
Automatic Test Case Reduction for OpenCL

Moritz Pflanzer
Imperial College London

moritz.pflanzer14@imperial.ac.uk

Alastair F. Donaldson
Imperial College London
afd@imperial.ac.uk

Andrei Lascu
Imperial College London

andrei.lascu10@imperial.ac.uk

ABSTRACT
We report on an extension to the C-Reduce tool, for auto-
matic reduction of C test cases, to handle OpenCL kernels.
This enables an automated method for detecting bugs in
OpenCL compilers, by generating large random kernels us-
ing the CLsmith generator, identifying kernels that yield re-
sult differences across OpenCL platforms and optimisation
levels, and using our novel extension to C-Reduce to auto-
matically reduce such kernels to minimal forms that can be
filed as bug reports. A major part of our effort involved the
design of ShadowKeeper, a new plugin for the Oclgrind sim-
ulator that provides accurate detection of accesses to unini-
tialised data. We present experimental results showing the
effectiveness of our method for finding bugs in a number of
OpenCL compilers.

1. INTRODUCTION
Reliable OpenCL compilers are important, both to help

ensure that OpenCL software operates correctly on a given
platform, and also to fulfill the OpenCL promise of porta-
bility, whereby an OpenCL application should exhibit func-
tionally equivalent behaviour across a range of OpenCL-
conformant platforms. Compiler reliability is a particular
challenge in the context of OpenCL because (a) OpenCL
compilers must be optimizing (performance is the main rea-
son for using OpenCL in the first place), (b) the OpenCL
C kernel programming language is relatively new and evolv-
ing, and (c) OpenCL C back-ends are required for many
target architectures, many of which are also relatively new
and evolving.

Our recent work applying random program generation to
test OpenCL implementations [8] identified numerous bugs
in OpenCL compilers from several vendors. In our testing
campaign, we applied two distinct techniques: random dif-
ferential testing (RDT), a fuzzing method popularised by the
Csmith tool [15], and equivalence modulo inputs testing [7]
(EMI), an instance of metamorphic testing [2]. We focus
here on the RDT approach. Our RDT method builds on top

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IWOCL ’16, April 19 - 21, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4338-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2909437.2909439

1 ulong *l_505[2];
2 int i, j;
3 for (i = 0; i < 2; i++)
4 l_505[i] = &p_1502->g_308[1][3];
5 for (p_1502->g_37 = (-24); (p_1502->g_37 == (-1)); ++p_1502

->g_37)
6 {
7 int **l_42 = &l_35[4][5];
8 (*l_42) = l_35[2][5];
9 }

10 barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
11 p_1502->tid = (({ uint ui1 = ((({ uint ui1 =
12 (get_linear_group_id()); uint ui2 = (7) ; (uint)
13 (((unsigned int)(ui1)) * ((unsigned int)(ui2)));}
14))); uint ui2 = (permutations[(({ uint ui1 =
15 (func_43(func_45(func_48((l_506 = (({ short si1 =
16 (0L); short si2 = ((((~0x6AF53593L) , func_55(((
17 p_1502->g_138[0] = ((int4)((((int8)(l_57.yyxxxyxy)
18).even <= ((int8)(((int2)((~((int4)(({ int4 si1 =
19 (((int4)((-8L), func_58(func_64(...

Figure 1: A small excerpt from a kernel generated
by CLsmith

of the Csmith technique: in our prior work we built a tool,
CLsmith,1 which generates random OpenCL kernels that
are, by construction, free from undefined, implementation-
defined and nondeterministic behaviour, avoiding OpenCL
C constructs that allow variation in behaviour between im-
plementations.2 Each generated kernel computes an integer
result, and should compute the same result no matter which
OpenCL platform is used for execution. A result mismatch
between OpenCL platforms, or with respect to the same
platform with compiler optimizations enabled vs. disabled,
is indicative of a possible compiler bug.

Random differential testing has been shown to be most
effective when large test programs are generated [15]. In-
tuitively this is because a large test program has a higher
chance of incorporating combinations of language features
that provoke compiler bugs compared with a smaller test
program. However, it is practically infeasible to understand
the root cause of a compiler bug from a large, randomly gen-
erated test program. To illustrate this, look at the code frag-
ment shown in Figure 1. This was taken from an OpenCL
kernel generated by CLsmith, comprising more than 1,800
lines of code with a file size of almost 197 kB. The kernel

1https://github.com/ChrisLidbury/CLSmith, visited on
09/02/2016.
2In particular this eliminates floating-point arithmetic, e.g.
because denormal numbers may optionally be flushed to
zero [6].

1 struct S {
2 int a;
3 long b;
4 };
5

6 void g(struct S *p);
7

8 void h(void);
9

10 void f(struct S *p) {
11 g(p);
12 }
13

14 void g(struct S *p) {
15 p->b = 1;
16 h();
17 barrier(CLK_LOCAL_MEM_FENCE);
18 }
19

20 void h() {
21 barrier(CLK_LOCAL_MEM_FENCE);
22 }
23

24 kernel void entry(global ulong *result) {
25 struct S s = { 5, 0 };
26 f(&s);
27 result[get_global_id(0)] = s.b;
28 }

Figure 2: A kernel that triggers an OpenCL com-
piler bug

was shown to cause a behavioural difference when executed
on an Intel Core i7 CPU, using the OpenCL SDK version
5.3 under Windows 10, with driver version 5.2.0.10094. On
this platform, the kernel yielded different results with opti-
mizations enabled vs. disabled. It should be apparent that
the behaviour of the original kernel (of which just a few lines
are shown in Figure 1) is not practically comprehensible to
a human. In particular, the fact that the original kernel
yields different results for two different OpenCL configura-
tions does not give any immediate information as to which
of the OpenCL configurations is buggy, nor any hint related
to the root cause of the bug.

Random differential testing for C compilers suffers from
precisely the same problem—that large test programs do not
directly shed light on compiler defects—and the C-Reduce
tool has been developed to aid in automatically reducing a
large C program to a smaller C program that still exposes a
compiler bug [12].3

Our contribution: In this paper we describe how we have
extended the C-Reduce tool to the context of OpenCL, pro-
viding an automated method for reducing OpenCL test cases
that induce compiler bugs. The main challenge in achieving
this has been the development of methods for detecting un-
defined behaviour in an OpenCL kernel. For this purpose we
have re-used existing tools, including the Clang Static Ana-
lyzer4 and Oclgrind [11],5 and have built ShadowKeeper, a
new plugin for Oclgrind that detects accesses to uninitial-
ized data with high-precision. The ShadowKeeper plugin
can be used independently from the rest of our framework.

3In fact, C-Reduce is a general framework for reducing pro-
grams with respect to an “interestingness” criterion; in this
work we focus on C-Reduce as a method for reducing pro-
grams that induce compiler bugs.
4http://clang-analyzer.llvm.org , visited on 09/02/2016.
5https://github.com/jrprice/Oclgrind, visited on
09/02/2016.

1 struct S {
2 ushort a;
3 int **b;
4 ulong c;
5 };
6

7 void f(struct S * p);
8 void g(struct S * p);
9 void h(int * ip, struct S * p);

10

11 void f(struct S * p) {
12 g(p);
13 }
14

15 void g(struct S * p) {
16 barrier(CLK_LOCAL_MEM_FENCE);
17 h(*p->b, p);
18 }
19

20 void h(int * ip, struct S * p) {
21 p->a = p->c - get_group_id(0);
22 barrier(CLK_LOCAL_MEM_FENCE);
23 }
24

25 kernel void entry(global ulong *result) {
26 int t = 0;
27 int * u = &t;
28 volatile int z = 1;
29 struct S s = { 0, &u, z };
30 f(&s);
31 result[get_global_id(0)] = s.a;
32 }

Figure 3: Another illustration of a kernel that trig-
gers an OpenCL compiler bug

We hope it will be useful to the OpenCL community as an
aid for kernel debugging.

