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Abstract
Despite the conceptual simplicity of sequential consistency (SC),
the semantics of SC atomic operations and fences in the C11 and
OpenCL memory models is subtle, leading to convoluted prose
descriptions that translate to complex axiomatic formalisations. We
conduct an overhaul of SC atomics in C11, reducing the associated
axioms in both number and complexity. A consequence of our
simplification is that the SC operations in an execution no longer
need to be totally ordered. This relaxation enables, for the first
time, efficient and exhaustive simulation of litmus tests that use
SC atomics. We extend our improved C11 model to obtain the first
rigorous memory model formalisation for OpenCL (which extends
C11 with support for heterogeneous many-core programming). In
the OpenCL setting, we refine the SC axioms still further to give
a sensible semantics to SC operations that employ a ‘memory
scope’ to restrict their visibility to specific threads. Our overhaul
requires slight strengthenings of both the C11 and the OpenCL
memory models, causing some behaviours to become disallowed.
We argue that these strengthenings are natural, and that all of the
formalised C11 and OpenCL compilation schemes of which we are
aware (Power and x86 CPUs for C11, AMD GPUs for OpenCL)
remain valid in our revised models. Using the HERD memory
model simulator, we show that our overhaul leads to an exponential
improvement in simulation time for C11 litmus tests compared
with the original model, making exhaustive simulation competitive,
time-wise, with the non-exhaustive CDSChecker tool.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.2 [Logics and
Meanings of Programs]: Semantics of Programming Languages

Keywords Formal methods, graphics processing unit (GPU), het-
erogeneous programming, HOL theorem prover, language design,
program simulation, weak memory models

1. Introduction
Atomics and memory models. C11 and OpenCL both define a
collection of atomic operations, or ‘atomics’, which can be used
by experts to program high-performance, lock-free algorithms in a
portable manner. Atomics accept a memory order parameter, which
controls the exposure of certain relaxed memory behaviours that
modern CPUs and GPUs natively exhibit.

The C11 and OpenCL specifications [21, 23] define the seman-
tics of atomics via axiomatic memory models; that is, sets of rules
that govern the reading and writing of shared memory locations.
These memory models are complex, stretching to about 19 and
30 pages, respectively, of convoluted prose. This complexity makes
it extremely challenging to reason about the correctness of programs
that are written in, and compilers that implement, these languages.

Correctness in any relaxed memory setting is notoriously eva-
sive; indeed, the subtleties of relaxed memory have previously led
to confirmed bugs in language specifications [7, 10], deployed pro-
cessors [1], compilers [27, 40] and vendor-endorsed programming
guides [3]. The importance of correctness in the context of C11 is
well-known. Correctness is just as crucial in OpenCL, which is an
open standard for heterogeneous programming that is developed
and supported by major hardware vendors such as Altera, AMD,
ARM, Intel, Nvidia, Qualcomm and Xilinx. OpenCL is a key player
in the recent drive to exploit GPUs and FPGAs in general-purpose
computing, including in safety-critical domains such as medical
imaging [34] and autonomous navigation [24].

We seek in our work to tame the complexity of these memory
models through formalisation.
The C11 memory model has been formalised by several researchers,
in varying degrees of completeness, and with varying degrees of
fidelity to the standard [2, 7, 38]. These formalisation efforts have
proved fruitful; they have, for instance, enabled the construction
of simulators that automatically explore the allowed behaviours of
small C11 programs (called litmus tests) [2, 7, 13, 29], underpinned
the design of program logics for specifying and verifying C11
programs [37, 38], and they provide a firm foundation for ongoing
debate about the design of the C11 memory model itself [10, 39].
The OpenCL memory model (introduced in version 2.0 of the
standard) has received comparatively little academic attention, with
the notable exception of the work of Gaster et al. [17], which we
discuss further in §7. OpenCL provides a framework for CPU
programs to delegate the execution of massively-parallel kernel
functions, written in a variant of C, to one or more accelerator
devices, such as GPUs or FPGAs. Threads that execute these kernels
are organised into a hierarchy: threads1 are grouped into work-
groups, and work-groups are grouped by device. The OpenCL
memory model is broadly similar to that of C11, but is extended

1 Threads in OpenCL are also called work-items.



with features such as memory regions (which contain locations that
are accessible only to a certain subtree of the thread hierarchy),
and memory scopes (which, when applied to an atomic operation,
confine its visibility to a certain subtree of threads).

SC atomics. Our work is distinguished by its focus on the
sequentially consistent (SC) fragment of these memory mod-
els; that is, the semantics of atomics whose memory order is
memory_order_seq_cst. The chief guarantee provided by this
memory order is that all SC atomics in a given execution will ex-
ecute in some order (say, S ) on which all threads mutually agree.
Note that these memory models do not construct S ; they merely
postulate the existence of a suitable S .

Sequential consistency is known for its simplicity [26], and in-
deed, any C11 or OpenCL program using exclusively SC atomics
would enjoy a simple interleaving semantics. However, when com-
bined with the more relaxed memory orders that C11 and OpenCL
also provide, the semantics of SC atomics becomes highly complex,
and it is this complexity that we tackle in this paper.

SC atomics are in widespread use, partly because the SC mem-
ory order is used when no other is specified, and partly because
programmers are routinely advised to use SC atomics prior to opti-
mising their code with the more relaxed memory orders [42 (p. 221)].
Algorithms that make use of SC atomics include Dekker’s mutual
exclusion algorithm [14], and more generally, multiple-producer-
multiple-consumer algorithms that require every consumer to ob-
serve the actions of every producer in the same order.2 As such, it is
important that the semantics of SC atomics is clear to programmers,
to allow smooth transitioning between the exclusive use of SC (for
ease of reasoning) to a mixture of SC and weaker-than-SC atomics
(for performance optimisation).

In theory, SC atomics can be avoided by replacing them with
mutex-protected non-atomic operations (and simple spinlock mu-
texes can be implemented using just release and acquire atom-
ics [42 (p. 111)]). In practice, support for SC atomics is non-
negotiable if software is to make use of concurrency libraries. This
is because the aforementioned replacement of SC atomics must be
performed throughout the entire program – in both library code
and client code alike – and with the same mutex variable for every
operation. Moreover, programs that make extensive use of spinlocks
could prove less efficient than those that rely on native SC atomics,
and accidental misuse of locks may lead to deadlock.

1.1 Main Contributions
Our work aims to provide clearer, simpler foundations for reasoning
about C11, enabling a clean extension to OpenCL for heterogeneous
programming, and facilitating efficient simulation.

1. Overhauling SC atomics in C11 (§3). The C11 specification
devotes around 276 words to explaining the semantics of SC atomics.
In our work, we have translated these words into mathematical
axioms, carefully strengthened these axioms (without imposing
unreasonable demands on the compiler), and then refactored them
so that they are expressed as simply as possible. Our revised text

X is shorter (requiring just 80 words in the same prose style),

X is simpler (because it reduces seven axioms to just one), and

X is amenable to more efficient simulation (see below).

Supporting the revised text is a provably-equivalent model that
avoids the need to postulate the total order S . Instead, the model
constructs a partial order on SC operations, preserving only the
edges of S that can affect program behaviours. The enumeration
of all candidate S relations is one of the most expensive tasks for

2 http://en.cppreference.com/w/cpp/atomic/memory_order

memory model simulators like HERD; by reducing S to a partial
order, we can dramatically improve simulation performance.

2. Overhauling SC atomics in OpenCL (§5). Our simplifications
to the rules governing SC atomics in C11 can be carried over directly
to OpenCL, where the same three benefits listed above can be reaped.
In the OpenCL setting, however, there is an additional complexity
in the semantics of SC atomics. Specifically, the total order S in
which all of a program’s SC atomics execute is only guaranteed
to exist when one of two conditions holds: either all SC atomics
in the program’s execution use the widest-possible memory scope
and only access memory shared between devices, or all SC atomics
have their memory scope limited to the current device and never
access memory shared between devices. We find that this semantics
is unhelpful to programmers, because if any SC atomic violates
these conditions, then no SC atomic is guaranteed to have semantics
stronger than acquire/release; this may lead to additional behaviours
not anticipated by the programmer. The semantics is simultaneously
unhelpful to compiler-writers: a loop-hole that we discovered in the
second condition above means that even device-scoped SC atomics
must be implemented using expensive inter-device synchronisation.

We have amended the rules that govern SC atomics in OpenCL,
so that the SC guarantees do not vanish immediately in the presence
of a differently-scoped SC atomic somewhere in the program, but
instead degrade gracefully. Our revised rules

X are shorter and simpler (we can replace 391 words in the
specification with 89 words in the same prose style),

X enable new programming patterns in OpenCL (such as programs
that use SC atomics in a natural manner, yet a manner that
violates the overly restrictive conditions above),

X let device-scoped SC atomics be efficiently implemented, and

X improve the compositionality of OpenCL semantics, and hence
the ability to write concurrency libraries (because the behaviour
of SC atomics no longer depends on unstable, global conditions).

3. Proving the implementability of our revised models (§3.3, §5.2).
Our improvements to the SC axioms in the C11 and OpenCL
memory models hinge on slight strengthenings of the models; that is,
tweaking some of the axioms so that fewer executions are allowed.
This increases the demands on compilers that implement these
memory models, so it is important to check that our changes do
not invalidate existing compilation schemes. To this end, we prove
that all of the formalised C11 compilation schemes of which we are
aware (namely, those for Power [8] and x86 [7] machines) remain
sound after our changes, and we argue informally that our OpenCL
changes preserve the soundness of the only formalised OpenCL
compilation scheme (namely, that for AMD GPUs [41]).

1.2 Supporting Contributions
In order to justify the claims we make in our main contributions, we
have established several supporting artefacts, which we believe are
also valuable in their own right.

