
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Portable Inter-workgroup Barrier Synchronisation for GPUs

Tyler Sorensen
Imperial College London, UK
t.sorensen15@imperial.ac.uk

Alastair F. Donaldson
Imperial College London, UK

alastair.donaldson@imperial.ac.uk

Mark Batty
University of Kent, UK
m.j.batty@kent.ac.uk

Ganesh Gopalakrishnan
University of Utah, USA
ganesh@cs.utah.edu

Zvonimir Rakamarić
University of Utah, USA
zvonimir@cs.utah.edu

Abstract
Despite the growing popularity of GPGPU programming,
there is not yet a portable and formally-specified barrier
that one can use to synchronise across workgroups. More-
over, the occupancy-bound execution model of GPUs breaks
assumptions inherent in traditional software execution bar-
riers, exposing them to deadlock. We present an occupancy
discovery protocol that dynamically discovers a safe esti-
mate of the occupancy for a given GPU and kernel, allow-
ing for a starvation-free (and hence, deadlock-free) inter-
workgroup barrier by restricting the number of workgroups
according to this estimate. We implement this idea by
adapting an existing, previously non-portable, GPU inter-
workgroup barrier to use OpenCL 2.0 atomic operations,
and prove that the barrier meets its natural specification in
terms of synchronisation.

We assess the portability of our approach over eight
GPUs spanning four vendors, comparing the performance
of our method against alternative methods. Our key find-
ings include: (1) the recall of our discovery protocol is
nearly 100%; (2) runtime comparisons vary substantially
across GPUs and applications; and (3) our method provides
portable and safe inter-workgroup synchronisation across
the applications we study.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords GPU, OpenCL, barrier, synchronisation, porta-
bility

1 kernel unsafe(global int *flag, int A, int B) {
2 if (get_group_id(0) == A)
3 while(*flag != 1);
4
5 if (get_group_id(0) == B)
6 *flag = 1;
7 }

Figure 1: A non-portable kernel that potentially deadlocks

1. Introduction
With the growing use of GPUs in dynamic parallel appli-
cations, methods that fully exploit existing GPU hardware
in the face of varying amounts of available parallelism have
become crucially important. Typical large-scale applications
in this area—graph analysis [7], particle partitioning [6], and
software rendering pipelines [30]—share their computation
across multiple workgroups (i.e. groups of threads, called
blocks in CUDA [23]).

Execution barrier synchronisation, where a thread waits
at a barrier until all threads reach the barrier, is a popu-
lar method for inter-thread communication because (1) it
efficiently and simultaneously aligns the computations of
threads, and (2) it makes pre-barrier memory updates avail-
able to all threads, implementing a well-specified and simple
memory consistency model.

Unfortunately, existing GPUs and their associated pro-
gramming languages do not support inter-workgroup bar-
riers. This is because a GPU program (known as a kernel)
can be configured with many more workgroups than the un-
derlying hardware can execute concurrently. Execution of
large numbers of workgroups is achieved in any “occupancy-
bound” fashion, by delaying the scheduling of some work-
groups until others have executed to completion. As a con-
sequence, traditional fair scheduling guarantees associated
with CPU threads are not provided between workgroups ex-
ecuting a kernel [11].

As an example, consider the kernel in Figure 1. This ker-
nel accepts a pointer to a global variable, flag (initialised to
0), and two integers, A and B. The workgroup with id B (ob-
tained through the OpenCL primitive get group id(0))
writes 1 to flag, while the workgroup with id A spins
waiting for workgroup B to write to flag. However, the
GPU execution model is licensed to postpone execution of
workgroup B until execution of workgroup A has completed,
which will lead the kernel to deadlock due to starvation.

This idiom of one workgroup waiting on another is at the
heart of an inter-workgroup barrier. When executing a bar-
rier instance, each workgroup will wait on all other work-
groups to reach the same barrier instance. If a single work-
group is blocked by the occupancy-bound execution model,
then the barrier execution will deadlock due to starvation.
This behaviour is easy to observe on current GPUs, e.g. a
traditional CPU software barrier [12, ch. 17], ported to syn-
chronise across workgroups in OpenCL, leads to deadlock
on an AMD Radeon R7 GPU when used in a GPU kernel
configured with more than 4096 threads (with 256 threads
per workgroup), as this exceeds the occupancy of the GPU
for a kernel realisation, i.e. the number of workgroups that
can execute the binary version of the kernel concurrently on
the GPU. We abbreviate this concept as occupancy of the
GPU for the remainder of this paper.

Current approaches Existing GPU applications that re-
quire inter-workgroup barrier synchronisation rely on either
the multi-kernel or the occupancy assumption method.

In the multi-kernel method, an application is manually
split into multiple kernels, with a transition from one kernel
to another each time an inter-workgroup barrier is required.
The transfer of control from the GPU to the CPU host be-
tween kernels provides the barrier semantics implicitly. This
method is portable, making no assumptions about concurrent
execution of workgroups. A drawback is that interaction be-
tween the GPU and CPU can be expensive, due to the over-
head associated with kernel launch and because the contents
of registers and local memory (shared memory in CUDA) do
not persist across kernel calls, and thus cannot be reused.

The alternative occupancy assumption approach (studied
in related work [11, 32]), employs a traditional software
execution barrier. Starvation (and hence deadlock) is avoided
through a priori knowledge about the number of workgroups
that can be scheduled concurrently for a particular kernel and
GPU. This avoids the efficiency problems of the multi-kernel
approach, but is non-portable, since workgroup occupancy
varies dramatically between GPUs depending on hardware
resources (e.g. the number of compute units), and on a per-
kernel basis according to the resources (such as registers
and local memory) that a workgroup requires to execute
the kernel. These resources are in part determined by the
compiler and thus may vary between compiler versions.

In a related vein, OpenCL also provides nested paral-
lelism [17, pp. 32–33] (or dynamic parallelism in CUDA [23,

chip vendor #CUs type short name
GTX 980 Nvidia 16 discrete 980
Quadro K5200 Nvidia 12 discrete K5200
Iris 6100 Intel 47 integrated 6100
HD 5500 Intel 24 integrated 5500
Radeon R9 AMD 28 discrete R9
Radeon R7 AMD 8 integrated R7
Mali-T628 ARM 4 integrated T628-4
Mali-T628 ARM 2 integrated T628-2

Table 1: The GPUs we used for empirical evaluation

app. C]) where GPU threads can themselves launch a new
kernel and then wait until the new kernel is finished. While
this feature may be useful for applications examined in this
work (e.g. applications with irregular parallelism), the high
level idiom of nested parallelism (i.e. fork-and-join) is dif-
ferent enough from barrier synchronisation (i.e. synchronise
existing threads) that we do not consider it in this paper.

Memory consistency An inter-workgroup barrier must
also provide memory ordering properties: threads must ob-
serve up-to-date memory values during post barrier execu-
tion, and data-races between accesses separated by the bar-
rier must be forbidden. The barrier must be implemented
using sufficient synchronisation constructs, such as atomic
operations and memory fences, to ensure these properties.

Our contributions Our overall contribution is to show
that portable inter-workgroup barrier synchronisation can be
successfully implemented, if both the memory consistency
model and the execution model are considered.

Underpinning our contribution is a novel occupancy dis-
covery protocol that provides a (safe) estimate on the number
of occupant workgroups dynamically is, at the beginning of
a kernel execution (a precise definition of occupancy is given
in Section 2.3). The protocol can then be used to set up an
execution environment such that the remainder of the kernel
is only executed by the workgroups found to be occupant.
Because the number of workgroups that execute the kernel
is dynamic, depending on the discovered occupancy, this ex-
ecution environment requires that kernels are agnostic to the
number of executing workgroups (discussed in Section 3).

Because occupant workgroups exhibit traditional fair
scheduling guarantees, they can reliably participate in an
inter-workgroup barrier. In this context, we extend an ex-
isting barrier implementation to use the atomic operations
of OpenCL 2.0. The memory ordering properties of these
instructions are well-defined and allow for our barrier im-
plementation to be formally reasoned about. In particular,
we (1) provide a formal specification of the memory order-
ing properties to be provided by an abstract inter-workgroup
barrier, and (2) prove that our concrete implementation hon-
ours the specification.

To assess portability, we evaluate our method across eight
GPUs spanning four vendors (shown in Table 1). We first

assess the recall, i.e. the percentage of relevant instances
retrieved, of the estimate returned by our discovery pro-
tocol. We show that using heuristics, the recall is almost
100% (i.e. the occupancy estimate almost perfectly matches
the occupancy bound). We then examine the Pannotia [7]
and Lonestar-GPU [5] benchmarks, which currently achieve
inter-workgroup synchronisation using the multi-kernel and
occupancy assumption methods, respectively. We adapt all
relevant applications from each suite to use our protocol/bar-
rier combination and compare runtimes with the original im-
plementations. In all cases, our approach enables portable
execution as expected, and although performance bene-
fits vary between GPUs, in many cases we observe good
speedups by modifying applications that originally used the
multi-kernel approach to use our inter-workgroup barrier.

To summarise, our main contributions are:

• We develop an occupancy discovery protocol, which dy-
namically computes a safe estimate of the workgroup oc-
cupancy for a given GPU and kernel (Section 3).

• We augment an inter-workgroup barrier (given in [32]) to
exploit the dynamic workgroup occupancy discovered by
our protocol. By using OpenCL 2.0 atomic operations,
we are able to prove intuitive memory ordering guaran-
tees (Section 4).

• We evaluate our occupancy discovery protocol, show-
ing that it is portable across eight GPUs spanning four
vendors (Table 1), achieving near-perfect occupancy es-
timates (Section 5.1).

• We evaluate the performance benefits of using our proto-
col/barrier combination against the multi-kernel and oc-
cupancy assumption methods for inter-workgroup syn-
chronisation. Results vary across GPUs and applications,
but in some cases our method provides a noticeable run-
time speedup, up to 2.34× (Sections 5.2 and 5.3).

A web page containing supplementary material (i.e. ex-
perimental results, implementation details and additional
formalisation for the barrier correctness) is located at:
http://multicore.doc.ic.ac.uk/projects/
gpubarrier/.

2. Background
We provide an overview of OpenCL and its memory model
(Section 2.1) and describe the key prior work on which our
contribution rests: the inter-workgroup barrier of Xiao and
Feng [32] (Section 2.2), and the occupancy-bound execution
model (Section 2.3).

2.1 OpenCL
An OpenCL program comprises host code, executed on the
CPU, and device code, executed on a device (in our case a
GPU). OpenCL supports a hierarchical execution model that
mimics some of the specialised hardware it is intended to run

on (GPU hardware in particular). Threads1 are partitioned
into disjoint, equally sized sets called workgroups.

An OpenCL kernel runs on a device, and is launched by
the host code via API calls that allow the number of work-
groups and threads per workgroup to be specified. Kernels
are written in OpenCL C, which is based on C99. A ker-
nel is expressed in SIMT (single instruction multiple thread)
form, whereby all threads execute the same program but may
query their unique thread identifiers to access distinct data
and follow varying control paths.

An intra-workgroup execution barrier can be used for de-
terministic and consistent communication within a work-
group. To aid in finer-grained communication, including
communication between workgroups, OpenCL provides a
set of atomic read-modify-write instructions that allow a
thread to atomically access and update a memory location.
OpenCL provides two shared memory regions: local mem-
ory, which is shared only between threads in the same work-
group (called shared memory in CUDA); and global mem-
ory, which is shared between all threads on the device.

