual reality, and are employed in rendering the graphical interfaces
of operating systems, interactive web pages, and safety-related products such as automated driver
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assistance systems. Graphics processing units (GPUs) provide the computation required for high
quality real-time graphics. Developers program GPUs by writing shader programs, including vertex
shaders to specify scene transformations and fragment shaders to compute individual pixel colors.
Graphics shaders are expressed in shading languages, such as GLSL [Kessenich et al. 2016a],
HLSL [Microsoft 2017b], and the lower-level SPIR-V intermediate representation [Kessenich et al.
2016b], associated with OpenGL, Direct3D and Vulkan, respectively. These languages aim to provide
an abstraction that enables portability: although GPUs from different designers vary in specifics,
such as floating-point roundoff, the effect computed by a shader program should ideally be visually
similar to an end user, regardless of the GPU that is actually used for rendering.

Graphics drivers are the interface between the code a developer writes and the computation that
occurs on a GPU. A graphics driver includes a shader compiler that translates shader programs
into low-level machine code specific to the target GPU. This compilation is performed at runtime,
meaning that an application cannot rely on a priori knowledge of the end user’s GPU. For example,
graphics shaders embedded in an Android app today will execute on a GPU from ARM, Imagination,
NVIDIA or Qualcomm if the app is deployed on a Samsung Galaxy S6, ASUS Nexus Player, Shield
TV or HTC One M7 device, respectively (see Table 1).

Shader compilers need to be reliable. If a shader compiler crashes during runtime compilation,
this may prevent operation of the application attempting to render using the shader. Worse, a
defective shader compiler may silently generate incorrect machine code. This can lead to wrong
images being rendered, and to security vulnerabilities, e.g. if the erroneously-generated machine
code accesses out-of-bounds memory. Incorrect rendering of images is not only frustrating for
graphics developers who have carefully designed and programmed visual effects, but may also
be critical when shaders are used to render the displays of safety-related systems; this use case is
underlined by the Safety-Critical OpenGL specification [Khronos Group 2015]. Security defects,
including system crashes or freezes, and access to out-of-bounds memory, are especially concerning
in the context of web-based graphics rendering. The WebGL standard [Khronos Group 2014] enables
a web page to run shaders on a client-side GPU via JavaScript. If a WebGL shader is miscompiled
in a manner that induces a security vulnerability, a user’s machine might crash when they visit a
malicious web page. Worse, if the vulnerability involves out-of-bounds memory accesses, it may
be possible for a malicious web page to steal a user’s personal data by reading from elsewhere in
video memory [Context 2011; Lee et al. 2014].

These risks are compounded by runtime compilation: it is hard to work around compiler bugs by
testing an application in advance, because the shaders of an application will be compiled on-the-fly
for end user GPUs that may be unknown, unavailable, or that may not yet exist, at design time.

Unfortunately, shader compilers are hard to test. Shading languages are deliberately under-
specified in various aspects to cater for the diversity of current and future GPUs. Examples include
the level of floating-point precision that is required, and the ranges associated with integer data
types. Under-specification means that there is no single reference image that should be rendered in a
given scenario, to the extent that it is impossible to construct a platform-independent conformance
test suite or reference implementation that rigorously checks rendering results.

These issues amplify what is already the main challenge in validating compilers: that there does
not typically exist a direct oracle to determine whether a compiled program produces an acceptable
result on execution.

A popular method for circumventing the oracle problem in compiler validation is differential
testing [McKeeman 1998; Yang et al. 2011], whereby multiple compilers for the same language
are cross-checked against a set of (usually randomly-generated) programs. However, differential
testing is problematic in the context of shader compilers for two reasons. First, it requires not only
multiple GPU devices to be available, but also a reasonable level of agreement between these devices
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in interpreting the language specification. Second, it needs a rich source of diverse benchmark
programs that exercise the shading language broadly and yet do not depend on language features
for which behavior differs substantially across platforms. This requirement makes automatically
generating such shaders a challenge.

An alternative approach to the oracle problem uses metamorphic testing [Chen et al. 1998], and
has been applied in various ways to find defects in compilers for languages including C, OpenCL
and GLSL [Donaldson and Lascu 2016; Le et al. 2014, 2015; Lidbury et al. 2015; Sun et al. 2016; Tao
et al. 2010]. These approaches work by generating families of programs that should yield identical
results, such that mismatches between programs indicate compiler bugs.

1.1  Our contributions

Inspired by successful applications of metamorphic testing to C compilers, via equivalence mod-
ulo inputs (EMI) validation [Le et al. 2014, 2015; Sun et al. 2016], and building on a preliminary
study [Donaldson and Lascu 2016], we present a technique and tool, GLFuzz, for testing OpenGL
shading language (GLSL) compilers based on semantics-preserving transformations. We have de-
signed a set of six such program transformations for GLSL, which are detailed in Section 3.1. For a
given original shader, GLFuzz repeatedly applies many of these transformations at random, leading
to a transformed variant shader. The variant is typically much larger than the original, but should
render a visually identical image due to the semantics-preserving nature of the transformations.

If a significantly different image is rendered, this may be indicative of a shader compiler bug.
GLFuzz then performs reduction in a manner similar to delta debugging [Zeller and Hildebrandt
2002]: it iteratively reverses transformations, converging on a minimal set of transformations that
still lead to a significant rendering difference, such that reversing any further transformations
removes the rendering discrepancy. The result is a minimized variant that exposes the potential
compiler bug via a clear and small source code change to the original shader.

Cross-checking an individual compiler across families of equivalent programs has at least three
appealing properties. First, a GPU and driver version can be tested in isolation, thus divergent
behavior between GPU platforms is not an issue. Second, a rich and diverse set of shader programs
can be generated automatically from existing shaders of high-value (e.g. they ship as part of an
important real-world code base, such as a game, or come from a carefully-crafted in-house test
suite). Third, the defects found by our technique are presented as small changes to these high-value
shaders, meaning that they are likely to have a higher priority for fixing compared with often
pathological defects identified via randomly-generated programs. Prior methods for EMI testing
transform programs by deleting, inserting or mutating program statements based on data gathered
at runtime [Le et al. 2014, 2015; Sun et al. 2016]. This requires profiling facilities, which are typically
not available in the context of graphics shader programs. In contrast, the method we present
employs general-purpose static program transformations, and is thus applicable to testing the
compilers of all GPU designers that support OpenGL.

We present a large experimental campaign applying GLFuzz to the 17 GPU and driver configura-
tions summarized in Table 1. These configurations span all 7 major designers of commercial GPU
drivers, henceforth referred to as GPU designers: AMD, Apple, ARM, Imagination Technologies,
Intel, NVIDIA and Qualcomm.! They cover desktop, web and mobile settings, and account for
multiple operating systems. As well as testing OpenGL drivers, the Windows WebGL configurations
(7, 11, 12) indirectly test Direct3D drivers due to Google Chrome’s use of ANGLE (Almost Native
Graphics Layer Engine) [Google 2017], which we describe in Section 2.1.

IConfiguration 9 features an Imagination PowerVR GPU, but we refer to this as “Apple PowerVR” since the iPhone GPU
drivers are written by Apple (as confirmed by an Imagination employee when we reported iPhone defects).
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Id GPU Host CPU OS + browser Driver
Desktop OpenGL
1 AMD R9 Fury Intel E5-1630 Windows 10.0.10586 Crimson 16.9.2
AMDGPU Pro
2 AMD HD 7700 AMD A10-7850K Ubuntu 16.04.1 16.40 348864
3 Intel HD 520 Intel i7-6500U Windows 10.0.14393 20.19.15.4501
4 Intel HD 520 Intel i7-6500U Windows 10.0.14393 21.20.16.4542
5 NVIDIA GTX 770 Intel E5-1630 Windows 10.0.10586 373.06
6 NVIDIA GTX Titan Intel E5-2640 Ubuntu 14.04.5 370.28
WebGL
Windows 10.0.10586 .
7 AMD R9 Fury Intel E5-1630 + Google Chrome 55.0.2883.87 Crimson 16.9.2
Ubuntu 16.04.1 AMDGPU Pro
8 AMD HD 7700 AMD A10-7850K + Google Chrome 54.0.2840.100 16.40 348864
9 Apple PowerVR GT7600  none SE i0S 10.1.1 + Safari 602.1 Not availabl
pple Power’ (MLM62B/A) i 1. afari 602. ot available
. Samsung Chromebook .
10  ARM Mali-T628 (XE503C12) ChromeOS 54.0.2840.101 Not available
. Windows 10.0.14393
11 Intel HD 520 Intel i7-6500U + Google Chrome 55.0.2883.87 20.19.15.4501
Windows 10.0.10586
12 NVIDIA GTX 770 Intel E5-1630 + Google Chrome 55.0.2883.87 373.06
. Ubuntu 14.04.5
13 NVIDIA GTX Titan Intel E5-2640 + Google Chrome 55.0.2883.87 370.28
OpenGL ES under Android
. Samsung Galaxy S6 Android 6.0.1 OpenGL ES 3.1
14 ARMMalT760 MPS g\ Goop) build MMB29K.G920EXXS4DPJ2  v1.17p0-03rel0
15 Imagination PowerVR ASUS Nexus Player Android 7.1.1 OpenGL ES 3.1
Rogue G6430 (TV000I) build NMF26] build 1.6@4278818
Shield TV Android 6.0 OpenGL ES 3.2
16 NVIDIA Tegra (P2571) build MRAS58K.324774_793.8284  NVIDIA 361.00
HTC One M7 Android 5.0.2 OpenGL ES 3.0
17 Qualcomm Adreno 320 o744 build 7.19.401.30 CL482424 V@84.0AU

Table 1. Summary of the OpenGL configurations we tested

1.2 Summary of Key Findings

Our extensive experimental campaign, using 30,000 generated shaders, has identified a large number
of GPU compiler defects, including both rendering defects and security-critical vulnerabilities. Our
key findings are as follows:

Shader compiler bugs are prevalent in graphics drivers. We identified shader compiler defects
in all the (GPU + driver) configurations that we tested, spanning all the major GPU designers.
Figure 1 and Table 2 illustrate a sample of theses bugs, featuring at least one bug per designer;
these are discussed in detail in Section 4. Overall, we have reported more than 60 issues to GPU
designers, many of which have been confirmed and fixed (see Section 5.4 for a summary of the
status of the issues at time of writing). This covers not just GLSL compilers in OpenGL drivers, but
also a selection of HLSL compilers in Direct3D drivers, tested via Windows WebGL platforms that
use ANGLE to implement WebGL via Direct3D. The high rate of defects, many of which are severe,
indicates that more rigorous testing of commercial GLSL compilers is needed.