To illustrate our contribution, Figure 2 shows a minimal
OpenCL kernel, derived from the original large test kernel
discussed above by first running our OpenCL extension to
C-Reduce, followed by further manual minimisation. It is
clear from Figure 2 that each work item executing the ker-
nel should set s.b to 1, due to executing p->b = 1 at line
15, where p is a pointer to s. However, on the Intel plat-
form described above, when optimizations are disabled, the
kernel computes [1, 0] when executed by a single work group
of two work items. In this example, running the reduction
tool was time-consuming, requiring 26h46m of machine time
(see Section 2 for further details); however, no human inter-
vention was required during this process, and machine time
is cheap in comparison to engineer time. It took one of the
authors 18m to further reduce the machine-reduced kernel
down to the minimal form shown in Figure 2.

In contrast, it took the same author 2h20m to reduce the
original 200 kB kernel to a minimal form without the aid
of C-Reduce. The resulting minimised program is shown in
Figure 3, and is slightly harder to understand. A work item
produces the final value of s.a as its result. At line 21, p->a
= p->c - get_group_id(0) assigns to s.a. At this point,
p->c is the same as s.c and has the value 1, thus for a work
item in work group 0 the statement should set s.a to 1. On
the Intel platform, with optimizations enabled, the kernel
produces the expected result when executed by two work
items in a single work group: [1, 1]. With optimizations dis-
abled, an erroneous result [1, 0] is produced. The structure
of the kernels in Figures 2 and 3 is similar, so it would appear
that these issues stem from the same root cause.

Terminology: Throughout the paper we shall use CL-
Reduce to refer to our OpenCL extension to C-Reduce, to
allow us to refer unambiguously to the original C-Reduce
tool vs. our extension. However, as we explain in detail be-
low, CL-Reduce is simply the C-Reduce tool equipped with
an interestingness test specific to OpenCL. Our main con-
tribution has been to engineer this interestingness test (a
non-trivial task for OpenCL), after which we have been able
to re-use the C-Reduce framework almost unchanged.

Structure: In Section 2 we provide a rough guide to
the benefits brought by automatic test case reduction for
OpenCL by presenting the experiences of the paper authors
reducing OpenCL test cases with and without the help of
CL-Reduce. In Section 3 we explain the challenges we faced
in extending the C-Reduce method to apply in the context
of OpenCL, and in Section 4 we describe how we overcame
these challenges in building CL-Reduce. We present a quan-
titative experimental evaluation in Section 5, demonstrating
the effectiveness of CL-Reduce for OpenCL kernel reduction
on a variety of platforms. We then provide an overview of
related work (Section 6) and conclude (Section 7).

2. CASE STUDY: HUMAN VS. MACHINE
REDUCTION FOR OPENCL

The aim of our work is to automate the tedious process of
manually reducing a large bug-inducing test case to a small
kernel that can be filed as a bug report.

Before discussing the technical details of how we achieve
this, we give an indication of the trade-offs associated with
manual vs. automatic reduction by reporting on the expe-
riences of two authors of this paper performing test case
reduction manually vs. automatically.

Table 1 details two OpenCL configurations used for our
case study: an NVIDIA GPU implementation and an In-
tel CPU implementation, referred to as Intel and NVIDIA
henceforth. We detail the device and the host CPU (in the
case of Intel these are the same), and provide information
about the OpenCL driver version, SDK, and host OS.

2.1 Experimental setup
Each of Donaldson and Pflanzer took one configuration,

Intel and NVIDIA, respectively, and used CLsmith [8] to find
two kernels for which their OpenCL configuration reported
a different result with optimizations enabled vs. disabled.
For each test case the author then (a) reduced the test case
to a minimal example manually, timing themselves in the
process, (b) used CL-Reduce to automatically reduce the
kernel, timing how long this process took, and (c) further
manually reduced the kernel output by CL-Reduce, to reach
a minimal form, timing themselves in the process.

2.2 Results
Table 2 summarises the results of our case study. Each

row of the table denotes an instance of our experiment for
a particular original test kernel. The author responsible
for handling the kernel is listed (Author), with the associ-
ated configuration (Config.). Under Original test we show
the size of the original test, indicating lines of code (LOC)
and file size in bytes (bytes). The size in bytes is arguably
more interesting since a single line of code in a randomly-
generated kernel can be very large if it involves a complex
expression.

Under Manual we show the time (time) taken for the
author to manually reduce the test case to a minimal ex-
ample, and the size of the resulting minimal test (LOC and
bytes). By minimal we mean that the author was satisfied
that the correct result computed by the kernel was simple to
read from the reduced source code, and that no easy further
reduction opportunities would work. It is likely that with
continued manual effort the resulting kernels could be made
slightly smaller, and their size in bytes could be reduced
somewhat by renaming variables.

Under Automatic we show the time (time) taken by CL-
Reduce to automatically reduce the original test kernel, and
the size (LOC and bytes) of the reduced kernel computed
by CL-Reduce. The time shown here is wall-clock time,
and represents machine time only: no human intervention is
required during the reduction process.

Under Post-automatic we show the time (time) taken
for the author to further manually reduce the output gen-
erated by CL-Reduce to obtain a minimal test exposing the
compiler bug (with same caveats related to minimal as in
the case of Manual above); the size of the resulting minimal
test (LOC and bytes) is also shown.

2.3 Discussion
Our experience is that both manual reduction and CL-

Reduce-based reduction followed by manual fine-tuning en-
abled large test kernels to be reduced to comparably-sized
and relatively small examples (in each case smaller than
1 kB). The manual effort associated with fine-tuning (post-
automatic reduction) was always significantly lower than the
time associated with a fully manual reduction.

On the Linux-based NVIDIA platform, CL-Reduce oper-
ated efficiently, taking less than 1.5 hours on each test case.
In contrast, the reduction times for the Windows-based Intel
platform was higher, with reduction taking more than a day
in one case. An analysis of the executions times of the dif-
ferent tasks during the reduction revealed that the process
creation time of a few milliseconds on Linux is around one
order of magnitude smaller than on Windows. Likely most
of the longer runtime can be attributed to this finding be-
cause every interestingness test (see Section 3.1) itself, and
potentially also its sub-tasks, are launched as independent
processes. Although automatic reduction can be slow, it can
be parallelised: a GPU vendor could use a farm of machines
to reduce numerous test cases in parallel, which will clearly
be more cost-effective than devoting a team of engineers to
manual test case reduction.

A feature of automatic reduction that our case study does
not highlight is the problem of duplicate bugs. It is well-
known that fuzzing techniques can generate tests that re-
peatedly trigger the same bug [3], and our experience with
manual reduction in our original CLsmith study [8] is that
we commonly spent hours reducing a test case by hand
only to home in on a minimal test virtually identical to
a previously-discovered test. It is clearly advantageous to
waste machine time, rather than human time, on such du-
plicate reduction efforts.

2.4 Threats to validity
Our case study is intended merely to give a rough indica-

tion of the benefits and pitfalls associated with manual vs.
automatic reduction. Clearly the sample size of test kernels
that we reduced is too small to draw general conclusions, and

Short name Device Host CPU Driver version OpenCL SDK Operating system
Intel Core i7-6500U Core i7-6500U 2.5GHz 5.2.0.10094 Intel OpenCL SDK 5.3 Windows 10
NVIDIA GTX Titan Intel Xeon E5-2609 2.4GHz 343.22 CUDA SDK 6.5.12 Ubuntu 14.04.3 LS

Table 1: OpenCL configurations used for our case study

Author Config. Original test Manual Automatic Post-automatic
LOC bytes time LOC bytes time LOC bytes time LOC bytes

Donaldson Intel 1,858 201,338 2h20m 43 571 26h46m 86 1,917 18m 30 388
Donaldson Intel 979 99,553 1h01m 34 331 7h22m 78 1,977 15m 32 360
Pflanzer NVIDIA 914 54,290 54m 61 968 1h58m 59 1,218 5m 50 834
Pflanzer NVIDIA 1,267 135,553 1h16m 45 738 2h58m 72 1,759 32m 51 906

Table 2: Times and sizes associated with manual vs. automated reduction of kernels in our case study

the speed at which the paper authors were able to reduce
kernels is related to their past experience doing so, which is
more than what an average software developer would have in
this task, but is perhaps less than the experience an OpenCL
compiler developer would gain if they used random differen-
tial testing on a regular basis to strengthen their implemen-
tation. The speed of manual reduction is influenced signifi-
cantly by execution-time properties of the host machine for
a particular configuration, and varies considerably between
the Windows and Linux operating systems.