Execution environment The execution environment pro-
vides information about the ids and number of threads
executing a kernel, accessed through the following func-
tions (called workitem built-in functions [16, pp. 69-70]):
get local id, a workgroup local id (unique and con-
tiguous within workgroup); get group id, a workgroup
id (the same value for all threads in a workgroup); and
get global id, a global id (unique and contiguous for
all threads); get local size, the number of threads per
workgroup; get num groups, the number of workgroups;
and get global size, the number of threads (across all
workgroups). The execution environment is static: the num-
ber of threads and workgroups is fixed on kernel launch.
Threads can query the execution environment to access con-
tiguous unique data in a data-parallel program. In CUDA,
the threadIdx, blockIdx and blockDim structs im-
plement analogous functionality.

Memory model The OpenCL 2.0 memory model, based
on that of C++11 [15], employs a catch-fire semantics,
where races on regular variables lead to undefined behaviour.
Atomic variables are provided to give semantics to code that
would otherwise be racy. Synchronisation between threads
can be achieved by associating a memory order with each
atomic variable access. The memory orders relevant to this
work are release (applied to store operations) and acquire
(applied to load operations). An acquire load that reads a
value written by a release store in a different thread creates
a happens-before edge from the store operation to the load
operation, i.e. the operations synchronise.

In OpenCL (and unlike C++11), an atomic access has an
associated memory scope annotation, specifying a level of

1 In strict OpenCL terminology, threads are called workitems; we opt to use
thread due to its pervasiveness.

1 if (get_local_id() + 1 < get_num_groups()) {
2 while (flag[get_local_id() + 1] == 0);
3 }
4
5 barrier();
6
7 if (get_local_id() + 1 < get_num_groups()) {
8 flag[get_local_id() + 1] = 0;
9 }

(a) Master workgroup code

1 barrier();
2 if (get_local_id() == 0) {
3 flag[get_group_id()] = 1;
4 while (flag[get_group_id()] == 1);
5 }
6 barrier();

(b) Slave workgroup code

Figure 2: XF inter-workgroup execution barrier

the OpenCL execution hierarchy. This declares the intent to
concurrently access the variable only within this level of the
hierarchy, so that synchronisation is only provided within the
given scope. The scope annotations relevant to this work are
workgroup and device, allowing synchronisation between
threads only in the same workgroup, and between arbitrary
threads executing a kernel, respectively.

2.2 The XF Software Execution Barrier
Figure 2 illustrates a variant of the XF (Xiao/Feng) soft-
ware execution barrier [32], a GPU inter-workgroup barrier
provided in the CUB CUDA library [22]. Originally imple-
mented in Nvidia’s CUDA language, the XF barrier has been
shown to offer high performance, exhibiting a low level of
memory contention and avoiding read-modify-write instruc-
tions. The variant we show is ported to OpenCL and removes
an intra-workgroup barrier we determined to be redundant.

The XF barrier uses a master/slave model, where one
workgroup is selected to be the master (Figure 2(a)) and
the remaining workgroups are slaves (Figure 2(b)). Function
barrier() denotes an intra-workgroup barrier operation.

The slave workgroups start with an intra-workgroup bar-
rier, to ensure that all threads in the local workgroup have
arrived at the inter-workgroup barrier (slave line 1). A rep-
resentative thread in the workgroup (with local id 0) writes
1 to the workgroup’s index in flag, an array of flags at
least as large as get num groups(), to indicate that the
workgroup has arrived at the inter-workgroup barrier (slave
line 3). The representative thread then spins (slave line 4),
waiting for the master workgroup to release the barrier. The
remaining threads in the workgroup wait at the final work-
group barrier instruction (slave line 6) for the representative.

Each thread in the master workgroup takes responsibil-
ity for managing one slave workgroup: the workgroup with
group id equal to the thread’s local id plus one; one is added
to the local id because the group with id 0 is the master
workgroup and does not need to be managed. Each master
thread spins until the workgroup it is managing has arrived at

the barrier (master line 2). The master workgroup then per-
forms a workgroup barrier (master line 5). Given that master
threads manage all other (slave) workgroups, the completion
of this workgroup barrier denotes that all threads across all
workgroups have arrived at the barrier. Each master thread
now releases the workgroup it is managing by setting that
workgroup’s flag to 0 (line 8).

The code of Figure 2 assumes that there are at least as
many threads per workgroup as there are workgroups, but is
easily adapted to cater for a larger number of workgroups by
having each thread in the master workgroup manipulate the
flags of more than one workgroup.

The XF barrier fails to directly provide portable inter-
workgroup synchronisation for two reasons. First, because
progress between workgroups is not guaranteed, the barrier
is prone to deadlock due to starvation. Running the XF
barrier on the chips of Table 1 with 1024 workgroups (each
with 256 threads) causes deadlock for every GPU; reducing
the number of workgroups to 128 results in deadlock for
all chips except 980 and R9; while reducing the workgroup
count to 2 avoids deadlock in all cases. The XF barrier
was originally evaluated on GPUs where the number of
concurrently executing workgroups was known a priori so
that deadlock could be avoided [32]. Secondly, some GPUs
have been shown to have relaxed memory models, where
memory operations may appear to execute out of order [1].
The original XF barrier implementation, presented in CUDA
(which lacks a rigorous memory model) does not formally
take account of memory ordering properties.

2.3 Occupancy-Bound Execution Model
OpenCL does not currently specify a formal execution
model for inter-workgroup interactions, and the behaviour
of programs with such interactions is cautioned against in
the standard [17, p. 31]: “A conforming implementation may
choose to serialize the workgroups so a correct algorithm
cannot assume that workgroups will execute in parallel.
There is no safe and portable way to synchronize across
the independent execution of workgroups since once in the
work-pool, they can execute in any order.”

In previous work [11, 31], it is suggested (and supported
by empirical evidence) that GPUs provide an occupancy-
bound execution model for inter-workgroup interactions.
Here we more formally define the occupancy-bound exe-
cution model. Our definition is limited to the execution of a
single kernel. We also assume that non-compute functional-
ity (e.g. graphics) is disabled by kernel execution. This final
assumption is consistent with our empirical observations,
e.g. the OS graphics layer becomes unresponsive when our
kernels are executed.

A workgroup is occupant if it has executed at least one
instruction using the GPU’s hardware resources, and has
not yet completed kernel execution. The occupancy-bound
execution model requires the following conditions, relating
to occupant workgroups, to hold:

• No indefinite preemption: An occupant workgroup is
guaranteed to eventually be scheduled for further exe-
cution on the GPU, regardless of the behaviour of other
workgroups. Consequently, two workgroups that are si-
multaneously occupant can participate in blocking com-
munications with each other that require fair scheduling
(e.g. spin-locks).

• Utilisation: There is a constant N > 0, the occupancy
bound, such that if m workgroups are occupant, with
m < N , if there exist k > 0 workgroups that have
not yet commenced execution, one of these workgroups
will eventually become occupant. Additionally, no more
than N workgroups can occupant. Consequently, a block-
ing communication that requires up to N workgroups to
be simultaneously occupant (but makes no assumptions
about the order in which they become occupant) can be
used without fear of starvation-induced deadlock.

The occupancy bound N depends on the amount of hard-
ware resources available. This clearly depends on the GPU,
but also the amount of resources required by the target ker-
nel. A kernel that uses a large amount of local memory or
registers will require more resources, which may lower N .
Because the resources used by a kernel may depend on de-
tails of compilation (e.g. register allocation), N also depends
on the OpenCL framework.

The persistent thread model The persistent thread model
is a GPU programming model that allows kernels to ex-
ploit fair scheduling guarantees provided by the occupancy-
bound execution model. To use the persistent thread model,
programmers must ensure that they launch kernels with at
most Q workgroups, where Q is less than or equal to the
occupancy bound N (sometimes referred to as the maxi-
mal launch [11]). Under this restriction, all workgroups will
eventually be occupant, so idioms that require fair schedul-
ing across workgroups, e.g. inter-workgroup barriers, can be
used. Applications that use the persistent thread program-
ming model currently use occupancy assumption methods to
determine N . A main contribution of our paper is a method
for programmatically determining a safe estimate for N .

One empirical validation of the occupancy-bound execu-
tion model is the existence of an occupancy bound N such
that an inter-workgroup barrier succeeds when executed with
N workgroups but deadlocks when executed with N + 1
workgroups. Our work explicitly finds occupancy bounds
across a range of GPUs in Section 5.1. Many instances of
previous work (which use the persistent thread model) also
acknowledge this bound [5, 6, 11, 13, 19, 21, 25, 30–32],
adding to the empirical evidence for this execution model.

3. Occupancy Discovery
We now detail our occupancy discovery protocol for dynam-
ically determining a safe estimate of the occupancy bound
for a given GPU and kernel. Recall that the occupancy-

1 lock(mutex);
2 if (poll_open){
3 M[get_group_id()] = count;
4 count++;
5 unlock(mutex);


polling phase

6 } else {
7 unlock(mutex);
8 return NON_PARTICIPATING;
9 }

10
11 lock(mutex);
12 if (poll_open) {
13 poll_open = false;
14 }


closing phase

15 unlock(mutex);
16 return PARTICIPATING;

Figure 3: Occupancy discovery protocol executed by a single
representative thread per workgroup

bound execution model guarantees existence of an occu-
pancy bound N for a given GPU and kernel such that N
workgroups can be simultaneously occupant during execu-
tion, and are guaranteed to be fairly scheduled. Given that N
is unknown, our aim is to dynamically discover an estimate
n with 0 < n ≤ N , i.e. a lower bound for N . The n discov-
ered workgroups may then proceed to successfully complete
computation that requires forward progress between work-
groups using a persistent thread style programming model.

To achieve this, all workgroups execute the discovery pro-
tocol at the start of the kernel, prior to any other computa-
tion. In the protocol, each workgroup executes a routine that
returns a value indicating whether the calling workgroup is
participating. A workgroup is participating if and only if the
workgroup commences execution of the protocol before any
workgroup has finished executing the protocol. By defini-
tion, participating workgroups are simultaneously occupant.
The occupancy-bound execution model thus guarantees that
participating workgroups are fairly scheduled, and the total
number of participating workgroups is a lower bound for N .

Workgroups found to be non-participating immediately
exit; workgroups found to be participating continue the ker-
nel computation. Thus computation occurring after the dis-
covery protocol (what we call the main kernel computation)
can assume fair scheduling of workgroups.

Under this scheme, the native workitem built-in functions
(see Section 2.1) may no longer provide contiguous unique
values for threads executing the main kernel computation.
For example, if the discovered participating workgroups do
not have contiguous native ids then they cannot use these ids
to access contiguous unique data. To overcome this problem,
the occupancy discovery protocol constructs a new, dynami-
cally determined, execution environment with replacements
for the workitem built-in functions that do satisfy the con-
tiguous unique property for participating workgroups.

3.1 Implementation
Figure 3 shows the discover protocol implementation. There
are four variables located in the global memory region (recall

from Section 2.1 the global memory region is shared across
workgroups) : count, an integer to record the number of
participating groups (initially 0); poll open, a boolean
recording whether the poll is open (initially true); mutex,
an object that provides mutual exclusion through lock and
unlock functions (initially unlocked); and M, an array
that records intermediate values of count. All protocol
variables are required to be initialised prior to the protocol
execution (e.g. by a separate kernel or via OpenCL host-to-
device memory copies).

The protocol is split into two phases, a polling phase
and closing phase. Both phases are protected using mutex.
For now we leave the implementation of mutex along with
the corresponding locking functions abstract, here we only
require mutual exclusion in locked regions; concrete mutex
implementations are discussed in Section 5.1. The protocol
is executed by one representative thread per workgroup.

In the polling phase, a thread checks whether the poll
is open (line 2). If so, the thread marks its workgroup as
participating by recording the current value of count in
array M, at an index according to the thread’s workgroup
id, and incrementing count (lines 3-4); the thread then
moves on to the closing phase. On the other hand, if the
poll is closed, the thread exits the protocol, returning a non-
participating flag (line 8).

