GPU Concurrency:
Weak Behaviours and Programming Assumptions

Jade Alglavé? Mark Batty) Alastair F. Donaldsoh ~ Ganesh Gopalakrishnan
Jeroen Ketenfa Daniel PoetZl Tyler Sorensel John Wickersoh

1 University College London 2 Microsoft Research 3 University of Cambridge
4 Imperial College London 5 University of Utah 6 University of Oxford

Abstract Yet GPU concurrency is poorly specified. The vendors’

Concurrency is pervasive and perplexing, particularly on documentation and programming guides suffer from signif-

graphics processing units (GPUs). Current specificatiéns o /cant omissions and ambiguities, which force programmers

languages and hardware are inconclusive; thus programmer&? "€ly on folklore assumptions when writing software.

often rely on folklore assumptions when writing software, 10 distinguish assumptions from ground truth, we ques-
To remedy this state of affairs, we conducted a large em_tloned the hardware guarantees and the assumptions made

pirical study of the concurrent behaviour of deployed GPUs. IN Programming guides. Thus we conducted a large empiri-
Armed with litmus tests (i.e. short concurrent programs, w c@! study of deployed Nvidia and AMD GPUs (see Tab. 1).

guestioned the assumptions in programming guides and ven-

. . vendor architecture chi short name year
dor documentation about the guarantees provided by hard==-2 272> GT>?280 N 23’08
ware. We developed a tool to generate thousands of litmus Formi STXE40m GTXE 5011
tests and run them under stressful workloads. We observed Tesla C2075 TesC 5011
a litany of previously elusive weak behaviours, and exposed Kepler GTX 660 GTX6 5012
folklore beliefs about GPU programming—often supported GTX Titan Titan 2013
by official tutorials—as false. Maxwell GTX 750 GTX7 2014
As a way forward, we propose a model of Nvidia GPU AMD TeraScale 2 Radeon HD 6570 HD6570 2011
hardware, which correctly models every behaviour wit- Graphics Core Radeon HD 7970 HD7970 2012

nessed in our experiments. The model is a variant of SPARC Next (GCN) 1.0

Relaxed Memory Order (RMO), structured following the

GPU concurrency hierarchy. Table 1: The GPU chips we tested

Categories and Subject DescriptorsB.3.0 [Memory struc- Our methodology relies on executing short progralits (

tured: General mus testg probing specific hardware behaviours [6, 7, 14,

Keywords memory consistency, GPU, Nvidia PTX, OpenCL,17]- Central to the success of our method is a test harness: we

litmus testing, test generation, formal model run each test thousands of times under stressful workloads,
to provoke the behaviour that the test characterises.

1. Introduction Our litmus tests uncoverageak GPU behavioursim-

GPUs h dthei L __ilar to those of CPUs (e.g. IBM Power [6, 7]), which “no
Us have cemented their position in computer systems: noexisting literature has been able to show how to trigger”

Ipnger restricted to graphics, thgy appear in cntlcal mel_ and have been dismissed as “infinitesimally unlikely” to oc-

tions, e.g. [29]. Thus programming them correctly is crlcia cur [19]7 We observed weak behaviours on all the chips
listed in Tab. 1 except the GTX 280; we henceforth omit this
particular chip from our results tables. Moreover, ourdest
exposed as false sevenalogramming assumptionsmade
in academic works [22, 42] and literature endorsed by ven-
dors [26, 36, 38]. We summarise our findings in Tab. 2 and
detail them in Sec. 3; we illustrate two key findings below.

7In fairness to the authors of [19], we were unable to obsergaknbe-
[Copyright notice will appear here once "preprint’ opti@removed.] haviours using our method on the Nvidia GTX 280 chip they used

1 2015/6/26

Weak behaviours The litmus test of Fig. 1 (written in As a way forward,we propose a model of Nvidia GPU
Nvidia's low level language PTX) tests foead-read co- hardware. Our model is based on SPARC RMO, and is
herencecoRR violations. The left thread storesinto the stratified according to the thread hierarchy found on GPUs.
locationx, which is in global memory and initialised t We validated it against 10930 litmus tests on the Nvidia
and the right thread, which is in the same CTA (see Sec. 2.1)chips of Tab. 1, each executed 100k times, to confirm that
loads twice fronx. Read-read coherence violations occur for it accounts for every observed behaviour.

