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Abstract
The tutorial at CONCUR will provide a practical overview of work undertaken over the last six
years in the Multicore Programming Group at Imperial College London, and with collaborators
internationally, related to understanding and reasoning about concurrency in software designed
for acceleration on GPUs. In this article we provide an overview of this work, which includes
contributions to data race analysis, compiler testing, memory model understanding and formal-
isation, and most recently efforts to enable portable GPU implementations of algorithms that
require forward progress guarantees.
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1 Introduction

Graphics processing units (GPUs) offer a large degree of parallelism at a relatively low cost,
and are now routinely applied to the acceleration of a wide variety of computational tasks
that go well beyond the domain of graphics (see e.g. [39] for details of many application
areas and developments).

It is invariably harder to design a software application that takes advantage of GPU
parallelism than it is to write a sequential version of the application that runs only on the
CPU. Furthermore, parallel programming for GPUs is in many ways more complicated than
parallel programming for multi-core CPUs. This is because achieving high performance
requires working in low level languages, such as CUDA [33] and OpenCL [24], which provide
close-to-the-metal language features to enable mapping an algorithm to the architectural
capabilities of a device. Numerous high level programming models have been proposed to
ease the burden of GPU programming, via automatic generation of low level code, but as yet
are not widely adopted.

Low level programming of GPUs is made challenging by traditional concurrency bugs
such as data races, by issues related to relaxed memory, and by the constrained hardware
execution model on which software executes. Furthermore, reliable production compilers for
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Figure 1 Overview of a typical GPU architecture.

GPUs are hard to maintain due to the challenge of keeping pace with changing architectures
and evolving source languages, and because GPU-specific optimisations—e.g. ones that
aim to reduce control-flow divergence between threads—are important for performance but
error-prone to implement.

After giving a brief overview of the GPU programming model (Section 2), we present an
overview of a line of work pursued by the Multicore Programming Group at Imperial College
London, with various collaborators, which has contributed to: automated data race analysis
(Section 3), compiler testing (Section 4), memory models (Section 5), and forward progress
guarantees to support blocking algorithms (Section 6). While we principally focus on the
approach taken by our line of work, we briefly discuss related approaches. In each area, we
also touch on open problems that will require future research to solve.

2 Overview of the GPU Programming Model

GPUs are programmed using an SPMD (single program, multiple data) model, in which
a large number of processing elements (PEs) all execute the same program, with each PE
operating on a different subset of some shared data. At the hardware level, PEs are typically
grouped into multiprocessors (see Figure 1). Each PE generally has access to a few hundred
bytes of private memory; all the PEs in the same multiprocessor have a few kilobytes of shared
memory available; and a large amount of global memory is shared between all multiprocessors.

The two main programming languages for writing SPMD programs are OpenCL [24]
and CUDA [33], both of which derive from the C programming language. The languages
follow the above sketched hardware hierarchy quite closely by subdividing the execution
of a program among a number of work-items (or threads)—mapping to PEs. These work-
items are a grouped into (multi-dimensional) work-groups (or thread-blocks)—mapping to
multiprocessors—which in turn are grouped into (multi-dimensional) NDRanges (or grids).
A programmer specifies the program to be executed by a single work-item—called a GPU
kernel—and defines the work-group and NDRange sizes that should be used for execution.
The OpenCL programming model uses the terms work-items, work-groups, and NDRanges,
while CUDA uses threads, thread-blocks, and grids. For the remainder of the article we use
the OpenCL terminology, except that we find it more natural to use thread rather than
work-item.

An OpenCL kernel computing a prefix-sum (or scan) [25] is presented in Figure 2. The
kernel is intended to be executed by a single 1-dimensional work-group. The keyword global
indicates that the arrays in and out reside in global memory. Similarly, the keyword local
(not used in the example) indicates that an array resides in shared memory. Any variable
declared without the global or local keyword is thread-private. To enable each thread to



A. F. Donaldson, J. Ketema, T. Sorensen, and J. Wickerson 1:3

kernel void KoggeStone(global int *in, global int *out) {
unsigned tid = get_local_id(0);
out[tid] = in[tid];
barrier(CLK_GLOBAL_MEM_FENCE);
for (unsigned offset = 1; offset < tid; offset *= 2) {

int temp;
if (tid >= offset)
{ temp = out[tid − offset]; }

barrier(CLK_GLOBAL_MEM_FENCE);
if (get_local_id(0) >= offset)
{ out[tid] = temp + out[tid]; }

barrier(CLK_GLOBAL_MEM_FENCE);
}

}

Figure 2 A Kogge-Stone prefix-sum GPU kernel in OpenCL.

operate on different data, several functions are provided that allow a thread to access its
unique id. One of these functions is get_local_id, which yields the unique id of a thread
within a work-group.