We maintain a repository providing details of all the bugs we have reported so far (excluding
details of some security issues in the interests of responsible disclosure), tracking the status of each
bug based on feedback from GPU driver developers [Multicore Programming Group 2017].

Graphics shaders present a security threat. It is well-known that graphics driver defects, as
well as defective shaders running via graphics drivers, can have serious consequences [Context
2011; Lee et al. 2014; SecurityWeek 2016; van Sprundel 2014]. To guard against this, version 1 of the
WebGL specification is deliberately restrictive so that e.g. it is possible to check statically whether
all memory accesses made by a shader are within bounds. Nevertheless, we found a number of
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Config.

Original image

Injection Variant image

1 (AMD)

if(injSwitch.x > injSwitch.y) {
if(injSwitch.x > injSwitch.y) { return; }
int f = 1;

i
[..]
[if(injSwitch.x > injSwitch.y) { return; }

10 (ARM)

if(injSwitch.x > injSwitch.y) {
for(int i = 0; i <1; i ++) {
k = 0.0;
3

3

14 (ARM)

uniform float GLF_13time;
float GLF_13map() { [..] }
[..]
float GLF_13t = 1.0;
for(int GLF_13i = @; GLF_13i < 1; GLF_13i++) {
if(GLF_13t > 1.0) { continue; }
GLF_13t += GLF_13map();

K

9 (Apple)

[for(int c = 0; c < 1; c++) {|
if(j = 0) {
return vec4(0.8, 0.5, 0.5, 1.0);
3

return vec4(0.8 * injSwitch.y, 0.7, 0.4, 1.0);

15 (ImgTech)

if(injSwitch.x > injSwitch.y) {
for(int i = 9; 1 < 10; i ++) { continue; }

i
[..]
if(injSwitch.x > injSwitch.y)

{ if((p.z > 60.)) { break; } 3}

[..]
vec2 uvs = [..];
S(InteD vec4 uvs_vec = vec4(0.0, uvs, 0.0);|
/* Replace uvs with uvs_vec.yz after =*/
vec3 hsbToRGB(float h, float s, float b) {
return b » (CFalse 7 (=) 1 1.0 )| - )
16 (NVIDIA) + (b - |(false ? (--s) :| b * (1.0 - s) DD

* clamp(abs(abs((false ? (--s) : 6.0 ! * [..];
3

17 (Qualcomm)

/* Multiple instances of the following,
where v is a literal value */
if(injSwitch.x > injSwitch.y)
return v;

Table 2. Wrong image examples from different configurations. The image produced by the original shader is
on the left, the image produced by the variant shader is on the right, and the code injection (highlighted in
yellow) that induces the bug is shown in the middle. Recall that injSwitch is set to (0.0, 1.0) at runtime.
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Fig. 1. Images illustrating two security bugs. Image (a) was captured by our malicious web page and includes
the contents of another browser tab. The user was visiting the Bank of America page. The image has been
flipped and rotated. Image (b) is a screen shot showing a web page in which graphics from the WebGL canvas
are being rendered outside the web page on the Safari UL

serious security vulnerabilities that affect WebGL. Most seriously, we found a significant remote
information leak security bug in the Google Chrome web browser where a malicious WebGL page,
rendering on a Samsung Galaxy S6 by an ARM Mali GPU, can capture the contents of other browser
tabs, illustrated in Figure 1a. On reproducing the issue in response to our bug report, Google have
reported this defect directly to ARM, requesting a fix. In response to our report, ARM fixed the issue
and the fix has been deployed in recent Samsung Galaxy S6 firmware updates. We also identified
a memory corruption bug that caused leakage of data between processes running on an iPhone,
which Apple confirmed and have now fixed in i0S 10.3, acknowledging GLFuzz in the release notes
and logging the issue as CVE-2017-2424. Another serious defect is a WebGL shader that frequently
causes a “blue screen of death” (a fatal system error) under Windows 10 with an AMD GPU; this
bug can be triggered simply by visiting a web page. AMD were able to reproduce the issue and
have fixed it in more recent drivers. These issues highlight that there is more work to be done
by driver writers in ensuring the security of WebGL. We found security-related issues affecting
all other designers: on an ASUS Nexus Player (Imagination), incorrect compilation led to garbage
being rendered, possibly leaking information; with an NVIDIA GPU under Linux we encountered
machine freezes through visiting WebGL pages (NVIDIA have fixed the issue in recent drivers,
acknowledging GLFuzz in the release notes and logging the issue as CVE-2017-6259); and in Safari
on a MacBook with an Intel GPU, we found that visiting a WebGL page would lead to visual glitches
in parts of the browser Ul outside the designated HTML5 canvas element (see Figure 1b).

We discuss these issues in detail in Section 4.2, and provide online a video showing the effects of
the main issues [Donaldson and Thomson 2017].

Metamorphic testing is effective in identifying shader compiler bugs. All the bugs we re-
ported were identified by GLFuzz using our metamorphic testing approach. Each of the six types of
program transformation employed by GLFuzz proved necessary to trigger at least one defect.

Metamorphic testing finds bugs that GPU designers care about. A key feature of GLFuzz
is that bug-inducing variant shaders can be automatically minimized via reduction. As a result
we were able to report each miscompilation defect in the form of a small change to an existing,
visually appealing shader, that led to defective rendering. We argue that this is a key property of
our approach, because (a) the small change that induces the bug provides compiler developers with
a hint as to what may be wrong, and (b) the fact that a compiler bug can be induced by only slightly
changing a carefully-crafted, human-written shader suggests that this bug should have a higher
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priority of fixing compared with an obscure corner-case bug. We have had positive engagement
with all seven GPU designers in response to our bug reports: every company has confirmed and
fixed at least one defect that we found using GLFuzz.

Metamorphic testing can inhibit defects. In a number of instances, we found that the original
shader was being miscompiled, leading to an unexpected image, and that some of the variant
shaders generated through our semantics-preserving transformations would evade miscompilation,
rendering the expected image. This surprising result suggests a less conventional application
of our approach: GLFuzz could be used by developers to automatically synthesize a temporary
work-around for a shader compiler bug while a driver update is awaited.

In summary, our key contributions are:

e An approach to metamorphic testing that uses novel program transformations to automati-
cally generate families of semantically equivalent shaders from existing high-value shader
programs

e An implementation of this technique as a tool, GLFuzz, for testing GLSL fragment shader
compilers

e A collection of security bugs affecting drivers from every GPU designer, demonstrating that
our technique provides a rigorous method for exposing such bugs

e A large experimental evaluation over 17 OpenGL configurations from 7 GPU designers,
illustrating the effectiveness of our technique by exposing more than 60 shader compiler
defects, spanning every tested configuration

The paper is accompanied by a series of blog posts detailing our experiences applying GLFuzz to
graphics drivers from each major GPU designer [Donaldson 2016].

2 BACKGROUND
2.1 OpenGL and GLSL

In this work, we focus on the OpenGL graphics API [Kessenich et al. 2016¢] and its associated
shading language, GLSL [Kessenich et al. 2016a]. This allows us to test a variety of desktop and
mobile configurations (Table 1), as OpenGL is the most widely supported graphics API. We focus
on fragment shaders (known as pixel shaders in Direct3D), which are programs that execute on the
GPU for every pixel being rendered and usually output a color and depth value. We henceforth use
shader and shader compiler to mean fragment shader and fragment shader compiler unless specified
otherwise. Fragment shaders are written in a particular version of GLSL. We use GLSL version 4.40
for desktop configurations, and GLSL ES version 1.00 for Android and WebGL configurations.

WebGL [Khronos Group 2014]% is a JavaScript version of the OpenGL API that allows web pages
to render GPU-accelerated graphics. WebGL disallows several GLSL features that are optional in
the GLSL ES version 1.00 specification, yet these are typically implemented in OpenGL ES imple-
mentations, such as on Android devices. Thus, we treat the more-restrictive WebGL-compatible
GLSL as a separate GLSL version. In particular, WebGL restricts loops to simple for-loops that can
always be unrolled statically and array/vector/matrix indexing must use constant-index-expressions:
a constant expression, a loop index variable, or a combination of the two. We also note that, when
running on Windows, the Firefox and Chrome web browsers use Direct3D to implement WebGL.
This is achieved via ANGLE (Almost Native Graphics Layer Engine) [Google 2017], which translates
the GLSL shaders to HLSL as required for Direct3D. Thus, we indirectly test ANGLE and Direct3D
shader compilers and drivers on our Windows WebGL configurations.

“Throughout this article, we refer to WebGL version 1.
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2.2 The Oracle Problem

To test a piece of software, one generally requires an oracle: a means for determining the correct
output for the software under test for a given input [Barr et al. 2015]. In many contexts, an oracle
is unavailable, either because there does not exist a well defined set of correct outputs for a
given input, or because determining the expected output is theoretically possible but practically
infeasible [Weyuker 1982].