executions ending with registet holding1 and register2

holding 0. This behaviour seems to spark debate for CPUS: gffected litmus tests comment sec.
it is allowed by SPARC Relaxed Memory Order (RMO) [43, Nvidia
Chap. D.4], butis considered a bug on some ARM chips [12]. Fermi/Kepler coRR sparks debate for CPUs 3.1.1
Yet on several Nvidia GPUs, we observed coRR violations architectures
several thousand times; for instance, the results repatted Fermi mp-L1, fences do not restore 3.1.2
the bottom of Fig. 1 show that the GTX 540m exhibited architecture coRR-L2-L1 orderings
coRR violations on 11642 out of 100k runs. PTXISA[36] mp-volatile volatile documentation 3.1.2
.) . disagrees with testing
init: global x=0 final: ri=1 Ar2=0 threads:intra-CTA GPU dib-Io, fenceless deque allows 3.2.1
01 st.cg [x],1 11 1d.cg ri,[x] Computing dib-mp items to be skipped
1.2 1ld.cg r2,[x] Gems[26]
- CUDA by cas-sl fenceless lock allows 3.2.2
0bs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970 Eyampie3g] stale values to be read
11642 8879 9599 9787 0 0 Stuart—-Owens exch-sl fenceless lock allows ~ 3.2.2
. lock [42 stale values to be read
Figure 1: PTX test for coherent read®RR) He—\[(u I]ock [22] sl-future lock allows future values 3.2.3
Programming assumptions Fig. 2 shows a spin lock from 5 to be .rlead g i
Nvidia’s CUDA by Examplg38, App. 1]. We show exper- CUDAS.5[32] coRR lti)oarggl er reorders volatiled. 4
imentally (see Sec. 3.2.2) that without the fences that we AMD
added (indicated by+), i.e. lines 3 and 5), a critical section GeNT.0 mp compiler removes fences3. 1.2
protected by the lock can read both stale and future values, between loads
and that clients using the lock can produce incorrect result TeraScale2 dib-Ib compiler reorders load 3.2.1
and CAS
; "3:‘5:?_;tzri;ici;ik;uz;): ;’{1 y 1=0); Table 2: Summary of the issues revealed by our study
3(+) __threadfence();}
4 __device__ void unlock(void) { Contributions In essence, we present:
Zm ;gz;i:;:izr(m;gex 0):} 1. a framework for generating and running litmus tests to

guestion memory consistency on GPU chips (see Sec. 4);

Figure 2: CUDA spin lock of [38, p. 253] with added fences 2. a set ofincantations heuristics for provoking weak be-
haviour during testing (see Sec. 4);

After we reported this issue, Nvidia published an erratum 3. an extensive empirical evaluation across seven GPUs

stating that their code “did not consider [weak behaviours] from Nvidia and AMD (see Tab. 1, Sec. 3 and Sec. 5);
and requires the addition of threadfence () instructions

[...]to ensure stale values are not read” [33].

On AMD, an OpenCL analogue of Fig. 2 (see [1]) allows
stale values to be read on TeraScale 2 and GCN 1.0. 5. a formal model of Nvidia GPUs, informed by our eval-
uation, providing a foundation on which to build more
reliable chips, compilers and applications (see Sec. 5).

4, details of ten correctness issues in GPU hardware, com-
pilers and public software (see Tab. 2 and Sec. 3); and

Hardware vs. language We emphasise that this paper fo-
cuses on hardware behaviours. Our figures show either PTX

litmus tests (i.e. Fig. 1, 3,4, 7, 8, 9, 11), or CUDA programs opjine material We give our complete experimental re-

(i.e. Fig. 2, 6, 10). For the CUDA programs, we extracted aJ)orts online [1], along with extra examples and explanation
shippet that was susceptible to weak memory behaviours an

translated it to PTX by using the mapping in Tab. 5. We then
compiled the PTX litmus test to machine code, and checkedz' Background on GPUs

that the PTX assembler did not reorder or remove memory A GPU (graphics processing unit) featustseaming multi-
accesses (see Sec. 4.4). Executing the litmus test on a GProcessor§SMs compute unit®n AMD), each with multi-
thus reveals the hardware behaviour. ple cores[36, Chap. 2—3] [34, App. G] [11, Chap. 1].