Except when performing the most basic computations, threads typically need to share
intermediate results. In OpenCL and CUDA, these intermediate results are traditionally
shared with the help of synchronisation barriers: each thread writes its intermediate results
to local or global memory and then calls the barrier function. The barrier function
stalls the thread until all other threads within the same work-group have also called the
function and all outstanding memory operations have been committed. The argument of
the barrier function indicates whether operations on local or global memory need to be
committed. In the case of the GPU kernel of Figure 2, only operations on global memory
are committed.

As stressed above, barriers can only be used for communication within work-groups;
they cannot be used for communication between work-groups. The same holds for early
implementations of atomic operations on GPUs. This was rectified with OpenCL 2.0,
which defines atomic operations that can operate between work-groups. The semantics of
OpenCL 2.0 atomics are subtle, and expressing them precisely is a research endeavour we
are pursuing, thus we postpone a more detailed discussion of them to Section 5. Finally,
it is worth mentioning that the new NVIDIA CUDA 9.0 provides primitives for barrier
synchronisation across work-groups [34].

3 Static Data Race Analysis

Data races are an important kind of defect that affect shared memory concurrent programs,
and GPU kernels in particular. Informally, a GPU kernel exhibits a data race if it is possible
for two distinct threads, t1 and t2, to issue memory operations accessing a common location
m such that: at least one of the operations is non-atomic, at least one of the operations
modifies m, and t1 and t2 do not synchronise between the operations. The semantics of data
races are not well defined in CUDA nor in older versions of OpenCL, and data races are a
form of undefined behaviour in OpenCL 2.0 [24] and later. As well as being defects in their
own right, data races can lead to unwanted nondeterminism, which can cause other bugs
that are hard to reproduce and fix.

To aid programmers in reasoning about data races in GPU kernels we spent several years
designing GPUVerify, a static data race analysis tool [11, 10, 4]. GPUVerify caters primarily
for the traditional style of GPU programming where threads in distinct work-groups do not
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communicate during the lifetime of a kernel, and where intra-work-group communication is
exclusively via synchronisation barriers.

The traditional setting affords a key property: when a GPU kernel is executed on a given
input, if any thread schedule can exhibit a data race, then all thread schedules exhibit a
data race. We briefly sketch the argument for this. Let us call a data race occurring in
a given thread schedule a principal race if the associated memory accesses a1 and a2 are
guaranteed to occur, regardless of the instructions executed by other threads. That is, the
conditions for the associated threads to issue a1 and a2 arise directly from the input on which
the GPU kernel is executed, and do not depend on the thread schedule. Clearly, if a thread
schedule exhibits a principal race involving accesses a1 and a2, then every thread schedule
must exhibit this principal race. Furthermore, in the traditional GPU programming model,
every thread schedule that exhibits a race is guaranteed to exhibit a principal race. This is
because a traditional GPU kernel behaves entirely deterministically in the absence of a data
race [16].1 Threads in different work-groups have no means of synchronising, and thus can
only influence one another by racing. Threads in the same work-group can only synchronise
via barriers. Hence, in the absence of data races, the execution of each thread is independent
of the actions of all other threads until barrier synchronisation occurs, and the state of each
thread upon reaching a barrier is independent of the chosen thread interleaving. Repeating
this argument for each following barrier, we see that traditional GPU kernel execution is
deterministic. Because a race-free GPU kernel is deterministic, a kernel exhibiting a race is
guaranteed to have a fixed set of principal races and, hence, if any schedule exhibits a race
then all do.