In our experimental design we had each author first man-
ually reduce the kernel, then subsequently perform post-
automatic reduction on the output of CL-Reduce. As a re-
sult, the authors had some advantage in performing post-
automatic reduction, knowing some reduction steps that
were more likely to work well than others. We could have
accounted for this by having authors swap configurations be-
fore undertaking post-automatic reduction; one reason we
did not do this is that each author has particular editing
tools they prefer to use to reduce kernels effectively, that are
not portable across platforms. For example, Donaldson uses
Visual Studio for this purpose (due to its brace matching
functionality, with which he is fluent), and would be slower
at reducing a kernel on a Linux setup using a different editor.

3. BARRIERS TO USING C-REDUCE FOR
REDUCTION OF OPENCL KERNELS

We explain how the test case reduction process imple-
mented by C-Reduce works, in the context of C programs
(Section 3.1), and then outline the specific challenges that
had to be faced in lifting this method to the context of
OpenCL (Section 3.2).

3.1 Background on C-Reduce
The C-Reduce tool [12] implements a generalised notion of

delta debugging [16], whereby a program is reduced through
application of a variety of transformations. The reduction
process is specialised for reduction of C programs. Reduc-
tion is guided by a configurable interestingness test. For
example, to reduce a test case that causes a compiler inter-
nal error message, the interestingness test would be config-
ured to check that the compiler does indeed exit with the
particular error message. To reduce a test case that causes
compiled code to yield different results when a program is
compiled with vs. without optimisations, the interestingness
test would check that compilation succeeds in both optimi-
sation modes, and that the results output by the compiled

binaries differ.

Program transformations for reduction. C-Reduce
uses three classes of transformations to reduce programs.

The most basic transformations operate at the level of
source text, ignoring program structure. Some transfor-
mations modify contiguous regions of the source program,
for example changing the value of integer literals or remov-
ing parts of arithmetic expressions or text segments within
surrounding brackets. Other transformations make non-
contiguous changes like removing pairs of brackets without
deleting their contents.

The second class comprises a set of semantics-aware source-
to-source transformations based on the abstract syntax tree
of the program. They cover a wide range of language-specific
changes, ranging from the removal of unused or statically
dead expressions and functions, through alteration of types,
to complex code refactorings. These transformations are
carefully designed to ensure that they do not introduce un-
defined or unspecified behaviour. All these transformations
are bundled in the clang delta helper tool (a component of
C-Reduce), which uses the Clang AST parser.

The third class of transformations works at the level of
source code tokens, whereby tokens are deleted or modified
according to specific patterns. Examples include deleting
every other token, or one token in three, or reversing all to-
kens in a specified range, enabling e.g. the expression a < b

to be transformed to b < a. To achieve these transforma-
tions, C-Reduce incorporates clex, a custom lexer for C.

Transformation cycle. The reduction process of C-
Reduce works as follows. The size of the initial program is
logged. C-Reduce then iterates over all the available pro-
gram transformations. A given program transformation is
repeatedly applied until the transformation either leads to
an error (due to the transformation tool crashing), or until
the space of reductions for that transformation is exhausted.
As an example transformation space: line-level removal uses
a form of binary search, first trying to remove the upper half
of the program, then (if this does not succeed) the lower
half; if this in turn fails then the process continues, halving
the number of lines for which removal is attempted in one
transformation step. Once iteration over all the program
transformations has completed, the size of the program is
compared with the size that was logged initially. If the sizes
are the same, C-Reduce concludes that it will not be able
to reduce the program further, and exits. Otherwise, the
reduced program is treated as the initial program, and the
process repeats.

Interestingness tests. Each time the source file is al-
tered during the reduction process, an interestingness test
is applied. If the interestingness test reports that the modi-
fied code is interesting, the modified code is used as a basis
for further transformations. Otherwise the modified code is
discarded and reduction continues from the state of the code
before the latest reduction step was applied.

When reducing a program that causes a wrong code com-
piler bug, it is important that the interestingness test checks
that undefined behaviours have not been introduced by the
reduction process, as well as checking that the compiled bi-
naries yield different results when executed. This is because
it is legitimate for a compiler at multiple optimization levels,
or for multiple distinct compilers, to produce binaries whose
execution yields different results when applied to a program
that exhibits undefined behaviour.

We now discuss the design of C-Reduce’s interestingness
test for wrong code bugs. The interestingness of a transfor-
mation is checked by first passing the modified code through
one or more compiler front-ends, using flags that generate
warnings about possible undefined behaviours. The purpose
of this is to allow for a fast fail if the program is syntactically
invalid, or if the compilers warn about undefined behaviour.
Next, the Clang Static Analyzer6 and Frama-C 7 tools are
applied to identify deeper semantic issues that may indi-
cate undefined behaviours. If no such issues are identified,
the code is checked for dynamically invalid behaviour us-
ing KCC,8 an interpreter based on formal semantics, and
the Valgrind9 instrumentation framework. Only if all these
undefined behaviour checks are passed is the modified pro-
gram checked for a result mismatch with respect to the com-
piler(s) under test. The importance of KCC and Valgrind
is highlighted by experimental results showing that, with-
out dynamic checks, C-Reduce converges on a program that
exhibits undefined behaviour in 29% of cases [12].

The cost of applying the interestingness test, and the rel-
atively high probability that a given transformation will
introduce undefined behaviour (leading to an interesting-
ness test failure), can lead to a slow reduction process. To
mitigate this, multiple program transformations and associ-
ated interestingness tests can be executed in parallel. When
an interestingness test succeeds, concurrent transformations
under consideration can be killed, and a set of fresh trans-
formations can be kicked off with respect to the reduced
program. As long as one parallel transformation and inter-
estingness test does not affect the performance of another
(due to resource contention), this parallel approach should
in the worst case be no slower than a serial reduction involv-
ing the same series of program transformations.

3.2 OpenCL-specific challenges
Our aim was to extend C-Reduce to handle OpenCL ker-

nels, to enable reduction of large random kernels generated
by the CLsmith tool [8]. This presented two immediate chal-
lenges. First, a number of the tools that C-Reduce uses can-
not be applied to OpenCL; specifically GCC, Frama-C, KCC
and Valgrind. In contrast, we could re-use the Clang-based
tools—the Clang compiler itself, the Clang Static Analyzer

6http://clang-analyzer.llvm.org, visited on 12/02/2016.
7http://frama-c.com, visited on 12/02/2016.
8https://github.com/kframework/c-semantics, visited on
12/02/2016.
9http://valgrind.org, visited on 12/02/2016.

and clang delta—because Clang provides a mature OpenCL
front-end; we could use all the language agnostic components
directly, and because of the relationship between C99 and
OpenCL we could also reuse the clex component. Among
the tools that do not support OpenCL, the most problematic
cases were GCC and Valgrind.

A number of diagnostic warnings that GCC generates, to
indicate possible undefined behaviours, are not reported by
Clang. In particular, GCC, but not Clang, warns about
reads from possibly uninitialised structs. For CLsmith gen-
erated programs this was particularly problematic: as de-
tailed in [8], CLsmith emits kernels that use a struct with
many fields to model the globally-scoped variables that
Csmith would generate for a C program (OpenCL does not
support globally-scoped variables prior to OpenCL 2.0). We
found that without knowledge of such uninitialised accesses,
our first version of CL-Reduce would produce small kernels
with undefined behaviour: these kernels would simply de-
clare a struct, not initialise the fields of the struct, and then
produce a result obtained from one of the uninitialised fields.