2 2015/6/26

2.1 Execution hierarchy and predicated instructions that only execute if a predicat

Programs map to hardware in a hierarchical waghread ~ €9ISter is setdpt ...) orunsetétpt ...). Fences are pa-
(work-itemin OpenCL) executes instructions on a core. A "ameterised by 8Copemembar . cta (réSp..gl Or .sys) pro-

warp (wavefronton AMD) is a group of 32 threads (64 on vides ordering V_/ithin a _CTA (resp. within the GPU or with
AMD), which execute following the “single instruction mul- the host). Other instructions beacache operatarfor exam-

tiple threads” model (SIMT). Thus threads in a warp exe- ple, load instructions may be annotated with the cache epera

cute in lock step, i.e. run the same code and share a IoroIor .ca (resp..cg) which specify that the load targets the L1

gram counter. Acooperative thread arrayCTA; block in (resp. L2) cache. Several instructions bear a type speuifier
CUDA and work-groupin OpenCL) consists of a config- dlcat_mg their b_|t width and S|g_n_edr_1ess [36, Chap. 5.2]. For
urable number of warps, all executing on the same SM. A brevity, we omit the type specifier in our examples and use

grid (NDRangedn OpenCL) can consist of millions of CTAs. the signed single word size (i.es32) for all instructions.
A kernelrefers to a GPU program executed by a grid. Some of our examples use compare-and-sweg(cas),

We focus on thread interactions either in the same CTA €XChangedtom. exch), andvolatile instructions (which in-
but different warps, or in the same grid but different CTAs. form the compiler that the value in memory “can be changed
We do not test inter-grid or inter-GPU interactions as we did ©" ”S“_ed atany time by argotherthread_ [34, p. 170]in CUDA,
not find any example using these features in the literature, @nd “inhibitoptimization” [36, p. 131]in PTX), but these-in

Additionally we do not test intra-warp interactions; this Structions are notincluded in our model.
would require threads in the same warp to execute different AMD: OpenCL AMD intermediate language (AMD IL) [8]
instructions; several of our incantations (see Sec. 4)irequ s analogous to Nvidia PTX; but AMD does not provide com-
that all threads in a warp execute the same instructions. pilation tools for it, so we cannot use the same approach as
for Nvidia. To test AMD chips we write our tests in OpenCL,
relying on the AMD OpenCL compiler to translate them into
Global memoryis shared between all threads in a grid, and Evergreen [9] and Southern Islands [10] code. Our testing is
may be cached in L1 or L2 caches. The SMs each have theirthus constrained by the compiler; we can inspect the gener-
own L1, and share an L2. There is also one regioshaired ated code, but unlike in the case of Nvidia PTX we cannot
memoryper SM, shared only by threads in the same CTA. jssue memory accesses to specific caches, apply scopes to

GPUs also provide read-only regions (e.g. CUDBN- fences, or prevent the insertion of fences by the compiler. W
stantand texture memory [34, Chap. 3.2.11]). We ignore discuss the impact of these constraints in Sec. 3, and explai
these as they are uninteresting from a weak memory perspechow we guard against compiler optimisations in Sec. 4.4.
tive: reads from a constant location all yield the same tesul We give mappings that reflect how the AMD tools translate

2.3 Parallel Thread Execution (PTX) and OpenCL OpenCL into Evergreen and Southern Islands online [1].

To test hardware, we run assembly litmus tests. Nvidia's 3. A plea for rigour
assembly, SASS, is largely undocumented, except for a list
of instructions [35, Chap. 4] which does not describe their
semantics. Moreover, there is no openly available assemble
from SASS to binary. The AMD TeraScale 2 and GCN 1.0

2.2 Memory hierarchy

Our testing uncovered weak behaviours, and exposed sev-
eral programming assumptions as false. Tab. 2 summarises
our findings; we detail them below, and discuss their impli-

. cations. In essence, this litany of examples is a plea foemor
architectures use the Evergreen [9] and Southern Islagjls [1 rigour in vendor documentation and programming guides.

instruction set architectures (I5As), respectively. Eigias Otherwise, we are bound to find issues in our hardware, com-

are documented but assemblers are not openly available,.
. . penly pilers and software, such as the ones that we present below.
Below we explain how we circumvent these challenges.

The behaviours that we expos®rrespond to classic litmus
idioms, gathered in Tab. 3, together with a brief descriptio
and the figures where the idiom appears.