Compilers suffer from the latter problem in general: although for small programs it is feasible to
work out by hand the results one should observe by running the program after compilation, this
quickly becomes infeasible as program size grows. In addition, shader compilers suffer from the
first problem: parts of GLSL are deliberately under-specified. For example, the GLSL specification
states [Kessenich et al. 2016a, p. 85]:

“Any denormalized value ... can be flushed to 0. The rounding mode cannot be set and is
undefined. NaNs are not required to be generated”,

and [Kessenich et al. 2016a, p. 90]:

“Without any [precision] qualifiers, implementations are permitted to perform such opti-
mizations that effectively modify the order or number of operations used to evaluate an
expression, even if those optimizations may produce slightly different results relative to
unoptimized code.”

The motivation for this flexibility is to enable shaders to run efficiently on a wide range of GPUs
with differing hardware support for floating-point arithmetic, and to allow aggressive compiler
optimizations to be applied. The downside is that this flexibility makes it impossible to test a
new OpenGL implementation via pixel-by-pixel comparison with the rendering results of a single
trusted reference implementation. Similarly, writing a rigorous test suite to precisely check expected
rendering results is impossible, since the flexibility afforded by the specification means that in
many cases no specific result is expected.

2.3 Metamorphic Testing

One approach for solving the oracle program is metamorphic testing [Chen et al. 1998; Segura et al.
2016], which we describe via an example. Suppose we are attempting to implement a program sin
that computes the trigonometric sin function (note the different type faces used to distinguish the
mathematical sin function, and the attempted implementation sin). Suppose our program computes
sin(x) = y for some input x and output y. If we do not have an oracle for sin, we cannot know
whether our implementation is correct, i.e. whether y does indeed correspond to sin(x). Still, we
know some facts about the mathematical sin function, including that, for all x, sin(—x) = —sin(x),
and sin(x + 27) = sin(x). These input/output relations for sin provide a means for testing sin:
if we find an input x such that sin(x + 27) # sin(x), or such that sin(-x) # —sin(x) then we
know that sin must have been implemented incorrectly. Here # tolerates a degree of floating-point
roundoff error when checking for inequality between values.

More generally, let p be a mathematical function. Suppose we know from domain information
that for two functions f7 and fo, transforming the inputs and outputs of p respectively, the following
holds:

Vx . p(fi(x)) = fo(p(x)).

We can test an implementation p of p by checking, for various inputs x, whether p(f(x)) = fo(p(x)),
where = denotes an equality test that, if necessary, is tolerant to acceptable result differences e.g.
induced by floating-point roundoff. The input/output relations are called metamorphic relations,
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and the process of testing a function’s implementation by cross-checking inputs and outputs with
respect to metamorphic relations is called metamorphic testing.

Referring to the sin example again, we can choose fi(x) = fo(x) = —x as metamorphic relations
for the identity sin(—x) = —sin(x), and f7(x) = x + 2z and fo(x) = x for the identity sin(x + 27) =
sin(x).

Notice that metamorphic testing can only be used to find bugs, and not to prove their absence.
For example, a stupid sin implementation, sin, that returns sin(x) = 0 for all x, satisfies both the
identities of sin discussed above, yet is obviously incorrect.

Metamorphic compiler testing. We now summarize how metamorphic testing can be applied
to compilers [Donaldson and Lascu 2016; Le et al. 2014; Lidbury et al. 2015; Sun et al. 2016; Tao
et al. 2010]. Compiling and running a program can be viewed as a function, compileAndRun :
Bytes X Bytes — Bytes, taking a pair of strings corresponding to the program and its input, and
producing a stream of bytes: an error message if the program fails to compile, or the output obtained
by running the compiled program otherwise.’ For a shader compiler, the output will be data to
be written to a display frame buffer. Suppose that f; : Bytes — Bytes is a semantics-preserving
program transformation. That is, for a given program it returns a program that may be different
syntactically, but which should yield identical output when executed.

Then, for any program P and input I for P, we should have:

compileAndRun(P, I) = compileAndRun(f1(P), I)

Note that since f7 is semantics-preserving, fo is simply the identity function and hence does not
feature in the above equation. If we find a discrepancy between the outputs, then there must be
a defect in the compiler. More accurately, there must be a defect in the implementation of the
programming language, which could be a defect in the compiler, supporting runtime libraries, or
even in the hardware on which compiled programs execute. A caveat here is that we assume P to
be deterministic; e.g. it does not feature randomization, nondeterminism due to concurrency, or
nondeterminism arising from undefined behaviors such as accessing memory out-of-bounds.

Aswe discuss further in Section 3, a fuzzy comparison between the results of compileAndRun may
be required if the programming language semantics are such that small floating-point differences
can arise due to the transformations that are applied (so that they are not strictly semantics
preserving).

3 DETAILS OF OUR TESTING APPROACH

We now detail the techniques behind our GLFuzz tool for metamorphic testing of GLSL compilers.
Our focus is on compilers for GLSL fragment shaders, though with engineering effort the approach
could be applied to other shader types, as well as different shader representations such as HLSL
and SPIR-V, or indeed more broadly to other, non-graphical, programming languages.

Testing with GLFuzz involves three phases:

Variant generation From an existing original shader, we automatically generate a number of
variant shaders, by applying semantics-preserving transformations.

Detection of deviant variants If the image rendered by a variant is significantly different
from the original image, the variant is said to be deviant: it might expose a shader compiler
bug.

Reduction of deviant variants After identification of a deviant variant, an automatic reduc-
tion process is triggered: transformations are reversed as long as a different image is observed,

3In practice the program may also have external side-effects that are not captured by its output, such as writing to files or
changing operating system environment variables.
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until a deviant variant with a minimal difference from the original variant, and still leading
to rendering discrepancies, is obtained.

3.1 Variant Generation via Program Transformations

A variant shader is obtained from an original shader by applying transformations that should not
alter the shader semantics. However, if a GLSL shader manipulates floating-point data, which is
always the case in practice, then technically no transformation to the shader can be guaranteed to
be semantics-preserving. As discussed in Section 2.3, shader compilers are permitted to perform
optimizations that reorder floating-point operations, ‘even if those optimizations may produce
slightly different results relative to unoptimized code” [Kessenich et al. 2016a, p. 90]. The conditions
under which compiler optimizations fire are well-known to be sensitive to the way a program is
presented, so that any program change (whether explicitly floating-point related or not) might
cause different optimizations to fire, which might influence floating-point computation.

We say that a transformation is essentially semantics-preserving to mean that the transformation
will have no effect on computation, except for possibly inducing slight changes in floating-point
results at the point of transformation. We cannot give a more precise definition (e.g. by bounding
acceptable roundoff error) because the GLSL specification does not specify limits on the extent
to which results are allowed to change due to compiler optimizations. Henceforth we shall use
semantics-preserving to mean essentially semantics-preserving, for brevity.

We now detail the concept of opaque values and opaque expressions (Section 3.1.1), on which
several of the GLFuzz program transformations hinge, after which we describe the six program
transformations that GLFuzz currently employs (Section 3.1.2) and how they can be composed
(Section 3.1.3).

3.1.1  Opaque values and expressions. Each variant shader is equipped with a new uniform
variable," injSwitch (short for injection switch), of type vec2: a 2D floating-point vector. At
runtime, injSwitch will be set to (0.0, 1.0), but the shader compiler is oblivious to this at compile-
time: the values of injSwitch.x and injSwitch.y are opaque to the compiler. These opaque
values can be used to construct expressions that are guaranteed to evaluate to true, false, 1 or
0. For example, (injSwitch.x > injSwitch.y) is guaranteed to be false at runtime, and both
(injSwitch.x + injSwitch.y) and injSwitch.y are guaranteed to evaluate to 1. We use the
notation T, F, 1 and 0 to refer to expressions guaranteed to evaluate at runtime to true, false, 1 and 0,
respectively. In each case, GLFuzz randomly generates an appropriate expression via injSwitch.x
and injSwitch.y.

3.1.2  Program transformations. Armed with these opaque values and expressions, we now
describe the transformations GLFuzz employs. We selected these transformations based on (a)
hypotheses that they might be effective in provoking compiler bugs (e.g. because they complicate
control flow or change data layout), and (b) the ease with which they can be automatically applied
during variant generation and later reversed during reduction of deviant variants. The bugs in a
given driver that our method can detect is of course limited by the available transformations: there
is no guarantee that a particular bug can be triggered by the transformations we have implemented
so far. However, as discussed in detail in Section 5, we have found every transformation to be
essential in triggering at least one bug. Furthermore, our method is parametric so that it can be
augmented in the future with additional transformations.

4 A uniform variable is a read-only input parameter to the shader, the value of which is independent from the pixel being
rendered.
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Dead code injection (dead ). Code from another donor shader is injected into the target shader,
such that the injected code is unreachable at runtime. Code fragments C and D are randomly
selected from the target and donor shaders, respectively. Donor fragment D is adapted into a form
D’ suitable for injection before C: any variables used but not declared in D are either declared at
the start of D’, or substituted in D’ for the names of other appropriately-typed variables already in
scope at C. A statement:

if(H{ D}
is then injected into the target shader immediately before C.

The injection is semantics-preserving because condition F is guaranteed to evaluate to false at
runtime. Because F is opaque, the compiler cannot deduce that the injected code is unreachable
and thus cannot optimize it away. Furthermore, if some of the free variables in D are substituted in
D’ for variables already in scope at C, it will appear to the compiler that there may be data flow
between the original shader variables and D’, which might influence the optimizations applied by
the compiler.

Dead jump injection (dead-jmp). It has been hypothesized that metamorphic testing of C com-
pilers is effective because it complicates the control-flow graph of the program being compiled [Le
et al. 2014]. Inspired by this hypothesis, we equipped GLFuzz with a transformation that randomly
adds a statement to the target shader of the form:

if(F) { jump; 3
Here jump is one of break, continue, return or discard; the former two are only allowed when
injecting into the body of a loop. Again, this is semantics-preserving because F will evaluate to
false at runtime. This transformation can be seen as a special case of dead designed to provoke
compiler bugs that manifest in the presence of complex control flow.