As discussed in Section 3.1, the dynamic checks provided
by Valgrind were found by the C-Reduce authors to be useful
in reducing the rate at which C-Reduce produced programs
exhibiting undefined behaviour; OpenCL is similar to C in
terms of operations that can exhibit undefined behaviour.

The second problem is that OpenCL offers a new set of
undefined behaviours that are not relevant to sequential
C programs: data races between work items, and barrier
divergence (where work items in the same work group do
not reach the same barrier statement). By construction, a
CLsmith-generated kernel is free from both of these unde-
fined behaviours. However, they can be introduced by the
reduction process and need to be checked for as part of the
interestingness test when reducing a wrong code bug.

To overcome the lack of diagnostic checks for OpenCL
that GCC and Valgrind provide in the case of C, and to
provide OpenCL specific diagnostic checks, we turned to
Oclgrind, a simulator for OpenCL applications [11]. Ini-
tially, we thought that Oclgrind would provide the necessary
checks out-of-the-box, as the tool already provided a number
of memory analysis capabilities. However, we had to refine
the capabilities of Oclgrind and add a new, state-of-the-art
plugin to detect access to uninitialised memory, in order to
make automated reduction of OpenCL kernels feasible.

We next discuss this process of lifting C-Reduce to the
context of OpenCL.

4. LIFTING C-REDUCE TO OPENCL
Recall that, for purposes of disambiguation, we use CL-

Reduce to refer to our OpenCL-aware extension to C-Reduce.
We first describe the design of an interestingness test suit-
able for minimising test cases that expose OpenCL wrong
code compiler bugs (Section 4.1). We then discuss various
tooling issues that had to be solved to realise this interesting-
ness test (Section 4.2), and describe in detail a new plugin for
Oclgrind that we implemented to provide precise warnings
related to accessing uninitialized data (Section 4.3). During
the process of engineering our extension we made various im-
provements to the C-Reduce infrastructure, which we briefly
outline (Section 4.4).

4.1 The OpenCL interestingness test
Structurally, the OpenCL interestingness test is the same

as that used for reduction of C programs [15]. Lightweight
tools are first used to quickly detect undefined behaviour
introduced by a reduction step. Slower, more thorough tools
are then applied, and execution of the test case on the device
under test is postponed until last.

The objectives for an interestingness test are two-fold. A
test must be precise, reliably detecting undefined behaviour.
For OpenCL, the main issue here is to detect accesses to
undefined values, and data races between concurrently ex-
ecuting work items. A test must also be fast, to make the
time for automatic reduction practical. For instance, during
a reduction of an average-sized program (>100 kB), the in-
terestingness test typically has to be invoked around 30,000
times. To reduce the average runtime of the interesting-
ness test, all relevant tools are executed in increasing order
of expected runtime, with the test aborting as soon as a
tool marks the reduced program as invalid. This fast-failure
principle ensures that only successful reduction steps require
that all tools have been run.

Our OpenCL interestingness test first performs some hard-
coded checks, specialised towards test cases generated by
CLsmith. These check the structural integrity of test cases.
For instance, a CLsmith-generated kernel must include an
initial comment line that contains metadata on which the
host program that runs CLsmith-generated kernels depends;
if this line is removed we immediately reject the reduced
kernel as not interesting. For reduction of kernels not gener-
ated by CLsmith these checks can be deactivated. Next,
the Clang compiler is used to filter out syntactically in-
correct kernels. The warning messages of Clang, and of
the Clang Static Analyzer, are checked for signs of unde-
fined behaviour. Both tools act as a replacement for the
GCC compiler that is used by C-Reduce; GCC empirically
shows a better detection rate for illegal uses of undefined
values but (as discussed in Section 3.2) does not include an
OpenCL front-end. In addition to indicators of undefined
behaviour, the static warnings are also searched for situa-
tions that might lead to dynamic failures, such as assigning
a non-zero integer value to a pointer, and situations that
may introduce non-determinism, e.g. comparing a pointer to
a non-zero integer value. This is important because (a) non-
determinism can lead to result differences between OpenCL
configurations applied to a given kernel, deviating from the
aim of identifying result differences that arise due to a com-
piler bug, and (b) nondeterminism may prevent a dynamic
analysis tool from detecting an undefined behaviour if the
nondeterministic choices resolve in a manner that leads to
an execution path that does not trigger any undefined be-
haviour, even though such behaviours are possible along
other program paths.

Limitations of the static tools mean that they may let
through kernels that contain undefined behaviour; for ex-
ample, a variable that is initialised only conditionally may
not be flagged by static analysis as possibly uninitialised.
The three most common sorts of undefined behaviour that
often go undetected by static analysis are: usage of unde-
fined values (e.g. non-initialised values) and invalid pointers
(e.g. dereferencing a null-pointer), as well as array out-of-
bounds accesses. To identify these issues, we use Oclgrind
for dynamic analysis, as an alternative to the Valgrind dy-
namic analysis framework that is used for reduction of C
programs but is not compatible with OpenCL (Section 3.2).
Oclgrind also checks for data races and barrier divergence

during kernel execution. To make the interestingness test
as fast as possible, Oclgrind stops as soon as a warning of
undefined behaviour is reported.

The drawback of using dynamic tools is that they actually
have to execute the program. Moreover, the injection of a
custom memory management system (to enable memory-
aware analysis) adds additional overhead. This slows down
the validation process significantly, especially for large and
high-dimensional OpenCL kernels. Nevertheless, Oclgrind is
an essential component of CL-Reduce due to the limitations
of static tools.

A kernel that passes all static checks and is deemed valid
by Oclgrind is executed on the two OpenCL configurations
that are being compared. In the experiments of this paper
we always executed a kernel using one OpenCL implemen-
tation, comparing results with and without optimisations,
but the same concept applies to comparing results across
two different OpenCL platforms.10 The interestingness test
succeeds if the kernel executes successfully on both configu-
rations and different results are generated. If the kernel fails
on either platform (e.g. due to a compiler crash or a runtime
exception) we deem the reduction attempt not interesting.
This is because our aim is to detect bugs where the compiler
silently produces wrong code, rather than arguably less seri-
ous cases where the compiler crashes or generates code that
leads to a crash. Of course, the interestingness test can be
configured to focus on such cases if desired.

Another important aspect of the interestingness tests is
that all tools are equipped with a fixed time-limit. This
helps to prevent situations in which the reduction process
would get stuck if one of the programs freezes. For the
dynamic executions of the kernels, the time-limit is vital to
cope with infinite loops that can be created by reduction
transformations.

4.2 Interestingness test tooling issues
We had to solve a number of immediate issues before we

could apply CL-Reduce to our CLsmith-generated kernels.

Clang invalid shufflevector operands. While ana-
lyzing the logs of an Oclgrind crash, we observed that the
root cause lay within Clang (specifically, running the kernel
without optimisations through Clang 3.6 on a 64-bit sys-
tem). Reducing the test kernel used to trigger the crash led
to the example of Figure 4, allowing us to pinpoint the root
cause of the crash: a specific code pattern where an existing
vector is reused rather than building a new one. More pre-
cisely, a combination of an extractelement instruction with
an index of 64-bits is generated alongside a shufflevector

instruction applied on a vector containing 32-bit undef val-
ues. This mismatch triggers the bug, which is caught when
building Clang with assertions enabled. We submitted a
patch to fix this issue, which was applied in the Clang 3.8
release and back-ported to Clang 3.7.

Oclgrind index out-of-bounds check. We observed a
specific instance where Oclgrind would not generate a warn-
ing for an invalid memory read. By declaring a struct with
elements of varying sizes (illustrated in Figure 5; ulong and
uint have sizes 8 and 4 bytes, respectively, in OpenCL), ac-
cessing the array field a at index 1 would not be flagged as
in issue by Oclgrind. The root cause was that the mismatch

10The latter case is complicated somewhat if the two OpenCL
platforms under test are on different machines.