Nvidia: PTX For Nvidia chips, we write our tests in
Nvidia’s Parallel Thread ExecutiofPTX) low-level inter-
mediate language [36]. PTX abstracts over the ISAs of

Nvidia GPUs. Sec. 4.4 explains how we relate our PTX name| description | figures
tests to the hardware behaviours that we observe, using our ~ coRR coherence of read-read pairs 1,4
OptCheCk tool based on Nvidia’$uobjdump [35, Chap. 2]: mp message passing (ViZ. handshal @, 57,9
we inspect the SASS code and check that it has not intro- b load buffering 8,11
duced reorderings w.r.t. the initial PTX code that woul@alt sb store buffering 12
the intention of our tests.
Our formal model of PTX (see Sec. 5) includes the fol- Table 3: Glossary of idioms
lowing instructions: loadsig), stores §t), ALU operations
(add, and), fences fembar), unconditional jumpstira), set- Experimental setup For each test, we give the memory re-
ting a predicate register if two operands are eqsialy. eq), gion and initial value of each location (s@@t in Fig. 3)

3 2015/6/26

and the placement of threads in the execution hierarchy. it (global x=0
(threads), and we report the number of times the final con- ~ \global y=0
dition (final) is observed ¢bs) on our chips during 100k o, o oo 27,1 11 1ld.ca ri,[y]
executions of the test using the most effective incantation , fence 12 fence

(Sec. 4.3). The complete histogram of results for each test, , st.cg [yl,1 13 1ld.ca r2,[x]
can be found in the online material [1]. We conducted our

) final: r1=1 Ax2=0 threads:inter-CTA

Nvidia experiments on four machines running Ubuntu 12.04, 00S/100k fence GTX5 TesC GTX6 Titan GTX7
and our AMD experiments on a single machine running Win- n°'§p 4978 1035(;381 3613;5 1%%? 03
dows 7 SP1. In the Nvidia case, Tab. 4 lists the CUDA SDK zzzbz;a o 187 o 0 0
and driver versions we used, and gives the PTX architecture membar . sys 0 162 0 0 0
specification, i.e. the argument of therch compiler option.
In the AMD case, Tab. 4 lists the AMD Accelerated Paral- Figure 3: PTXmp w/ L1 cache operatorsr(p-L1)
lel Processing SDK and Catalyst driver versions. The SDKs
include the compilation tools for the respective platforms On AMD we cannot directly tesinp-L1, because we
Nvidia AMD do not have direct access to the caches when working with
‘ GTX5 TesC GTX6 Titan GTX7‘ OpenCL (as explained in Sec. 2.3). Instead, we revert to
SDK |55 55 50 6.0 60 129 the classiomp test, with threads in distinct OpenCL work-
driver | 331.20 334.16 331.67 331.62 331.624.4 groups, all variables in global memory, and OpenCL global
options| sm_21 sm_20 sm_30 sm_35 sm_50 %default fences fiem_fence (CLK_GLOBAL_MEM_FENCE)) between

the loads and between the stores. Without the fences, we
observemp on AMD GCN 1.0 pbs 2956) and TeraScale 2
3.1 Weak behaviours (obs 9327). With the fences we do not obsemp on TeraS-
cale 2. On GCN 1.0 we still observep when fences are in-
serted; inspection of the Southern Islands ISA generated by
This principle ensures that the values taken by a memorythe compiler shows that the fence between load instructions
location are the same as if on SC [28]. Nearly all CPU mod- js removed. It is not clear from the OpenCL specification
els guarantee this [7], except SPARC RMO [43, Chap. D.4], whether this is a legitimate compiler transformation. Oa th
which allows the weak behaviour 6bRR (Fig. 1). As dis- one hand the specification states that “loads and stores pre-
cussed in Sec. 1, this behaviour seems to spark debate foeeding thenem_fence will be committed to memory before
CPUs: indeed, it has been deemed a bug on some ARMany |oads and stores following them_fence”[27, p. 277];
chips [12]. Fig. 1 shows that we observesRR on Nvidia on the other hand it states that “There is no mechanism for
Fermi and Kepler. We did not obsereeRRon AMD TeraS- synchronization between work-groups” [27, p. 30]. We have
cale 2 or GCN 1.0 chips. reported this issue to AMD.

3.1.2 Cache operators Coherent reads coRR We tested whether using different

; o : cache operators within theoRR test can restore SC. The
Message passing mp On Nvidia we tesmp with the loads : e
gep gmp P PTX manual states that after an L2 load (L.eg) “existing

bearing the cache operator which targets the L1 cache, i.e. . . .
ca, (mp-L1, see Fig. 3) and all threads in different CTAs cache lines that match the requested address in L1 will be

The stores bear the cache operateg because our reading evicted” [36, p. 121]. This seems to suggest that a read from

ofthe PTX manual implies that there is no cache operator for 1€ L2 cache can affect the L1 cache.