Live code injection (live). While the dead transformation injects unreachable code, live injects
donated code that is actually executed. A code fragment D is chosen from the donor and turned into
a code fragment D’ by renaming all variables and functions referred to in D so that their names do
not clash with names declared in the target shader. All free variables appearing in D are declared
at the start of D’. Code fragment D’ is then inserted at a random position in the target shader. All
functions of the donor shader that D’ might call (directly or indirectly) are added to the target
shader, and are also subject to renaming to avoid name clashes.

Intuitively, this transformation is semantics-preserving because the injected code accesses disjoint
data from the original shader code. Some extra care is required to guarantee preservation of
semantics in relation to jump statements. For example, if the donor fragment D includes a return
statement, this must be removed in D’ as it would cause the original shader to perform a function
return when usually this would not be the case; similar care is required with break, continue and
discard statements.

Expression mutation (mutate). Mathematical identities are used to rewrite a numeric or boolean
expression e into an equivalent form, identity(e), which is one of:
e (T?e:d)or (F?d: e), whered is a randomly generated expression with the same type
ase
e (e+0),(0+e), (e*x1)or (1x*e),ifeis numeric
o (e&8&T),(T&&e), (e || F)or (F|]| e),ifeisboolean

Analogous transformations are applied to vector expressions.

Vectorization (vec). Multiple variables are packed into a vector, and occurrences of the original
variables replaced with vector accesses. For example, suppose the target shader declares variables

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 93. Publication date: October 2017.



93:12 Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson

a, b and c, where a and c have type float and b has type vec2. The target shader is equipped
with a new merged variable, a_b_c say, of type vec4. All references to a, b and c are replaced with
a_b_c.x, a_b_c.yz and a_b_c.w, respectively (where “.yz” returns the middle two components
of a vec4 as a vec2). For instance, a statementb.x = a + b.y + c; becomes:

a_b_c.yz.x = a_b_c.x + a_b_c.yz.y + a_b_c.w;

This is semantics-preserving because it merely changes where values are stored. GLFuzz imple-
ments a generalized version of this transformation in which floating-point and integer variables
are randomly selected for packing into vectors.

Control flow wrapping (wrap). Like dead-jmp, wrap aims to provoke compiler bugs by com-
plicating control flow. A randomly-selected target shader code fragment C is replaced with one
of:

if(T){ C }

o if(F) { /* empty */ } else { C }

for(int temp = 0; temp < 1; temp++) { C }
e do { C } while(F);

This preserves semantics because in each case C is executed exactly the number of times it was
executed originally. Due to the use of opaque conditions T, F, and opaque loop bounds 0 and 1, the
compiler under test cannot statically determine that the added control flow is redundant.

3.1.3 Composing transformations. GLFuzz generates a variant by repeatedly applying the above
transformations to an original shader, leading to composition of transformations. For example, wrap
might wrap a piece of code previously donated by live or dead, vec might subsequently apply vector
packing to this part of this code, mutate might apply identity functions to expressions that now
refer to vector components, and further applications of mutate might be applied to sub-expressions
of already mutated expressions. Combined and applied repeatedly, these six transformations offer
a rich space of variant programs that can be generated from a given original shader. Also notice
that each transformation is easy to reverse during reduction (see Section 3.3). In general, the
GLFuzz framework can be extended with any additional program transformation that is semantics-
preserving and reversible.

3.2 Identification of deviant variants

Deviant variants are identified by checking whether the variant image and the original image
are visually distinguishable, in which case the variant is said to be deviant as it might expose
a shader compiler bug. A pixel-per-pixel comparison of images is not suitable as the program
transformations are only essentially semantics-preserving, as discussed in 3.1.

In particular, if a shader is numerically unstable, it is possible that transformations inducing slight
floating-point result changes propagate and accumulate, ultimately leading to large differences
in what is rendered. When this occurs it is arguable that the associated shader is unlikely to be
suitable for portable rendering. Indeed, identifying rendering differences via semantics-preserving
transformations might serve as a mechanism for identifying such instability.

As a proxy for “visually distinguishable”, we compare images using the chi-squared distance
between image histograms, and regard images as sufficiently different if this distance is above a
given threshold. However, GLFuzz is parameterized so that any other image comparison metric
could be used. Details of how this threshold was set for our experiments are given in Section 5.2
and we assess the false alarm rate associated with the chi-squared distance metric in Section 5.3.
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3.3 Reduction of deviant variants

A deviant variant is typically large, featuring lots of transformations. As such, it provides very
little information about which transformations have led to discrepancies in image rendering. It is
therefore desirable to reduce a deviant variant into a more manageable form that still triggers the
rendering discrepancy. GLFuzz accomplishes reduction via the following process.

In a reduction step, a random set of transformations that were applied to the variant are reversed,
and the associated image rendered. If the new image is still sufficiently different from the original,
GLFuzz performs further reduction steps to try to reverse further transformations. Otherwise, the re-
duction step is retried using another randomly selected set of transformations. This process iterates
until a minimal set of transformations is reached, such that reversing any further transformation
causes the distance between image histograms to fall below the given threshold. Due to the random
choice of transformations to reverse at each reduction step, this approach actually converges to a
local minimum. In practice, local minima seem satisfactory: in our experiments, reductions nearly
always converged to small shaders featuring only a small number of transformations.

The reduction process is similar to delta debugging [Zeller and Hildebrandt 2002], and, like
state-of-the-art delta debugging algorithms, uses heuristics to accelerate the process. A reduction
step first reverses a large set of transformations, favoring larger transformations, such as those
that inject large blocks of code. If the attempt fails, an exponentially smaller set of transformations
is chosen on each retry, and this set is more likely to contain smaller transformations from within
large injected blocks of code.

This automated process leads to a variant that is only slightly different from the original shader,
that should render a visually identical image (because the transformations are semantics-preserving),
but that renders an image sufficiently different to have been flagged by the histogram-based
comparison. If, on manual inspection, the images are indeed visually distinguishable this means
either (a) the original shader is numerically unstable, so that small compiler-induced floating-point
differences have a significant impact on what is rendered, or (b) the mismatch is due to a compiler
bug. If the original shader is of high-value then both outcomes are noteworthy.

4 EXAMPLE BUGS

Before describing our full testing campaign (Section 5) we highlight the effectiveness of our
approach by detailing several wrong image bugs (Section 4.1) and security bugs (Section 4.2). In
both categories, the bugs cover all GPU designers, and the wrong image bugs exercise all six of the
semantics-preserving transformations described in Section 3.1. We also found and reported many
front-end issues, such as incorrect compiler errors and compiler crashes, but we do not focus on
these here.

We have reported each issue to the associated GPU designer and comment on cases where they
have responded. Our repository of shader compiler bugs provides further details on the bugs we
discuss [Multicore Programming Group 2017], and we associate with each bug the number of a
corresponding issue in our GitHub issue tracker.

Because our testing method is black-box, in general we do not have access to low-level details
associated with the issues that GLFuzz triggers. However, in Section 4.3 we present insights into
two bugs affecting recent AMD and NVIDIA drivers, for which it is possible to inspect generated
assembly code.

4.1 Wrong Image Bugs

We present details of eight bugs, alphabetically ordered by the designer of the GPU associated with
the configuration that exhibited the bug. For each bug we note the GPU designer, the configuration
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id (referring to Table 1), the GLFuzz transformations required to trigger the bug (see Section 3.1),
and the issue number associated with the bug in our issue tracker. We chose this selection of bugs
in order to cover all GPU designers and all transformations.

Table 2 summarizes details of the bugs in the same order, with one bug per row showing (left-to-
right) the configuration id and GPU designer, the image produced by the original shader, the small
semantics-preserving transformation that is present in the reduced variant shader (with injected
code highlighted in yellow), and the significantly different image produced by the variant shader. In
all cases the injections are minimal: simplifying the injected code further leads to identical rendered
images.

AMD (1) - dead-jmp, dead, issue 7. A combination of dead and dead-jmp injections causes a space
scene to become a completely white image. We have observed similar injections causing wrong
images to be rendered on our AMD Windows and Linux configurations. What these injections
have in common is a variable declaration (f in the presented example) and a second dead-code
injection. Other generated variant images include a solid background color with artifacts or odd
missing shapes. AMD have confirmed they can reproduce this issue and that a fix will be available
in an upcoming driver. In Section 4.3 we provide details of the assembly code generated by AMD’s
shader compiler for a simple shader that is affected by what appears to be the same issue.

ARM (10) — dead, wrap, issue 26. An unreachable block containing the assignment k = 0.0; is
introduced by dead, and then wrapped in a single-iteration loop by wrap. The injection changes
the “flat” image produced by the original shader to the three-dimensional scene in the variant
image. Interestingly, the variant image is similar to what we see when rendering the original
shader on other platforms. This suggests that this configuration exhibits a compiler bug that is
triggered by the original shader and that the injection actually fixes (i.e. works around) this issue,
by preventing a compiler optimization. ARM confirmed that they could reproduce this in driver
versions up to “r11p0” (October 2015), and that it has been fixed independently in driver versions
since “r12p0” (the next driver version); it is possible that this defect adversely affected an end-user.
We have observed similar instances where GLFuzz injections can work around shader compiler
bugs in various configurations, particularly the Android devices. This suggests a possible additional
application of semantics-preserving transformations.