4. Formalising the OpenCL memory model (§5). The OpenCL
specification contains numerous ambiguities, omissions and incon-
sistencies, which makes it a shaky structure upon which to build an
argument about the correctness of an OpenCL program or compiler.
The lack of clarity may lead programmers and compiler-writers
to cautiously opt for low-efficiency implementations that are eas-
ier to guarantee correct. Moreover, there are instances where the
OpenCL specification authors have made unnecessarily conserva-
tive, programmer-unfriendly decisions in the design of rules for
memory consistency. We provide the first mechanised formalisa-
tion of the OpenCL memory model. Our formalisation serves to
clarify the specification, and can henceforth be used to underpin



future program logics for verifying OpenCL kernels, and to inform
further refinements to the memory model.3 In particular, we use our
rigorous memory model to show that the design decisions of the
specification can be made less conservative, offering programmers
more flexibility, without placing any additional burden on efficient
implementation of the language.
5. Formalising the memory models in .cat (§2, §4). We have
encoded the C11 and OpenCL memory models in the .cat frame-
work [2]. Previous formalisations of the C11 memory model exist,
in Isabelle [7], Lem [8] and Coq [38]; here we contribute the first
version in .cat. We conduct our development work in the .cat
language because it is the native input format to the HERD memory
model simulator, which has a proven record of efficiently simulating
a range of CPU machine-level memory models [2 (§8.3)].
6. Extending the HERD memory model simulator (§6). During
memory modelling work, tool support for simulating alternative
memory models against litmus tests is invaluable. HERD is able
to simulate any memory model expressed as a .cat file, but in
its original incarnation, it supported only machine-level models of
CPUs [2] and GPUs [3]. To explore our proposed changes to the C11
and OpenCL memory models, we extended HERD with a module for
generating executions of C11 and OpenCL programs, and support
for language-level memory models that incorporate ‘undefined
behaviour’ (a notion that is absent from machine-level models). This
involved adding around 8000 lines to the original HERD codebase.4

All of the examples in this paper have been automatically checked
with HERD. Using HERD, we have evaluated the impact of our
changes to the SC axioms, and found an exponential improvement
in simulation performance.
Online material. Our companion webpage provides instructions
for downloading HERD and our .cat formalisations [11].

2. The C11 Memory Model in .cat
This section describes formally the current C11 memory model.

The semantics of multi-threaded C11 programs is formalised
in two stages; the first concerning the thread-local semantics, and
the second capturing the memory model. Roughly speaking, the
first stage takes as input a C11 program and calculates its set
of executions (§2.1, §2.2); the second stage then compares each
execution to the memory model to determine which executions are
actually allowed (§2.3).

There exist several prior formalisations of the C11 memory
model [2, 7, 38]. The novelty of this section is the first comprehen-
sive formalisation of the model in the .cat framework [2], which
enables the use of the efficient HERD simulator [2]. For reasons
of space, and because they are orthogonal to the thrust of our con-
tributions, we omit our treatment of the ‘consume’ memory order,
unsequenced races and C11 locks from the paper. However, our
.cat-based formalisation fully accounts for these features, and is
provided on our companion webpage [11].

2.1 C11 Programs
A C11 program manipulates a set of shared memory locations.

Definition 1 (Memory locations). Each memory location is de-
clared with either a non-atomic or an atomic type. That is, type(l) ∈
{atomic, non-atomic} for every memory location l .

Definition 2 (Structure of C11 programs). We consider C11 pro-
grams of the form P = ||t∈T pt , where T is a set of thread identi-
fiers, pt is a piece of sequential code, and || is parallel composition.

3 Indeed, we have already built upon our formalisation in another piece
of work that investigates a proposed extension to the OpenCL memory
model [41]. 4 As estimated by git log.

(This static form of parallelism is a simplification of the dynamic
thread creation that C11 actually provides.)

Atomic locations can be accessed via atomic operations; these
include reads, writes, and read-modify-writes (RMWs). C11 also
defines fence operations. Atomic operations and fences expose the
programmer to relaxed memory behaviours; which behaviours are
exposed is controlled by the operation’s memory order parameter.

Definition 3 (Memory orders). The available memory orders in
C11 are:

o ::= RLX (relaxed)
| ACQ (acquire, only for reads/RMWs)
| REL (release, only for writes/RMWs)
| AR (acquire+release, only for RMWs)
| SC (sequentially consistent, the default).

Example 1 (A C11 program). We give below a contrived C11
program that operates on two atomic locations, x and y, using atomic
store and load operations with a variety of memory orders.

atomic_int *x; atomic_int *y;
store(x,1,RLX); r1=load(x,RLX); store(x,2,SC); store(y,1,SC);

r2=load(x,RLX); r3=load(y,SC); r4=load(x,SC);

2.2 C11 Executions
The C11 memory model is defined in terms of program executions.
An execution X takes the form of a mathematical graph, where
each node e ∈ E is labelled with a run-time memory event (see
Def. 4), and the edges connect events performed by the same thread
in program order. In other words, an execution is a partial order over
a set E of events, and can be thought of as a ‘concurrent trace’.

Definition 4 (Event labels). Each event’s label characterises the
kind of instruction that gave rise to the event, and incorporates up
to four attributes, as listed in the first five columns of the following
table:

kind loc rval wval ord R W F A
Wna ( l, v, ) X
W ( l, v, o ) X X
Rna ( l, v, ) X
R ( l, v, o ) X X
RMW ( l, v, v′, o ) X X X
F ( o ) X X

The labels represent (reading down): non-atomic writes, atomic
writes, non-atomic reads, atomic reads, RMWs (which are always
atomic), and memory fences. Where relevant, labels contain (reading
across): the location being accessed, the value being read, the value
being written, and the memory order specified by the programmer.
A X-mark on the right-hand side of the table indicates that an event
with this label belongs to the set R (resp. W , F , A) of events that
read (resp. write, are a fence, are atomic). Let L denote the set of
labels.

Definition 5 (Executions). An execution is a tuple X = (E , I , lbl ,
thd , sb) with the following components.

• E is a set of event identifiers.
• lbl ∈ E → L associates each event with a label. For each

event e , loc(e) projects the loc attribute of lbl(e) (if applicable);
rval(e), wval(e) and ord(e) provide similar projections.

• I ⊆ E is a set of initial events. Every initial event e ∈ I is a non-
atomic write of zero; that is, kind(e) = Wna and wval(e) = 0.
Moreover, there is exactly one initial event per location.

• thd ⊆ (E \ I )2 is an equivalence relation on non-initial events
that relates events from the same thread.



• sb ⊆ thd is the sequenced-before relation: a strict partial order
(i.e., irreflexive and transitive) between events from the same
thread, that captures the program order.

Let X be the set of all executions. Next, we define a number of
derived sets and relations over the events of an execution that will
prove useful in describing the memory model.

Definition 6 (Derived sets and relations). In the context of
an execution (E , I , lbl , thd , sb), we define the relation =loc as
{(e, e ′) ∈ (E \ F )2 | loc(e) = loc(e ′)}; it holds between
non-fence events that access the same location. The relation =val ,
defined as {(e, e ′) ∈ W × R | wval(e) = rval(e ′)}, holds
when the first event writes the value that the second reads. For
each memory order o ∈ {RLX, ACQ, REL, AR, SC}, we abbreviate
the set {e ∈ A | ord(e) = o} as just o. We also define the set
nal = {e ∈ E \ F | type(loc(e)) = non-atomic} of events that
access a non-atomic location.

Example 2 (A C11 execution). The diagram below depicts one
execution of the program given in Example 1. The initial events,
a and b, are placed above the events of the four parallel threads.
Reflexive and transitive edges are elided, and derived relations are
not shown.

a: Wna(x, 0) b: Wna(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb thd thdthd

Basic executions. The first stage of the C11 semantics translates a
program into a set of executions called its basic set.5 Each execution
in this set is compatible with the instructions of the individual
threads, but the set is constructed without considering the behaviour
of shared memory, so it provides an over-approximation of the
executions that will ultimately be allowed to happen once the whole
program and the memory model are taken into account. For instance,
the execution in Example 2 is a basic execution of the program in
Example 1: the values of the write events correspond to the program
text, but the values of the read events are arbitrary and the basic set
of all executions ranges over all choices. We do not define formally
how the basic executions are constructed, and simply assume their
existence for any program we wish to consider. Practical tools such
as HERD and Cppmem [7] implement this construction as part of
litmus test simulation; the construction is investigated formally in
ongoing work by Memarian et al.

Candidate executions. The second stage of the C11 semantics,
which is the focus of this paper, takes as input a program’s basic
execution set and returns the set of allowed executions. In order to
build the allowed executions, we employ an intermediate structure
called a candidate execution, which extends an execution with a
witness that comprises three additional relations, called rf (reads-
from), mo (modification order) and S (sequential consistency
order).

Definition 7 (Candidate executions). A candidate execution is
a pair (X ,w) where X = (E , I , lbl , thd , sb) is an execution,
and w = (rf ,mo,S) is a witness comprising three relations
rf ,mo,S ⊆ E2. A candidate execution is well-formed, written
wf (X ,w), if:

• the reads-from relation links write events to read events, such
that every read observes exactly one write, and the locations and

5 This set is sometimes called the ‘pre-executions’ [7] or the ‘opsems’ [39].

values match; that is,

∀e ∈ R. ∃!e ′ ∈W . (e ′, e) ∈ rf

and rf ⊆ (=loc ∩=val)

}
(WfRf)

where ∃! means ‘exists unique’;
• the modification order relates, in a strict total order, all and only

those events that write to the same atomic location; that is,

(mo ∪mo−1) = (=loc ∩W 2 \ nal2 \ id)
and acy(mo)

}
(WfMo)

where acy(r) means that r is acyclic; and
• the S relation relates, in a strict total order, all and only the SC

events in an execution; that is,

acy(S) and (S ∪ S−1) = (SC2 \ id) (WfS)

Example 3 (A C11 candidate execution). The diagram below
extends the execution in Example 2 with a witness. We elide the
thd edges (each column corresponds to one thread). The candidate
execution is well-formed, and consistent with the axioms of the
memory model (presented next).

a: Wna(x, 0) b: Wna(y, 0)

c: W(x, 1, RLX) d : R(x, 1, RLX)

e: R(x, 2, RLX)

f : W(x, 2, SC)

g : R(y, 0, SC)

h: W(y, 1, SC)

i : R(x, 1, SC)

sb sbsb S S
S

momo morf

rf
rf

rf

2.3 C11 Axioms
A candidate execution is deemed consistent with the memory model
if it satisfies the 12 consistency axioms of Def. 11, which we shall
build towards in this subsection. We express the axioms using the
.cat language [2], a concise language based on the propositional
fragment of Tarski’s relation calculus [36].