1 typedef unsigned int uint2 __attribute((ext_vector_type(2)))
;

2

3 void test1(void) {
4 (uint2)(((uint2)0).s0, 0);
5 }

Figure 4: Reduced OpenCL kernel used to trigger
an Oclgrind crash with the warning “Invalid shuf-
flevector operands!”. The root cause was due to a
bug with the shufflevector instruction in Clang.

1 struct S0 {
2 ulong f;
3 uint a[1];
4 };

Figure 5: Struct declaration that could trick
Oclgrind by reading uninitialized memory due to the
difference in size between the elements of the struct.

between type sizes led to four padding bytes being added
to the struct; Oclgrind erroneously regarded these bytes as
part of the struct, in turn regarding an access to a[1] as
in-bounds. We submitted a patch for this issue, which was
accepted, but later had to be adapted by us to cater for the
fact that it is legitimate in C for a pointer to point one ele-
ment past the end of an array, as long as the pointer is not
dereferenced.

Oclgrind custom warning messages. We found the
warning messages generated by Oclgrind insufficiently ex-
pressive for our needs. We reworked Oclgrind’s diagnostics
system by extending the existing types of diagnostics with
targeted ones for specific issues (e.g. array out-of-bounds er-
rors, uninitialized value warning, etc.). As such, we can filter
the diagnostics as per the requirements of the analysis. In
addition, Oclgrind does not stop the execution even if an
error has been detected. In order to accelerate our interest-
ingness test, we added a new option to stop execution after
a user-defined number of errors have been produced.

4.3 The ShadowKeeper plugin
As mentioned in Section 4.1, in CL-Reduce we had to

replace Valgrind with Oclgrind, the latter being especially
developed for the runtime instrumentation of OpenCL pro-
grams.

In contrast to Valgrind, Oclgrind originally included only
limited capabilities for detecting undefined behaviour aris-
ing from accesses to uninitialised values. Initially, Oclgrind
would monitor all interactions with the memory system and
emit a warning when an undefined value was involved in
a memory operation. This caused false positives in cases
where uninitialised values were copied around without sub-
sequently influencing program behaviour. In particular, we
found that when copying between struct data, Oclgrind
would warn about uninitialised accesses to padding bytes
(which, by definition, cannot be initialised by assigning to
fields of a struct).

To obtain reliable analyses for the interestingness tests
it was necessary to extend Oclgrind with a more precise
plugin. The resulting ShadowKeeper plugin was a key piece
of our CL-Reduce framework, while improving the general

functionality of Oclgrind by helping developers to write valid
or debug invalid OpenCL programs. As a result, it has been
merged into the main project and replaces the old plugin.

The internal mechanics of ShadowKeeper are derived from
Valgrind’s Memcheck plugin [13] and Clang’s MemorySan-
itizer [14]. Both tools use the term shadow as a metaphor
for the validity state of a memory location or register dur-
ing program execution. The authors of Valgrind’s Mem-
check plugin identify three general requirements that have
to be met in order to fully support shadow values [9]. The
three categories are described as: monitoring the current
state of a program (registers and memory), instrumenting
instructions that read or write memory and instrumenting
instructions that allocate or deallocate memory. A precise
detection of undefined values is only possible if all three
categories are covered. While the effects of a less precise
handling of shadow registers and memory are well-defined,
the consequences of only a partial coverage of all operations
are hard to confine. For instance, if shadow values were only
accurate up to the scale of bytes it would be clear that ev-
ery operation involving bit operations could lead to wrong
detection results. In contrast, any instruction, system call
or external function has the potential to perform memory
operations. As long as the operation is not covered with a
corresponding operation on the shadow memory both states
will diverge and result in an incorrect analysis.

We now summarise the principles behind Valgrind’s Mem-
check and Clang’s MemorySanitizer, after which we present
the design of ShadowKeeper in detail.

4.3.1 Valgrind’s Memcheck
Valgrind’s Memcheck plugin is able to detect “invalid” us-

ages of undefined values such as uninitialised variables with
bit-level precision by instrumenting programs according to
the disassemble-and-resynthesise (D&R) paradigm. This in-
cludes partially initialised bytes, such as bit fields inside
structs. To achieve this precision, every bit of data has to
be shadowed with an additional definedness bit. Internally,
these shadow values are referred to as V bits (validity bits).
A V bit is set to zero if and only if the corresponding data
bit is considered to be defined.

Data registers are shadowed through a simple one-to-
one mapping to shadow registers. Both data registers and
shadow registers can be modified through the instructions
provided by the intermediate representation. This makes it
easy to keep the actual data synchronised with the shadow
values. Additionally, a large amount of memory has to be
monitored. To be able to do this efficiently a two-level map-
ping scheme is used.11 The first level table (PM) divides the
32 bit address space into 65,536 blocks. Every entry in the
table points to a secondary table (SM) containing 65,536
entries to shadow 64 kB of memory. Space in the second
level table is allocated on demand (copy-on-write) and deal-
located together with the data values. Therefore, not all
entries in the first level table are set. At program startup,
everything, aside from literals, and read-only and mapped
memory, is considered as undefined and the corresponding
shadows are thus all set to 1.

In addition, Valgrind’s Memcheck is able to achieve a total
coverage of dynamically linked libraries. For each instruc-
tion a trade-off between accuracy of the shadow propaga-

11The actual implementation uses an additional compression
scheme to save further memory.

tion and the performance of the shadow operation has to be
found. For most operations, the plugin puts emphasis on the
accuracy and sacrifices efficiency. For example, arithmetic
operations shadow the effects of carry chains, as opposed to
the faster approach of invalidating the complete results as
soon as one operand is (partially) undefined.

Another design decision is when to emit warning messages
about invalid uses of undefined values. Most of the time the
Memcheck plugin propagates undefined values lazily through
the shadow operations producing warnings only at a few crit-
ical check points. An operation is considered as critical if
it alters the observable behaviour of the program. In [13],
four distinct groups of such operations are defined. The
first two groups include operations that change the control
flow, e.g. branch instructions and conditional moves. The
third group comprises memory operations where the address
operand might be undefined. Finally, system calls form the
fourth group. After a warning has been generated, the asso-
ciated undefined values are explicitly set as defined to pre-
vent chains of warnings from the same source.

4.3.2 Clang’s MemorySanitizer
The main difference to Valgrind’s Memcheck plugin is that

Clang’s MemorySanitizer uses static compile time instru-
mentation instead of the D&R paradigm. If a program is
compiled with MemorySanitizer support, the resulting exe-
cutable contains all necessary instructions to detect unde-
fined values. Because shadow operations are directly in-
jected into the LLVM IR of the application, it is unneces-
sary for MemorySanitizer to shadow registers explicitly. The
instructions themselves represent the temporary values and
are automatically assigned a unique identifier.

Similar to Memcheck, memory is shadowed with bit-level
accuracy, but a simpler one-to-one mapping between appli-
cation data and shadow bits is applied [14]. This comes at
the cost of higher memory consumption, but simplifies the
address computation. In fact, the shadow address is de-
rived by flipping one bit in the original address such that
all shadow addresses are projected into a commonly unused
address space. Due to preferring speed over accuracy, most
operations that perform shadow propagation are less precise
than the corresponding functions in Memcheck. Moreover,
some of the operations even allow false negatives to occur if
this has the potential to greatly improve performance. For
instance, an addition is approximated through a simple bit-
wise OR instruction of both operands. This only guarantees
that (a) the result is defined if both operands are defined
and (b) that the result cannot be valid if either operand is
(partially) undefined. However, the actual bits that are un-
defined after the addition might not be correctly shadowed,
as carry propagation is not modelled.