GPUVerify leverages the above result to reduce the problem of reasoning about data
races in highly parallel GPU kernels to reasoning about assertions in a sequential program.
This is achieved by translating a parallel kernel into a sequential program that models one
particular thread schedule between each pair of barrier synchronisation points in the kernel,
tracking the reads and writes of threads, and using assertions to determine the conditions
under which data races occur. In practice, GPUVerify uses a schedule in which threads
execute in lock-step [18].

Because GPU kernels are often executed by hundreds or even thousands of threads, it
would not be practical to model all these threads explicitly. Instead, GPUVerify exploits
the fact that data races occur pairwise, and only models execution of a kernel by a pair
of threads. The identities of these threads are made symbolic in the sequential program
that GPUVerify generates, so that reasoning is in fact performed over all possible pairs. To
over-approximate the effects of additional threads, the shared state of the GPU kernel is
made abstract. By default GPUVerify uses an extremely coarse abstraction, where other
threads are assumed to have arbitrary effects on the shared state [10].

The sequential program generated by GPUVerify is encoded in the Boogie intermediate
verification language [5], whose supporting tool—also called Boogie—generates verification
conditions that are discharged by SMT solvers such as Z3 [19] and CVC4 [6]. To handle loops,
Boogie requires invariants to be supplied. For this purpose we have equipped GPUVerify
with a tailored engine for loop invariant inference, which is by now relatively mature. The
engine works by speculating candidate loop invariants via a set of rules, which we devised
through careful study of a large set of GPU kernels [9]. The candidate invariants speculated
for a kernel are fed to the Houdini algorithm [20], which computes the largest conjunction of

1 We assume here that concurrency is the only possible cause of nondeterminism; sources of nondeterminism
due to e.g. accessing invalid memory locations are an orthogonal concern.
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candidates that form an inductive invariant for the kernel. The computed invariant is then
used in an attempt to prove freedom from data races.

Several other methods for testing and verifying properties of GPU kernels have been
proposed. These include approaches based on dynamic analysis [35, 48, 28], verification via
SMT solving [29, 38, 44], symbolic execution [30, 17], and program logic [12, 26].

Open problems

Despite operating reasonably automatically on a relatively large set of GPU kernels [4, 9],
the GPUVerify technique has three main limitations.

First, the loop invariant inference method used by the tool can be inefficient, due to the
sheer number of candidate invariants that are speculated. Many of the candidates turn out to
be incorrect or non-inductive, so that many iterations of the Houdini algorithm are required
to refute them, each iteration requiring one or more expensive calls to an SMT solver. We
believe that a significantly more efficient mechanism for computing relevant loop invariants
could be built by performing abstract interpretation over carefully-designed abstract domains
that capture the memory access patterns of GPU kernels.

Second, the shared state abstraction employed by GPUVerify leads to false alarms for
kernels whose race-freedom depends on richer properties of the shared state. To aid in
the verification of such kernels, GPUVerify supports barrier invariants—properties of the
shared state that are proven to be satisfied by threads individually on entry to a barrier
synchronisation operation, and which can thus be assumed to hold for all threads on exit from
the barrier [15]. However, barrier invariants must currently be specified manually, and have
only been investigated practically in one domain so far: reasoning about parallel prefix sums.
Relatedly, our recent work on termination analysis for GPU kernels shows that the coarse
shared state abstraction used by GPUVerify often suffices for proving kernel termination
in a thread-modular manner, but identifies a number of cases where richer shared state
abstractions are required [23].

Third, GPUVerify fundamentally exploits the traditional GPU programming model where
barriers are the only means for synchronisation. As discussed further in Sections 5 and 6,
modern GPU kernels increasingly go beyond the boundaries of this simple computational
model, using atomic operations to implement fine-grained concurrent algorithms. In general,
reasoning about data race-freedom of GPU kernels that use atomic operations is just as hard
as reasoning about data race-freedom for arbitrary concurrent programs. In particular, a
race-free GPU kernel need not behave deterministically if it uses atomic operations. This
breaks the property that allows GPUVerify to reason about a kernel via translation to a
sequential program. Although GPUVerify can handle some limited use cases for atomic
operations [7], the tool over-approximates more general uses of atomics, so that it will report
false alarm data races for algorithms that, for instance, protect shared data structures using
mutexes built via atomic operations. Nevertheless, we conjecture that the contexts in which
GPU programmers use atomic operations in practice are likely to be limited and idiomatic,
and that there may be scope for targeted analyses that exploit this idiomatic nature.