Definition 8 (The .cat language). The cat language supports
the construction of relations via: union, intersection, difference,
complement (¬r ), inverse (r−1), reflexive closure (r?), transitive
closure (r+), and relational composition (r1 ; r2), which is defined
such that (x , z ) ∈ r1 ; r2 if (x , y) ∈ r1 and (y , z ) ∈ r2 for some
y . It also provides the syntax [s] = {(e, e) | e ∈ s} for the
identity relation (id ) restricted to the set s . (These operators can
be neatly combined to describe paths through graphs; for instance,
[s1] ; r1 ; [s2] ; r2 ; [s3] relates s1-events to those s3-events that
are reachable by following an r1-edge to an s2-event and then an
r2-edge.) Each axiom of the memory model must be expressed in
the form of an acyclicity (acy r ), irreflexivity (irr r ), or emptiness
(empty r ) constraint on some relation r constructed using these
operators.

In order to define these axioms, we first need to introduce several
derived relations.

Remark 9. In the following, we justify our formal definitions
by referring to the C11 standard [21], using the notation §N :n
for section N , paragraph n . We refer to the C++11 standard [20],
whenever a clause was erroneously omitted from C11. (C11 inherits
its memory model from C++11). Similarly, we refer to the C++14
standard [22] in the case of an erroneous omission from C++11.
We include these omitted parts because doing so leads to a cleaner
model that we believe to be closer to the designers’ intent.

Definition 10 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the



following subsets of E and relations over E :

acq
def
= ACQ ∪ AR ∪ (SC ∩ (R ∪ F ))

rel
def
= REL ∪ AR ∪ (SC ∩ (W ∪ F ))

fr
def
= rf −1 ;mo

Fsb
def
= [F ] ; sb

sbF
def
= sb ; [F ]

rs ′
def
= thd ∪ (E2 ; [R ∩W ])

rs
def
= mo ∩ rs ′ \ ((mo \ rs ′) ;mo)

sw
def
= ([rel ] ; Fsb? ; [A ∩W ] ; rs? ; rf ;

[R ∩A] ; sbF ? ; [acq ]) \ thd
hb

def
= (sb ∪ (I × ¬I ) ∪ sw)+

hbl
def
= hb ∩=loc

vis
def
= (W × R) ∩ hbl \ (hbl ; [W ] ; hb)

cnf
def
= ((W ×W ) ∪ (W × R) ∪ (R ×W )) ∩=loc

dr
def
= cnf \ hb \ hb−1 \A2 \ thd

Commentary. The set acq (resp. rel ) contains all events that behave
as an acquire (resp. a release).6 The from-read relation (fr ) links
each read to all those writes that are mo-after the write the read
observed [2].

The relation rs captures the release sequence, using rs ′ as a
helper. The release sequence of e comprises those events that form
a maximal mo-chain, starting from e , of events that either are in e’s
thread or are RMWs.7

Release/acquire synchronisation is captured by the sw relation.
This relates an atomic write-release event to an atomic read-acquire
event in a different thread if the read obtains its value from the write
or its release sequence.8 If the acquire (resp. release) is a fence, the
synchronisation happens via an atomic read (resp. write) sequenced
before (resp. after) the fence.9

Happens-before (hb) is a transitive relation that includes
sequenced-before and synchronisation edges, and puts initial events
before all other events.10 We use hbl to abbreviate happens-before
to events on the same location. A write is visible (vis) to a read if it
is the most recent write to that location in happens-before.11

Two events are in conflict (cnf ) if they access the same location
and at least one is a write;12 these events go on to form a data
race (dr ) if they are unrelated by happens-before, they are not both
atomic, and they are in different threads.13

We now use the derived relations of Def. 10 to formalise what it
means for an execution to be consistent.

Definition 11 (Consistency). A candidate execution (X ,w) =
(E , I , lbl , thd , sb, rf ,mo,S) is consistent, written consistent(X ,
w), if it is well-formed and it satisfies all of the following axioms:

irr(hb) (Hb)

irr((rf −1)? ;mo ; rf ? ; hb) (Coh)

irr(rf ; hb) (Rf)

empty((rf ; [nal ]) \ vis) (NaRf)

irr(rf ∪ (mo ;mo ; rf −1) ∪ (mo ; rf )) (Rmw)

irr(S ; r1) where r1 = hb (S1)

6 [21 (§7.17.3:3–4)], [21 (§7.17.4.1:2)] 7 [21 (§5.1.2.4:10)]
8 [21 (§5.1.2.4:11)] 9 [21 (§7.17.4:2–4)] 10 [21 (§5.1.2.4:18)], simpli-
fied in the absence of memory_order_consume 11 [21 (§5.1.2.4:19)]
12 [21 (§5.1.2.4:4)] 13 [21 (§5.1.2.4:25)]

irr(S ; r2) where r2 = Fsb? ;mo ; sbF ? (S2)

irr(S ; r3) where r3 = rf −1 ; [SC] ;mo (S3)

irr((S \ (mo ; S)) ; r4) where r4 = rf −1 ; hbl ; [W ] (S4)

irr(S ; r5) where r5 = Fsb ; fr (S5)

irr(S ; r6) where r6 = fr ; sbF (S6)

irr(S ; r7) where r7 = Fsb ; fr ; sbF (S7)

Commentary. These axioms are equivalent to those in Batty et al.’s
Lem formalisation [8], the fidelity of which has been endorsed
by the C11 standards committee, but because they are expressed
in the .cat language, they are markedly more concise. We have
established this equivalence using the HOL theorem prover, with
the help of a tool we wrote for exporting .cat files to Lem, and our
proof script is available online [11]. We now explain each axiom in
turn.

Happens-before must contain no cycles.14 Requiring irreflexivity
here is sufficient (Hb), since hb is transitive. Coherence (Coh)
governs the relationship between hb and mo: if the write e1 is
mo-before the write e2, then e2 (and any events that read from e2)
must not happen before e1 (nor before any events that read from
e1).15 A read must not observe a write that happens after it (Rf),16

and a read of a non-atomic location must observe a visible write
(NaRf).11 An RMW must observe the immediately-preceding write
in mo (Rmw);17 that is, not itself (first disjunct), nor a too-early
write (second disjunct), nor a too-late write (third disjunct).

This leaves the SC axioms, which we present using where-
clauses for ease of reference later. Axiom S1 states that S must
be consistent with happens-before.18 Axiom S2 governs the relation-
ship between S and mo: if the write e1 is mo-before the write e2,
then e2 (and any fences sequenced after e2) must not come before
e1 (nor before any fences sequenced before e1) in S .19

Axioms S3 and S4 constrain the values that an SC read e1 of a
location l may observe. If there are any SC writes to l preceding e1
in S , then e1 must read either from the most recent of these in S –
call this e2 – or from a non-SC write that does not happen before
e2.18 We encode this requirement as two irreflexivity constraints.
First, we wish to rule out reading from an SC write that is not the
most recent in S ; that is, we wish to forbid cycles of the shape
depicted below left, where Sloc

def
= S ∩=loc . Axiom S3 does this,

using the simplified form shown below right.

R W

W
S

Sloc

rf
simplifies

to

SC

mo
S

rf

Second, we require e1 not to read from a write that happens before
e2; that is, we wish to forbid cycles of the shape depicted below left.
Axiom S4 does this, using the simplified form shown below right.

R W

W

hb
Sloc \ (S ; [W ] ; Sloc)

rf
simpli-
fies to W

hbl
S \ (mo ; S)

rf

Axioms S5, S6 and S7 govern SC fences. If a read e1 of a
location l is sequenced after an SC fence, then e1 must not read
from a write to l that is mo-earlier than the last write to l that
precedes the fence in S .20 In fact, ‘the last write’ here can be safely

14 [20 (§1.10:12)] 15 [21 (§5.1.2.4:7)], [21 (§5.1.2.4:22)],
[20 (§1.10:17–18)] 16 The specification uses the ‘visible sequence of
side effects’ to phrase this clause [21 (§5.1.2.4:22)], but Batty [6 (§5.3)]
has proved that ‘happens after’ suffices. 17 [21 (§7.17.3:12)]
18 [21 (§7.17.3:6)] 19 [21 (§7.17.3:6)], [20 (§29.3:7)], [22 (§29.3:7)]
20 [21 (§7.17.3:9)]



generalised to ‘some write’, because being mo-earlier than some
write to l that precedes the fence in S implies being mo-earlier than
the last write, since mo is total (S5). If a write e2 to location l is
sequenced before an SC fence, then any SC read of l that follows
the fence in S must not read from a write to l that is mo-earlier than
e2 (S6).21 Finally, if a read e1 of location l is sequenced after an
SC fence, and a write e2 to l is sequenced before another SC fence
that precedes the first fence in S , then e1 must not read from a write
mo-earlier than e2 (S7).22

A final axiom formalises what it means for an execution to
exhibit a fault.

Definition 12 (Faultiness). A candidate execution (X ,w) is faulty,
written faulty(X ,w), if it is consistent and does not satisfy the
following axiom:

empty(dr). (Dr)

If any basic execution can be extended to a faulty candidate
execution, then the entire program’s behaviour is ‘undefined’ and
any execution is allowed. Otherwise, the allowed executions are
those basic executions that can be extended to a consistent candidate
execution.

Definition 13 (Allowed executions). Given a set Xs of a program’s
basic executions, we obtain the program’s allowed executions as:

allowed(Xs)
def
= if ∃X ∈ Xs. ∃w . faulty(X ,w) then X

else {X ∈ Xs | ∃w . consistent(X ,w)}

3. Overhauling the SC Axioms in C11
The rules for SC axioms in C11, as demonstrated in the previous
section, are highly convoluted. In this section, we describe how
these rules can be improved in two fairly orthogonal ways. In §3.1,
we describe how the total order over SC operations can be replaced
with a partial order; this simplification will be demonstrated in §6.2
to dramatically improve the efficiency with which the model can
be simulated. In §3.2, we describe a slight strengthening of the
model that enables significant simplifications to be made. These
simplifications lead to a model that is easier to understand, and
should prove easier to work with in a formal setting.

3.1 Reducing S from a Total to a Partial Order
We observe that all but one of the seven SC axioms (Def. 11) can
be written in the form irr(S ; r) for some relational expression r .
These r ’s can be seen as the constraints on the total order S . Axiom
S4 is not quite of this form. However, replacing its ‘S \ (mo ; S)’
with just ‘S ’, to obtain the axiom S4a given below, happens to
coincide exactly with an amendment to the model already proposed
by Vafeiadis et al. to lend the model more desirable mathematical
properties [39 (§4.2)].

irr(S ; r4) (S4a)

Where axiom S4 forbids an SC read to observe any write that
happens before the most recent SC write in S , axiom S4a forbids it
to observe any write that happens before any SC write in S . Let us
assume here that the uncontroversial amendment of Vafeiadis et al.
will be accommodated by the C standards committee.