ARM (14) — live, issue 31. The injection adds, via donation from another shader, a new uni-
form variable, GLF_live13time, and a new function, GLF_live13map, that uses the variable. The
GLF_liven prefix is used to avoid name clashes as described in Section 3.1. The function is then
called from a live, side-effect free context. The injections turn the space scene image into stripes.
Interestingly, we were not able to remove or simplify the remaining statements in GLF_livel3map
(not shown) without making the issue disappear. We reported the issue to ARM, who were able to
reproduce it on an old version of their GPU drivers (as used by our Samsung Galaxy S6, see Table 1).
The bug was reportedly caused by a register allocation bug that has been independently fixed in
newer drivers available to OEMs, but not yet used by the Samsung Galaxy S6. Again, independent
fixing indicates that this bug may have affected end users directly.

Apple (9) — wrap, mutate, dead, issue 36. This injection contains wrap and mutate transformations,
as well as a dead transformation (not shown in Table 2) that injects an empty if statement: if(
injSwitch.x<injSwitch.y) {3}. These transformations cause the foreground “slug” object in the
original image to disappear. Removing any of the mutations (even the empty if statement) causes
the slug to reappear. We reported the issue to Apple who confirmed the issue and have fixed the
problem in iOS 10.3.
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Imagination Technologies (15) — dead, issue 49. We add two unreachable code segments, each
containing break or continue, embedded in a loop or conditional. Though similar to the transfor-
mations arising from dead-jmp, these transformations arise from dead as they do more than merely
inject jump statements. The injections cause the image to become darker and seemingly zoomed in.
We have reported this bug to Imagination Technologies, who have managed to reproduce it on
their latest internal drivers and filed it to the driver team for fixing.

Intel (3) — vec, issue 44. The original shader contains a vec2 variable, uvs. The vec transformation
encloses uvs in a vec4, initialized to (0.0, uvs, ©.0). The value of uvs is then accessed by
referring to the contents of the new vec4. The original transformation packed additional variables
into the x and w components of the vector, which were pulled out again automatically during
reduction. The injections turn the space scene image into stripes. We reported this to Intel, who
asked us to try a more recent driver version, with which we could not reproduce the issue. This
suggests that it may have been fixed independently, perhaps having been reported by end users.

NVIDIA (16) — mutate, issue 12. In this example, there are multiple applications of mutate.
Several close-proximity expressions are mutated to the same form: an expression e is transformed
to (false ? (--s):e), where s is a local variable. The injections cause the colored squares to
disappear. NVIDIA confirmed they could reproduce this issue, and have deployed a fix in a recent
SHIELD Android TV device update.

Qualcomm (17) — dead-jmp, issue 9. Our final example contains a variety of one-line dead jump
injections. All injections are guarded by the usual injSwitch guard. The contents of the injections
are all return statements, sometimes returning a vector value. The variant image has a yellow
rectangle corruption in the bottom left. This rectangle flickers when we view it via our client,
whereas all images produced by our shaders are meant to be static. Qualcomm informed us that
they are no longer maintaining drivers for our relatively old HTC device, and did not investigate
this issue further to our knowledge.

4.2 Security-related

Our approach is ideally suited to finding wrong image bugs, which are arguably the most challenging
bugs to detect due to the lack of an oracle. However, we encountered several interesting security
bugs. We now discuss one such bug per GPU designer, in what we judge as arguably decreasing
order of severity. Due to responsible disclosure, we do not describe any of the shaders in detail.
However, we provide an online video that visually illustrates each issue [Donaldson and Thomson
2017]. For each issue we indicate the affected GPU designer, the issue number for the bug as logged
in our issue tracker [Multicore Programming Group 2017], and the associated start time for the
issue in our video, in the form MM:SS.

Stealing data across browser tabs (ARM), issue 80, 00:05. On multiple configurations, we encoun-
tered cases where variants produce garbage when rendered. That is, the image (which is supposed
to be static) is animated with somewhat random patterns, suggesting that uninitialized (and possibly
previously used) memory is being rendered as part of the image. We found a particularly severe
case when testing the Samsung Galaxy S6 (configuration 14): when rendering a particular variant
in Chrome (or the stock browser) using WebGL, the contents of other tabs is frequently visible
in the image. An example is shown in Figure 1a and in our video. The HTML5 canvas element in
which the image is shown can be captured and uploaded to a server via JavaScript. Thus, we found
a significant remote information leak security bug where a malicious web page can capture the
contents of other browser tabs. We created a proof of concept that is under review for a security
bug bounty. Our issue has been reproduced by the Chrome team who reported the issue directly to
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ARM. As a result of this report, the issue was fixed by ARM and the fix was deployed in recent
Samsung Galaxy S6 firmware updates.

“Blue screen of death” by visiting a WebGL page (AMD), issue 28, 00:24. We encountered a variant
that frequently causes a “blue screen of death” (a fatal system error) on our Windows 10 AMD
machine (configuration 7). Crucially, the variant is WebGL compatible and so the bug can be
triggered simply by visiting a web page. AMD were able to reproduce the issue and issued a fix
in driver version 17.1.1. The shader that triggered this bug was large: 109K. We used our reducer
to remove code fragments while a blue screen could still be triggered; this involved running our
reducer on a separate machine and repeatedly crashing and restarting the AMD machine. The
result was a shader of size 491B that reproduces the crash on our system. However, AMD could not
reproduce the issue internally using this small shader, suggesting that the bug might be somewhat
system-dependent.

HTC phone restarts on visiting a WebGL page (Qualcomm), issue 82, 00:44. We found a variant that
causes the HTC One M7 device to freeze and then restart (configuration 17). The issue is severe
because the shader is WebGL-compatible, so the restart can be triggered via a malicious web page.
Qualcomm confirmed that they could reproduce this issue, but stated that they will not fix it due to
the age of this device model, and because the issue does not affect more recent devices that they
still support.

Ubuntu freeze by visiting WebGL page (NVIDIA), issue 46, 00:58. On our NVIDIA Linux system
(configuration 13), we found several WebGL-compatible shaders that cause a display freeze from
which the OS does not recover. We reported this issue to NVIDIA who were able to reproduce
the problem, and stated that it is due to a deadlock in their driver. NVIDIA have confirmed this as
a security issue, logging it as CVE-2017-6259 with the description: “NVIDIA GPU Display Driver
contains a vulnerability in the kernel mode layer handler where an incorrect detection and recovery
from an invalid state produced by specific user actions may lead to denial of service.” They have issued
fixes in recent driver versions (which driver fixes the issue is device-dependent), acknowledging
GLFuzz in a security bulletin.’

Glitches in the Safari UI (Intel/Apple), issue 81, 01:23. Although we did not include Mac OS in our
experimental campaign, we performed some exploratory testing on a 13" Retina MacBook Pro (Mid
2014). We found some variants that, when rendered in Safari via WebGL, cause the display to freeze
and graphical glitches to occur outside of the web page, i.e. in the Safari UL as shown in Figure 1b.
We have reported these issues to Intel because the device uses an Intel GPU and drivers.

“Blue screen of death” by launching fragment shader (Intel), issue 45, 01:51. Similar to the AMD
blue screen issue, we found a variant that causes a blue screen of death on our Windows Intel
machine (configuration 4). The shader is not WebGL compatible, thus we regard this issue as less
severe. We used our reducer to shrink the bug-inducing shader from 975K to 15K.

iPhone renders garbage via WebGL (Apple), issue 37, 02:14. We encountered a variant that causes
garbage to be rendered on the iPhone (configuration 9). The shader is WebGL compatible and so
the garbage can be rendered by visiting a web page in Safari. Unlike with the Samsung Galaxy
S6 example, we could not see any information in the garbage. Nevertheless, the garbage appears
to “react to” (i.e. the colors and patterns change) on-screen changes like showing the notification
center and switching between apps, and the garbage can still be captured by a malicious web page
as before, and so could potentially leak information. Apple have confirmed this as a security issue,

Shttp://nvidia.custhelp.com/app/answers/detail/a_id/4525/
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logging it as CVE-2017-2424 with the description: “Processing maliciously crafted web content may
result in the disclosure of process memory”. They have issued a fix in 10S 10.3, acknowledging GLFuzz
in the release notes.’

Nexus player renders garbage via WebGL (Imagination), issue 48, 02:38. We found a variant that
causes garbage to be rendered on the Nexus Player (configuration 15). The shader is WebGL
compatible. As with the iPhone example above, we could not see any information in the garbage,
but the garbage can be captured by a malicious web page and so could potentially leak information.
Imagination Technologies told us that they could not reproduce the issue on their newer internal
drivers. Thus, the bug may have been independently fixed or a slightly different shader may be
required to trigger the bug on the newer drivers.

4.3 Further Insights into Shader Compiler Bugs

In order to shed more light on the low-level causes for the bugs that GLFuzz can detect, we undertook
a deeper investigation into two bugs affecting NVIDIA and AMD drivers, which provide support
for dumping vendor-specific generated assembly code. We used GLFuzz to find and reduce an issue
affecting the most recently available Windows drivers from NVIDIA and AMD. In each case, this
led to an original shader, P, and a minimally different variant shader, P + §. We then undertook a
further manual process of simplifying the code common to both P and P + §, i.e. P, leading to a pair
of minimally different and very small shaders, Q and Q + § (where shader Q is significantly smaller
than P) that should be equivalent and yet render different images. Having undertaken this manual
reduction it was feasible to compare the generated assembly code for each pair, to understand the
manner in which the compiler has generated incorrect code.

We report on these examples, noting feedback from developers at NVIDIA and AMD related
to the issues. Again, we provide the relevant issue numbers associated with the bugs in our issue
tracker.

A control-flow bug affecting NVIDIA drivers, issue 76. Figure 2a shows a fragment shader that
should write RGBA value (1.0, 0.0,0.0, 1.0) to gl _FragColor, leading to an opaque red pixel. To
see this, observe that bar () must return 1: the statement return -1 is unreachable as it directly
follows a continue statement. This shader corresponds to Q in the above discussion, and was
derived from a much larger original shader.