A thread that successfully completes the polling phase
(observing an open poll) then enters the closing phase
(line 11). If the poll is still open, the thread closes the poll
(lines 12-13). Only the first thread to enter the closing phase
performs this action; future threads observe a closed poll.
Either way, the thread returns a participating flag (line 16).

Because thread scheduling is non-deterministic, a single
thread might execute the polling phase and closing phase
prior to any other thread commencing execution of the pro-
tocol. This would lead to an estimated occupancy bound of
1. Clearly we would prefer to discover a tighter lower bound,
especially if the true occupancy bound N is large. We show
experimentally that a suitable choice of mutex implementa-
tion leads to tight estimates of N in practice (see Section 5).

It may be possible to add heuristics to this protocol to im-
prove the recall of discovered workgroups. For example, it
seems natural that a pause inserted between the polling and
closing phase may increase the recall (this would give oc-
cupant threads more time to poll before the poll is closed).
In this work we do not consider such a heuristic for two
reasons: (1) we show that with the right mutex implemen-
tation we can achieve a very high recall without any addi-
tional heuristics (see Section 5) and (2) because OpenCL
does not provide any portable pause or sleep function, the
pause would have to be implemented as some kind of busy
spin. The busy spin would have to be tuned per GPU in or-
der to minimise overhead while maximising recall. In Sec-
tion 5.4, we briefly discuss pilot experiments applying our

Function Derivation
p get num groups() count
p get group id() M[get group id()]

p get global id()
p get group id() *
get local size() +
get local id()

p get global size() count * get local size()

Table 2: Occupancy discovery execution environment func-
tions

1 __kernel native_environment(...) {
2 int id = get_global_id();
3 if (id < data_size) {
4 //do one element of work based on id%
5 }
6 }

(a) Native execution environment paradigm

1 __kernel participating_environment(...) {
2 for (id = p_get_global_id();
3 id < data_size;
4 id += p_get_global_size()) {
5 // do multiple elements of work based on the
6 // the number of participating groups
7 }
8 }

(b) Participating group execution environment paradigm

Figure 4: Illustration of code transformation required when
going from the native execution environment to the partici-
pating group execution environment

occupancy discovery protocol to CPU implementations of
OpenCL, in which we employ this spinning heuristic.

Execution environment construction The variables M and
count are used to construct a new execution environment
in which only participating workgroups take part in com-
putation. Because count is initialised to zero and incre-
mented once by each participating workgroup, after the pro-
tocol execution count contains the number of participating
workgroups. Additionally, the value of count observed by
a participating workgroup prior to incrementing (line 3) is
recorded in array M at an index corresponding to the id of
the workgroup, providing a unique participating workgroup
id, such that the sequence of participating workgroup ids is
contiguous. that is contiguous and unique.

Table 2 defines the new execution environment func-
tions. A thread can query: the number of participating work-
groups (p get num groups), its participating workgroup
id (p get group id), a contiguous unique id across all
participating threads (p get global id), and the total
number of participating threads (p get global size).
Each function is analogous to a native OpenCL function
(the function without the p prefix), but the new functions
consider only participating workgroups.

Execution environment constraints As participating work-
groups are determined dynamically, the main kernel compu-
tation must be agnostic to the number of executing work-

groups at launch time. This is in contrast to the native
OpenCL execution environment, where the number of ex-
ecuting workgroups is fixed on kernel launch.

In the native OpenCL execution environment a kernel
can be launched with enough workgroups such that each
thread computes at most one piece of data. A kernel that
uses the occupancy discovery execution environment must
be able to dynamically adapt the per-thread computation
based on the number of participating groups, which can be
queried during kernel execution. The kernels we adapted
to use occupancy discovery in our experiments (see Sec-
tion 5) required only simple transformations to satisfy this
constraint, which is similar to the program transformations
required for the persistent thread model [11]. The code of
Figure 4(a) illustrates the OpenCL existing execution en-
vironment paradigm; threads compute at most one item of
work depending on their id. The code of Figure 4(b) shows
how the code of Figure 4(a) is adapted to use the participat-
ing group execution environment. That is, each thread per-
forms a dynamic amount of computation based on the num-
ber of participating groups.

3.2 Properties and Correctness
Here we argue that our occupancy discovery protocol sat-
isfies certain key properties required by client applications.
Line numbers refer to Figure 3.

At least one participating workgroup To ensure that main
kernel computation occurs, at least one workgroup must be
identified as participating. Our protocol satisfies this require-
ment because the poll is initialised to open. This means that
at least the first thread to enter the polling phase will mark
itself as participating and go on to finish the protocol, return-
ing PARTICIPATING at line 16.

Consistent participating count To provide participating
threads with valid execution environment values, the proto-
col must ensure that, upon completion, all threads view the
same value in count and that this value is equal to the num-
ber of workgroups that return PARTICIPATING.

Every thread returning PARTICIPATING increments
count exactly once, because there are no loops in the
protocol and the only path to returning PARTICIPATING
(line 16) requires incrementing count (line 4). Further-
more, the value in count does not change once any thread
returns from the protocol. There are two possible return
points: participating (line 16) and non-participating (line 8).
At both return points, the poll must be closed. In the case
of a participating return, the poll has either been closed by
the returning thread or by an earlier thread (lines 12 and 13).
In the non-participating case, the poll was observed to be
closed (line 2). Once the poll is closed, it remains closed
(there is no place in the protocol that re-opens the poll). If
the poll is closed, count cannot be modified.

Because all threads that return PARTICIPATING in-
crement count once, and count does not change after

a thread returns, all threads that return PARTICIPATING
must observe count to contain the total number of threads
that ultimately return PARTICIPATING.

Participating workgroups are simultaneously occupant
The main purpose of the protocol is to create an execu-
tion environment that guarantees fair scheduling between
workgroups, under the assumption of the occupancy-bound
execution model. We now argue that workgroups identified
as participating are indeed simultaneously occupant.

We show this property by counterexample. Let P be the
set of workgroups that return PARTICIPATING. Because
simultaneous occupancy concerns multiple workgroups, P
must contain at least two workgroups. Assume that there ex-
ists a workgroup w ∈ P that is not simultaneously occupant
with all of the other workgroups in P (that is, there is at least
one workgroup in P that is not simultaneously occupant with
w) and let P′ = P \ {w}. There are now two possible cases
to consider (under the occupancy bound execution model).
Either w finishes execution before at least one workgroup in
P′ starts execution, or at least one workgroup in P′ finishes
execution before w begins execution.

First, we consider the case where w finishes execution
before at least one workgroup w′ ∈ P′ starts execution. In
order for w to finish execution, w must have executed the
discovery protocol, returning PARTICIPATING (line 16).
In order for w to have reached this line, the poll must be
closed, either by w or an different participating workgroup
(lines 12 and 13). Now w′ eventually starts execution and be-
gins executing the discovery protocol. However, because w
has finished execution (and consequently the poll is closed),
w′ must observe a closed poll at line 2. Thus, w′ must re-
turn NON PARTICIPATING (line 8). Therefore w′ is not a
participating group, a contradiction.

The second case is where at least one workgroup w′ ∈ P′
finishes execution before w begins execution. The argument
is exactly the same as the first case with w and w′ being
swapped; that is, w cannot return PARTICIPATING be-
cause w′ (having returned PARTICIPATING) has closed
the poll before w started execution. Thus w cannot be a par-
ticipating group, a contradiction.

4. Inter-workgroup Barrier
We now present our inter-workgroup barrier, which aug-
ments the XF barrier with two missing features: (1) atomic
instructions necessary for proper memory ordering proper-
ties and data-race freedom, and (2) an execution environ-
ment that ensures fair scheduling between workgroups. We
describe its implementation, and give an overview of a hand
proof of its memory-ordering properties.

4.1 OpenCL 2.0 Memory Model Primer
The OpenCL memory model defines the behaviour of con-
current memory accesses, including the atomic accesses and
workgroup barriers used in our inter-workgroup barrier. The

memory model is axiomatic: program behaviours are repre-
sented as sets of complete executions, each a graph of the
memory events of one path of control flow with relations
representing ordering in the execution.

The memory model has two phases. The first finds consis-
tent executions by filtering prospective program executions:
imposing a set of constraints on happens-before, hb, a re-
lation on events that collects together thread-local program
order and inter-thread synchronisation. The second looks for
data-races in the consistent executions, defined as an ab-
sence of happens-before between conflicting non-atomic ac-
cesses to a single variable. If even a single race exists in a
single consistent execution, the entire program is given un-
defined behaviour. Otherwise, the consistent executions rep-
resent the program’s behaviour.

Our implementation relies on happens-before edges cre-
ated between threads as demonstrated by the dashed arrows
in the two consistent execution shapes of Figure 5.

Figure 5(a) presents an execution with intra-workgroup
barrier synchronisation. Intuitively, a given barrier call gives
rise to barrier entry and exit events that span the threads of
a workgroup. A barrier entry and exit event on the same
thread are ordered by program order. Program order induces
happens-before between events on the same thread, drawn
as solid vertical arrows. For each intra-workgroup barrier
call, its associated events are collected into a barrier instance,
signified by the surrounding dashed box. Each barrier entry
synchronises with every exit in the same instance. We call
these synchronisation edges a barrier web.

In the example of Figure 5(b), called message pass-
ing, one thread writes to x and then y, and another reads
from y and then x. In the absence of synchronisation, the
non-atomic accesses to x would form a race. However, for
threads in either the same or different workgroups, a device-
scoped acquire read such as c that reads from a device-
scoped release write such as b, results in the creation of
a happens-before edge, drawn as a dashed arrow in Fig-
ure 5(b). Happens-before is transitive, and the a-to-d edge
avoids a data race on x, and forces d to read from a.

4.2 Implementation
The original XF barrier implementation is given in Figure 2.
As discussed in Section 2.2, it has an arrival phase, where
the master waits for every slave to announce its presence at
the barrier, and a departure phase where the master releases
the slaves from the barrier. Concurrent non-atomic accesses
to the flag array would lead to data races in OpenCL. As a
consequence, the XF barrier has undefined behaviour. More-
over, the purpose of each phase is to synchronise, first from
the slave threads to the master, and then from the master to
the slave threads. Non-atomic accesses do not provide this
sort of synchronisation.

To realise the intended behaviour of the XF barrier in
OpenCL 2.0, we augment the original implementation with
atomic instructions. We declare flag as an array of atomic

integers and we make all accesses release and acquire
device-scoped atomics, avoiding races and inducing syn-
chronisation. More precisely, slave line 3 and master line 8
become device-scoped release stores, and master line 2 and
slave line 4 become device-scoped acquire loads.

Because the barrier covers only participating groups, we
replace its thread id functions to use the execution envi-
ronment provided by our discovery protocol (see Table 2):
get num groups becomes p get disc groups (mas-
ter lines 1 and 7), returning the number of participating
groups, and get group id becomes p get group id
(slave lines 3 and 4).

4.3 Barrier Specification
We provide a generic barrier specification, parameterised by
an OpenCL scope and integrate it with the formal OpenCL
memory model of Batty et al. [3]. The OpenCL work-
group barrier primitive behaves according to our specifi-
cation instantiated with workgroup scope, closely following
OpenCL [17, p. 53], whereas our inter-workgroup barrier
behaves according to the specification instantiated with de-
vice scope. This symmetry suggests that the device-scoped
barrier specification should be natural to OpenCL program-
mers familiar with the workgroup barrier.

OpenCL programs are required to be free from barrier
divergence [16, p. 97]. Barrier divergence occurs when either
(a) two workitems in the same workgroup reach syntactically
distinct intra-workgroup barrier statements, or (b) an intra-
workgroup barrier statement appears in a nest of loops, and
two workitems reach the barrier statement having executed
different numbers of iterations for at least one enclosing
loop. See Collingbourne et al. for a formal definition [8].