; . Let us revisitcoRR (see Fig. 1). We run a variant that we
stores that target the L1 cache [36, p. 122]. We instantiate t) .
fence at different PTX levels [36, p. 16Qta, g1, andsys, call coRR-L2-L1 (see Fig. 4), where we first read from the

and also report our observations when the fence is removed."2 cache via the cg operator and then from the L1 cache

We observe the weak behaviour on the Tesla C2075, noVia the . ca operator. Thus the Iogd 1.3in Fig. 1 now holds
matter how strong the fences are. Note that is the default the . ca operator, all the others being the same.

cache operator for loads in the CUDA compiler. [36, p. 121]. h Iiig. 3 Sth%WS tlhamn the ;esla C;ZOT_SBToffenc?hgueLlrlanteis
Thus no fence (i.e. membar or CUDA equivalent in Tab. 5) at updated values can be read reliably from the L1 cache

is sufficient under default CUDA compilation schemes (i.e. even when first reading an updated value from the L2 cache

loads targeting the L1 with the .ca cache operator) to com- di This |sasyesdoe53 rioi applc)j/.(;o AtMIl:)) chlgstor which, as
pile mp correctly for Nvidia Tesla C2075 (e.g. the example IScussed in sec. o.1.1, we did not obSevBR.

Table 4: Compilers and drivers used

3.1.1 Sequential Consistency (SC) per location

in the CUDA manual [34, p. 95]). \olatile accesses PTX accesses can be markadlatile,

We experimentally fix this issue by setting cache op- which supposedly [36, p. 131 for loads; p. 136 for stores]
erators to.cg (using the CUDA compiler flagsXptxas “may be used [...] to enforce sequential consistency be-
-dlecm=cg -Xptxas -dscm=cg) and usingnembar.gl fen- tween threads accessing shared memory”. We test whether
ces (see teshp+membar.glsonline [1]). .volatile restores SC with shared memory with the tapt

4 2015/6/26

init: global x=0 final: r1=1 Ar2=0 threads:intra-CTA CUDA PTX
atomicCAS atom.cas
01 st.cg [x],1 11 1d.cg ri, [x] atomicExch atom.exch
12 fence __threadfence membar.gl
13 1ld.ca r2,[x] __threadfence_block membar.cta
0bs/100k fence GTX5 TesC GTX6 Titan GTX7 atomicAdd(...,1) atom.inc
no-op 2556 2982 2 141 0 store to global int st.cg
membar.cta 1934 2180 0 0 0 load from global int ld.cg
membar . gl 0 1496 0 0 0 store to volatile int st.volatile
membar . sys 0 1428 0 0 0 load from volatile int ld.volatile

control flow @hile, if) jumps & predicated instructions

Figure 4: PTXcoRRmixing cache operators§RR-L2-L1))
Table 5: CUDA to PTX mapping (for CUDA 5.5)

volatile (Fig. 5), a variant omp where all accesses bearthe 3.2.1
.volatile annotation and locations are in the shared mem-
ory region and threads are in the same CTA (but different
warps, see Sec. 2.1). We observe violations on Fermi and
Kepler; thus,contrarily to the PTX manual, thevolatile
annotation does not restore SC for shared memory

init: (

“GPUs exhibit no weak memory behaviours”

Several sources (e.g. [15, 26, 45]) simply omit memory

model considerations. For example, Cederman and Tsi-
gas [26, Chap. 35] describe a concurrent work-stealing

double-ended queue (deque), adapting the queue of Arora
et al. [13] to GPUs. The implementation seems to assume
the absence of weak behaviour: it does not use fer@es.

shared x=0 testing shows that two bugs result from the absence of fences

final: ri=1 Ax2=0 threads:intra-CTA
shared y=0

1 volatile int head, tail;

0.1 st.volatile [x],1 1.1 ld.volatile ri, [y]
0.2 st.volatile [y],1 1.2 1ld.volatile r2, [x] 2 void push(task){
- 3 tasks[tail] = task;
0bs/100k GTX5 TesC GTX6 Titan GTX7 4(+) __threadfence();
6301 4977 2753 2188 0