In related work, we note that GKLEE, another GPU race detection tool [30], has also
been extended to reason about atomics in some scenarios [14], and that reasoning about
atomic operations in GPU kernels via resource invariants in separation logic has recently
been proposed [3].
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4 Many-Core Compiler Fuzzing

The race analysis provided by GPUVerify (see Section 3) operates on the intermediate
representation of the LLVM compiler framework, generated by Clang’s OpenCL and CUDA
front-ends. More generally, it is common for static race analysis tools to operate at the
level of program source code, or at some intermediate representation associated with a
particular tool chain. Either way, an analysis that establishes properties of a program at
some higher-than-binary level of abstraction relies on correct downstream compilation.

Aware that guarantees provided by GPUVerify are conditional on the reliability of CUDA
and OpenCL compilers, we undertook research into testing such compilers. We focused
on testing OpenCL compilers using two methods: random differential testing [32], where
compilers are cross-checked against each other using randomly-generated programs, and
equivalence modulo inputs testing [27], where a single compiler is tested via a family of
programs that, for a given input, ought to yield equivalent results. In both cases, mismatches
are indicative of compiler bugs. Both methods are examples of fuzzing, where a system is
tested against randomly-generated inputs.

We built a tool, CLsmith [31], which extends the Csmith generator for C programs [47] to
the domain of OpenCL. It was relatively simple to extend Csmith to generate “embarrassingly
parallel” OpenCL kernels in which threads do not communicate at all. More challenging was
to devise methods for generating OpenCL kernels in which threads do communicate—either
using barriers or atomic operations—but in a manner such that the generated kernels are
guaranteed to be free from data races and to compute deterministic results.2

We armed CLsmith with three modes for generating such kernels: barrier mode, where
generated kernels are equipped with shared arrays, indexed in a manner that avoids data
races; atomic-sections mode, where atomic operations are used to build sections of code that
can only be executed by a single thread, structured such that the particular thread that
executes a section depends on the thread schedule, but such that the side-effects associated
with executing the section are independent of the specific thread that executes the section;
and atomic-reductions mode, where associative, commutative atomic operations (such as
atomic_add and atomic_min) are used to perform reductions on data values computed
locally by individual threads, ultimately leading to deterministic results.

Via an experimental campaign applying CLsmith to 21 OpenCL (device, compiler)-
configurations, covering a range of GPU, CPU, FPGA, and emulator implementations [31], we
discovered more than 50 OpenCL compiler bugs, most affecting commercial implementations.
Surprisingly, and disappointingly from an academic perspective, these bugs were almost
exclusively sequential: basic compilation bugs that could manifest in a single-threaded kernel.
We found a large number of defects affecting programs that manipulate data via user-defined
structures. While we found a small number of bugs that required barrier synchronisation
operations to be present in order to manifest, even these did not appear to be directly
concurrency-related: they could affect kernels that, despite featuring barriers, did not depend
on inter-thread communication for result computation.

2 As argued in Section 3, kernels that only use barrier operations for inter-thread communication are
guaranteed to be deterministic if they are race-free. However, atomic operations open the possibility for
race-free kernels to be nondeterministic.
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Open problems

The fact that our testing methods did not identify any compiler bugs that were directly
concurrency-related could be because (a) OpenCL compilers do not yet perform sophisticated
concurrency-related optimisations, (b) our method did in fact trigger concurrency-related
compiler bugs, but in addition triggered so many basic sequential compiler bugs that the
effects of the concurrency-related bugs were masked, or (c) the methods we investigated so
far for detecting concurrency-related bugs are too simple.

Possibility (a) could be investigated with reference to open source compilers, such as the
Intel back-end for the Beignet open source implementation of OpenCL.3 Running a similar
testing campaign against more mature OpenCL compilers in the future might shed light on
possibility (b).

As we discuss further in Section 5, OpenCL 2.0 includes a full suite of well-defined atomic
operations, together with a memory model specification. With respect to possibility (c),
this raises the problem of how to generate random OpenCL kernels that exercise these
concurrency-related features in non-trivial yet predictable ways, to test more thoroughly the
compilation of concurrency primitives.