Kernels that exhibit barrier divergence have undefined
behaviour, so we restrict our approach to kernels that are
divergence free. We assume that two properties follow from
barrier divergence-freedom: all barrier instances cover all
threads at the workgroup scope and all participating threads
at device scope, and no barrier instance links barrier events
from within the XF barrier to those outside. We define the
synchronisation that the barrier provides, and we declare the
definition of faulting behaviour to be out of scope.

The specification requires two additions to the formal
model of Batty et al.: new machinery to generate prospec-
tive executions with barrier events from programs, and new
happens-before edges in the memory model.

Memory-model barrier specification A thread executing
a dynamic instance of a barrier gives rise to two program-
ordered events on each thread in its domain (workgroup or
device): a barrier entry event (Bentry) followed by a barrier
exit event (Bexit). The events of each barrier instance are
all related by the barrier instance relation, bi, which covers
the threads of the workgroup or device, respectively. We
capture the new synchronisation with a relation called barrier

a: Bentry c: Bentry

d: Bexit
b: Bexit

T0 T1

(a) Barrier web

a: Wna x = 1 c: Racq y=1

d: Rna x=1b: Wrel y = 1

T0 T1

(b) Release acquire message
passing

Figure 5: Two OpenCL synchronisation patterns used by our
inter-workgroup barrier

synchronises-with, swB, made up of edges from each barrier
entry event to each exit within a given barrier instance:

swB = (Bentry×Bexit) ∩ bi

The swB edges arising from a single barrier instance are
precisely the edges in the barrier web of Figure 5(a). We
call the dashed box surrounding the web an instance-box —
in future we elide the web, drawing only the box. Intuitively,
the web ensures that any access preceding a barrier happens-
before any access following any barrier in the same instance,
avoiding races between prior and following accesses.

4.4 Correctness of the Inter-workgroup Barrier
Our correctness proof reuses the library abstraction method
of Batty et al. [2], and consists of two parts: the extension of
library abstraction to work with the OpenCL memory model,
adding scoped atomics and barriers, and the application of
extended library abstraction to show that our implementa-
tion behaves according to our specification. We leave to the
supplementary material the technical details of the extension
of library abstraction to OpenCL, and focus on the properties
that must be established for the soundness of our implemen-
tation, with a more detailed treatment in Appendix A.

Progress guarantee We rely on a form of progress: a prop-
erty we assume from the occupancy-bound execution model
and therefore our participating group environment. Our im-
plementation uses spin loops that wait for a write on another
thread. If they were to repeatedly read from older writes, the
barrier would hang. To avoid this, we prohibit an infinite se-
quence of happens-before-ordered reads from failing to see
a write from another thread.

Abstraction of the inter-workgroup barrier We take the
augmented XF barrier as our implementation, although li-
brary abstraction would apply equally well to other imple-
mentations of the barrier. We take the abstract device-level
barrier described in Section 4.3 as our specification. Neither
our implementation nor our specification can exhibit races
because each only uses barriers and device-level atomic ac-
cesses, and a race requires at least one non-atomic access.

Library abstraction requires us to establish equivalence
of the inter-thread synchronisation generated by the imple-

a: barrier web

b: Wrel x0 = 1

c: Racq x0 = 0

f: barrier web

d: barrier web

e: Racq x0 = 1

g: Wrel x0 = 0

T1 T0

h: Racq x1 = 1

i: Wrel x1 = 0

T0 T1

j: barrier web

k: Wrel x1 = 1

l: Racq x1 = 0

m: barrier web

T0 T1

Master WorkgroupSlave Workgroup 0 Slave Workgroup 1

Figure 6: Idiomatic execution of XF barrier

mentation and the specification, and guarantees that the be-
haviour of the implementation will match the behaviour of
the specification in any program that uses the barrier.

The crux of the proof involves looking at a single barrier
call across all threads. There are four cases to be considered
for call-return pairs: same-workgroup, master-slave, slave-
master, and slave-slave, where in the latter three cases the
master and slave are in different workgroups. In the spec-
ification, the barrier web covers all of the threads belong-
ing to participating workgroups identified by the discovery
protocol, and creates synchronisation between every pair of
threads. For each of the four cases, we must show that the
XF barrier replicates this synchronisation.

We write down an axiomatisation of the events that make
up an execution of the barrier: these event graphs coincide
with the various paths of control flow through the XF barrier.

We consider the synchronisation made in a consistent ex-
ecution, starting by ruling out the execution of the master
whose events read repeatedly from the same write by not-
ing that the first thread of each workgroup unconditionally
writes, violating our progress assumption. Then we exclude
any slave from repeatedly reading from the same write in its
loop by noting that some master thread writes to the loca-
tion. The remaining axiomatisations match the events listed
vertically in Figure 6.

It is left to show that the implementation produces syn-
chronisation in each of the four cases. We argue that it does
so by identifying synchronisation of the two varieties pre-
sented in Figure 5 in the execution of the augmented XF
barrier, and recalling that happens-before is transitive.

same-workgroup Whether the call and return reside on the
master workgroup or a slave, in Figure 6 there is an
instance box across the workgroup. The happens-before
edge is ensured by the barrier web of a workgroup-scoped
barrier as in Figure 5(a).

slave-master As the master breaks out of its loop, it must
read the slave’s write of the flag array. The device-level

release and acquire synchronise as in Figure 5(b), creat-
ing a happens-before edge from one thread on the slave
to one on the master. In Figure 6, the preceding barrier on
the slave, and the following one on the master then com-
plete the happens-before edge between the slave’s call
and the master’s return.

master-slave Similarly the slave breaks out of its loop by
the reading of the master’s write creating synchronisation
that is extended by the barriers on the master and slave.

slave-slave In this case, a slave synchronises with the mas-
ter, and then the master synchronises with a slave. The
prior, intervening, and following barriers complete the
call-to-return happens-before edge.

The proof concludes by applying the abstraction theorem,
extended to OpenCL to establish that the memory behaviour
of the augmented XF barrier matches our natural device-
scoped barrier specification.

5. Empirical Evaluation
We use microbenchmarks to measure the recall of the occu-
pant workgroup estimate provided by the discovery proto-
col with respect to the occupancy bound (Section 5.1). We
then examine several benchmarks that use the multi-kernel
method for inter-workgroup synchronisation, adapting the
benchmarks to use the discovery protocol/barrier combina-
tion and comparing the runtime of the two approaches (Sec-
tion 5.2). We also consider several applications written using
the non-portable occupancy assumption approach for inter-
workgroup synchronisation. We modify these applications
to be portable using our discovery protocol and measure the
runtime overhead caused by the discovery protocol and as-
sociated execution environment (Section 5.3). Finally, we re-
port on pilot experiments where we test our protocol on CPU
implementations of OpenCL (Section 5.4).

The chips we consider (Table 1) all support the OpenCL
2.0 memory model except for the Nvidia and ARM chips.
For these chips, we provide custom implementations of the
OpenCL 2.0 atomic operations. Our Nvidia implementation
is based on previous empirical testing of these chips [1]. We
use inline PTX (Nvidia’s low level intermediate language)
to provide Nvidia specific memory fences. Our ARM im-
plementation uses OpenCL 1.1 memory fence instructions.
While our implementations come with no proof of correct-
ness, we are conservative with our fence placement and en-
counter no issues in our experiments. Our custom implemen-
tations can be found in the supplementary material. These
implementations should be seen as temporary until OpenCL
2.0 is more widely supported.

To preface these experimental results, we note that even
though the occupancy-bound execution model is not offi-
cially endorsed by OpenCL, our experiments indicate that
the model is supported by all the GPUs we considered (Ta-
ble 1). Namely, the use of our inter-workgroup barrier never

led to a deadlock and we were always able to find an occu-
pancy bound. It appears that the occupancy-bound execution
model is a useful de facto property of devices that support
OpenCL, so we believe there is a case for incorporating the
model officially in OpenCL, perhaps as an extension.

5.1 Recall of Discovery Protocol
As discussed in Section 3, the occupancy discovery protocol
identifies a subset of occupant workgroups for a given GPU
and kernel. It is desirable for the discovered occupancy to
be as close as possible, and ideally equal, to the occupancy
bound for the GPU and kernel. We use microbenchmarks to
experimentally assess the recall of the occupancy discovered
by our protocol, experimenting with two concrete mutex
implementations and four kernel configurations.

Microbenchmarks The occupancy bound for a given GPU
and kernel depends on the resources used by the kernel. To
thoroughly evaluate the recall of our discovery protocol, we
require a set of kernels with a variety of resource-usage char-
acteristics. We consider two resources here: local memory,
and threads per workgroup. Register pressure can also affect
the occupancy bound of a kernel [26], but register allocation
is a function of the compiler, and as such we do not have
fine-grained control over this resource.

The microbenchmarks are based on a kernel that calls the
discovery protocol to identify participating groups, which
then execute one inter-workgroup barrier. The single barrier
synchronisation in the microbenchmark can be configured
to use participating workgroups, or all workgroups. This
allows us to perform an unsafe search for the occupancy
bound. This kernel is parameterised by (a) the amount of
local memory that is allocated, and (b) the number of threads
per workgroup. A single microbenchmark is an instance of
the kernel with a particular choice for these parameters.

Mutex implementations In Section 3 we left details of how
the mutex used by the discovery protocol is implemented
abstract. We experiment with two mutex implementations,
a spin-lock and a ticket-lock, which we implement using
OpenCL 2.0 atomic operations. The mutex implementations
are given in the supplementary material.

The spin-lock [27, p. 269] is implemented via a flag
variable that can be locked or unlocked. To lock the mutex,
a thread enters a spin loop that uses an atomic test-and-set
operation to write locked to the flag and obtain the previous
flag value. The thread exits the loop when the previous flag
value is unlocked, indicating that the thread has successfully
acquired the lock. A thread unlocks the mutex by writing
unlocked to the flag.

The ticket-lock [27, p. 276] mutex uses two counters:
a ticket value and a servicing value. To lock the mutex, a
thread first atomically increments the ticket value, obtaining
the old value as a ticket. The thread then polls the servicing
value until it matches the thread’s ticket, in which case the
thread has acquired the lock. A thread unlocks the mutex

chip #CUs OB or mutex 11 L1 1W LW

980 16
OB 512.0 32.0 32.0 32.0
TL 512.0 32.0 32.0 32.0
SL 24.9 4.0 3.3 3.1
OB 192.0 12.0 24.0 12.0
TL 192.0 12.0 24.0 12.0K5200 12
SL 10.1 1.1 3.7 2.3

6100 47
OB 96.0 6.0 41.0 6.0
TL 94.9 6.0 41.0 6.0
SL 12.4 3.8 8.2 3.5
OB 48.0 3.0 21.0 3.0
TL 48.0 3.0 21.0 3.05500 24
SL 8.1 2.9 7.2 2.7

R9 28
OB 896.0 48.0 224.0 48.0
TL 896.0 48.0 224.0 48.0
SL 39.9 7.3 19.4 7.7
OB 256.0 16.0 64.0 16.0
TL 250.3 16.0 64.0 16.0R7 8
SL 20.0 3.1 9.2 4.6

T628-4 4
OB 256.0 256.0 4.0 4.0
TL 256.0 256.0 4.0 4.0
SL 19.6 18.3 3.2 3.1
OB 128.0 128.0 2.0 2.0
TL 128.0 128.0 2.0 2.0T628-2 2
SL 11.2 9.5 2.0 2.0

Table 3: Occupancy for each chip and microbenchmark for
occupancy bound (OB), and the average discovered occu-
pancy using the ticket lock (TL) and spin lock (SL)

by incrementing the servicing value. Unlike the spin-lock,
where contending threads may obtain the mutex in any order,
the ticket lock is fair: threads obtain the mutex in the order
in which they request the mutex.