MemorySanitizer is generally unable to achieve full cover-
age of all functions if external libraries are involved; this
would require all libraries to be instrumented by Memo-
rySanitizer. To mitigate this issue, MemorySanitizer pro-
vides wrapper functions for some widely used and hard-to-
compile libraries (e.g. libc) which define the side effects of
each function and change the shadow values accordingly.

4.3.3 ShadowKeeper
Conceptually, ShadowKeeper lies between Memcheck and

MemorySanitizer. MemorySanitizer is entirely trimmed for
efficiency, accepting even loss in accuracy for better per-

ShadowKeeper

Plugin APIShadowContext

ShadowMemory
(global)

ShadowValues
(global)

Shadow
WorkItems

Shadow
WorkGroups

MemoryPool
(global)

WorkSpace
(thread_local)

ShadowMemory
(private)

ShadowValues
(private)

ShadowMemory
(local)

MemoryPool

Figure 6: The hierarchical design of ShadowKeeper

formance. Valgrind’s Memcheck aims to be as precise as
possible and optimises only for efficiency whenever this does
not have a major impact on accuracy. The goal of Shad-
owKeeper is to make the detection of undefined values as
complete as possible, but (to achieve fast runtime) not nec-
essarily at a high level of precision. This allows the prop-
agation of undefined values to be approximated in order to
improve the performance, as long as the approximations are
conservative such they do not decrease the “undefinedness”
of any value. For instance, the shadow operation for the add

instruction validates only the state of the operands and con-
servatively assumes that all bits of the result are undefined
if any bit of either operand is undefined.12

The plugin follows the spirit of Oclgrind, having been de-
signed with maintainability and modularity in mind, even
though this introduces some overhead in terms of perfor-
mance. The existing Oclgrind plugin system provided an
excellent staring point to integrate the new ShadowKeeper
plugin into the existing framework. Figure 6 provides a high-
level overview over the different components.

The design is closely tied to the architecture of Oclgrind,
as every memory location and intermediate value has to be
shadowed to track its definedness. As with every Oclgrind
plugin, the main class acts as controller that intercepts ac-
tion callbacks (e.g. workItemBegin), before, during and after
the kernel execution. It further sets up various data struc-
tures that help to maintain and track the definedness of all
values. Non-global resources are defined as thread local to
make lock free accesses possible. Solely global resources have
to be guarded by locks.

As with the other tools, the abstract concept of shadow
data is divided into two categories. Shadow memory mir-
rors the address space of the original kernel and shadow
values represent the validity of global and private variables
in the kernel. ShadowKeeper creates a simple one-to-one
mapping with bit-level accuracy between the address spaces
of the kernel and the shadow address spaces. The only ex-
ception is the constant address space, which is currently not
mapped. The reason behind this decision is that in OpenCL
kernels all constants have to be statically initialised, hence
they cannot contain undefined values. Therefore it is faster
to generate a new clean shadow for each access to constant
memory instead of performing a costly lookup. Further, gen-
erating the shadow values on demand saves space. Each of
the other three address spaces (global, local, private) is rep-

12A bit-level accurate shadow computation for arithmetic in-
structions can be extreme costly because of the effects of
carry bits.

ShadowValues
ShadowFrame

ShadowFrame

ShadowFrame

... Call instruction
Shadow map

Call instruction
Shadow map

Call instruction
Shadow map

Figure 7: The structure of shadow values

resented by a separate map which uses the original address
of the memory access as key. Using separate maps has the
advantage that the lookup of a particular value is likely to
be faster, and prevents clashes between addresses of different
address spaces.

To reduce the memory overhead, the implementation uses
sparse maps into which memory buffer objects are inserted
every time an allocation is performed. The use of a copy-
on-write mechanism similar to the one in Valgrind’s Mem-
check plugin turned out to be inefficient in combination with
sparse maps. In contrast, deallocations are handled lazily
and are only performed on demand. The main reason is
that tracking deallocations precisely would introduce a huge
amount of extra work because there is no explicit instruc-
tion for deallocations in the LLVM IR. An object is simply
considered as deallocated if its lifetime ends (e.g. the scope
of the allocation is exited).

In general all allocated memory is assumed to be unde-
fined and the shadow memory in consequently filled with
special “poisoned” values. However, since ShadowKeeper
cannot determine the validity of the data that the host pro-
gram writes to the memory, the default is to mark it as
defined. Therefore the shadow memory for buffers that are
mapped for writing and the regions that are written by the
host program are filled with clean shadow values. This bears
the risk of missing some undefined values, but the alternative
(marking global memory as poisoned after every interaction
with the host application) would lead to false alarms that
would render the plugin unusable in practice.

Intermediate results computed during the execution of an
OpenCL program are also shadowed with bit-level precision
and stored in a sparse map. Instead of the address, the
signature of the original LLVM IR instruction is used as
key. The handling of variables in global scope, i.e. constants
and pointers to the local address space, is straightforward.
They are stored before the actual execution of the kernel is
started, exist throughout the entire execution of the kernel
and can be accessed from every point in the plugin. On the
other hand, the management of variables in private scope
requires more effort than a single map. The lifetime of the
temporary variables is important, as shadow values from dif-
ferent function scopes might interfere with each other. The
solution implemented in ShadowKeeper includes an explicit
construction of a new “ShadowFrame” each time a function
is called and a return to the old frame when the control flow
leaves the function (see Figure 7).

In addition to the storage of the shadow values, a shadow
operation had to be defined for each of the 48 LLVM IR in-
structions and 94 built-in functions that Oclgrind currently
supports. Instead of computing the result shadow with bit-
level precision, only the shadows of all operands are checked
and if either is (partially) poisoned the entire result is con-

sidered poisoned. This has the great advantage of being
faster than an exact computation of the result shadow. Fur-
thermore, it cannot make a value “less” poisoned and does
not sacrifice much accuracy.13

Warnings about undefined values are only emitted if the
values would change the observable behaviour of the pro-
gram. That is, if undefined values are written to memory of
a non-private address space or if the control flow depends on
undefined values. Further, warnings are generated if unde-
fined values are passed as arguments to external functions
and if undefined values are used as index operand in in-
structions. Lastly, the addresses of all memory loads and
stores are directly checked for their definedness. Without
these address checks, undefined values could remain unno-
ticed (for example, a load from a poisoned access luckily hits
a valid address and a clean value is loaded). The objective
to emit warnings only when strictly necessary has been set
to leverage the reduction processed by allowing undefined
intermediate states.

Another important aspect while designing ShadowKeeper
has been to guarantee thread-safety. Only then is Oclgrind
able to simulate multiple work items at the same time by
running them in different threads. Serialised execution
would have rendered ShadowKeeper useless for large ker-
nels. A major concern in terms of thread safety are data
structures used to store the shadow data. First is the map
storing all global shadow values. The only writing accesses
to this map are before the actual execution. During exe-
cution, only reading accesses can happen which do not in-
troduce data races. Moreover, for the shadow memory of
non-local address spaces, although they are accessible from
concurrent threads, no locking mechanism is needed. Any
concurrent access to the same address would correspond to
a data race on the actual values because the shadow opera-
tions are always synchronised to the real operations. Since
data races are forbidden by the OpenCL standard, Shad-
owKeeper does not make any guarantees for kernels that
exhibit this kind of undefined behaviour.14 The concurrent
access to different addresses in the same map is enabled by
storing the shadow memory in a buffer separate from the
actual map and inserting only a pointer to the buffer into
the map. The only exception from the lock-free implementa-
tion are atomic operations that affect global data structures.
Here it is not the responsibility of the kernel to prevent data
races but the implementation of the atomic operations must
handle concurrent accesses without introducing undefined
behaviour. Every atomic shadow operation that writes to
the global address space acquires a lock prior to reading
the old shadow value and releases it after writing the new
shadow value. Additionally, to reduce contention, multiple
locks are provided such that each operation locks only a part
of the address space.