5 tail++; }

Task steal(){
int oldHead = head;
if (tail <= oldHead.index) return EMPTY;

6
7
8

Figure 5: PTXmp with volatiles fnp-volatile)

3.2 Programming assumptions 9(+) __threadfence();
This section studies the assumptions that several CUDA ex10 task = tasks[oldHead.index];
__threadfence();

amples from the literature make about GPUs. Each para*!®
12 newHead = oldHead; newHead.index++;
if (CAS(&head,oldHead,newHead)) return task;

return FAILED; }
Task pop(){

graph header is an assumption that we have encountered.
We give CUDA or PTX code snippets. We show the orig- E
inal code snippets that are susceptible to undesirable be-
haviours due to weak memory effects, and how they can™®
be modified to prevent those behaviours. To show the dif-lj
ferences between the original and the modified versions, we,
prefix some lines with(-) or (+). The original code con- |4
tains the lines without a prefix or prefixed wih) ; the mod- 5
ified version can be obtained by removing the lines prefixed 21¢+)
with (-) and adding the lines prefixed witlt). 22
Because our framework for testing Nvidia chips tests 23(+)
PTX code, we must translate CUDA to PTX. We use the 24
mapping summarised in Tab. 5, which we discovered by ex-25
amining code generated by the CUDA compiler, release 5.5

tail--;

if (0ldTail oldHead.index)
if (CAS(&head, oldHead, newHead)) {
__threadfence();
return task; }
atomicExch(head, newHead);
head = newHead;
return FAILED; }

(with the compiler flags-Xptxas -dlcm=cg -Xptxas
-dscm=cg to set cache operators tag, to guard against
the behaviour shown in Sec. 3.1.2).

For the examples in Sec. 3.2.1 and 3.2.2 we have also
written OpenCL litmus tests for evaluation on AMD GPUs;

Figure 6: CUDA code for queue of [26, p. 490-491]

In the implementation of [26, Chap. 35], each CTA owns
a deque that it capush to andpop from. If a CTA's deque
is empty then it attempts teteal a task from another
CTA. Each deque is implemented as an array with two in-

this was not possible for the examples in Sec. 3.2.3 becausedlices: tail is incremented byush and decremented by
as discussed in Sec. 2.3, we were unable to avoid automatigpop, andhead is incremented bgteal; tail andhead are

placement of fences by the AMD OpenCL compiler.

declared as volatile. Fig. 6 gives part of the implemeniatio

2015/6/26

Message passing The first bug arises when executing two
threadsly andT} in different CTAs. T pushes to its deque,
writes thetasks array (Fig. 6, line 3) and then increments
tail (line 5). Assume thal’ steals fronily, sees the incre-
ment made by (line 8), and reads theasks array at index
head (line 10). Without fences]’ can see a stale value of
thetasks array, rather than the write df,.

. .. (global t=0 A _ . g
init: (global =0 final: r0=1 Ar1=0 threads:inter-CTA

01 st.cg [d],1 511 1ld.volatile r0, [t] K
0.2(+) membar.gl 4 12 setp.eq p4,r0,0 8
0.3 1ld.volatile r2,[t] s 1.3(+) @!p4 membar.gl 9
0.4 add r2,r2,1 5 1.4 Q!'pd 1d.cg r1,[d] w
05 st.volatile [t],r2 s

*original line in Fig. 6
0bs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 4 36 65 0 0 0

Figure 7: PTXmp from load-balancingdlb-mp)

We distilled this execution into the dynamic-load-bal-
ancing testdlb-mp (Fig. 7) by applying the mapping of

can read from the store 0.4, and the CAS 0.1 can read from
the CAS 1.3, as observed on Fermi (Tesla C2075) and Kepler
(GTX 660, GTX Titan).This corresponds to the steal read-
ing from the later pop, and hence the deque losing a task.
Adding the lines prefixed with (+) forbids this behaviour.

On AMD TeraScale 2 we find that the OpenCL compiler
reordersTy’s load and CAS. We regard this as a miscom-
pilation: it invalidates code that uses a CAS to synchronise
between threads, even if the threads are in the same work-
group. Therefore we do not present the number of weak be-
haviours for HD6570 in Fig. 8 and write “n/a” instead. We
reported this issue to AMD. On AMD GCN 1.0, we observe
the weak behaviour of an OpenCL versiorodi-Ib.