The variant shader of Figure 2b, corresponding to Q + §, is identical except that the dead-jmp
transformation has injected a continue statement and a return statement, each guarded by if(
false). Note that the false condition is in fact the literal false rather than an opaque boolean.

With driver version 384.76 under Windows 10, and also with driver version 381.22 under Ubuntu,
NVIDIA’s shader compiler generates the single assembly instruction shown in Figure 2c when
applied to the original shader of Figure 2a. This produces the desired result color of (1.0, 0.0, 0.0, 1.0)
by using the swizzle mask xyyx to select, in order, the x, y, y and x components of the literal vector
{1, 0, 0, 0} (vectorsareindexedas {x, y, z, w}). The compiler has used control-flow simplification
and constant propagation to produce the most efficient code possible.

However, when applied to the equivalent shader of Figure 2b the compiler produces the instruc-
tion shown in Figure 2d. This produces a green result color, (0.0, 1.0, 0.0, 1.0), which is obviously
incorrect. It is as if the compiler wrongly concluded that bar () should return -1; if this would be
the case then green would be the correct output color.

Shttps://support.apple.com/en-gh/HT207617
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int bar() { int bar() {
for(int i = 1; 1 <=1; ++i) { for(int i = 1; i <= 1; ++i) {
if(false)
continue;
continue; continue;
if(false)
return 1;
return -1; return -1;
} 3
return 1; return 1;
} 3
vec2 foo() { vec2 foo() {
if (bar() < 0) if (bar() < 0)
return vec2(0, 1); return vec2(0, 1);
return vec2(1, 0); return vec2(1, 0);
} }
void main(void) { void main(void) {
gl_FragColor = vec4(foo(), 0, 1); gl_FragColor = vec4(foo(), 0, 1);
} }

(a) This fragment shader should yield a red pixel, (b) The injections into this fragment shader are
because bar () must return 1 guarded by if(false), so should have no effect

MOV.F result_colore, {1, @, @, 0}.xyyx; MOV.F result_colore, {0, 1, @, 0}.xyxy;

(c) NVIDIA’s shader compiler correctly generates  (d) NVIDIA’s shader compiler incorrectly gener-
a single instruction to produce a red image ates a single instruction to produce a green image

Fig. 2. Two equivalent fragment shaders, and associated correct and incorrect assembly code generated by
NVIDIA driver version 384.76

Our contacts at NVIDIA have confirmed that they could reproduce the issue internally, and that
it was due to “a latent bug in the shader compiler’s control-flow simplification pass”. They report
that a fix will be available in an upcoming driver release.

A control-flow bug affecting AMD drivers, issue 79. The fragment shaders of Figures 3a and 3b
should each yield red pixels, owing to their common first line of code; the remaining statements of
the shaders are enclosed in dead code blocks, added by the dead and dead-jmp transformations of
GLFuzz. Notice that the shaders are identical except that the positions of the unreachable return
and discard statements have been swapped. Each shader can be thought of as having the form Q+4,
where Q is a shader consisting of the single statement gl _FragColor = vec4(1., 0., 0., 1.);.

In practice, with driver version 17.6.2 under Windows 10, we find that the shader of Figure 3a
yields red pixels as expected, while the shader of Figure 3b does not render anything, yielding a
transparent image.
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void main(void) { void main(void) {
gl_FragColor = vec4(1., 0., 0., 1.); gl_FragColor = vec4(1., 0., 0., 1.);
if (injSwitch.x > injSwitch.y) { if (injSwitch.x > injSwitch.y) {
if (injSwitch.x > injSwitch.y) if (injSwitch.x > injSwitch.y)
discard; return;
int a = 0; int a = 0;
} }
if (injSwitch.x > injSwitch.y) if (injSwitch.x > injSwitchs.y)
return; discard;
} }
(a) This fragment shader should yield a red pixel, (b) Similarly, this fragment shader should yield a
because injSwitch is set to (0.0, 1.0) red pixel
s_waitcnt lgkment(0) s_waitcnt lgkment(Q)
v_mov_b32 v0@, sl v_mov_b32 v0@, sl
v_cmp_gt_f32 vcc, s0, vO v_cmp_ngt_f32 vcc, s0, vo
s_andn2_b64 s[8:9], s[8:9], vcc s_andn2_b64 s[8:9], s[8:9], vcc
s_cbranch_scc@ label_0011 s_cbranch_scc@ label_0011
s_and_b64 exec, exec, s[8:9] s_and_b64 exec, exec, s[8:9]
v_mov_b32 vo, 1.0 v_mov_b32 vo, 1.0
v_mov_b32 v1, @ v_mov_b32 v1, @
label_0011: label_0011:
s_mov_b64 exec, s[8:9] s_mov_b64 exec, s[8:9]
v_cvt_pkrtz_f16_f32 v2, vo, vl v_cvt_pkrtz_f16_f32 v2, vo, vl
v_cvt_pkrtz_f16_f32 v3, v1, vo v_cvt_pkrtz_f16_f32 v3, vi1, vo

transparent

(c) For the above shader, AMD’s shader compiler (d) For the above shader, AMD’s shader compiler

generates correct code, a fragment of which is generates code identical to that of Figure 3c, ex-

shown here cept that a boolean test is erroneously negated,
leading to pixels being discarded

Fig. 3. Two equivalent fragment shaders, and snippets of associated correct and incorrect assembly code
generated by AMD driver version 17.6.2

The full assembly code generated for each shader, in the Graphics Core Next 3 instruction sets
architecture [AMD 2016], is provided via our issue tracker. The code generated is identical with
the exception of one instruction. Figures 3¢ and 3d show snippets of the generated code, with
the instruction that differs emphasized in bold. Our understanding of the code of Figure 3c is as
follows: the v_cmp_gt_f32 instruction performs the comparison corresponding to injSwitch.x >

injSwitch.y; the s_andn2_b64 sets a predicate mask in a manner such that threads for which
the v_cmp_gt_f32 result was false will be disabled, so that they will not render any pixels; the
remainder of the instructions cause enabled threads to render red pixels. This is expected behavior:
if injSwitch.x > injSwitch.y would hold, the discard statement would be reachable.
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In contrast, the generated code of Figure 3d changes the condition to v_cmp_ngt_f32, so that
pixels are discarded if injSwitch.x > injSwitch.y does not hold. Looking at the source code of
Figure 3b this is evidently wrong.

AMD have confirmed that they can reproduce this issue and that it will be fixed in a forthcoming
driver release. They reported that: “The issue was resolved by improving the optimization that
replaces conditional returns.”

Notice that the structure of the incorrectly-compiled code of Figure 3b is similar to that of the
issue shown at the top of Table 2; we expect that the issues have a common root cause.

5 OUR TESTING CAMPAIGN

We now describe the large-scale testing campaign that led to the discovery of the bugs reported in
Section 4, among many others. We explain how we generated variant shaders (Section 5.1) and the
process for testing configurations against theses shaders (Section 5.2), and we examine quantitatively
the effectiveness of the various GLFuzz transformations (Section 5.3). We also summarize the status,
at time of writing, of the issues we have discovered during our testing efforts so far (Section 5.4).

5.1 Generating Variants

We used GLSLsandbox.com as a rich source of original fragment shaders. These shaders are suitable
because they carry high associated value for the expert enthusiasts who contribute them, are
intended to work cross-platform (because GLSLsandbox.com is not tied to any particular GPU
designer), and exercise the GLSL language in order to produce interesting visual effects. We retrieved
all shaders from the first 20 pages of GLSLsandbox.com on 13 July 2016 (1000 shaders), and removed
shaders that depended on a particular GLSL version, or failed one of various sanity checks such as
being regarded as in invalid by the Khronos Reference Compiler. Of the remaining shaders, we
chose the largest 100, measured by file size, as original shaders. These ranged between 1,431 and
9,980 bytes (median: 3,302, mean: 3,705). We also used these shaders as donors for live and dead
code injection.

From each of these original shaders, we generated three shader sets, each consisting of 100
variants, one targeting each of the classes of configurations listed in Table 1. Generated variants
for the desktop OpenGL platforms (configurations 1-6) feature transformations that exercise the
GLSL 4.40 language; variants for the WebGL platforms (configurations 7-13) are restricted so that
transformations exercise only those aspects of GLSL 1.00 compatible with WebGL; while variants
for the Android platforms (configurations 14-17) are also restricted to GLSL 1.00, but include
features such as non-constant array indexing that we found were supported by our Android devices.
With 100 variants per shader set, we generated 30,000 variants in total across the three classes of
configuration.

We use swarm testing [Groce et al. 2012] to ensure diversity in the combinations of trans-
formations that are applied during variant generation. On generating a variant, each available
transformation is selected to be enabled or disabled, uniformly at random. For each enabled trans-
formation, we also randomly choose an associated probability of applying the transformation to
each relevant program point. We have not rigorously studied the effectiveness of using swarm
testing, but anecdotally we have found it helpful in avoiding repeatedly finding a known bug that is
easy to trigger via a particular transformation, thanks to each transformation being often disabled,
or sometimes applied with low probability.

5.2 Testing Configurations

Infrastructure. We adopted a client-server architecture to efficiently test a large number of devices.
Each configuration runs a “dumb” client, which pulls the next shader from the server and responds
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with the rendered image or an error message. The client is unaware of whether the shader is an
original, a variant, or a variant with some transformations removed (i.e. a reduction step). Thus,
the “smart” server offers original and variant shaders, compares images, and performs reductions.
This approach allowed us to cope with configurations that crash due to driver bugs, and made the
client, which had to be written several times for different platforms, relatively simple. To test the
configurations of Table 1, we have developed clients that run under Windows, Linux, Android, and
in a browser via JavaScript and WebGL.