Lemma 14 (SC order extension principle). For any relation r , there
exists a strict total order S over all SC events that is compatible
with r , if and only if r , when restricted unequal SC events, is acyclic.
That is:

(∃S.WfS ∧ irr(S ; r)) = acy(SC2 \ id ∩ r).

21 [21 (§7.17.3:10)] 22 [21 (§7.17.3:11)]

Proof. This follows from the well-known order extension principle:
that any (strict) partial order can be extended to a (strict) total
order.

We are now in a position to replace the seven irreflexivity axioms
with a single acyclicity axiom.

Theorem 1. There exists a strict total order on SC events that
satisfies axioms S1, S2, S3, S4a, S5, S6, and S7, if and only if
the following Spartial axiom (which states that the union of all the
constraints on S , when restricted to unequal SC events, is acyclic)
holds:

acy(SC2 \ id ∩ (r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6 ∪ r7)) (Spartial)

That is:

(∃S.WfS ∧ S1 ∧ S2 ∧ S3 ∧ S4a ∧ S5 ∧ S6 ∧ S7) = Spartial.

Proof.

∃S .WfS ∧ S1 ∧ S2 ∧ S3 ∧ S4a ∧ S5 ∧ S6 ∧ S7
= [basic properties of relations]
∃S .WfS ∧ irr(S ; (r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6 ∪ r7))

= [by Lemma 14 with r instantiated to r1 ∪ · · · ∪ r7]
acy(SC2 \ id ∩ (r1 ∪ r2 ∪ r3 ∪ r4 ∪ r5 ∪ r6 ∪ r7))

Having replaced axioms S1–S7 with the new Spartial axiom, we
no longer require the S relation in execution witnesses. Memory
model simulators, such as HERD, typically work by enumerating all
executions of a program and then filtering out the consistent subset.
Removing the need to iterate through all possible total orders of
SC events – a computation that is exponential in the number of SC
events – allows simulation performance to be greatly improved, as
demonstrated in §6.2.

3.2 A Stronger and Simpler SC Axiom
We now show that it is possible to strengthen the SC semantics
without requiring changes to the compilation schemes of any of the
C11 target architectures that have an established formal memory
model, that is: x86 and Power. The strengthening we propose
simplifies the Spartial axiom significantly and provides stronger
guarantees to the programmer.

The proposal for this simplification arises from the observation
that the relations considered in the Spartial axiom are nearly symmet-
ric in hb, mo and fr . In particular, both hb and mo constrain the
S order between any combination of SC fences and atomics. The
treatment of fr is different: for fr edges that begin or end at a fence,
the axioms S5, S6 and S7 ensure that the SC order is constrained to
match. When two SC atomics are related by an fr edge (S3 and S4),
ordering is only provided when the intermediate access that forms
the fr is itself an SC atomic (rule S3), or when the mo edge from
the intermediate access of the fr to its target is also covered by a hb
edge (rule S4a).

Our proposal is to strengthen the Spartial axiom, to add these
missing constraints so that every fr edge between SC atomics
contributes to the S order. We achieve this in our model by removing
the [SC] restriction from S3, which results in the following axiom:

irr(S ; fr). (S3a)

This change permits a significant simplification to the SC rules that
we establish in the following theorem.

Theorem 2. If rule S3 is replaced by S3a (that is, if r3 is replaced
with fr in the Spartial axiom) then Spartial becomes equivalent to:

acy(SC2 \ id ∩ (Fsb? ; (hb ∪ fr ∪mo) ; sbF ?)). (Ssimp)



That is:

acy(SC2 \ id ∩ (r1 ∪ r2 ∪ fr ∪ r4 ∪ r5 ∪ r6 ∪ r7)) = Ssimp.

Proof.

r1 ∪ r2 ∪ fr ∪ r4 ∪ r5 ∪ r6 ∪ r7
= [unfolding definitions and combining fr , r5, r6 and r7]

hb ∪ (Fsb? ;mo ; sbF ?) ∪ (Fsb? ; fr ; sbF ?) ∪ r4
= [since r4 ⊆ fr , by WfMo]

hb ∪ (Fsb? ;mo ; sbF ?) ∪ (Fsb? ; fr ; sbF ?)

= [since hb = (Fsb? ; hb ; sbF ?)]
Fsb? ; (hb ∪ fr ∪mo) ; sbF ?

Programming impact. The change presented here does strengthen
the memory model; there are executions that were previously
allowed that are now forbidden. The simplest we found, which
is similar to one used by Vafeiadis et al. [39 (Fig. 6)], is presented in
Example 3. We believe Example 3 to be a counterintuitive execution,
because the read event i does not observe the most recent write to x
in S (namely, f ), but c, which is mo-earlier than f . The execution
is forbidden by axiom S3a because of its f

S−→ i
fr−→ f cycle.

Although the current C11 model allows this execution, mapping this
example to the formalised targets of C11 (Power and x86) never
yields programs that exhibit it.

3.3 Soundness of Existing C11 Compilation Schemes
There are two C11 targets with formal architectural memory models:
x86 and Power. In this subsection, we establish that for both of
these architectures, the strengthening does not require a stronger
compilation mapping. In both cases, we rely on an existing proof
of soundness from the literature. We need only establish that our
strengthened Ssimp axiom holds.

To establish the soundness of our strengthening for x86, we build
on the soundness proof of Batty et al. [7], which uses the axiomatic
model of x86 of Owens et al. [31]. To obtain soundness for Power,
we build on the soundness proof of Batty et al. [8], which uses the
operational Power model of Sarkar et al. [32].

Theorem 3. Let P be a C11 program that has no faulty executions.
If we compile P to x86 according to the mapping given by Batty
et al. [7], then every valid x86 execution corresponds to a C11
execution where Ssimp holds. If we compile P to Power according to
the mapping given by Batty et al. [8], then every valid Power trace
is observationally equivalent to a C11 execution where Ssimp holds.
[Proof in §A]

Remark 15 (Soundness of the ARMv8 compilation scheme). At
the time of writing, work to formalise the ARMv8 specification, and
how it implements C11, is ongoing [16]. We understand that it is
not currently clear whether the specification is intended to allow or
forbid behaviours like our Example 3, and whether the effects of
this decision on the C11 memory model are understood. As such,
we see our work as a timely intervention in the ongoing argument
about how this particular aspect of the ARMv8 specification should
evolve and be formalised.

3.4 Effect on the Standard
We give below a suggestion for how the wording of the standard
could be changed to accommodate our proposal. Our text, which
replaces paragraphs 6 and 9–11 of section 7.17.3, is considerably
shorter (80 words rather than 276) while preserving the style
and terminology of the original. We have retained the total order
S in our wording, because we believe it is more intuitive for
programmers than an acyclicity condition. Nonetheless, we enable
efficient simulation of this model via the Ssimp axiom (which is

equivalent to the total order formulation, thanks to Lemma 14 with
r instantiated to Fsb? ; (hb ∪ fr ∪mo) ; sbF ?).

1. A value computation A of an object M reads before a side
effect B on M if B follows, in the modification order of M ,
the side effect that A observes.

2. If X reads before Y , or happens before Y , or precedes Y in
modification order, then X (and any fences sequenced before
X ) is SC-before Y (and any fences sequenced after Y ).

3. There shall be a single total order S on all memory_
order_seq_cst operations, consistent with the SC-before
order.

Summary. This section has described how, having strengthened
the original set of axioms (S1 through S7) to use Vafeiadis et
al.’s S4a in place of S4, the behaviour of SC operations can be
captured by a single axiom (Spartial) that allows the total order S to
be eliminated from the model. Moreover, if the axioms are further
strengthened to use our S3a in place of S3, then that axiom can be
greatly simplified (Ssimp), while still respecting current compilation
schemes.

4. Formalising the OpenCL Memory Model
A principal aim of the OpenCL initiative is to provide functional
portability across a plethora of heterogenous many-core devices.
The standard is implemented by CPU, GPU and FPGA vendors,
and aims to allow applications to be device-agnostic. The OpenCL
memory model, introduced in the 2.0 revision of the standard,
is inherited from that of C11, but is specialised and extended
for heterogeneous programming. The memory model is the sole
mechanism for correctly implementing fine-grained concurrent
algorithms in a device-agnostic manner. Rigorous foundations for
this model are thus vital.

We now describe how our formalisation of the C11 memory
model (§2, §3) can be extended to yield the first mechanised
formalisation of the full OpenCL memory model. We describe
the form of OpenCL programs (§4.1), their executions (§4.2), and
the axioms against which these executions are judged (§4.3). We
then discuss some interesting features of the memory model: some
innocuous quirks (§4.4) and some serious shortcomings (§4.5). The
most serious shortcoming relates to the axioms that govern SC
atomics, and we propose how to fix this in §5.

For reasons of space, and because they are orthogonal to the
thrust of our contributions, we omit our treatment of barrier synchro-
nisation operations and the associated issue of barrier divergence.
As with the omitted C11 features mentioned in §2, our .cat-based
formalisation of the OpenCL memory model, provided on our com-
panion webpage [11], fully accounts for these features.

4.1 OpenCL Programs
Definition 16 (Structure of OpenCL programs). Building on Def. 2,
we consider OpenCL programs of the form

P = ||||d∈D |||w∈W ||t∈T pd,w,t

where D , W , and T are sets of device, work-group, and thread
identifiers, and each pd,w,t is a piece of sequential code.

Using the notation above, we can write p |||| p′ to denote a litmus
test comprising two threads to be executed on different devices,
p ||| p′ for two threads in different work-groups in the same device,
and p ||p′ for two threads in the same work-group. We can also write,
for example, p1 ||p2 |||p3 ||p4 ||||p5 ||p6 |||p7 ||p8, to denote a litmus
test comprising two devices, each executing two work-groups, each
containing two threads.



Remark 17 (Limitations). This program structure does not account
for sub-groups, an optional extension in OpenCL 2.0 that allows
threads to synchronise with one another at a level of granularity finer
than that of a work-group,23 nor for further non-OpenCL threads
(e.g., POSIX threads) running on the host platform. Moreover, w
and t can actually be 1-, 2-, or 3-dimensional vectors, but we make
the simplifying assumption that all identifiers are natural numbers.