4.4 Improvements to C-Reduce
To prevent undefined behaviour in OpenCL kernels, a

strict compliance with the C99 standard is necessary. This
revealed some edge cases in which C-Reduce’s transforma-
tions produced non strictly conforming results. Independent
of the incorrect transformations, though also based on gen-

13Actually, we have not encountered a single false positive
warning since the old plugin has been exchanged with Shad-
owKeeper.

14Oclgrind includes a separate plugin for data race detection.

erated compiler warnings in C99 mode, a few other transfor-
mations have been optimised to produce smaller test cases.
Further, we addressed some minor technical issues with the
processing of OpenCL source files. As an example, we ex-
plain how we solved some issues related to the empty-struct
-to-int transformation. For full details of this, as well
as changes to the remove-unused-function and remove-

unused-field transformations, and the solution to handling
of OpenCL source files, see [10].

The empty-struct-to-int transformation removes struct
declarations and replaces all usages of the struct type with
type int. Despite its name, the transformation does not
only remove structs without any member but also structs
with at most one unreferenced member. This is important
as the behaviour for structs without any named member is
undefined:15 test cases with empty structs would be rejected
by the interestingness test and the struct declaration could
only be removed by the simple delta-reduction steps.

Completely empty structs cannot have an initialiser list
when a variable of the struct type is defined. In this case
the transformation is easy as it is possible to just replace
every occurrence of the struct type with an integral type.
However, structs with at least one named member can have
an initialiser list even if the member itself is unreferenced.
Moreover, initialiser lists can be nested for members and
variables of array or struct type (Figure 8). The existing
implementation of C-Reduce did not consider these cases
and left the initialiser list unmodified. But again such a
transformation result would have to be rejected in the in-
terestingness test since according to the C99 standard “[n]o
initializer shall attempt to provide a value for an object not
contained within the entity being initialized” [5].

In order to solve the problem all structs are visited recur-
sively and all usages of the rewritten struct are collected in a
new tree-like data structure (Figure 9). Each leaf node rep-
resents an instance of the struct itself while the inner nodes
represent structs for which one of its (recursive) members is
of the changed struct type. This information is essential as
also the initialiser lists of these “surrounding” structs have
to be altered. Once all occurrences have been determined
the specific initialiser lists—their position within the sur-
rounding struct is denoted by the numbers on the edges—are
simply replaced with a zero value.

5. EXPERIMENTAL EVALUATION
We evaluate two properties of our CL-reduce implementa-

tion: efficiency and robustness. We evaluate robustness by
whether a completed reduction is free from undefined be-
haviour and still triggers a bug. Note that it might be the
case that a bug observed in a reduced kernel is not the same
as the bug in the original version. For efficiency, we con-
sider the primary metric being the runtime per reduction.
Aside from this, we also look at the final size of the reduced
program compared to the original, as well as the success
rate of individual reduction passes. Finally, we assess the
runtime overhead of our new ShadowKeeper plugin, and the
effectiveness of the plugin for detecting uninitialised values.

5.1 Experimental setup
The experimental campaign was carried out on 5 different

OpenCL devices (configurations) hosted in 3 different ma-

15Empty structs are a GNU C extension of the C99 standard.

chines. We use a–e to refer anonymously to the names of the
devices, as we are not allowed to disclose results for some of
the devices. These devices are disjoint from those used in
Section 2. From an initial pool of 35,750 CLsmith-generated
kernels, we selected 127 that yielded different results be-
tween an optimised and an unoptimised execution for some
configuration. For these selected kernels, we performed a
total of 272 automatic reductions, because some of the ker-
nels presented wrong-code bugs on multiple configurations.
Table 3 summarises the results, categorising tests accord-
ing to the device they executed on (denoted “dev-x”); the
CLsmith option that that was used to generate the tests,
one of basic, vectors, atomic reductions (ar), inter-thread
communication (itc), atomics, and divergence (see the CL-
smith documentation for details of these modes), and the
number x of parallel interestingness tests used for reduction
(dnoted “nx”). For the kernels in basic and vectors modes,
we manually reduced the number of executing work items
to 1 to accelerate reduction. The ∗ indicates that the Clang
Static Analyzer was not used in the interestingness test. A
number of the kernels were found to contain undefined be-
haviours (“Failure” column) or data races (“Race” column).
We have removed them from further evaluation. In addi-
tion, we found one test caused a compiler crash (“Crash”
column) after reduction. The “Success” column shows the
number of reductions performed that ended with a kernel
free of undefined behaviours.

5.2 Reduction results
Of the 272 automatic reductions that we have attempted,

189 have been successful—a 69% success rate. We observed
an average reduction in size of 99.2%, with a size of 844
bytes on average after automatic reduction (varying from
387 bytes to roughly 2000 bytes). The practical question is
whether this is a simple enough test case to report to com-
piler engineers. While this is a difficult question to answer
in general, the developers of GCC recommend reporting test
cases of under 30 lines of code.16 We found that this is gen-
erally the case for our reduced kernels, but we can further
minimize the tests manually with little effort. In general, we
recommend applying a final manual reduction pass, which
make the final test case simpler to understand and more
readable. Our experience shows that 15 minutes are enough
to apply some complex, hard to automate reductions.

The average runtime of the reductions was roughly 6 hours
when running sequential interestingness tests, going down
to an average of 1.7 hours when executing 4 interestingness
tests in parallel. An overview of the reduction times for
the sequential case is given by the cumulative distribution
function (CDF) plot of Figure 10. To gather these results
in a timely fashion only the kernels for which we manually
adjusted the runtime parameters so that only a single work
item executes are included in the distribution. A point with
coordinates (x, y) indicates that a fraction of y of the reduc-
tion attempts took x hours or fewer to complete. Our result
for executing 4 interestingness tests in parallel is similar to
that obtained in [15]. In order to further reduce the run-
time, we attempted multiple powers of two for the number
of parallel interestingness tests and found that running 4 in
parallel is ideal, having greatly diminished runtime improve-
ments if going over this value (see Figure 11).

16See https://gcc.gnu.org/bugs/minimize.html, visited on
29/08/2015.

1 struct S0 {
2 int a[5];
3 };
4

5 struct S0 s = {{1,2,3,4,5}};
6 struct S0 as[2] = {{1}, {6,7}};

(a) Test case

1

2

3

4

5 int s = 0;
6 int as[2] = {0, 0};

(b) Correct transform

1

2

3

4

5 int s = {{1,2,3,4,5}};
6 int as[2] = {{1}, {6,7}};

(c) Actual transform

Figure 8: Example of the empty-struct-to-int transformation

1 struct S0 {
2 int a[3];
3 };
4

5 struct S1 {
6 int b;
7 struct S0 s0;
8 }
9

10 struct S0 s0 = {1,2,3};
11 struct S1 s1 = {0, {1,2,3}}

S00

0 S1 S01

Figure 9: Example of the collected type usage infor-
mation

Test category Success Crash Race Failure
dev-a basic n1 24 0 — 12
dev-a basic n4 20 0 — 9
dev-a basic n8 20 0 — 13
dev-b vectors n1 5 0 — 1
dev-b ar n1 15 1 0 4
dev-b itc n1 18 0 0 5
dev-b atomics n1 8 0 5 4
dev-b divergence n1 20 0 — 5
dev-c basic n8 6 0 — 0
dev-d basic n8 28 0 — 14
dev-e basic n1 3 0 — 2
dev-e itc n1 7 0 2 4
dev-a basic n1∗ 15 0 — 2

Table 3: Overview of the experimental results over
5 different OpenCL devices

Regarding the reduced kernels we deemed as failing due to
presenting undefined behaviours, upon manual inspection,
we observed that the interestingness tests were not checking
for the occurrence of those particular undefined behaviours.
This shows that writing the interestingness tests is not a
trivial process, due to the multitude of possible undefined
behaviours that have to be taken into consideration and
checked for. In addition, checking for more undefined be-
haviours reduces the number of possible reductions that can
be applied. Thus, we opted for a demand-driven approach
to implementing undefined behaviour checks. In addition,
there was an instance of a wrong-code test being reduced
to a program triggering a compiler crash; our interesting-
ness test should not allow this to occur (because we aim to
distinguish between wrong-code bugs and arguably less in-
teresting compiler crash bugs); we have not yet investigated
the reason for this instance of bug slippage [3].