Adding fences (see lines prefixed witty) in Fig. 6)
forbids the behaviours of Fig. 7 and 8 in our experiments,
on all Nvidia chips and on AMD GCN 1.0. As we explain in
Sec. 3.2.3pop’s store tohead requires an atomic exchange.

3.2.2

Several sources assume that read-modify-writes (RMW) pro-
vide synchronisation across CTAs (e.qg. [30, 38, 42]). Fer ex
ample, Stuart and Owens “useomicExch() instead of a

“Atomic operations provide synchronisation”

Tab. 5 to Cederman and Tsigas’ implementation [16]. Each volatile store andhreadfence () because the atomic queue

instruction in Fig. 7 is cross-referenced to the corresjpand
line in Fig. 6. Without fences, the load 1.1 can reaend
the load 1.4 can reat] as observed on Fermi (Tesla C2075)
and Kepler (GTX 660, GTX Titan)This means reading a

stale value from the task array, and results in the deque

losing a task.Adding the lines prefixed with(+) forbids

has predictable behaviothreadfence () does not (i.e. it
can vary greatly in execution time if other memory opera-
tions are pending)” [42, p. 3]. Communication with the au-
thors confirms that the weak behaviour is unintentional.
Nvidia’s CUDA by Examplg38, App. 1] makes similar
assumptions. Fig. 2 shows theck andunlock from [38,

this behaviour. We did not observe the weak behaviour on App. 1]. For now we ignore the lines prefixed with(a),

Maxwell or AMD.

Load buffering The second bug arises again when execu
ing Ty andTy in different CTAs. T, pushes to its dequé}
steals, reads theasks array (Fig. 6, line 10) and increments
head (line 13).7y pops, reads the incrementedad with

a compare-and-swap (CAS) instruction, resets] and re-
turns empty. Thefl pushes a new task writing to tasks

at the original index (line 3). The implementation allows
Ty’s steal to read, the second value pushed to the deque.

... [global t=0 T _ p)
init: (global h=0 final: r0=1 Ar1=1 threads:inter-CTA

0.1 atom.cas r0, [h] ,0,122 11 1d.cg ri1,[t] 1*0
0.2(+) membar.gl 211.2(+) membar.gl 1
0.3 mov r2,1 313 atom.cas r3,[h],0,11s
04 st.cg [t],r2 3

*original line in Fig. 6
0bs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 750 399 2292 0 nfa 13591

Figure 8: PTXlb from load-balancingdlb-Ib)

which we added. Stuart and Owens’ implementation [42,

i P- 3] is similar, but useatomic exchangén unconditional

RMW) instead of CAS. Thelock andunlock of Fig. 2

are used in a dot product [38, App. 1.2] (a linear algebra
routine), where each CTA adds a local sum to a global sum,
using locks to provide mutual exclusion. The absence of
synchronisation in the lock permits stale values of thelloca

sums to be read, leading to a wrong dot product calculation.

init; (8LoPal =0 g r1=0Ar3=0 threads:inter-CTA
global m=1

01 st.cg [x],1 i 1.1 atom.cas ri,[m],0,1 *2

0.2(+) membar.gl 5 1.2 setp.eq r2,r1,0 2

0.3 atom.exch r0,[m],0 s 1.3(+) @rl membar.gl 3
14 @rl 1d.cg r3,[x]

*original line in Fig. 2
0bs/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970
0 47 43 512 0 508 748

Figure 9: PTX compare-and-swap spin lockag-s)

In Fig. 9, we show thélock andunlock functions of

We distilled this execution into the dynamic-load-bal- Fig. 2, distilled into a variant of thenp test calledcas-sl

ancing testdlb-Ib, Fig. 8), again following Tab. 5 and Ce-

(“spin lock using compare-and-swap”), using the mapping in

derman and Tsigas’ code [16]. Without fences, the load 1.1 Tab. 5. We ignore the additional fences (lines 0.2 and 113) fo

2015/6/26

now. Lines 0.1 and 1.4 correspond to a store and a load inside it (global x=0
a critical section; the other lines cross-reference Fig. 2. global m=1
Locationm holds the mutex, which is initially locked (i.e.
m = 1), andx is the data accessed in the critical section.
The left thread stores to and then releases the mutex with
an atomic exchange. The right thread attempts to acquire
the lock with a CAS instruction (1.1), and if the lock was
acquired successfully (1.2), loads fram(1.4). The final S —
*original line in Fig. 10

constraint checks whether the lock is successfully acquire gps/100k GTX5 TesC GTX6 Titan GTX7 HD6570 HD7970