Recall that locations in C11 are either non-atomic or atomic
(Def. 1). OpenCL locations are further declared to reside in a
memory region.

Definition 18 (Memory regions). We have region(l) ∈ {local,
global, global_fgb} for every location l , where fgb stands for
fine-grained shared virtual memory (SVM) buffer.24 There is one
local region per work-group, containing locations accessible only
to that work-group. Locations in the global or global_fgb region
are accessible to all devices. Fences can be performed either on
the global memories (global and global_fgb) or on the local
memory, or both simultaneously.

The distinction between global and global_fgb locations
is that the former must not be shared between different devices,
while the latter enable inter-device communication. Unlike C11,
in which any memory location can be shared between threads, the
OpenCL memory model physically prevents certain sharing patterns.
For instance, threads from different devices are forbidden from
conflicting on global memory, but are able to do so as a result of a
programmer fault; in contrast, threads from different work-groups
are unable to conflict on local memory: the language provides no
mechanism through which such a conflict can arise.

Definition 19 (Memory scopes). Atomics in OpenCL are parame-
terised by a memory scope. The three options are

s ::= WG (work-group scope)
| DV (device scope)
| ALL (system scope).

A memory scope specifies how widely visible the effects of the
operation should be.

Example 4. The use of memory scopes is illustrated by the follow-
ing code, which implements the message-passing idiom between
two threads in the same work-group.

global int *x; global atomic_int *y;
*x = 42; if(load(y,ACQ,WG)==1)
store(y,1,REL,WG); r = *x;

Since all accesses to the global location y come from the same
work-group, those accesses can be performed at WG scope (which
means that on implementations where each work-group caches
global memory, it suffices to read/write those cached values). This
scope would be insufficient, and the program deemed faulty, if the
threads were in different work-groups – both scopes would have to
be upgraded to DV.

4.2 OpenCL Executions
OpenCL executions extend C11 executions as follows.

Definition 20 (OpenCL event labels). We extend C11 event labels
(Def. 4) with an additional scope attribute, which assigns a memory
scope s to all atomic events. We also subdivide the F label in order
to represent fences on global (FG), local (FL) and both-global-and-

23 Sub-groups have become a core feature in the recent OpenCL 2.1
specification [23 (p. 22)]. 24 OpenCL also provides private regions,
each accessible only to one thread, and a read-only constant region, but
neither of these are interesting from a memory modelling perspective.

local memory (FGL). The updated table is as follows:

kind loc rval wval ord scope R W F A
Wna ( l, v, ) X
W ( l, v, o, s ) X X
Rna ( l, v, ) X
R ( l, v, o, s ) X X
RMW ( l, v, v′, o, s ) X X X
FG ( o, s ) X X
FL ( o, s ) X X
FGL ( o, s ) X X

Definition 21 (OpenCL executions). An OpenCL execution is a
tuple (E , I , lbl , thd ,wg , dv , sb) where (E , I , lbl , thd , sb) is a C11
execution as in Def. 5, and wg , dv ⊆ (E \ I )2 are equivalence
relations on non-initial events that relate events from the same
work-group and device, respectively. In order to enforce the privacy
of local locations to a single work-group, we require that if
loc(e) = loc(e ′) = l and region(l) = local, then (e, e ′) ∈ wg .

Definition 22 (Derived sets and relations). In the context of an
OpenCL execution (E , I , lbl , thd , wg , dv , sb), we define

fgb
def
= {e ∈ E \ F | region(loc(e)) = global_fgb}

G
def
= {e ∈ F | kind(e) ∈ {FG,FGL}} ∪
{e ∈ E \ F | region(loc(e)) = global} ∪ fgb

L
def
= {e ∈ F | kind(e) ∈ {FL,FGL}} ∪
{e ∈ E \ F | region(loc(e)) = local}

as the sets of events that access, respectively: fine-grained atomic
SVM buffers, global memory, and local memory. Also, for each
scope s , we abbreviate the set {e ∈ A | scope(e) = s} as just s .

Definition 23 (OpenCL candidate executions). Candidate execu-
tions in OpenCL, and their well-formedness, are defined in the same
way as in C11 (Def. 7).

4.3 OpenCL Axioms
We now define and discuss the consistent and faulty predicates
for the OpenCL memory model, paying particular attention to each
of the departures from C11. We justify our formal definitions by
reference to the OpenCL specification [23], writing n/m to denote
line m on page n .

Definition 24 (Further derived sets and relations). In the context of
a candidate execution (E , I , lbl , thd , sb, rf ,mo,S), we define the
following subsets of E and relations over E :

incl
def
= (WG2 ∩ wg) ∪ (DV2 ∩ dv) ∪ ALL

2

rsw(r)
def
= ([r ∩ rel ] ; Fsb? ; [W ∩A] ; rs? ; [r ] ; rf ;

[R ∩A] ; sbF ? ; [r ∩ acq ]) ∩ incl \ thd
gsw

def
= rsw(G) ∪ (rsw(L) ∩ (SC2 ∪ (G ∩ L ∩ F )2))

lsw
def
= rsw(L) ∪ (rsw(G) ∩ (SC2 ∪ (G ∩ L ∩ F )2))

ghb
def
= (G2 ∩ (sb ∪ (I × ¬I )) ∪ gsw)+

lhb
def
= (L2 ∩ (sb ∪ (I × ¬I )) ∪ lsw)+

ghbl
def
= ghb ∩=loc

lhbl
def
= lhb ∩=loc

gvis
def
= (W × R) ∩ ghbl \ (ghbl ; [W ] ; ghb)

lvis
def
= (W × R) ∩ lhbl \ (lhbl ; [W ] ; lhb)

hr
def
= cnf \ (ghb ∪ lhb) \ (ghb ∪ lhb)−1 \ incl \ thd

iddr
def
= cnf \ dv \ fgb2

sc-all
def
= ¬(E2 ; [SC \ (ALL ∩ fgb)] ; E2)

sc-dv
def
= ¬(E2 ; [SC \ (DV \ fgb)] ; E2)



Commentary. In OpenCL, only events that have inclusive scopes
(incl ) can synchronise: either the events have WG scope and are in
the same work-group, or they have DV scope and are in the same
device, or they have ALL scope.25 We shall explain in §4.5 how this
notion of scope inclusion is unnecessarily conservative.

The synchronisation relation (rsw ) is parameterised by a region
r (global or local). The global synchronises-with relation (gsw ) in-
cludes events that synchronise on global memory,26 but also includes
events that synchronise on local memory, providing both events have
memory order SC,27 or both are global-and-local fences.28 Local
synchronises-with (lsw ) is analogous. Example 6 shows how syn-
chronisation works in the presence of global-and-local fences.

Happens-before is partitioned into global and local versions:
global happens-before (ghb) contains global synchronises-with and
sequenced-before edges between events on global memory,29 and
local happens-before (lhb) is analogous.30 See Example 5 for a
discussion of the repercussions of this definition of happens-before.
Visibility is also split into global (gvis) and local (lvis) versions.31

The heterogeneous race (hr )32 generalises C11’s data race (dr ,
Def. 10), to reflect the fact that in OpenCL, even atomic operations
can race when memory scopes are used incorrectly.33 If two events
from different devices conflict on a location that is not in a fine-
grained atomic SVM buffer, then they form an inter-device data race
(iddr ); such races cannot be ruled out by happens-before edges.34

This leaves the sc-all and sc-dv relations. In OpenCL, the total
order S is only required to exist when

SC ⊆ ALL ∩ fgb or SC ⊆ DV \ fgb.
The first condition holds when every SC event has ALL scope and
accesses a global_fgb location;35 the second holds when every SC
event has DV scope and does not access a global_fgb location.36

The relation sc-all (resp. sc-dv ) is the universal relation if the first
(resp. sc-dv ) condition holds and is the empty relation otherwise. In
§4.5, we shall criticise these conditions as being simultaneously too
strong for programmers and too weak for compiler-writers.

Definition 25 (Consistency axioms in OpenCL). There are nine
consistency axioms. Departures from the C11 consistency axioms
(Def. 11) are highlighted.

irr(ghb) (O-HbG)

irr(lhb) (O-HbL)

irr((rf −1)? ;mo ; rf ? ; ghb) (O-CohG)

irr((rf −1)? ;mo ; rf ? ; lhb) (O-CohL)

irr(rf ; (ghb ∪ lhb)) (O-Rf)

empty((rf ; [G ∩ nal ]) \ gvis) (O-NaRfG)

empty((rf ; [L ∩ nal ]) \ lvis) (O-NaRfL)

irr(rf ∪ (mo ;mo ; rf −1) ∪ (mo ; rf )) (O-Rmw)

acy(SC2 \ id ∩ (sc-all ∪ sc-dv) ∩
(Fsb? ; (ghb ∪ lhb ∪ fr ∪mo) ; sbF ?))

(O-Ssimp)

Commentary. Both happens-before relations are required to be
acyclic (O-HbG, O-HbL).37 OpenCL requires coherence for both
global and local happens before separately (O-CohG, O-CohL).38

The axioms governing the reads-from relation are carried over

25 [23 (47/16–26)] 26 [23 (51/1–9)] 27 [23 (51/32–33)]
28 [23 (54/13–16)] 29 [23 (49/3–7)] 30 [23 (49/8–11)]
31 [23 (49/21–26)] 32 This terminology is due to Hower et al. [18].
33 [23 (49/29–33)] 34 [23 (58/24–27)] 35 [23 (51/15–17)]
36 [23 (51/18–20)] 37 [23 (49/12–13)] 38 [23 (50/11–24)]

from C11 (O-Rf, O-NaRfG, O-NaRfL, O-Rmw), but appropriately
divided into global and local versions.39

OpenCL defines the same SC axioms that we saw in Def. 11
(S1–S7), but uses ghb ∪ lhb in place of hb. We have incorporated
into axiom O-Ssimp the simplifications that we already discussed
in the context of C11 (§3). Intersecting with the sc-all and sc-dv
conditions means that the acyclicity constraint is only enforced when
one of those conditions holds.40

Definition 26 (Faultiness in OpenCL). A candidate OpenCL exe-
cution is faulty if it is consistent and does not satisfy both of the
following axioms:

empty(hr) (O-Hr)

empty(iddr) (O-Iddr)

4.4 Quirks in the Memory Model
We present three worked examples that illustrate features of the
memory model that may not be obvious from a cursory glance at
its axioms. These ‘quirks’ in the model are distinguished from the
technical shortcomings that we save for §4.5.