Experimental setup For a given GPU, we use the OpenCL
framework to identify the maximum number of bytes of lo-
cal memory that can be allocated (L), and the maximum
number of threads per workgroup (W); these values vary
between devices. We then consider four microbenchmark in-
stances for the GPU, with allocated local memory set to ei-
ther 1 or L bytes, and either 1 or W threads per work group.
These instances capture extreme points of the resource pa-
rameter space. We execute each microbenchmark 50 times
per chip and mutex implementation, recording the mean and
standard deviation of the number of discovered workgroups.

To determine the occupancy bound of a microbenchmark,
we disable the discovery protocol and attempt to execute the
inter-workgroup barrier (unsafely) across all workgroups,
searching for a value N such that the microbenchmark with
the unsafe inter-workgroup barrier succeeds for N work-
groups, but deadlocks with N + 1 workgroups.

Recall results Figure 7 shows the recall of occupancy dis-
covery for both mutex implementations, as a percentage of
the occupancy bound (y-axis, plotted using a log scale to
account for the low recall of the spin-lock). For each GPU
we show results for four microbenchmarks; label xy (with
x ∈ {1, L} and y ∈ {1,W}) indicates the resource pa-
rameters associated with a microbenchmark. Light and dark
grey bars show recall for the spin-lock and ticket-lock mu-

texes, respectively. Standard deviation whiskers are shown
for the spin-lock results, and omitted for the ticket-lock re-
sults, which exhibited negligible deviation. The black hori-
zontal bars show the number of compute units (CUs) as re-
ported by the OpenCL framework per chip (as a percentage
of the occupancy bound). Table 3 shows the average concrete
occupancy numbers for each chip, benchmark and mutex.

Our results show that with the ticket-lock mutex, our pro-
tocol almost always provides 100% recall (discovering the
occupancy bound), showing suboptimal recall of still more
than 95% in two cases: R7 and 6100 for the 11 microbench-
mark. In contrast, the spin-lock performs poorly, both in
mean discovered occupancy (often less than 50% of the oc-
cupancy bound) and consistency across runs, as shown by
the high standard deviation.

We attribute the high accuracy of the ticket-lock-based
discovery protocol to the fairness provided by this mutex
implementation, which provides a high likelihood that many
workgroups will enter the poll before any workgroup closes
the poll (see Figure 3). In contrast, with the unfair spin-lock,
there is a higher likelihood that a workgroup will execute the
polling and closing phases in quick succession, closing the
poll before many other workgroups enter the polling phase.

The black horizontal bars show that the CUs (reported
by OpenCL) provide neither an accurate nor safe estimate
of occupancy. For example, on 980, R9 and R7, the number
of CUs is always lower than the occupancy bound, even for
the extreme LW case where the maximum amount of local
memory is allocated and the maximum number of threads
per workgroup are requested. Thus, using CUs to estimate
occupancy would under-utilise GPU resources. For T628-4,
T628-2, and K5200, the number of CUs corresponds to the
occupancy bound only with high resource parameters.

It is surprising to see that on 6100 and 5500 (Intel), the
number of CUs can be higher than the occupancy bound. In
these cases, using the number of CUs as an occupancy es-
timate would cause an inter-workgroup barrier to deadlock.
The reason behind this, as reported by Mrozek and Zdanow-
icz [21], is that Intel reports the number of execution units
(EU) as the number of CUs and it may require more than
one execution unit to run a workgroup.

Mrozek and Zdanowicz also provide an Intel-specific for-
mula for computing the thread occupancy (as opposed to
workgroup occupancy) for kernels that (a) do not use any
local memory and (b) are launched with large workgroup
sizes. These constraints correspond to our microbenchmark
1W. The occupancy formula states that the number of occu-
pant threads is found by multiplying three values together:
the number of CUs (i.e. EUs in this specific Intel case),
the threads per EU (obtained through device documenta-
tion [14]), and the SIMD size (queried through the OpenCL
API). For example, on 5500 this gives 24 · 7 · 32 = 5376 as
the number of occupant threads. This is exactly the number
of occupant threads we find for 5500 on microbenchmark

50

 1

 10

 100

 1000

11 L1
980 (Nvidia)

1W LW 11 L1
K5200 (Nvidia)

1W LW 11 L1
6100 (Intel)

1W LW 11 L1
5500 (Intel)

1W LW 11 L1
R9 (AMD)

1W LW 11 L1
R7 (AMD)

1W LW 11 L1
T628-4 (ARM)

1W LW 11 L1
T628-2 (ARM)

1W LW

%
 o

f o
cc

up
an

cy
 b

ou
nd

spin-lock
ticket-lock

CUs

11
L1
1W
LW

- min local memory
- max local memory
- min local memory
- max local memory

, min workgroup size
, min workgroup size
, max workgroup size
, max workgroup size

Figure 7: Discovered occupancy and number of compute units compared to the occupancy bound

 10

 100

 0 20 40 60 80 100 120 140

T
im

e
(m

s)

Occupancy bound

test-and-set lock (K5200)

33 66 44 55 66 77 77 55 77 66

ticket lock (K5200)

2424
3636 4848 6060 7272 8484 9696 108108

120120
144144

test-and-set lock (T468-2)

22

44

55 77

66

1111
ticket lock (T468-2)

22
1010 2222 3232 6464

128128

Figure 8: Protocol timing for K5200 and T628-2

1W; recall that to get the number of threads we multiply the
number of workgroups with the number of threads per work-
group, in this case 256 · 21 = 5376.

No formula is given for when a kernel uses local mem-
ory or small workgroup sizes, although a reading of the doc-
umentation suggests some formula may exist based on the
amount of local memory allocated per group of EUs. How-
ever, such a formula would be (a) difficult to deduce from
the documentation, (b) have no guarantees of safety, and (c)
only be valid until a new graphics architecture is released.

Timing results To measure the runtime cost of the discov-
ery protocol, we also performed timing measurements. We
benchmark the protocol timings per chip as a function of the
occupancy bound. To vary the occupancy bound, we con-
sider a series of microbenchmarks, instantiated with increas-
ing resource utilisation that leads to a decreasing occupancy
bound. We use the workgroup size as our resource value and
consider multiples of eight up to the maximum workgroup
size. Each microbenchmark is run 20 times and both the av-
erage discovered occupancy and the average time to run the
discovery protocol is recorded. These microbenchmarks do
not contain an execution of the inter-workgroup barrier as
we are only interested in the protocol time.

Discovery protocol timing results for two representative
chips, K5200 and T628-2, are shown in Figure 8. For these
two chips, K5200 outperforms T628-2 in all cases; however,
we are more interested comparing the different mutex strate-
gies. The data labels are the discovered occupancy for each
point. There are more data points for the K5200 as it sup-
ports a larger maximum workgroup size and hence has more
values for resource parameters.

For chips K5200 (shown in Figure 8), 980, R9, and R7 the
protocol using the ticket-lock is less performant than using
spin-lock. This is consistent with what is generally reported
for fair vs. unfair mutexes [27]. Conversely, for chips T628-
2 (shown in Figure 8), T628-4, 6100 and 5500, the protocol
using the ticket-lock is more performant than using spin-
lock. This may be due to inefficient RMW operations inside
the spin-lock loop. For all chips, we observe the protocol
runtime increases with the occupancy bound, although the
extent varies across chips.

Regardless of performance, the low recall of the spin-lock
disqualifies it for use in our protocol (Section 5.1). Future
work might consider augmenting the spin-lock, e.g. through
busy waiting, to achieve a higher recall. For most chips, the
protocol executed in 5–10ms depending on the occupancy
bound. The exceptions are the embedded ARM chips, which
took 20–100ms to execute the protocol (for either mutex).

5.2 Comparison With the Multi-kernel Approach
We now consider applications that originally used the multi-
kernel paradigm, but which can be naturally expressed as a
single kernel with inter-workgroup barriers. In these appli-
cations, several kernels are called from a host-side loop that
exits when an application-specific stopping criterion is met.
The kernels compute data that must be copied back to the
host at the end of each loop iteration in order for the stopping
criterion to be evaluated. An inter-workgroup barrier allows
the computation to be expressed as one large kernel, with
the host-side loop migrated to run on the GPU. This requires
fewer kernel launches and less host/device data movement.

For such applications, we compare the performance of the
application expressed in its original multi-kernel form, vs. as
a single kernel using an inter-workgroup barrier.

Multi-kernel applications The Pannotia OpenCL applica-
tions benchmark the performance of graph algorithms con-
taining irregular parallelism patterns [7]. We consider four
of the applications that utilise the multi-kernel idiom: sssp
(single source shortest path), mis (maximal independent set),
color (graph colouring), and bc (betweenness centrality).
The remaining applications in the Pannotia either do not
use the multi-kernel idiom, or use multi-dimensional execu-
tion environments (where thread ids are assigned in multi-
dimensional structure rather than a flat, linear structure),
which our discovery protocol does not currently handle. We
used our discovery protocol and inter-workgroup barrier to
write a single-kernel version of each application.

The Pannotia applications are reported to have different
performance characteristics depending on the input data sets
to which they are applied [7]. We benchmark each applica-
tion with all provided data sets. Each application comes with
two data sets, with the exception of sssp, which has only one.

Experimental setup Because workgroup size can have a
substantial impact on runtime and maximum occupancy [29],
we first run a tuning phase to determine a good number of
threads per workgroup. For each GPU, application, and in-
put data-set, we run the application repeatedly with power-
of-two workgroup sizes, ranging from 32 to the maximum
workgroup size supported by the GPU (preliminary testing
suggested that workgroup sizes below 32 did not perform
well). We execute each combination 10 times and record
the workgroup size that provides the fastest average run-
time. We tune the original multi-kernel application and our
adapted discovery protocol applications independently.

For both the multi-kernel and discovery protocol imple-
mentations, the application/data-set combinations are then
executed 20 times with the workgroup size found during
the tuning phase, and the average runtime (excluding file
IO for data-sets) is recorded. Application runtime is longer
for the ARM chips, which are designed to maximise energy-
efficiency; we halve the number of iterations for these chips.

Results For each GPU, application and input, Figure 9
contains a bar plotting the average speedup associated with
executing the single-kernel version of the application en-
abled by our inter-workgroup barrier compared with the
original multi-kernel version. The shade and border of a bar
indicate the associated application and input. For each GPU,
the figure also shows the geometric mean (GM), median,
maximum, and minimum speedups taken over all applica-
tions and inputs. All speedup values are given in Table 4.

We observe varied results. For Nvidia GPUs (980 and
K5200), the inter-workgroup barrier and multi-kernel vari-
ants have similar runtimes. For Intel chips (6100 and 5500),
the inter-workgroup barrier always provides a non-negligible
speedup, with mean speedups of 1.36 and 1.28, respectively.
The AMD results differ between chips: the inter-workgroup
barrier always improves runtime on R9, while on R7 we ob-
serve three speedups, three slowdowns, and one case where

performance is unaffected. On ARM, most results show that
using our inter-workgroup barrier worsens runtime substan-
tially, except for the bc application on the 128k data-set,
which shows a large improvement.

The performance of the barrier is sensitive to the input for
an application. For example, the inter-workgroup barrier on
R7 accelerates the color application for the eco data-set, but
slows this application down for the circ data-set.

5.3 Portability vs. Specialisation
We now turn our attention to the use of our inter-workgroup
barrier to create portable versions of applications that pre-
viously relied on a priori knowledge related to occupancy,
and the price one pays for deploying a portable version of an
application vs. relying on assumptions about occupancy.