Running shader sets and reducing variants. We aimed to render all 100 original shaders and the
corresponding set of 10,000 variant shaders using each of the configurations in Table 1. To identify
a candidate wrong image issue we used OpenCV version 3.2, invoking the compareHist routine
with the COLOR_BGR2HSV color space and the chi-squared distance (HISTCMP_CHISQR) algorithm, to
compare image histograms. This routine returns a floating-point histogram distance, and based on
early experimentation, we used 100 as a default threshold value above which an image difference
would be deemed interesting. For each shader set, we proceed to the automatic reduction of up
to 5 wrong image issues. Where there were more than 5 candidate wrong images, we prioritized
reducing variants with a high associated histogram distance.

Incomplete results. While we designed our client-server infrastructure to be robust to config-
uration crashes and restarts where possible, some configurations would crash in a manner that
required a device to be rebooted, an Android app restarted, or a WebGL page refreshed, in each
case manually. For several configurations this occurred so frequently that it was infeasible for
us to baby-sit the testing process to obtain a complete set of results. We obtained complete or
near-complete data sets for configurations 1, 3, 4, 5, 7, 11, 12 and 15; in some cases the data is not
quite complete due to e.g. a reduction being abandoned as a result of a sporadic machine failure.
The partial data sets for other configurations were sufficiently large for us to identify interesting
bugs.

We discovered a late bug in our implementation of the vec transformation (see Section 3.1),
which meant that this transformation would sometimes be semantics-changing. While we found
reduced variants in which the transformation had been correctly applied and induced a bug (see the
Intel bug in Section 4.1), we also found cases where a reduced variant was semantically different
from the original shader. We thus ignore reduced variants that exhibit the vec transformation in
our quantitative analysis in Section 5.3.

5.3 Properties of Reduced Variants

We now study the effectiveness of the GLFuzz transformations in inducing visually identifiable
differences in rendering. These differences may be due to shader compiler bugs, or a shader being
numerically unstable, prone to significant rendering differences arising from small differences
in floating-point computation. We investigate this by considering the reduced shaders for the 8
configurations for which we have near-complete experimental data. Ignoring reduced shaders that
still feature the vec transformation, due to the vec bug discussed in Section 5.2, this led to 975
reductions.

Identifying false positives. Recall that we used the chi-squared distance between image histograms,
with a fixed threshold determined via pilot experiments, to decide whether rendering differences
might be worth investigating (see Section 5.2). To better classify those cases where the difference
was visually distinguishable, we used the following procedure. We asked three fellow researchers,
not involved in the project, to indicate via a key-press whether they thought each of the 975 pairs
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of (original, reduced variant) images were identical.” The participants undertook the experiment at
the same machine, were presented with the image pairs in a random order, and were instructed to
respond to each pair within a matter of seconds. No participant was color-blind.

We treat a reduction as a false positive if at least two participants indicated that the associated
image pair looked identical, and as a true positive otherwise. A false positive suggests that the
pixel-level differences leading to a non-trivial histogram distance between images may be merely
due to acceptable floating-point roundoff error; a true positive suggests that the difference may be
interesting: indicative of a compiler bug or of numerical instability. We say that a false positive (resp.
negative) is unanimous if all participants agreed that the image pair was identical (resp. different).

Among the 975 reductions, this experiment led to 568 being classified as true positives (513
unanimous), and 407 false positives (339 unanimous). The false positive rate suggests that our
histogram distance threshold is a reasonable proxy for “visually distinguishable”, but perhaps
could be tightened. The fact that a non-trivial number of ratings were not unanimous emphasizes
the difficulty associated with deciding whether rendering differences are acceptable or not. Our
experiment does not account for false negatives: cases where a visually distinguishable difference
in images leads to a histogram distance below our threshold; assessing this would require having
users rate a much larger collection of image pairs.

Assessing the effectiveness of transformations. Table 3 summarizes the ratio of performed re-
ductions, and the extent to which the GLFuzz transformations (excluding vec) are present in the
reductions classified as true positives and false positives. In both cases, the bottom table shows, for
each listed configuration, and for each transformation, the number of reduced variants in which
the transformation still appears. If a reduced variant features multiple transformation types, the
count for each transformation type is incremented.

The results show that every transformation contributes both true and false positives for some
configurations, but that various transformations are ineffective in yielding true positives for some
configurations, e.g. dead-jmp for Intel desktop configurations (3 and 4), and wrap for the NVIDIA
desktop (5) and AMD WebGL (7) configurations. Overall, wrap is least effective in terms of number
of true positives, but also has a low false positive rate. The mutate transformation has a noticeably
higher rate of false positives and negatives compared with other transformations. We hypothesize
that this transformation has the most impact on floating-point compiler optimizations because,
for example, it can change whether an expression is a compile-time constant or not, which might
trigger compiler bugs or provoke numerical instability.

The number of reductions varies greatly between platforms, with the Nexus player (15) exhibiting
a particularly large number of true positives. Configurations 3 and 4 correspond to our Intel
Windows machine with older and newer drivers. With the old drivers, live was very effective
in provoking true positives, becoming much less so with the newer drivers. The reverse is true
for mutate, which becomes more effective with respect to the newer drivers, though with an
increased false positive rate as well. For AMD, Intel and NVIDIA, configuration pairs (1, 7), (3,
11) and (5, 12) correspond to Windows desktop and WebGL configurations, respectively, with
the same drivers. There is, however, little correlation between the effectiveness of the various
transformations between configurations in each pair. We attribute this to the use of ANGLE to
implement WebGL in Chrome under Windows, so that the Direct3D rather than OpenGL drivers
are being tested in the case of WebGL. This is encouraging as it shows that GLFuzz is able to find
diverse defects between the OpenGL and ANGLE+Direct3D stacks.

7One of the colleagues subsequently became involved in the project and is an author of this paper, but knew little about
GLFuzz when participating in the experiment.
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Performed reductions

True positives False positives
#affected #affected

Config. shader sets  P€an #red. shader sets  me€an #red.

1 55 1.33 9 2.44

3 28 1.46 6 1.00

4 13 2.08 14 3.21

5 32 1.69 20 2.40

7 5 2.00 10 1.80

11 17 1.94 42 3.52

12 15 2.00 6 3.50

15 89 3.37 37 2.68

Transformations remaining after reduction
True positives False positives
Q [«%
£ 2 £ 2

s S a < s o
§ § 2 % ¢ $ 8 ¢ 2§
Config. #red. T R = #% Z #red. ¥ ¥ % 4% i
1 73 56 65 3 72 6 22 8 3 1 22 1
3 41 0 0 33 5 0 6 1 0 2 4 1
4 27 1 0 3 22 1 45 10 0 1 45 1
5 54 2 2 1 53 0 48 1 2 5 4 1
7 10 1 4 1 10 0 18 2 3 2 17 1
11 33 5 7 4 31 2 148 33 5 1 148 1
12 30 2 9 4 29 1 21 1 1 0 20 1
15 300 40 142 51 284 22 99 10 34 8 92 0

Table 3. For a subset of configurations (Config.) and for both true and false positives, the top table lists the
number of shader sets in which at least one reduction was performed (#affected shader sets), together with
the mean number of variants that were reduced (mean #red.) in these shader sets; the bottom table lists the
number of reduced variants (#red.) and details the number of transformations remaining (of each type) after
reduction.

5.4 Status of Discovered Issues

We discovered and logged 71 issues affecting shader compilers during our study. We classify these
issues into eight categories according to whether we reported them to associated developers and
the response we received if so. The categories are:

e Fix deployed: the issue was reproduced and fixed, and we have checked that the issue does
not manifest in newer drivers.

Fix pending: the issue was reproduced, and a fix has been promised but is not yet available.
Confirmed: the issue was reproduced, but not yet fixed to our knowledge.

Reported: we have not yet received feedback on our issue report.

Unreported: we have logged the issue but not yet reported it, either because we did not want
to bombard a particular company with bug reports, or due to us awaiting feedback on earlier
reports.
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Status of issue # issues

Fix deployed 20
Fix pending 1
Confirmed 9
Reported 10
Unreported 8
Bug vanished 13
Won’t fix 3
False positive 7
Total: 71

Table 4. Summary of the number of issues in shader compilers that we reported so far, and their status at
time of writing

o Bug vanished: we reported the issue with respect to a particular driver version, but it could
not be reproduced with a later driver version (either the company’s latest internal drivers, or
a newer public release).

e Won't fix: the company did not investigate the bug report because they no longer support
the device on which the issue presented.

o False positive: the issue turned out not to be a bug.

Table 4 uses these categories to provide a breakdown of the 71 issues that we found. The issues
cover our testing of the platforms summarized in Table 1, plus a small amount of additional testing
using open source Mesa drivers,® the SwiftShader software renderer,” and some variations of the
platforms of Table 1 equipped with more recent drivers.

The false positives were mainly due to using certain original shaders that turned out to be
numerically unstable, so that significant changes in rendering arose due to differences in floating-
point roundoff error. We also reported two issues where the live transformation induced very
long-running loops, which caused a black image to be rendered on some platforms. However, it is
permissible (in fact, desirable) for an operating system to kill a long-running shader to free the
GPU for other rendering tasks, and this turned out to be the reason for the change in rendering.

The false positives arose from our early issue reports. Given our better understanding of the field
since then, we are reasonably confident that the 21 issues in the reported and unreported categories
are genuine.

Issues in the bug vanished category may correspond to cases where bugs were independently
fixed by compiler developers in newer drivers. However, they may also correspond to cases where
the underlying bug has not been fixed, but rather that the optimizations applied by the shader
compiler have changed. In this case, it may simply be that the reduced variant that triggered the bug
in an older driver version does not trigger the bug in newer drivers, but that a differently-structured
shader would. Except in the few cases where developers gave us direct feedback on bug root causes
we have no way to tell the difference.