Our first example illustrates an interesting consequence of
OpenCL’s separation of happens-before into two distinct relations.

Example 5. Suppose the code of Example 4 were changed so that y
were declared local rather than global. Executions such as the one
below would then become consistent, which means that a stale value
of x can be read (event f ), even when successful release/acquire
synchronisation (between d and e) has occurred.

a: Wna(x, 0) b: Wna(y, 0)

c: Wna(x, 42)

d : W(y, 1, REL, WG)

e: R(y, 1, ACQ, WG)

f : Rna(x, 0)

sb sb

mo mo

rf

rf

This execution is consistent because the sb edges no longer induce
either variety of happens-before, since they link events that act
on different memory regions. Worse still, there is now a data race
between c and f , which renders the entire program undefined.

We learn from Example 5 that a flag in one memory region
cannot be used to protect data in another region. To address this
issue, OpenCL provides fences that act on both global and local
memory simultaneously. These are illustrated in Example 6.

Example 6. The following program uses relaxed (RLX) accesses
on the local flag y, relying instead on the fences to synchronise the
threads and enable the global data x to be passed.

global int *x; local atomic_int *y;
*x = 42; if(load(y,RLX,WG)==1)
fence(GL,REL,WG); { fence(GL,ACQ,WG);
store(y,1,RLX,WG); r = *x; }

The fence instructions successfully prevent the stale value of x
being read, because the following execution is inconsistent.

a: Wna(x, 0) b: Wna(y, 0)

c: Wna(x, 1)

d : FGL(REL, WG)

e: W(y, 1, RLX, WG)

f : R(y, 1, RLX, WG)

g : FGL(ACQ, WG)

h: Rna(x, 0)

sb

sb

sb

sbrf

rf

mo
mo

39 [23 (49/26–27)], [23 (50/8–9)], [23 (52/22–23)] 40 [23 (51/14)]



The execution is inconsistent because it has a cycle h
rf−1

−−−→ a
mo−−→

c
ghb−−→ h , in violation of O-CohG. Note that c

ghb−−→ h holds here
because, firstly, (d , g) is in rsw(L) and hence in gsw and ghb, and
secondly, (c, d) and (g , h) are both in sb ∩G2 and hence in ghb.

In Example 7, we illuminate the relationship between memory
scopes and non-atomic operations. Since scopes can be used to
limit atomic operations to certain groups of threads, it is tempting
to introduce an additional ‘work-item’ scope, WI, and encode non-
atomic events as atomic events whose scope is limited to the current
thread. This would make the Wna and Rna labels redundant. An
ordinary data race can then be cast as a failure of scope inclusion.
However, the differences between non-atomic and atomic operations
go beyond racy behaviours, as we shall see in the following example.

Example 7. Consider the following load-buffering litmus test:

global int *x, *y;
if (*x==1) *y=1; if (*y==1) *x=1;

The execution of this program that exhibits the relaxed behaviour,
in which both comparisons succeed (shown below left), is not
consistent: both of its reads observe writes that are not visible,
in violation of the NaRf axiom. If the non-atomic locations become
atomic and the non-atomic operations become work-item-scoped
atomics, then this relaxed behaviour (shown below right) becomes
consistent, since the NaRf restriction no longer applies.

Rna(x, 1)

Wna(y, 1)

Rna(y, 1)

Wna(x, 1)

sb sb
rf

rf
R(x, 1, RLX, WI)

W(y, 1, RLX, WI)

R(y, 1, RLX, WI)

W(x, 1, RLX, WI)

sb sb
rf

rf

4.5 Problems with the Memory Model
We present three shortcomings in the OpenCL memory model,
which we discovered as a direct result of our formalisation efforts.

Scope inclusion is too strong. The specification provides an
overly conservative notion of scope inclusion: two events only have
inclusive scopes if their scopes match exactly. This leads to such
surprises as the following example.

Example 8. Suppose the code of Example 4 were changed so that
the store to y now occurs at DV scope, but the load of y remains at
WG scope. Although the release scope is clearly ‘wide enough’, it
does not match the acquiring scope, so no synchronisation edge is
induced. This leads to two data races: both between the non-atomic
accesses of x, and between the ill-scoped atomic accesses of y.

A resolution proposed by Gaster et al. is to allow the annotated
scopes to differ, as long as both are sufficiently wide [17 (§3.1)].
This enables, for instance, a DV-scoped write to synchronise with
a WG-scoped read in the same work-group. The proposal can be
formalised in our framework by changing the definition of the incl
relation (Def. 24) as follows:

incl1 def
= ([WG] ; wg) ∪ ([DV] ; dv) ∪ ([ALL] ; E2)

new -incl
def
= incl1 ∩ incl1−1

The idea here is to define a one-sided version of scope inclusion
first, so that (e1, e2) is in incl1 if e1 has a wide enough scope to
‘reach’ e2. Requiring this to hold in both directions ensures that both
events have sufficient scopes, if not necessarily the same.

The SC axioms are too weak. As encoded in our O-Ssimp axiom
(Def. 25), SC operations in OpenCL are only guaranteed to provide
SC behaviour when one of the sc-all and sc-dv conditions holds.

Since these are conditions on the whole program, we have a “clear
composability problem” [17].

We find several reasons why these conditions are problem-
atic. First, they mean that the default memory scope (which is
DV) is not sufficient to ensure SC semantics in all situations. Sec-
ond, any program that includes a WG-scoped SC atomic, such as
store(x,1,SC,WG), immediately violates the conditions. Third,
the conditions are mutually exclusive, so a program that satisfies
sc-all can be combined with another that satisfies sc-dv , with the
result satisfying neither. Finally, consider the following example.

Example 9. The following program, comprising two threads in
different work-groups on the same device, has SC semantics, which
means that it cannot exhibit the relaxed behaviour r0 = r1 = 0:

global atomic_int *x, *y;
a: store(x,1); c: store(y,1);
b: r0 = load(y); d : r1 = load(x);

Note that the atomic store and load operations default to the SC
memory order and the DV memory scope, and that condition sc-dv
holds. However, if global is changed to global_fgb, the relaxed
behaviour becomes permissible, because neither condition sc-all
nor sc-dv holds. Condition sc-dv no longer holds now that x and y
are in fine-grained atomic SVM buffers, and condition sc-all does
not hold either because the ALL scope is not being used.

It is jarring that such a small change, from global to global_
fgb, can legitimise relaxed behaviours. Worse still, such a change
may be invisible to the programmer, if they can see only the kernel
code: the assignment of locations to SVM buffers occurs only on the
host side, and such locations are only marked in a kernel as global.

The SC axioms are too strong. Following discussion with mem-
bers of the Khronos OpenCL working group, we understand that the
purpose of condition sc-dv is to enable efficient implementations of
DV-scoped SC atomics. The intention of the condition is that if no
SC atomic accesses memory shared between devices, they can be
implemented without expensive inter-device synchronisation. It was
thought not to matter that the specification requires implementations
to establish a total order between SC events on different devices,
because it is not possible to observe this order without creating an
inter-device data race.

In fact, this is not the case. We present in Example 10 a program
that satisfies condition sc-dv , and yet is still able to observe the
order between SC events in different devices – even though these
events are DV-scoped and access no memory shared between devices.

Example 10. Consider the following program, which comprises
two devices, both executing two threads (stacked vertically). It can
be thought of as a ‘twisted’ version of the store-buffering test.

global atomic_int *x, *y;
global_fgb atomic_int *z1, *z2;

store(x,1,SC,DV);
store(z1,1,REL,ALL);
r1 = load(z2,ACQ,ALL)?

load(x,SC,DV) : 1;

store(y,1,SC,DV);
store(z2,1,REL,ALL);
r2 = load(z1,ACQ,ALL)?

load(y,SC,DV) : 1;

Two threads in different devices write, using DV scope, to distinct
global locations x and y, and then write to global_fgb flags,
using ALL scope, to signal that they are done. Meanwhile, two
partner threads try to acquire these signals from the opposite device,
and if they are successful, they read the location their partner (in
the same device as they) wrote to. We are interested in whether
these reads can both obtain 0; that is, whether the final state
{r1 = r2 = 0} is allowed. This final state could only be obtained
via the following execution:



a: W(x, 1, SC, DV)

b: W(z1, 1, REL, ALL)

c: R(z2, 1, ACQ, ALL)

d : R(x, 0, SC, DV)

e: W(y, 1, SC, DV)

f : W(z2, 1, REL, ALL)

g : R(z1, 1, ACQ, ALL)

h: R(y, 0, SC, DV)

sb

sb

sb

sb

rf rffr fr

where the outer dotted rectangles delimit dv equivalence classes and
the inner ones delimit thd equivalence classes.

The execution is inconsistent, and therefore must be forbidden
by a compiler. To see this, observe that each rf edge induces a
synchronisation (gsw ) edge, and hence global happens-before. Since
sb edges also contribute to global happens-before, we obtain the
cycle a

ghb−−→ b
ghb−−→ g

ghb−−→ h
fr−→ e

ghb−−→ f
ghb−−→ c

ghb−−→ d
fr−→ a .

This makes the execution fall foul of O-Ssimp, which is non-vacuous
here because the condition sc-dv is satisfied.

That the execution in the example above is not allowed implies
that OpenCL implementations must make the order of SC write
operations visible to all devices, even when those writes are only
performed with DV scope. In other words, the current phrasing of the
OpenCL memory model demands too much from the compiler-
writer to permit an efficient implementation of DV-scoped SC
atomics, while in other respects offering too little to the programmer,
by guaranteeing SC semantics only when an onerous condition
holds.

To summarise: the intent of the Khronos working group was
to enable efficient implementation of DV-scoped SC atomics by
compilers, at the expense of programmer inconvenience. Instead,
our formalisation shows that we have the worst of both worlds: the
programmer is inconvenienced, and yet a correct compiler is obliged
to enforce inter-device orderings on DV-scoped SC atomics.

5. Overhauling the SC Axioms in OpenCL
We describe how the handling of SC atomics in OpenCL can be
changed to address the shortcomings identified in §4.5.