For this purpose, we study applications from the CUDA
Lonestar-GPU benchmark suite, written in CUDA and thus
originally targeting only Nvidia GPUs. Like Pannotia, the
Lonestar-GPU applications operate on graph algorithms that
exhibit irregular parallelism patterns [5]. Four Lonestar-
GPU applications use a non-portable XF inter-workgroup
barrier that (a) relies on assumptions about occupancy, and
(b) does not consider formal memory model issues (in part
due to the lack of an agreed formal memory model for
CUDA). The Lonestar-GPU suite provides an occupancy es-
timation method that uses a CUDA-specific query function
to assess the resources used by a kernel, but this estimate is
not guaranteed to be safe, and is not portable.

The relevant Lonestar-GPU applications are: mst (mini-
mum spanning tree), dmr (delaunay mesh refinement), sssp
(single source shortest path) and bfs (breadth first search).
The Lonestar-GPU and Pannotia sssp applications are fun-
damentally different, the former using task queues to man-
age the workload, and the latter using using linear algebra
methods. Much like Pannotia, we use the multiple data sets
provided for each application. The sssp and bfs applications
have three input data-sets, mst and dmr have two each.

Portable and specialised OpenCL applications We have
ported these four applications to OpenCL, replacing the bar-
rier implementation with our memory model-aware barrier,
and the non-portable occupancy estimation function with
our portable occupancy discovery protocol. These versions
of the applications should be portable (at least in terms
of their barrier behaviour) across OpenCL-conformant plat-
forms that exhibit the occupancy-bound execution model.

However, we speculate that there may be specific OpenCL
platforms for which a developer might wish to trade portabil-
ity for performance, using our memory model-aware barrier,
but exploiting a priori knowledge about occupancy to avoid
the overhead of running our discovery protocol. To investi-
gate this trade-off, we created non-portable specialised vari-
ants of the four applications for each of our GPU platforms.
These variants store pre-computed occupancy bound data,
and launch kernels with maximum thread counts derived

.125

.25

.5

1.0

2.0

980 (Nvidia) K5200 (Nvidia) 6100 (Intel) 5500 (Intel) R9 (AMD) R7 (AMD) T628-4 (ARM) T628-2 (ARM)

In
te

r-
w

or
kg

ro
up

 b
ar

rie
r

sp
ee

du
p

bc [128k]
bc [1M]
color [eco]
color [circ]
mis [eco]
mis [circ]
sssp [usa]

GM: 1.03
Med: 1.02
Max: 1.10
Min: 0.97

GM: 0.96
Med: 0.98
Max: 1.04
Min: 0.85

GM: 1.36
Med: 1.28
Max: 2.13
Min: 1.15

GM: 1.28
Med: 1.22
Max: 1.66
Min: 1.13

GM: 1.29
Med: 1.20
Max: 1.68
Min: 1.05

GM: 0.98
Med: 0.99
Max: 1.51
Min: 0.55

GM: 0.58
Med: 0.51
Max: 2.34
Min: 0.22

GM: 0.64
Med: 0.57
Max: 1.78
Min: 0.33

Figure 9: Runtime comparison of multi-kernel paradigm vs. inter-workgroup barrier

from this occupancy data. As well as avoiding running our
discovery protocol, these specialised variants can use the na-
tive OpenCL thread id functions (see Section 3), which may
allow compilers to make more optimisations.

Portability constraints and issues We encountered numer-
ous hurdles during the process of porting the Lonestar-GPU
applications to OpenCL, which we have written up as a sep-
arate experience report [28]. These issues include OpenCL
compiler bugs, OpenCL driver issues, and program bugs that
only manifested on certain chips. We were able to report
and confirm many of these issues with industry represen-
tatives. In particular: we were unable to run dmr on non-
Nvidia chips due to floating point issues, we were unable to
run sssp with the usa dataset on Intel due to memory re-
quirements, and we did not run sssp with the usa dataset
on ARM or R7 due to prohibitively long runtimes (over 45
mins per execution). These issues are all independent of the
inter-workgroup barrier and stem from portability issues in
GPU programming languages.

Additionally some porting judgement was required in
cases where CUDA constructs have no direct OpenCL ana-
logue; for instance 1D texture memory is not supported
for OpenCL 1.1 (the OpenCL version Nvidia supports) and
warp aware primitives (e.g. warp shuffle) are not provided in
OpenCL. For these issues, we used global memory instead
of texture memory and re-wrote warp aware idioms to use
intra-workgroup barriers instead.

Experimental setup We used the same tuning process de-
scribed for the Pannotia benchmarks (Section 5.2) to find
a suitable workgroup size per GPU, application and input
data-set combination. To determine the occupancy bound for
the specialised applications, we create specialised variants
for each chip, application and input combination; these ap-
plications have the occupancy bound hard coded inside the
application. The occupancy bound, N , is validated if the ap-
plication terminates with N workgroups but not N+1. Much
like in our microbenchmark experiments (Section 5.1), we
find N through a trial-and-error binary search.

We run each chip, application, input combination for 20
iterations using both the portable and specialised variants.
We use the workgroup size found in the tuning phase for both

variants; the specialised variants use the validated occupancy
bound. The average runtime (excluding file IO for data-sets)
is recorded. The runtime of these applications is such that
we were able to run all iterations on the ARM chips.

Results Results showing the slowdown caused by portabil-
ity are shown in Figure 10 (concrete slowdown numbers per
chip and application are given in Table 4). For consistency
across chips, we show only two data-sets on the bfs, mst and
sssp applications. Because this graph measures slowdown,
bars that are taller than the 1.0 mark indicate that the perfor-
mance was degraded by using our portable constructs. We
see that portability on Nvidia chips (for our OpenCL applica-
tion variants) costs a mean of 1.3x slowdown compared with
relying on occupancy assumptions. For Intel chips, the cost
of portability is low, with a slowdown of 1.11x at worst. The
results for AMD are split: R9 suffers the worst slowdowns
across all the GPUs we consider, with a mean slowdown of
1.71x, while slowdowns associated with R7 are more mod-
est, with a mean of 1.17x. Interestingly, we find that portabil-
ity provides a speedup for the bfs and sssp applications on
the ARM GPUs. In principle, we could investigate whether
performance differences are due to the dynamic execution
environment or the execution of the protocol; however we
leave these experiments to future work.

The scatter plot of Figure 11 provides an overview over
how the slow-down associated with portability relates to the
overall runtime of the specialised application. Each cross
refers to a particular application, input data set and GPU.
The x-coordinate of the cross indicates the runtime of the
specialised version of the application (averaged over 20
runs), and the y-coordinate shows the slow-down resulting
from switching to a portable version of the application. The
results suggest that portability has a constant cost, rather
than a scaling cost: the longer the runtime of the specialised
application, generally the smaller the overhead associated
with portability. For example, across all GPUs, applica-
tions that took longer than 400 and 800 ms for computation
in their original form showed a maximum 1.6× and 1.2×
portability slowdown, respectively.

Overall, our results show that using portable constructs
over specialisation can cause a slowdown, varied between

.5

.75

1.0

1.5

2.0

980 (Nvidia) K5200 (Nvidia) 6100 (Intel) 5500 (Intel) R9 (AMD) R7 (AMD) T628-4 (ARM) T628-2 (ARM)

P
or

ta
bi

lit
y

sl
ow

do
w

n

bfs [2e23]
bfs [rmat22]
mst [2e20]
mst [usa]
sssp [2e23]
sssp [rmat22]

GM: 1.31
Med: 1.31
Max: 1.80
Min: 1.09

GM: 1.29
Med: 1.30
Max: 1.54
Min: 1.08

GM: 1.05
Med: 1.05
Max: 1.11
Min: 1.00

GM: 1.06
Med: 1.05
Max: 1.11
Min: 1.03

GM 1.71
Med: 1.72
Max: 2.53
Min: 1.17

GM: 1.17
Med: 1.20
Max: 1.41
Min: 0.93

GM: 0.83
Med: 0.77
Max: 1.09
Min: 0.61

GM: 0.77
Med: 0.70
Max: 1.05
Min: 0.59

Figure 10: Portability slowdown for inter-workgroup barriers

 1

 1.4

 1.8

 2.2

 2.6

 50 100 200 400 800 1600

P
or

ta
bi

lit
y

sl
ow

do
w

n

Specialised runtime (ms)

Figure 11: Portability overhead as runtime increases

applications and chips. However, understanding these results
should consider that specialised applications may be fragile
not only when ported, but also for the same GPU under com-
piler upgrades or code modifications. Anything that affects
the amount of resources required by the kernel could po-
tentially change the occupancy of the kernel and introduce
deadlocks. Given these considerations, we believe that going
forward, developers should look into optimising the portable
constructs rather than taking the specialised approach.

It may be possible for vendors to modify their OpenCL
frameworks to provide native support for the occupancy-
bound execution model. For example, vendors could pro-
vide a way to launch a kernel without specifying the num-
ber of workgroups, and instead specify that only occupant
workgroups should execute the kernel. It is possible that the
runtime could determine occupancy bounds efficiently using
low-level proprietary knowledge. It is likely then that the na-
tive execution environment functions could be used (allow-
ing for any compiler or hardware optimisations around these
native functions). We imagine that such support would re-
duce the portability slowdown we observe using our method.

5.4 OpenCL on CPUs
This work exclusively focuses on GPU platforms because
today’s implementation of OpenCL appear to implement a
non-traditional execution model, the occupancy-bound exe-
cution model, which makes implementing a portable execu-
tion barrier non-trivial. On the other hand, execution barriers
for CPU systems do not account for such execution models
(e.g. see [12, ch. 17]). This is because many CPU concur-

rency frameworks allow for preemption and have a scheduler
that, in practice, provides fair scheduling across all threads.

Because OpenCL can be run on some CPU systems, we
ran some pilot experiments using the occupancy benchmarks
of Section 5.1 to investigate the execution models associated
with CPU implementations. Our hypothesis was that we
would not be able to find an occupancy bound; that is, an
inter-workgroup barrier would be deadlock-free on CPUs for
any (reasonable) number of workgroups.

We were thus surprised to observe an occupancy bound
of 4 for the two CPU frameworks we tested: the Intel SDK
for OpenCL applications (build 10094, and driver version
5.2.0.10094) and AMD APP SDK (version 2004.6), run-
ning on the Intel and AMD CPUs (respectively) detailed
in Table 5. This means OpenCL implementations of inter-
workgroup barriers can deadlock even on CPU systems if
executed with too many workgroups. Because CPUs do not
natively provide this behaviour, we hypothesise that the run-
time must implement the occupancy-bound execution model
on top of the native CPU scheduler; this would be straight-
forward, e.g. by storing workgroups in a queue.

We also found that the recall of our discovery protocol,
even using the ticket lock, was poor on CPUs. To increase
the recall we inserted a delay between the polling and clos-
ing phase of the protocol (see Section 3). The delay con-
sists of a loop where the thread performs a lock and unlock
function on the mutex. For the ticket lock, this allows other
threads to queue in front of the spinning thread to poll. Our
results (Table 5) show that a delay can increase the recall of
the protocol on CPUs. In these experiments we did not ob-
serve any difference in the occupancy bound when varying
the amount of local memory allocated (unsurprising, since
CPU platforms do not exhibit software-managed memory)
nor the number of threads per workgroup.