Table 5 breaks down the 64 issues that we believe are not false positives according to their
nature. As expected, most bugs lead to bad image rendering, but we also found 20 shaders that
triggered distinct compile-time errors, one shader that caused the SwiftShader renderer to go into a
seemingly-infinite loop, and 10 security-related issues, most of which we discuss in Section 4.2, split

8https://www.mesa3d.org/
“https://github.com/google/swiftshader
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Nature of issue # issues
Bad image 33
Compile error 20
Non-termination 1
System instability
Potential information leak 4
Total: 64

Table 5. Among the non-false positive issues we reported, most are cases of bad image rendering

into system instability issues (e.g. machine crashes and device restarts) and potential information
leaks (e.g. the issue discussed in Section 4.2 where data can leak between browser tabs).

6 RELATED WORK

Metamorphic testing. Metamorphic testing [Chen et al. 1998] has been used to test software in
application domains including web services, embedded systems and machine learning; see [Se-
gura et al. 2016] for a recent survey. In graphics, metamorphic testing has been applied to test
implementations of image processing algorithms [Guderlei and Mayer 2007; Jameel et al. 2016].

An initial approach to metamorphic testing of compilers by generating families of equivalent
random programs [Tao et al. 2010] does not generate minimal bug-inducing programs, making it
hard to identify the root cause of a behavioral mismatch. Metamorphic compiler testing via program
transformation was first proposed in the form of equivalence modulo inputs (EMI) testing [Le et al.
2014], where profiling is used to identify program statements that are unreachable for a given input
I. A family of programs is then generated by randomly pruning the identified statements; such
programs should still behave identically to the original when executed on input I. The technique
has been extended to incorporate profile-based dead code insertion and live code mutation [Le et al.
2015; Sun et al. 2016]. A practical difficulty associated with applying profiling-based EMI testing to
shader compilers is the lack of detailed runtime analysis facilities for GPU platforms. In the context
of OpenCL this has been circumvented by injecting dead-by-construction code [Lidbury et al. 2015].

In an initial endeavor applying metamorphic testing to GLSL, we developed the dead and
mutate transformations, and showed that metamorphic testing for GLSL is feasible by identifying
two bugs in a pair of desktop GPU configurations [Donaldson and Lascu 2016]. Our early work
only supported one desktop version of GLSL. In our current work, we introduce a set of new
transformations, dead-jmp, live, vec and wrap, and have implemented all transformations in our
tool, GLFuzz, adding support for two additional versions of GLSL so that Android and web platforms
can be tested. We evaluate the techniques on a set of 17 GPU configurations, covering desktop,
Android and web platforms, incorporating devices from every GPU designer, and finding multiple
defects per configuration, including exploitable security vulnerabilities. Our results show that
every transformation employed by GLFuzz is necessary for identifying at least one defect. To our
knowledge, ours is the largest reported cross-vendor study of graphics driver reliability.

Other approaches to compiler testing. Compiler testing, through validation suites and program
generation, has a long history, and a number of surveys are available discussing early works in the
field [Boujarwah and Saleh 1997; Burgess and Saidi 1996; Scowen and Ciechanowicz 1983].

A particularly successful method for testing compilers is differential testing using randomly-
generated programs [McKeeman 1998], which has been especially popularized by the widely used
Csmith tool [Yang et al. 2011]. As well as being applied to numerous C compiler, Csmith has been
used to test the Frama-C static analyzer [Cuoq et al. 2012], and has been extended to provide testing
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of OpenCL compilers [Lidbury et al. 2015]. A recent study compared the effectiveness of differential
testing, both using multiple compilers and the same compiler at different optimization levels, with
EMI testing [Chen et al. 2016].

We hypothesize that differential testing will not work well for testing graphics compilers: the
significant freedom afforded by languages such as GLSL with respect to floating-point means that,
especially in randomly-generated programs, significant differences in results are to be expected. In
contrast, metamorphic testing via program transformations is not subject to significant, inter-device
rounding differences.

Just as GLFuzz is equipped with test case reduction facilities, methods for testing compilers
via randomly-generated programs require test case reduction facilities. The task of reducing a
randomly-generated bug-inducing program to a small example that triggers the bug of interest
is hard, due to the challenge of ensuring freedom from undefined behavior during the reduction
process. The C-Reduce tool provide a best-effort solution to this problem, drawing on a number
of static and dynamic analyses [Regehr et al. 2012], and has been extended to provide test case
reduction for OpenCL kernels [Pflanzer et al. 2016]. In contrast, reducing GLFuzz-generated variants
is much simpler as it involves reversing known transformations; avoiding undefined behavior
during this process is straightforward.

Effective fuzzing involves devising strategies that not only achieve a high rate of detected defects,
but also achieve diversity in the defects that are found, to avoid repeatedly finding and reducing
test cases that trigger a single known defect. As discussed in Section 5.1, GLFuzz uses swarm
testing [Groce et al. 2012] during variant generation, so that different variants generated from the
same original shader may be generated with different combinations of program transformations
enabled, and with varying probabilities. Other work aims to help in prioritizing compiler test cases,
either prioritizing the order in which tests are executed to accelerate testing [Chen et al. 2017],
or the order in which a human engineer should approach investigating their root causes, to save
developer time [Chen et al. 2013]. So far we have not required these sophisticated strategies to
find defects in shader compilers, but they may prove useful in future as shader compilers become
hardened to our approach.

Graphics driver vulnerabilities. A major contribution of our study is the identification of security
bugs affecting every GPU designer, the most critical being those that affect WebGL configurations.
It is well known that graphics drivers and shaders pose a security threat (see e.g. [Lee et al. 2014;
SecurityWeek 2016; van Sprundel 2014]), and the specific issue of stealing data via WebGL has been
studied previously [Context 2011]. We contribute a rigorous testing method to help guard against
these threats.

Validating graphics drivers. Graphics drivers are typically validated using conformance tests: the
Khronos Group and Microsoft provide conformance tests suites for OpenGL/Vulkan and Direct3D,
and open source test suites are available, including piglit (which incorporates gleam) [Hahnle 2017],
and drawElements Quality Program (dEQP) [Android Community 2017] for OpenGL. The dEQP suite
is now maintained by Google as part of the Android Compatibility Test Suite. Microsoft provide a
reference renderer and Khronos a reference compiler front-end. These test suites and reference
implementations assess the extent to which API functions and shading language features are
supported, but do little to check what is actually rendered. In contrast, our metamorphic approach
is successful in identifying rendering defects by cross-checking equivalent shaders with respect
to a single device and driver. We have contributed to dEQP by adding a new class of test case
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that compares rendering results between equivalent shaders, together with several examples of
equivalent shaders found using GLFuzz that triggered bugs in various Android device drivers.'’

7 CONCLUDING REMARKS AND FUTURE WORK

We have presented a large-scale study using metamorphic testing to find defects in graphics shader
compilers via semantics-preserving program transformations. Our results show that defects are
prevalent, including exploitable security vulnerabilities that affect WebGL, and that our testing
method is effective at finding them: we exposed bugs in all configurations that we tested.

A natural question to ask is whether our approach is fundamentally effective in finding shader
compiler bugs, or whether shader compilers are simply under-tested, so that our approach has
detected “low-hanging” bugs. The shader compilers we have considered are all commercial products
that are required to pass conformance tests from the Khronos Group, and during our discussions
with GPU driver developers we heard from several companies that they test their compilers on
shaders captured from complex video games. Some companies also told us that they use fuzzers for
in-house testing, but only to check whether their compiler crashes, rather than to check whether
rendering is accurate. Our impression is that, due to the oracle problem, GPU driver developers
do not have good methods to test at scale whether their compilers generate correct code. Our
techniques make steps towards solving the oracle problem in this domain, and the bugs we have
found indicate that commercial GPU compilers could benefit from the better testing we offer.

One means for assessing whether our method is fundamentally effective is to re-validate GLFuzz
on successive driver versions that incorporate fixes for previous bugs detected by the tool, to see
whether new bugs are discovered. We predict that, relatively quickly, a given shader compiler
may become “immune” to the current program transformations that GLFuzz employs (especially
if vendors incorporate our bug reports into their regression suites), but that equipping the tool
with more refined or additional program transformations will be effective in finding new bugs.
On the other hand, a large number of the issues we found are likely caused by buggy compiler
optimizations; the compiler developers are likely to continue adding and updating optimizations
throughout the lifetime of the compiler, leading to new bugs or regressions that may not manifest
using the variants we tested, particularly in the case of reduced variants. Thus, continued testing
with even just the current program transformations may provide lasting benefit.

Related to the program transformations we have investigated so far: of the endless program
transformations one could imagine, we chose these based on their ease of implementation and our
hypothesis from prior work that complicating control flow may be effective in triggering compiler
bugs [Le et al. 2014]. As with any testing method, our approach is incomplete. There will exist
shader compiler bugs that our current transformations could find in principle, but with very low
probability, e.g. if the bug requires multiple transformations to be combined in a specific way, and
applied to existing code with a very particular form, in order to trigger. There will also exist shader
compiler bugs that cannot be triggered by our current set of transformations, because they require
a shader to exhibit structural features that our transformations cannot induce. Knowledge of the
root causes of typical shader compiler bugs, mined e.g. from the bug tracker of the open source
Mesa 3D project,'! could provide inspiration for additional program transformations.

Other near-term future work includes applying our method to additional real-time shader
languages, in particular HLSL and SPIR-V, and testing open source graphics drivers (e.g. the Mesa
drivers, for which we have commenced testing activities). A longer-term avenue is to apply our
method to offline rendering scenarios, generating equivalent families of shaders or input scenes

Ohttps://android-review.googlesource.com/#/c/platform/external/deqp/+/375574/
Mhttps://www.mesa3d.org/bugs.html
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for software such as RenderMan, and even to other domains, generating inputs e.g. to hardware-
accelerated video decoders.
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