5 GPU Memory Models

As mentioned in Section 3, many GPU programmers have been going beyond the traditional
barrier synchronous model of computation, writing fine-grained concurrent algorithms that
manipulate irregular data structures, e.g. graphs. This raises the question of what sort of
memory models GPU architectures present, and in particular, what values a thread might
observe when reading from a shared memory location.

Empirically, we used litmus tests to investigate the memory models of several NVIDIA
and AMD GPUs [1], showing (a) that they do exhibit relaxed (i.e. non-sequentially consistent)
behaviour, and (b) that several programming idioms relied on by high level algorithms assume
that such relaxed behaviour cannot occur, and thus are not guaranteed to work correctly on
these platforms. In follow-up work we substantiated this possibility by designing a testing
framework geared towards automatically provoking relaxed memory bugs in GPU-accelerated
applications [40].

In large part, the issues that we discovered in these works stem from the lack of a
memory model specification in CUDA, and in OpenCL prior to OpenCL 2.0. The OpenCL
2.0 specification [24] provides a memory model specification based on the C11 memory
model [22]. However, the memory model is complicated by the fact that OpenCL features
a hierarchical organisation of threads and memory spaces, as discussed in Section 2 and
illustrated by Figure 1. For example, threads in the same work-group can use fast shared
memory to communicate, while threads in different work-groups must communicate via
slower global memory. OpenCL also features shared virtual memory (not depicted in the
overview of Figure 1), through which device threads can communicate with threads running
on the host processor. The situation is further complicated by the fact that memory accesses
are scoped. For example, a write to global memory can have device scope, so that its effects
are visible to all threads running on a device, or the more restricted work-group scope,
so that although the write will eventually propagate to all threads, the write can only
contribute to reliable synchronisation with threads in the same work-group. These subtleties

3 https://www.freedesktop.org/wiki/Software/Beignet/
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are intended to provide optimisation opportunities for OpenCL programmers and language
implementers. Our attempt to formalise the memory model [8] led to the identification of
some fundamental flaws in the way the model handles the class of sequentially-consistent
(SC) memory accesses. SC is the default mode for accessing memory, and is intended to
be the easiest for programmers to reason about (but not the most efficient), because all
SC accesses in a program are guaranteed to be executed in some total order on which all
threads agree. Our formalisation exposed a tension between this total order (which is visible
to all threads), and OpenCL’s scoping mechanism (which is intended to restrict visibility
to just some threads). We were able to construct a small OpenCL program that involves
SC accesses on two different devices, and show that even if these accesses are scoped to be
visible only within the device that performs them, the compiler is still obliged to enforce an
inter-device order between them [8, Example 10]. As such, the existing OpenCL memory
model provides guarantees that are too strong to be efficiently implemented by a compiler. In
our work, we suggest how the situation could be resolved in a future revision of the OpenCL
memory model by enforcing a total order only between SC memory accesses that have the
same scope [8, §5].

Although OpenCL’s scoping mechanism allows some synchronisation patterns to be
optimised, its usefulness is hampered by its requirement that two memory accesses can
only synchronise if both use a scope that is wide enough to encompass the other. This
symmetry inhibits the popular work-stealing pattern [13], which is often used to implement
algorithms with irregular workloads. In order for a work-group to allow its work to be stolen
by another work-group, it must scope all of its memory accesses widely enough to encompass
all the work-groups that might wish to steal. Using such a wide scope is unnecessary in
the common case when no stealing occurs and visibility is only needed within the current
work-group. To rectify this shortcoming, Orr et al. have proposed remote-scope promotion
(RSP) [36]. In their proposal, memory accesses can default to the intra-work-group scope
(for good performance in the common case), and when a thread wishes to steal from another
work-group, it invokes RSP to temporarily widen the scope of the victim’s memory accesses,
so that it can perform the necessary synchronisation to steal work.

Using the Isabelle proof assistant and the Herd memory model simulator [2], we form-
alised Orr et al.’s RSP extension and their proposed mapping to AMD’s prototype GPU
architecture [45]. These efforts brought to light several corner cases in the design, which
we discussed in detail with Orr et al. We also discovered two serious flaws in the proposed
mapping, both of which could lead to incorrect results being calculated. We were able to
propose fixes in both cases. This work emphasises the value of applying formal methods to
the early-stage design of hardware support for concurrent programming language features.