These experiments show that synchronisation constructs
(in our case an execution barrier) must account for the ex-
ecution model of the framework in which they operate, not
just the hardware on which they will be executed: CPU de-
vices are adept at managing preemption between threads,
yet the CPU OpenCL implementations we considered still
exhibit an occupancy-bound execution model. Defining and
reasoning about execution models and the synchronisation

chip

barrier speedup for Pannotia portability slowdown for Lonestar-GPU
bc color mis sssp bfs mst sssp

128k 1M eco circ eco circ usa 2e23 rmat22 2e20 usa 2e23 rmat22
980 1.10 1.02 1.07 1.02 1.05 0.97 0.99 1.38 1.29 1.34 1.80 1.09 1.10
K5200 1.02 0.98 1.04 0.85 1.02 0.93 0.92 1.30 1.43 1.29 1.54 1.08 1.14
6100 2.13 1.31 1.26 1.15 1.41 1.28 1.20 1.08 1.11 1.05 1.06 1.03 1.00
5500 1.66 1.22 1.22 1.13 1.29 1.15 1.34 1.09 1.11 1.03 1.05 1.03 1.04
R7 1.62 1.16 1.68 1.08 1.40 1.20 1.05 2.53 2.09 1.43 2.01 1.40 1.17
R9 1.51 1.16 1.13 0.55 0.99 0.92 0.85 1.41 1.34 1.05 1.35 0.93 1.00
T628-4 2.34 1.12 0.65 0.51 0.38 0.30 0.22 0.78 0.76 1.05 1.09 0.77 0.61
T628-2 1.78 1.02 0.63 0.57 0.51 0.43 0.33 0.75 0.66 1.04 1.05 0.65 0.59

Table 4: Pannotia application speedups using the inter-workgroup barrier (higher is better), and Lonestar-GPU application
slowdowns for using a portable vs. non-portable barrier (lower is better)

occupancy after delay
CPU chip CUs OB 0 10 100 1000
Intel i7-5600U 4 4 1.0 1.3 3.3 4.0
AMD A10-7850K 4 4 1.0 1.0 1.5 3.8

Table 5: Occupancy for two CPU chips; we show the occu-
pancy bound (OB), and the average discovered occupancy
(out of 50 runs) using the ticket lock with different amounts
of delay between the polling and closing phases

constructs that they allow promises to be a fruitful area of re-
search for frameworks with native support for concurrency,
e.g. OpenCL [17], C++ [15], and OpenMP [24].

6. Related Work
The basis for our work is the persistent thread model [11]
and the XF software execution barrier [32]; we reason for-
mally about our barrier implementation using techniques
for C++11 concurrency abstraction [2]. Our empirical eval-
uation uses the Pannotia [7] and Lonestar-GPU bench-
marks [5], which were originally designed to examine per-
formance characteristics of irregular GPU workloads.

Irregular parallelism on GPUs The need for an inter-
workgroup barrier arises due to irregular parallelism on
GPUs; this has been examined with various approaches in
several related works. Hower et al. propose a work-stealing
programming idiom for irregular computations using shared
concurrent queue data structures [13]. Orr et al. extend this
work by proposing new primitive GPU synchronisation op-
erations, allowing for more efficient work stealing [25].
Other approaches (e.g. [20]) use the multi-kernel method,
but focus on data representations, and computations exploit
low-level GPU-specifics (e.g. warp-level instructions).

GPU models Our library abstraction proof is based on a
formalisation of the OpenCL 2.0 memory model [3]. Other
notable models developed in prior work include several vari-
ants of the hierarchical-race-free model [10], and a formal
model of a fragment of PTX (the compiler intermediate rep-
resentation for Nvidia GPUs) [1].

Our occupancy discovery protocol is based on enabling
the persistent thread model for GPUs [11]. Related works
studying execution models in the context of the GPUVer-
ify [4] and GKLEE [18] tools do not account for schedul-
ing properties of workgroups. Gaster provides an execution
model for intra-workgroup interactions, and describes how
barriers can be implemented at this level [9].

Wu et al. present a persistent thread CU-centric pro-
gramming model that exploits CU locality across work-
groups [31]. To prevent over-saturating the hardware, they
present a protocol in which some of the persistent threads
immediately exit the kernel without performing any compu-
tation. This is similar to our discovery protocol where non-
occupant workgroups immediately exit. Essentially both
protocols circumvent the proprietary GPU scheduler to en-
force a certain mapping between workgroups and CUs.

7. Conclusions
As GPUs and GPU applications grow in variety, so will
the need for robust and portable synchronisation and pro-
gramming idioms. Building on non-portable previous work,
we have developed, analysed, and evaluated a GPU inter-
workgroup barrier in a portable context for the first time.
To achieve this, we use an occupancy discovery protocol
to estimate the number of persistent threads, i.e. threads
which have traditional fair scheduling guarantees. We then
use the new OpenCL 2.0 memory model to create an inter-
workgroup barrier with intuitive memory model properties.

We evaluated our discovery protocol through microbench-
marks, and benchmarked the runtime effects of the portable
inter-workgroup barrier when compared to existing methods
for inter-workgroup synchronisation on GPUs. While our
experimental results show that the runtime behaviour of our
barrier varies between chips, applications and even inputs,
we have shown that our inter-workgroup barrier is semanti-
cally portable across a wide range of GPUs. In future work,
we aim to merge our methods with work that explores GPU
performance portability. We hope to identify ways for our
methods to be portable both semantically and in terms of
performance.

Acknowledgments
We are grateful to: Brad Beckman, Marco Cornero, Hugues
Evrard, Hedley Francis, Thibaut Lutz, Marc Orr, Sven Van
Haastregt, and John Wickerson for feedback and insight-
ful discussions around this work, and the OOPLSA review-
ers (paper and artifact) for their thorough evaluations and
feedback which greatly improved this paper. This work was
supported in part by an equipment grant from GCHQ, a
gift from Intel Corporation, an EPSRC Impact Acceleration
Award, the Royal Academy of Engineering, the Lloyds Reg-
ister Foundation, NSF CCF 1346756 and ACI 1535032.

References
[1] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,

J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson. GPU
concurrency: Weak behaviours and programming assump-
tions. In ASPLOS, pages 577–591. ACM, 2015.

[2] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for
C/C++ concurrency. In POPL, pages 235–248. ACM, 2013.

[3] M. Batty, A. F. Donaldson, and J. Wickerson. Overhauling
SC atomics in C11 and OpenCL. In POPL, pages 634–648.
ACM, 2016.

[4] A. Betts, N. Chong, A. F. Donaldson, J. Ketema, S. Qadeer,
P. Thomson, and J. Wickerson. The design and implementa-
tion of a verification technique for GPU kernels. ACM Trans.
Program. Lang. Syst., 37(3):10, 2015.

[5] M. Burtscher, R. Nasre, and K. Pingali. A quantitative study
of irregular programs on GPUs. In IISWC, pages 141–151.
IEEE, 2012.

[6] D. Cederman and P. Tsigas. On dynamic load balancing on
graphics processors. In SIGGRAPH, pages 57–64. Eurograph-
ics Association, 2008.

[7] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron.
Pannotia: Understanding irregular GPGPU graph applica-
tions. In IISWC, pages 185–195. IEEE, 2013.

[8] P. Collingbourne, A. F. Donaldson, J. Ketema, and S. Qadeer.
Interleaving and lock-step semantics for analysis and verifi-
cation of GPU kernels. In ESOP, pages 270–289. Springer,
2013.

[9] B. Gaster. A look at the OpenCL 2.0 execution model. In
IWOCL, pages 2:1–2:1. ACM, 2015.

[10] B. R. Gaster, D. Hower, and L. Howes. HRF-relaxed: Adapt-
ing HRF to the complexities of industrial heterogeneous mem-
ory models. Trans. Archit. Code Optim., 2015.

[11] K. Gupta, J. Stuart, and J. D. Owens. A study of persistent
threads style GPU programming for GPGPU workloads. In
Proceedings of Innovative Parallel Computing, InPar, pages
1–14. IEEE, 2012.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., 2008.

[13] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous-
race-free memory models. In ASPLOS, pages 427–440. ACM,
2014.

[14] Intel. The compute architecture of Intel processor graphics
gen9, version 1.0, Aug. 2015.

[15] ISO/IEC. Standard for programming language C++, 2012.

[16] Khronos Group. The OpenCL C specification version:
2.0. https://www.khronos.org/registry/cl/
specs/opencl-2.0-openclc.pdf.

[17] Khronos Group. The OpenCL specification version: 2.0
(rev. 29), July 2015. https://www.khronos.org/
registry/cl/specs/opencl-2.0.pdf.

[18] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan. GKLEE: concolic verification and test generation for
GPUs. In PPoPP, pages 215–224. ACM, 2012.

[19] S. Maleki, A. Yang, and M. Burtscher. Higher-order and tuple-
based massively-parallel prefix sums. In PLDI, pages 539–
552. ACM, 2016.

[20] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU
graph traversal. In PPoPP, pages 117–128. ACM, 2012.

[21] M. Mrozek and Z. Zdanowicz. GPU daemon: Road to zero
cost submission. In IWOCL, pages 11:1–11:4. ACM, 2016.

[22] Nvidia. CUB, April 2015. http://nvlabs.github.
io/cub/.

[23] Nvidia. CUDA C programming guide, version 7,
March 2015. http://docs.nvidia.com/cuda/pdf/
CUDA_C_Programming_Guide.pdf.

[24] OpenMP Architecture Review Board. OpenMP application
programming interface version 4.5, November 2015.

[25] M. S. Orr, S. Che, A. Yilmazer, B. M. Beckmann, M. D.
Hill, and D. A. Wood. Synchronization using remote-scope
promotion. In ASPLOS, pages 73–86. ACM, 2015.

[26] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving
GPGPU concurrency with elastic kernels. In ASPLOS, pages
407–418. ACM, 2013.

[27] Y. Solihin. Fundamentals of Parallel Computer Architecture:
Multichip and Multicore Systems. Solihin Publishing, 2009.

[28] T. Sorensen and A. F. Donaldson. The hitchhiker’s guide to
cross-platform OpenCL application development. IWOCL,
pages 2:1–2:12. ACM, 2016.

[29] Y. Torres, A. Gonzalez-Escribano, and D. Llanos. Under-
standing the impact of CUDA tuning techniques for Fermi. In
High Performance Computing and Simulation (HPCS), pages
631–639, 2011.

[30] S. Tzeng, A. Patney, and J. D. Owens. Task management for
irregular-parallel workloads on the GPU. In HPG, pages 29–
37, 2010.

[31] B. Wu, G. Chen, D. Li, X. Shen, and J. Vetter. Enabling
and exploiting flexible task assignment on GPU through SM-
centric program transformations. In ICS, pages 119–130.
ACM, 2015.

[32] S. Xiao and W. Feng. Inter-block GPU communication via
fast barrier synchronization. In IPDPS, pages 1–12. IEEE,
2010.

A. Inter-workgroup Barrier: Verification
A.1 OpenCL Memory Model
We assume familiarity with the memory model of Batty et
al. [3], which we simplify and restrict to programs using only
device-scoped, release and acquire atomic stores and loads,
together with non-atomics and workgroup barriers.

Program executions are graphs of memory-access events,
captured by the tuple (E, I, lbl, thd,wg, sb), where: E is a
set of event identifiers, lbl maps event ids to attributes (e.g.,
event scope or value), I is a set of non-atomic initialisation
writes of 0, thd/wg relate events in the same thread/work-
group, sb captures program order over events, and bi is the
barrier-instance relation of Section 4.3.

A tuple (rf,mo), called the witness, records where reads
read from in rf, and modification order, mo, a total order of
the writes at each atomic location. Together, an execution,
X , and a witness, w, form a candidate execution, (X,w).

Base sets are derived from the attributes of lbl: call/re-
turn events (call/ret); reads/writes (R/W); releases/acquires
(rel/acq); barrier entry/exit events (entry/exit); the location
of reads/writes (loc); and events at non-atomic locations
(nal). The loc relation, relating same-location events, is de-
rived from lbl.