Building on a suggestion by Gaster et al. [17 (§7.2)], we propose
to eradicate the stringent conditions on the existence of the SC order
by simply intersecting the constraints on the SC order with the
scope-inclusion relation. This essentially means that the orderings
imposed between events by the SC axioms only take effect if those
events have inclusive scopes. Under this proposal, which recalls the
way C11’s synchronisation relation (sw , Def. 10) is intersected with
scope-inclusion when producing OpenCL’s version (rsw , Def. 24),
we do not need to restrict the programmer’s usage of SC atomics to
certain scopes; instead, the guarantees provided by those SC atomics
degrade gracefully as their scopes narrow.

Definition 27 (Proposed SC axiom for OpenCL). The following
axiom for SC atomics in OpenCL is obtained from O-Ssimp by
removing the sc-all and sc-dv conditions and instead intersecting
with incl :

acy(SC2 ∩ (Fsb? ; (ghb ∪ lhb ∪ fr ∪mo) ; sbF ?) ∩ incl)
(O-Sscoped)

5.1 Effect on the Standard
To accommodate our proposal, we propose that the wording of
the OpenCL 2.1 standard [23 (51/14–31 and 51/34–52/13)] be
changed to match the text given in §3.4, but with ‘happens before’
replaced with ‘global or local happens before’, and ‘consistent with
the SC-before order’ replaced with ‘consistent with the SC-before
order restricted to operations with inclusive scopes’. This replaces

OpenCL atomic operation Assembly instructions
¶ r = load(x , SC, WG) LD r x
· r = load(x , SC, DV) INVL1 ; LD r x ; INVL1
¸ store(x , r , SC, WG) ST r x
¹ store(x , r , SC, DV) FLUL1 ; ST r x ; FLUL1
º r = fetch_inc(x , SC, WG) INCL1 r x
» r = fetch_inc(x , SC, DV) FLUL1 ; INCL2 r x ; INVL1

Table 1. Compiling the revised OpenCL memory model

391 words with 89 words, while retaining the standard’s style and
terminology.

5.2 Implementability of the New SC Axiom
The new O-Sscoped axiom is stronger than the original O-Ssimp
axiom, so we must confirm that our proposal does not place undue
demands on compilers that implement the memory model.

The only published compilation scheme of the OpenCL 2.0 mem-
ory model of which we are aware is that published by AMD [30] and
later formalised by Wickerson et al. [41]. The scheme compiles the
release/acquire fragment of OpenCL atomics, and its soundness has
been verified against an operational model of an AMD GPU [41].
In this subsection we describe how the scheme can be extended to
support SC atomics, and we demonstrate via a series of examples
that the extended scheme meets the requirements of our revised SC
axiom. The original compilation scheme does not cater for multiple
devices, and does not include fences, and we do not attempt here to
extend the scheme to cover these features. As such, this scheme does
not engage directly with the problems of inter-device SC atomics
that we noted in the previous section; however, it does illustrate how
WG- and DV-scoped SC atomics can co-exist.

The AMD compilation scheme. The operational model is quite
simple. Each work-group has its own L1 cache, and each device has
its own L2 cache. Since the compilation scheme considers only the
single-device case, the L2 cache can be safely thought of as the main
memory. No instruction reordering is permitted. At any time, the
environment can flush a dirty L1 cache entry to the L2 (and thereby
make it clean), can fetch an L2 entry to replace a clean L1 entry, and
can evict a clean L1 entry.

The semantics of the various assembly instructions can be
summarised as follows. LD r x loads into register r from the nearest
cache that contains a valid entry for x ; ST r x stores from r into
the local L1 cache, first flushing x ’s entry therein if it is invalid;
INCL1 r x increments x in the local L1 cache; INCL2 r x increments
x in the L2 cache, first flushing any dirty entry for x in the local
L1 cache; FLUL1 flushes all dirty entries in the local L1 cache; and
INVL1 marks all entries in the local L1 cache as invalid.

The extensions to the compilation scheme are given in Tab. 1.
Here, fetch_inc stands for ‘atomic fetch and increment’, and
provides a representative of RMW operations in OpenCL.

Correctness of the compilation scheme. Most of the flush and
invalidate instructions in the compilation scheme are necessary
to ensure correct release/acquire semantics. For SC atomics, we
need add only two further instructions: the INVL1 before the load
in row ·, and the FLUL1 after the store in row ¸. The need for
these instructions can be motivated by considering the following
two examples, which correspond to the classic store-buffering and
IRIW litmus tests.

The memory model requires the program in Example 9 not to
produce the final state r0 = r1 = 0. With only release/acquire
semantics, the compilation scheme inserts no flush or invalidate
instructions between the store and the load in each thread, and
the relaxed behaviour can be observed: both threads might pre-
fetch x = y = 0 into their respective L1 caches (the threads are



in different work-groups, so they have different L1 caches), then
perform their stores, and finally load the L1-cached values of x and
y. However, placing a FLUL1 after the store and an INVL1 before the
load ensures that no sequence of fetching and flushing can lead to
the relaxed behaviour. We do not need FLUL1 or INVL1 instructions
before or after the SC increment instruction, because INCL2 writes
directly to the L2, invalidating the L1 as it does so.

The memory model also requires the IRIW litmus test

global atomic_int *x; global atomic_int *y;
store(x,1); store(y,1); r0=load(x); r2=load(y);

r1=load(y); r3=load(x);

not to produce the final state {r0 = r2 = 1, r1 = r3 = 0}. (Recall
that these store and load operations use memory order SC and
scope DV by default.) Here, an INVL1 instruction between each pair
of loads is sufficient to rule out such executions.41

6. Simulating the Memory Models with HERD
Our overhaul of SC atomics avoids the requirement for the S relation
to be explicitly constructed in execution witnesses. Our hypothesis
was that this would lead to improved efficiency in the process of
exhaustively enumerating the allowed behaviour of litmus tests
that use SC atomics. We now explain how we extended the HERD
memory model simulator in order to enable investigation of C11
and OpenCL litmus tests (§6.1), and present experimental results
using HERD to compare the efficiency of simulation before and after
our overhaul, and also in comparison to the CDSChecker memory
model simulator [29] (§6.2). For a family of litmus tests derived from
Dekker’s algorithm, our results show that our revised axioms lead
to an exponential speedup in simulation time using HERD, bringing
performance using HERD, which is general-purpose and exhaustive
on loop-free programs, much closer to that of CDSChecker, which is
specifically tuned for the C11 memory model and is not guaranteed
to be exhaustive, even on loop-free programs.

6.1 Extensions to HERD

The version of HERD described by Alglave et al. [2, 3] supports
only assembly code: sequences of labelled instructions and gotos.
In order to simulate our formalisations of the C11 and OpenCL
memory models, we have extended the .cat format to support the
definition of faulty axioms, and the HERD tool with both a routine
for alerting the user when a faulty execution is detected and a module
for translating C11 and OpenCL programs into their executions.

We model only a small fragment of the C11 language: enough to
encode the litmus tests we found useful for testing our formalisation.
We exclude, for example, the address-of operator, compound types,
and function calls. We include if and while blocks, pointer deref-
erencing, simple expressions, and built-in atomic functions such as
atomic_thread_fence (C11) and atomic_work_item_fence
(OpenCL).

6.2 Simulating the C11 Model: Performance Evaluation
We now compare the performance of HERD in enumerating the
behaviours of litmus tests (a) when equipped with the original SC
axioms in C11 vs. (b) when equipped with our revised SC axioms.
We also provide performance results gathered using CDSChecker, a
custom-built simulator for the C11 memory model [29]. The HERD
tool guarantees exhaustive enumeration of allowed behaviours for
a loop-free litmus test; CDSChecker aims for high coverage of
behaviours, but is known to be non-exhaustive in general [29].

Recall that Dekker’s mutual exclusion algorithm [14] is a key
use case for SC atomics. The essential idiom underlying an N -

41 On weaker models, such as Power, that are not multi-copy atomic [35],
further synchronisation would be required between the loads.
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Figure 1. Time to simulate an N -threaded store-buffering test

threaded version of Dekker’s algorithm is captured by the following
N -threaded store-buffering litmus tests:

PN
def
=

(
store(x2,1); store(x3,1); . . . store(x1,1);
r1=load(x1); r2=load(x2); . . . rN=load(xN);

)
that operate on a collection {x1, . . . , xN} of atomic locations
initialised to zero. Recall that atomic store and load operations
use memory order SC by default. Dekker’s algorithm requires that it
is not possible to observe the final state where r1 = · · · = rN = 0;
only SC is strong enough to rule out this relaxed behaviour.

We use the family (PN )N∈N to assess the scalability of the
two versions of HERD and of CDSChecker. Figure 1 shows the
time each tool takes to simulate PN as N increases.42 Experiments
were conducted on a 3.1 GHz MacBook Pro, and each data point
represents the mean of ten runs. We do not include error bars because
the standard deviation is negligible. The original memory model,
naively implemented in HERD, times out on just 4 threads. This is
because it iterates over all (2N )! orders of the 2N SC events that are
in every execution of PN . When HERD is provided with our revised
memory model, simulation times greatly improve. Bearing in mind
the logarithmic y-axis, the performance of both HERD on the revised
memory model and CDSChecker appears to scale exponentially
with N , which meets expectations since PN has 2N −1 unique final
states. Still, CDSChecker significantly outperforms HERD when
simulating PN , and on several other programs that we tried. This is
because CDSChecker, unlike HERD, is optimised specifically for
the C11 memory model, through the use of such techniques as the
early elimination of infeasible executions, and a variant of dynamic
partial order reduction (DPOR) [15] on the S order. In fact, we
conjecture that the use of DPOR here has an effect similar to our
proposal to rephrase the memory model with S as a partial order.

Figure 1 demonstrates that simply by tweaking the axioms that
define the memory model, simulation time can be dramatically
decreased, without the need to implement complex optimisations,
such as DPOR, that make it difficult to assess the soundness and
completeness of the tool. It happens that CDSCheckeris exhaustive
on all of our PN programs, but we remark that we can only be sure
of this because of HERD.

7. Related Work
The C11 memory model has been formalised several times. Batty
et al. [7] present a comprehensive formalisation using Lem [28].
Vafeiadis et al. [38, 39] and Batty et al. [9] have also formalised

42 We used HERD revision 88ff189 (http://github.com/herd/
herdtools) and CDSChecker revision 7c51087 (git://demsky.
eecs.uci.edu/model-checker.git).



slightly simplified variations. Alglave et al. have formalised a re-
lease/acquire fragment of the C11 model (without release sequences,
fences, non-atomics, or data races) in the .cat language, and have
shown it to be an instance of their generic axiomatic memory
model [2]. We use the .cat language in our work too, but our
comprehensive model, which incorporates undefined behaviours
and a richer language of events, no longer fits within their generic
framework.