5.3 Evaluation of uninitialised value detection
Our ShadowKeeper plugin for Oclgrind offers better pre-

cision at the cost of performance. We evaluated the effec-

tiveness of the plugin, both terms of runtime and precision.
For runtime, we compare executing Oclgrind with our

ShadowKeeper plugin against default Oclgrind, as a base-
line, and against Oclgrind with the previous uninitialised
value plugin enabled. We run 1,000 kernels on each of the
three different machines mentioned in Section 5.1, setting
a hard timeout of 120 seconds. Using this limit, default
Oclgrind times out in 35% of the cases, compared to 65%
with either plugin enabled. We observe an expected increase
in runtime when using ShadowKeeper, with an average slow-
down of 4.6× compared to the baseline and 1.3× compared
to the old plugin, a slight increase in runtime compared
to the old plugin. However, compared to the tools that
have inspired ShadowKeeper, Valgrind’s Memcheck incurs
a larger slowdown (typically a 20× slowdown compared to
original runtime), while Clang’s MemorySanitizer is slightly
faster (typically a 3× slowdown compared to original run-
time). Considering that MemorySanitizer executes the pro-
grams directly through the operating system, as opposed
to Oclgrind having to simulate them, we consider Shad-
owKeeper competitive in terms of runtime.

The main purpose of developing the plugin was to improve
upon the high rate of false positives the previous plugin pre-
sented. During our tests, we have not observed any instance
of ShadowKeeper reporting a false positive bug. However,
we have observed situations where ShadowKeeper failed to
identify uninitialised values, such as a load from an unde-
fined address. While this particular issue has been fixed in a
later version of Oclgrind, we believe that even a perfect plu-
gin would find itself in situations where it could not identify
certain uninitialised values. This is because Oclgrind uses
Clang to compile an OpenCL kernel into LLVM IR. If the
original kernel exhibits undefined behaviour, it is not nec-
essarily the case that the resulting LLVM IR also exhibits
undefined behaviour, because Clang is free to fix on spe-
cific semantics for the otherwise undefined behaviour during
translation. As ShadowKeeper analyses the LLVM IR, not
the original OpenCL kernel, undefined behaviours that are
eliminated during translation to LLVM IR will be missed.

6. RELATED WORK
The CLsmith tool that we use to generate random ker-

nels [8] is built on top of the Csmith generator for C pro-
grams [15]. In addition, in prior work we also investigated
the use of equivalence modulo inputs testing [7], a meta-
morphic testing technique [2], for finding OpenCL compiler
bugs. The EMI method we proposed in [8] involved inject-
ing dead-by-construction code into an OpenCL kernel, using
an opaque predicate to ensure that the compiler cannot de-
duce that the code is dead; we have also applied this idea
to the testing of compilers for the OpenGL shading lan-
guage (GLSL) [4]. This method yields a simple approach

0 5 10 15 20 25 30

Empirical
CDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 te

st
-c

as
es

Reduction time [h]
35 40

Figure 10: CDF plot of the runtime for test cases
reduced with our CL-Reduce framework.

Sequential tests 2 parallel tests 8 parallel tests
0

1

2

3

4

5

6

Re
du

ct
io

n
tim

e
[h

] 7

8

9

4 parallel tests

5.86 hours

2.11 hours 1.68 hours 1.66 hours

Figure 11: Average runtime of a reduction plotted
against number of interestingness tests in parallel.

to test case reduction, because injected dead code can be
eliminated without concern for undefined behaviour (be-
ing dead, the code in question cannot trigger undefined be-
haviour at runtime). An open problem for future investiga-
tion is whether random kernels generated by CLsmith and
reduced by CL-reduce, or real-world kernels injected with
dead-by-construction code and reduced as described above,
yield more useful bug reports for compiler developers.

Oclgrind provides a form of dynamic analysis for OpenCL
kernels via simulation. In contrast, the GPUVerify tool pro-
vides static warnings about data races and barrier diver-
gence [1]. In principle we could incorporate GPUVerify into
the interestingness test of CL-Reduce, but have found that
GPUVerify does not yet scale well to kernels of the size pro-
duced by CLsmith.

For C compilers, the Csmith and C-Reduce tools provide
a way to generate a large set of small programs that trig-
ger compiler bugs. A remaining problem is that of dupli-
cate bugs, where many reduced programs trigger bugs arising
from a common root cause. Methods for automatically rank-
ing reduced test cases in an attempt to prioritise programs
that trigger a diverse range of bugs have been proposed [3].
Our OpenCL extension to C-Reduce paves the way for in-
vestigating these methods in the context of OpenCL.

7. CONCLUSIONS AND FUTURE WORK
We have presented the design and implementation of a

novel extension to the C-Reduce test case reduction frame-
work that handles OpenCL kernels. A by-product of this
work is ShadowKeeper, a new plugin for the Oclgrind simu-
lator that detects uninitialised memory accesses for OpenCL
kernels. Our experiments and case study using CL-Reduce
to automatically reduce large OpenCL test cases show that
the method can be useful as an aid to finding small kernels
that trigger compiler bugs. Open avenues for future work
include adding further plugins to Oclgrind to detecting addi-
tional kinds of undefined behaviour, and investigating meth-
ods for ranking reduced bugs in order of priority.

Acknowledgements
We are grateful to James Price for support related to
Oclgrind, to the developers of C-Reduce for accepting our
contributions to the C-Reduce framework, and to the Clang
developers for reviewing a submitted patch arising from this
project. This work was supported by the EPSRC-funded
HiPEDS CDT, a gift from Intel Corporation, and an equip-
ment grant from GCHQ.

8. REFERENCES
[1] A. Betts, N. Chong, A. F. Donaldson, J. Ketema,

S. Qadeer, P. Thomson, and J. Wickerson. The design
and implementation of a verification technique for
GPU kernels. ACM Trans. Program. Lang. Syst.,
37(3):10, 2015.

[2] T. Y. Chen, S. C. Cheung, and S. M. Yiu.
Metamorphic testing: a new approach for generating
next test cases. Technical Report HKUST-CS98-01,
Department of Computer Science, Hong Kong
University of Science and Technology, 1998.

[3] Y. Chen, A. Groce, C. Zhang, W. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
PLDI, 2013.

[4] A. F. Donaldson and A. Lascu. Metamorphic testing
for (graphics) compilers. In MET, 2016.

[5] International Organization for Standardization.
ISO/IEC 9899:1999, Programming languages – C,
1999.

[6] Khronos Group. The OpenCL C specification, v2.0.

[7] V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In PLDI, 2014.

[8] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson.
Many-core compiler fuzzing. In PLDI, 2015.

[9] N. Nethercote and J. Seward. How to shadow every
byte of memory used by a program. In VEE, 2007.

[10] M. Pflanzer. Automatic test case reduction of
randomly generated OpenCL kernels. Master’s thesis,
Imperial College London, 2015.
http://www.doc.ic.ac.uk/˜afd/homepages/papers/
pdfs/2015/PflanzerThesis.pdf.

[11] J. Price and S. McIntosh-Smith. Oclgrind: An
extensible opencl device simulator. In IWOCL, 2015.

[12] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
PLDI, 2012.

[13] J. Seward and N. Nethercote. Using valgrind to detect
undefined value errors with bit-precision. In USENIX
Annual Technical Conference, 2005.

[14] E. Stepanov and K. Serebryany. MemorySanitizer:
Fast detector of uninitialized memory use in C++. In
CGO, 2015.

[15] X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding
and understanding bugs in C compilers. In PLDI,
2011.

[16] A. Zeller. Why Programs Fail: A Guide to Systematic
Debugging. Morgan Kaufmann, 2005.