Happens-before and visibility are derived relations, simpli-
fied from previous work [3], and extended with the barrier
semantics of Section 4.3. Here, + is transitive closure, ; is
sequential composition, and ? is reflexive closure. Happens-
before, hb = (sb∪sw)+, per-location hb, hbl = hb∩loc, and
visibility, vis = (W×R)∩hbl\(hbl; [W]; hb), are unchanged,
but synchronises-with includes synchronisation across bi at
wg and dv level:

sw =
(
rf ∩ (rel×acq)

)
∪
(
bi ∩ (entry×exit)

)
The model is reduced: we have only global atomics, and no
SC accesses or read-modify-writes.

ACYCLICITY = irreflexive(hb)

COHERENCE = irreflexive((rf−1)?;mo; rf?; hb)
ATOMICRF = irreflexive(rf; hb)

NONATOMICRF = empty((rf; nal)\vis)

The top-level semantics of OpenCL has a catch fire design:
a program that exhibits a consistent faulty execution is given
undefined behaviour, X. Fault-free programs behave accord-
ing to the set of their consistent executions. Heterogeneous
races, fhr = cnf\(hb ∪ hb−1)\incl\thd, defined in terms of
conflicts, cnf = (W×W)∪(W×R)∪(R×W), are faults. For
X , the pre-executions of a given program, we have:

allowed(X) = if ∃X ∈ X .∃w. faulty(X,w) then X
else {X ∈ X | ∃w. consistent(X,w)}

A.2 Progress Guarantee
The inter-workgroup barrier verification relies on an as-
sumption enforced by the occupancy-bound execution en-
vironment:

DEFINITION 1 (PROGRESS). Given an execution X , and
writes w1

mo−−→ w2 in X , any happens-before chain of reads,
(r1

hb−→ r2
hb−→ . . .), where each ri reads from w1, i.e.

ri
rf−→ w1, must be finite.

A.3 Abstraction Theorem
We rework C/C++ library abstraction of Batty et al. [2]
for OpenCL. An abstraction relation, v, over library calls
is shown to be adequate, i.e. to establish observational re-
finement under an arbitrary client. The approach relies on a
library-local semantics, JLK, producing executions of library
L with threads bound by call and ret events.

Non-interference We require non-interference, NONIN-
TERF: library reads and writes, selected by lib, access a dis-
joint set of locations, LLoc, from those of the client. We
extend NONINTERF to barriers: bi may not cross between
the client and the library.

∀a ∈ R ∪W. lib(a) ⇐⇒ loc(a) ∈ LLoc∧
∀(b1, b2) ∈ bi. lib(b1) ⇐⇒ lib(b2)

Library-local semantics The library-local semantics of
the inter-workgroup barrier obeys a protocol: all threads
must call the inter-workgroup barrier the same number of
times. Together with NONINTERF, this implies a tightly con-
strained pattern for use of the barrier, captured by the most-
general client, a special client that, when composed with the
library to form a program, exercises all possible executions
of the barrier. Here |||+ is the parallel composition of any
number of workgroups, ||+ is the composition of a number
of threads to form a workgroup, and n denotes sequential
repetition n times (we elide initialisation of LLoc to 0):

MGC(L) = |||+(||+(barrier;)n) forn ∈ N

We define the library-local semantics: JLK = JMGC(L)K,
with call and ret events bracketing each barrier call. We
define JL, RK as the execution of L under the MGC with
arbitrary extension of hb with ret to call edges R.

Histories and the abstraction relation The history of exe-
cution X is the call and ret events of X , written interf(X),
together with the projection of hb from call to ret, written
hbL(X): history(X) = (interf(X), hbL(X)).

We define abstraction, v, over histories: (A1, G1) v
(A2, G2) = (A1 = A2) ∧ (G1 = G2). We raise the defini-
tion of abstraction to libraries by employing the library-local
semantics. For safe L1 and L2:

L1 v L2 =

∀R.∀H1 ∈ history(JL1, RK).∃H2 ∈ history(JL2, RK).
H1 v H2

A.4 Soundness Theorem
The soundness of the abstraction relation is captured by the
following theorem statement, with client(X) representing
the projection to the client events for each execution in X :

THEOREM 2 (Abstraction). Assume that L1, L2, C(L2) are
safe, C(L1) is non-interfering, and L1 v L2. Then C(L1) is
safe and client(JC(L1)K) ⊆ client(JC(L2)K).

Proof sketch The proof of soundness follows Batty et
al. [2] directly. The decomposition lemma, takes an execu-
tion of C(L) and provides corresponding executions of the
library, L, and client, C, parts of the program separately. The
composition lemma, takes executions of the library, L, and
client, C, parts of the program and provides a correspond-
ing execution of C(L). The proof of each lemma follows the
original.

Given an execution X of C(L1), we decompose it into
client(X) and lib(X). We then apply abstraction under ex-
tension with the hb edges induced by client(X) to get a
library-local execution Y of L2 with a history matching
lib(X).We then compose Y with client(X) to produce the
required execution of C(L2).

A.5 Inter-workgroup Barrier Specification and
Implementation

The specification, Lspec, is a simple piece of code that in-
controvertibly captures the intended semantics of the bar-
rier. In our case the specification is simply a call to the inter-
workgroup barrier:

i n t e r w o r k g r o u p b a r r i e r ()

The inter-workgroup barrier implementation,Limp, is that
described in Section 4.2.

A.6 Specification and Implementation Axiomatisation
We characterise the pre-executions of the barrier in gener-
alised execution shapes we call axiomatisations.

Specification An execution of the barrier specification has
the following shape for a:call, c:ret, and b:barrierdv, repre-
senting the entry and exit event pair in sequence:

Sspec = ({a, b, c}, a sb−→ b
sb−→ c)

Implementation In the execution shapes below, load and
store events take two arguments representing the location
that they access, and the value that is read or written, re-
spectively, the barrierwg event represents barrier entry and
exit events, in sequence, and xt represents the distinguished
location allocated to thread t to use for its synchronisation
with a slave workgroup. We use the superscript in ek to in-
dicate a sequence of k distinct events of the sort specified by
e, and we write e+ for an infinite sequence of events.

There are two possible shapes on the master workgroup.
The first is the shape Smaster

t,k , made up of the following events

in sequence:

a : call
: (loadACQ(xt, i) such that i = 0)k

b : loadACQ(xt, i) such that i = 1
c : barrierwg
d : storeREL(xt, 0)
e : ret

The second is the result of repeatedly reading a value
other than 1, Smaster

t , with events:

a : call
: (loadACQ(xt, i) such that i = 0)+

There are two possible shapes on the first thread of the
slave workgroup. The first is the shape, Sslave

t,k , with events:

a : call
b : barrierwg
c : storeREL(xt, 1)
: (loadACQ(xt, i) such that i 6= 1)k

d : loadACQ(xt, i) such that i = 1
e : barrierwg
f : ret

The second is the result of repeatedly reading a value
other than 0, Sslave

t , with events:

a : call
b : barrierwg
c : storeREL(xt, 1)
: (loadACQ(xt, i) such that i 6= 0)+

There is only a single shape possible for threads in the
slave workgroup, other than the first, Sslave, with events:

a : call
b : barrierwg
c : barrierwg
d : ret

A.7 Satisfying the Abstraction Relation
Safety of Limp and Lspec. The specification performs no
memory accesses and is therefore free of heterogeneous
races. The implementation performs all of its accesses with
atomics at the widest scope, device, and is therefore free
from heterogeneous races.

Abstraction: We now show that Limp v Lspec. We have
that Limp and Lspec are safe, so their executions have defined
behaviour and both JLimp, RK and JLspec, RK are their re-
spective sets of library-local consistent executions. Choose
an arbitrary R and execution X1 ∈ JLimp, RK with his-
tory (A1, G1). We must show that there is an execution of
JLspec, RK with the same history.

The MGC restricts the program shape: on every thread
in every workgroup there are the same number of calls to

the inter-workgroup barrier. Take the thread in X1 with the
largest number of barrier calls, and let this number be n. The
inter-workgroup barrier specification does not block, so we
can choose an execution, X2 of the specification under the
MGC, with n barrier calls on each thread. We will show
that the history of X1, (A1, G1) matches the history of X2,
(A2, G2).

We proceed by finite induction over sb-prefixes of the
executions X1 and X2. Start with prefixes containing only
the initialisation events of each, and then at each step add the
sb-next call/ret events, and all events sb-between, on each
thread. We will establish that for every step, the histories of
the two prefixes match, all calls in the prefix of X1 terminate,
and for any event added to the end of the prefix of X1, the
only visible write at every synchronisation location is a write
of 0. Note that if this holds for every finite prefix, by the finite
structure of the MGC, this holds for X1 and X2, as required.

The base case is provided by the fact that all locations
are zero initialised. For an arbitrary step, all preceding calls
to the barrier have a matching history, no thread in the
specification is blocked, and the preceding writes visible to
any reads in the newly added events are 0.

The axiomatisations above give us the execution shapes
of the barrier calls on each thread of the implementation and
specification under the MGC. For the prefix of X1, all prior
calls to the barrier terminate, so the number of workgroup
barriers used between the call and return events is the same
across all threads on the master (just one) and slave (two).
This means that the barrier instances identified by the thread-
local semantics will link all of the barrier events in the first
call together, then the second and so on, up to the newly
added events. The newly added events must also match the
axiomatisations.

We can discard nonterminating shapes Suppose there
were a non-terminating master thread with newly added
events of shape Smaster

t , repeatedly reading from xt. The
slave thread t must be of shape Sslave

t,k or Sslave
t , and in ei-

ther case, there is an unconditional write of xt. The non-
terminating master thread would have to perform an infinite
number of reads of the visible write of 0, ignoring the mo-
later write of 1, violating the progress axiom, a contradic-
tion. Without the shape Smaster

t , the newly added events must
match Smaster

t,k . Now suppose there is a non-terminating slave
thread with newly added events of shape Sslave

t . The only

shape allowed for the corresponding master thread, Smaster
t,k ,

has an unconditional write of xt so we can discard both
nonterminating shapes, and we have established that newly
added implementation barrier calls terminate.

This gives us: a master workgroup, where each call to the
barrier on each thread is of the shape Smaster

t,k , and a set of
slave workgroups where on the first thread each call to the
barrier is of the shape Sslave

t,k , and on all of the others each call
to the barrier is of the shape Sslave. The terminating shapes
feature both call and ret events, so the interface events of
every consistent execution of the new prefix of X1 match
those of X2.

Guarantees match, and all locations set to 0 There are
four cases to consider: same-workgroup, slave-master, master-
slave and slave-slave. For the same-workgroup cases, be they
master or slave, workgroup barrier synchronisation gives us
the required happens before edges.

For slave-master synchronisation, note that on every slave
thread, the call event is followed by a barrier, synchronising
with all other thread in the workgroup. The first thread of
the workgroup has a following write release on a location
only used by this thread and the master, event c in the
shape Sslave

t,k . One of the master threads accesses the same
location, and this thread has the shape Smaster

t,k . Event b on this
thread corresponds to a successful read of the value 1 at the
location. This read can only be from the write on the slave,
because all other writes of the value 1 are hidden by more
recent writes in happens-before, by the inductive hypothesis.
Reading from the slave synchronises. Finally event c causes
all master threads to synchronise, event d sets the value
of the location back to 0, and we have replicated the call-
to-return synchronisation of the specification from slave to
master, and we have the visible write of 0, as required.

For master-slave synchronisation, the argument is similar,
but we rely on the release write d from the master shape
Smaster
t,k synchronising with event d from Sslave

t,k .
The slave-slave case is similar again relying on both syn-

chronisation from the slave event c to the master event b and
from the master event d to the slave event d.

This covers all of the cases necessary to show that the
call-return happens before edges match the specification the
inductive case. The fact that the MGC only generates finite
numbers of calls to the barrier completes the proof.