In more recent work, we have gone on to develop techniques for making the bug-finding
process applied to Orr et al.’s work more automatic. Our Memalloy tool [46] takes any
source language memory model, any target architecture memory model, and a description
of a compilation mapping from source language to target architecture, and uses automatic
constraint-solving technology to seek programs with behaviours that are forbidden at the
source language level but are nonetheless observable on the target architecture when the
compilation mapping is applied. For instance, the tool is able to reproduce (and minimise)
our two manually-found RSP-related bugs in under two hours. We also used Memalloy to
explore the compilation process from OpenCL to NVIDIA GPUs, and thereby discovered
that the memory model we had deduced for NVIDIA GPUs through litmus testing (see
the beginning of this section) was too weak to support the natural compilation scheme for
OpenCL. After strengthening (and re-validating) the NVIDIA model, Memalloy was able
to prove (up to a bound) the absence of memory-related bugs in the compilation scheme.
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Open problems

There remains work to be done to investigate how the OpenCL memory model is implemented
on the other kinds of devices that are OpenCL targets, such as FPGAs and digital signal
processors (DSPs). For instance, Intel’s OpenCL compiler for its FPGAs supports some
of OpenCL’s atomic operations, and it may be possible to employ formal methods to help
ascertain whether they are implemented correctly and as efficiently as possible.

Also, existing studies of GPU memory models (both at the language level and the
architecture level) have focused primarily on the single-device setting. However, OpenCL
is designed to allow multiple devices to communicate with each other and with the host
processor (via shared virtual memory). There is a need for techniques to help ascertain
whether the OpenCL memory model has been implemented correctly and efficiently in
this case. Furthermore, when shared virtual memory is used in ‘fine-grained system’ mode
(whereby devices have simultaneous access to the entirety of the host’s memory), there is
a need to understand how the OpenCL memory model (as implemented on those devices)
interacts with the memory model of the host processor. A general theory of how to compose
memory models may be called for.

6 Blocking Algorithms and Forward Progress

Many parallel programs on traditional multicore systems (e.g. CPUs) have blocking behaviours.
That is, one thread in the system will spin, waiting for another thread in the system to
reach a certain point in the program. These interactions are typically orchestrated using flag
values in a shared memory region. Common examples of concurrent idioms with blocking
behaviours are mutexes and synchronisation barriers. In order to execute correctly (e.g.
terminate or make progress), blocking behaviours require certain properties from the thread
scheduler. Namely, if a thread t1 is waiting for a thread t2, the scheduler must ensure that
t2 is allowed to execute, thus freeing t1 from waiting. If the system, for whatever reason,
cannot guarantee that t2 will eventually execute, then t1 might wait indefinitely. A scheduler
which guarantees the relative execution of threads is said have the forward progress property.

Currently, GPU specifications do not provide forward progress properties between threads
in different work-groups, effectively disallowing popular existing idioms (and thus, programs)
from multicore CPU systems to be ported to GPUs in a reliable manner. However, GPU
programmers have discovered that by exploiting quirks in today’s GPUs, certain blocking
idioms can be made to execute as expected. This can be achieved pragmatically by determining
(via trial and error) the number of work-groups for which forward progress appears to be
guaranteed, and hard coding this number into the GPU kernel. This can be fiddly, since in
practice the number is influenced by the program (e.g. due to register usage), the target GPU
(e.g. due to hardware resource limits), and the GPU driver (e.g. due to its policy on how
resources are allocated). Moreover, this approach to writing applications suffers from two
drawbacks. First, applications that exploit such quirks are not portable even across GPUs
from the same designer: undesirable behaviour (e.g. indefinite spinning) may occur when
executing the program on a different GPU model, applying otherwise semantics-preserving
changes to the program, or updating the GPU driver. Second, because the behaviour is not
guaranteed by GPU programming language specifications, and applications written in this
manner are generally not tested on a GPUs from a wide range of vendors [41], an application
tested on multiple GPU models from one vendor may nevertheless fail when executed on a
GPU from another vendor. Indeed, we observed that an inter-work-group synchronisation
barrier written for one GPU (e.g. the NVIDIA GTX Titan) might deadlock when run on a
different GPU (e.g. the Intel HD5500).
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To address the above drawbacks, we performed a large empirical study (across eight
GPUs spanning four vendors) to search for a forward progress abstraction that was (a) able
to account soundly for the behaviour across the GPUs that we tested, and (b) useful enough
to allow the implementation of popular blocking idioms [42]. After probing our zoo of GPUs
with litmus tests, we determined that all GPUs had the following property: once a work-group
begins executing a kernel (i.e. the work-group becomes occupant on a hardware resource), it
will continue executing until it reaches the end of the kernel. We call this execution model
the occupancy bound execution model, because the number of work-groups for which relative
forward progress is guaranteed is bound by the hardware resources available for executing
work-groups; i.e. the hardware resources determine how many work-groups can be occupant.