We remark that in the absence of fences, our Ssimp axiom (see
Theorem 2) forbids the same dependency cycles that Shasha and
Snir characterise as violations of sequential consistency [33]. In a
sense, one contribution of our paper is to simplify the semantics of
C11’s SC atomics to the point where it can be defined, for the first
time, in the Shasha–Snir style.

Criticisms of the C11 model. Batty et al. describe a fundamental
problem in the structure of the C11, C++11, C++14 and OpenCL
memory models: the so-called “thin-air” executions [10]. This is a
difficult open problem requiring a radically different approach; we
do not address it here.

Vafeiadis et al. note that the current rules governing SC atomics
break desirable properties of the memory model, harming the
prospect of reasoning above it, and they propose a strengthening
of the model to fix this [39]. Our proposal builds on theirs (§3.1),
but goes further (§3.2), arriving at a substantially simpler model.
A similar proposal was in fact considered by Vafeiadis et al. in the
context of the original total-order SC axioms [39], but abandoned
over concerns that it would invalidate the existing Power compilation
scheme. In our work, we have demonstrated that such a proposal is
in fact valid on Power (and x86).

We note that despite our strengthening, SC fences remain too
weak to restore sequential consistency in all circumstances, even
when placed between every pair of accesses. This weakness was
intentional in C11 to permit efficient implementation over Intel’s
Itanium architecture [6], but it does harm programmability. Lahav et
al. [25] have proposed an alternative implementation of SC fences,
in terms of acquire/release RMWs on a distinguished location, that
always restores sequential consistency.

The OpenCL 2.0 memory model has recently been described by
Gaster et al. [17], as an instance of a heterogeneous race-free (HRF)
model [18]. Our work improves on theirs in several ways. A key
shortcoming of their work is its relative informality: it lacks the
mathematical precision that is required to resolve all the details
of the OpenCL memory model. Our formalisation, in contrast, is
precise enough to be executed by a machine (cf. §6). Moreover,
their characterisation of the OpenCL memory model has several
technical issues. It replaces the specification’s modification order
(which orders atomic write events) with a coherence order (which
orders both read and write events) without proving that the intent of
the specification is preserved by this change. Another infidelity to the
specification is the omission of release sequences, which prohibits
the correct treatment of release-fences. Indeed, Gaster et al. include
no formal treatment of fences at all, describing their behaviour only
in prose. Our .cat presentation of the OpenCL memory model
treats release sequences and fences in full. Its informality aside,
Gaster et al.’s work contains numerous insights into the design and
workings of the OpenCL memory model, and provided a valuable
basis for our formalisation efforts.

We have already begun to build on top of the formalisation of the
OpenCL memory model presented here, as part of our investigations
into the semantics of a proposed extension to OpenCL called remote-
scope promotion [41]. That work, which has already been published,
describes only a small ‘release/acquire’ fragment of the OpenCL
memory model, while the current paper describes the full model,
including the interesting and important SC and relaxed atomics.

Implementations of the OpenCL memory model. AMD and Intel
have recently released OpenCL 2.0-compliant implementations [4,
19]. We are aware only of one implementation of the OpenCL mem-
ory model that has been formalised: namely, a compilation scheme
from OpenCL (extended with a feature called remote-scope promo-
tion [30]) to a model of next-generation AMD GPUs [41]. Alglave
et al. present an experimentally-validated axiomatic model of an
Nvidia GPU [3], which could provide another compilation target for
our OpenCL memory model. However, we find that their model is
too weak to admit an efficient mapping from OpenCL. Specifically,
it does not provide the property of cumulativity: synchronisation at
one scope cannot be chained with further synchronisation at a wider
scope to induce overall synchronisation between the two end-points.
Since cumulativity is a property required by the OpenCL memory
model, we deduce that the OpenCL compiler must, very expensively,
treat all operations as having the widest scope.

Memory model simulators other than HERD that are capable of
handling the C11 model include Cppmem [7], Nitpick [13] and
CDSChecker [29]. We did not include Cppmem and Nitpick in
our tool comparison (§6.2) because Norris et al. have already
demonstrated that CDSChecker’s performance is far superior [29].

Because it is highly optimised for the C11 memory model,
CDSChecker continues to outperform HERD even on the revised
model. HERD on the other hand is deliberately designed not to
be optimised for a particular model, but to be instead a generic
memory model simulator. A key advantage of using a generic
memory model simulator like HERD is that it is easy to tinker
with the model during the development process: one must only
modify a text file and restart HERD in order to explore the impact
of a proposed change. Indeed, this ease of modification, together
with the challenge of expressing the C11 model in the very concise
.cat language, inspired our discovery of the simpler SC axioms
described in this paper. Moreover, where CDSChecker is designed
for efficiency, sometimes at the cost of fidelity to the memory model
(the lack of self-satisfying conditionals, for instance, is a source of
incompleteness in CDSChecker), our formalisation and simulator
are designed primarily to represent the memory model as closely as
possible.

CDSChecker obtains its main performance benefits by exploring
partial modification orders. It is therefore natural to ask whether the
memory model could be revised to accommodate partial modifica-
tion orders in the same way that we have incorporated a partial S
order. We believe that this is not straightforwardly possible without
changing the model: our partial order reduction on S hinges on its
constraints all having the form irr(S ; r) for some r , but this is not
the case for mo – see axiom Rmw (Def. 11) for instance.

8. Conclusion
Our overhaul of the semantics of SC atomics and fences provides
four main benefits in relation to the C11 and OpenCL memory
models: more efficient exploration of the behaviours of litmus tests
(cf. §3.1, §6.2); refined specification text that we argue is easier
for programmers and compiler-writers to understand (cf. §3.4);
improved usability of the languages by programmers (cf. §5);
and opportunities for compiler-writers to produce more efficient
implementations (cf. §5). We argue that our proposed changes to
the memory models validate all of the formalised C11 and OpenCL
compilation schemes of which we are aware.

A topic for future research is the consideration of memory
consistency between OpenCL devices and the host application that
launches kernels on these devices; our treatment in this paper focuses
solely on interactions between kernel threads. We also plan to use
our memory model as a basis for reasoning about OpenCL programs,
extending the capabilities of tools such as GPUVerify [12], where



existing support for atomic operations is limited and not based on
formal foundations [5].
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A. Proof of Theorem 3
The following theorem states that the x86 and Power compilation
schemes for C11, as given in Tab. 2, remain sound in the presence
of our revised SC axiom, Ssimp.

C11 operation x86 Power
¶ r = load(x , SC) lock xadd(0) sync; ld; cmp; bc; isync
· store(x , r , SC) lock xchg sync; st
¸ r = fence(x , SC) mfence sync

Table 2. Compiling the C11 SC atomics

Theorem 3 (repeated from §3.3). Let P be a C11 program that
has no faulty executions. If we compile P to x86 according to the
mapping given by Batty et al. [7], then every valid x86 execution
corresponds to a C11 execution where Ssimp holds. If we compile
P to Power according to the mapping given by Batty et al. [8],
then every valid Power trace is observationally equivalent to a C11
execution where Ssimp holds.

Proof (x86 case). The axiomatic model of Owens et al. restricts the
behaviour of memory using a partial order over x86 memory events
called memory-order . The proof of Batty et al. [7] constructs the
relations of the C11 execution using memory-order ; modification
order (mo) and reads-from (rf ), in particular, are projected from it.
Here we rely on several properties of memory-order as set out by
Owens et al.: when restricted to writes, it is a linear order; program
order between two events is included in memory order if there is an
intervening fence or if either instruction is locked; program-order
edges from reads to later events are included; and a read observes
the most recent preceding write in memory-order .

We proceed by contradiction, showing that given the construction
of rf and mo used in the proof of Batty et al., any cycle in
SC2\id∩(Fsb? ;(hb∪fr∪mo);sbF ?) implies either the existence
of a cycle in memory-order , or an inconsistent rf edge.

Any cycle in the relation is made up of mo, hb and fr edges,
possibly linked with sb edges. The mo, hb and sb edges all imply
corresponding memory-order edges. To see this, note:

• memory-order is a linear order over writes;
• any hb edge in the Ssimp relation begins with either a fence or a

locked instruction, so sb edges correspond to memory-order
edges, then there may be a chain of edges in mo ; rf ; sb, where
the final sb edge is headed by a read, so transitivity implies that
hb corresponds to memory-order ; and

• any sb edges are either between locked instructions or have a
fence between accesses, and so correspond to memory-order
edges.

Finally, if the cycle contains an fr edge, then memory-order cannot
contradict this: the read would become inconsistent in the x86
execution. Then for a given Ssimp cycle, we have a sequence of

memory-order edges that would form a cycle if not for holes
corresponding to fr edges.

We now show that there is indeed a cycle in memory-order .
Consider an fr edge: its head is a read, so the preceding edge must
either be a sb edge or a hb edge. If it is a sb edge then either the
head of that edge is a write, or the edge that precedes that is an hb
edge. In all cases, the read at the head of the fr edge is preceded in
hb by a write. As memory-order is total over writes, it must order
this preceding write’s x86 counterpart before the write in the tail of
the fr edge. We use this fact to construct a cycle in memory-order ,
a contradiction.

Proof (Power case). In their proof, Batty et al. construct a C11
execution from a Power trace such that Power coherence and
rf edges match their constructed C11 counterparts. In proving
the SC axioms hold over the execution, they prove a property,
good-sc, that establishes a total order over the SC atomics of
the execution that contains po, co, fr and an extended variant
of reads from, erf , each restricted to the SC atomics. The SC
fences are added to this relation in a way that is consistent with
co and rf in the rest of the execution, preserving the invariant
that it is a strict partial order. The following edges become part of
the SC order: [SC] ; po? ; (rf −1)? ; co ; rf ? ; po? ; [F ∩ SC] and
[F ∩ SC] ; po? ; (rf −1)? ; co ; rf ? ; po? ; [SC]. The proof goes on
to show that hb restricted to the SC actions is a subset of the total
order. The construction of mo and rf in the C11 execution follow
the Power trace directly, so good-sc together with the addition of
the fence edges, which contain Fsb? ; fr ; sbF ? and Fsb? ;co ; sbF ?,
show the acyclicity of SC2 \ id ∩ (Fsb? ; (hb ∪ fr ∪mo) ; sbF ?)
directly.
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