The occupancy bound execution model naturally allows mutex synchronisation, as a
thread that acquires a lock is guaranteed to continue executing, thus eventually releasing the
lock.4 A portable synchronisation barrier across work-groups is, however, much more difficult
to achieve. To address this, we developed a discovery protocol, which dynamically, at kernel
launch, determines a safe, lower-bound estimate of the number of occupant work-groups.
Work-groups that are not part of the initial wave of occupant work-groups discover that
this is the case, and immediately exit the kernel. As a result, they do not participate in
any blocking synchronisation. Kernels must be designed to be agnostic to the number of
executing work-groups, to account for the fact that the number of occupant work-groups
may vary across GPUs and between driver versions, and due to the fact that the discovery
protocol does not guarantee discovering all work-groups that are initially occupant, and may
discover a different number of work-groups during different executions of the same kernel.
Previous work shows that it is usually possible to design kernels to satisfy this constraint, and
programs with this property are said to use the persistent thread programming model [21].

The discovery protocol uses a polling mechanism, protected by a mutex, to allow work-
groups to mark themselves as executing. Because the poll is only open for a finite amount of
time, it is possible that the occupant work-groups may not be able to mark themselves, and
contribute to the computation, thus under utilising the GPU. We show through a wide range
of experiments that on current GPUs, we are able to define a discovery protocol that has
a recall of nearly 100%. Our main insight is that using a fair mutex, such as a ticket lock,
to guard the polling data structure leads to better recall than is achievable using a more
traditional compare-and-swap-based spin-lock.

Open problems

As part of our work, we benchmarked a set of applications that use our discovery protocol
and inter-work-group synchronisation barrier against versions of the same applications that
use a multi-kernel approach to achieve global synchronisation (by explicitly ending and
re-launching the kernel). We observed a wide range of performance profiles across the eight
GPUs that we tested. For example, on Intel GPUs, our inter-work-group barrier provides a
median 28% performance improvement compared with the multi-kernel approach, while on
ARM GPUs we observed a median 50% slowdown using the inter-work-group barrier. An
interesting open problem is to investigate whether a performance model can be developed
that can predict when it is beneficial to use an inter-work-group barrier. Recent work has
started to develop such a model for NVIDIA GPUs, but is yet to be extended to GPUs of
other vendors [37].

4 Of course, it is possible as usual for deadlock to occur due to mismanagement of multiple mutexes.
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In our work so far we have only examined the relative forward progress properties
associated with threads in different work-groups. Forward progress properties between
threads at different levels of the GPU execution hierarchy may not be the same. As with
inter-work-group forward progress, GPU specifications do not provide much guidance with
respect to intra-work-group forward progress. In this context we think the following are
interesting research topics: (a) an empirical investigation of the forward progress properties
that GPUs appear to provide at each level of the execution hierarchy, and (b) the identification
of applications that might benefit from blocking idioms at additional levels of this hierarchy.

Finally, because GPU specifications do not provide forward progress guarantees at present,
we believe that working with standards committees in this area is vital. Our understanding
from talking with various contacts in the GPU industry is that one reason vendors are
reluctant to provide forward progress guarantees is so that they can reserve the right to
dynamically change the computational resources assigned to a given GPU kernel, e.g. to
make computational resources available to other tasks, or to reduce energy consumption.
In our most recent work we have proposed an extension to the GPU programming model
called cooperative kernels, specifically designed with blocking algorithms in mind, which we
hope may allow the forward progress requirements of blocking algorithms to co-exist with
the need for dynamic changes in the hardware resources that are assigned to kernels [43].
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