) final: r0=1 Ar2=0 threads:inter-CTA

01 1d.cg ro0,[x] *7 1.1 atom.cas r2,[m],0,1 *3
0.2(+) membar.gl 8 1.2 setp.eq p,r2,0 4
0.3(+) atom.exch r1,[m],0 o 1.3 @p mov r3,1 5
0.4-) st.cg [m],0 10 1.4+) @p membar.gl 6
0.5(-) membar.gl u 15 @p st.cg [x],1 7

(i,e.r1 = 0), yeta stale value of is read (i.er3 = 0). 0 99 41 58 0 n/a n/a
Fig. 9 gives the outcome for threads in different CTAs

using global memoryOn Fermi and Kepler we observed Figure 11: PTX spin lock future value test-future)

stale values, violating the lock specification of [42], and Fig. 10. We assume that the threads are in different CTAs.

showing the implementation from [38, App. 1] is wrong. Again, we first ignore the lines markea) . The test checks
Our reading of the PTX manual implies that thgl whether a thread in the critical section can read a value

fences (prefixed with &+) in Fig. 9) forbid the weak be- from the future, i.e. written by the next critical sectiornel
haviour [36, Chap. 8.7.10.2], and with them, we no longer |eft thread reads a value within a critical section (line)0.1
observe it during testing. As pointed out in the introductio then releases the lock (line 0.4). The right thread attetopts
our findings prompted Nvidia to publish an erratum [33] con- acquire the lock (line 1.1), and if successful, write® x in
firming the false programming assumptions of [38, App. 1]. another critical section (line 1.5). The final condition cke

On AMD TeraScale 2 and GCN 1.0, we observe stale whether the left thread can read the value written by thet righ
values for an OpenCL version ofs-sl(see [1]). Thus re- thread when the right thread acquires the lock. Fig. 11 shows
placing CUDA atomics with their OpenCL counterparts in - that this behaviour can be observ&tis effect can lead to a
the dot product of [38, App. 1] would result in an incorrect yjolation of the isolation property described above.
implementation. This weak behaviour is not observed eXper- The bugs arise because the CAS at the entry of the Crit_
imentally by inserting OpenCL global memory fences. ical section (Fig. 10, line 3) does not provide any order-
ing nor does the release of the lock (line 10). As is, the
__threadfence() does not help, because it appeafter
He and Yu [22] describe how to execute transactions for the release of the lock: this does not prevent the lock releas
databases stored in global memory. They aim to guaran-line 10) from being reordered with the accesses in the- criti

tee theisolation property [21], i.e. the database state re- calsection (line 7). The fence would need to be placed before
sulting from a concurrent execution of transactions should the release of the lock.

match some serial execution of the transactions. We distill A possible fix for Fig. 10 is to remove the lines prefixed
litmus tests to experimentally validate the locks used Iy th with (-), and add the lines prefixed with) . The corrected
database operations. version has fences both at the entry and exit points of the
Spin lock Fig. 10 shows the CUDA spin lock of [22, cr?t!cal secti.on. _The spin lock uses CAS before entering_ the
critical section in an attempt to provide mutual exclusion,
but PTX annuls the guarantees afforded to atomic operations
if other stores access the same location [36, p. 170], so we
replace the normal store that releases the lock (the onéroth

3.2.3 “Only unlocks need fences”

p. 322]. For now, we ignore the lines markéd) . The lock-
ing is handled by the CAS on line 3, the critical section is on
line 7, and the write on line 10 implements the unlock.

1 bool leaveLoop = false; access tdockAddr) with an atomic exchange operation. We

2 while(!leaveLoop) { applied the equivalent transformations to the distillest te

3 int lockValue = atomicCAS(lockAddr,0,1); Fig. 11, and did not observe the weak behaviour anymore.

4 if (LockValue == 0) {

5 leavelLoop = true; :

o threadfence() 4. Our testing methodology

7 // critical section Our testing tool takes a litmus test (as given in the previous
8(+) __threadfence() ; sections) and produces a CUDA or OpenCL executable that
9(+) atomicExch(lockAddr, 0); runs the test many times while stressing the memory system,
10(-) *lockAddr = 0;} and produces a histogram of all observed outcomes.
11(¢-) __threadfence();}

4.1 Writing and generating litmus tests

Fig. 12 illustrates the GPU litmus format. Parts of it come
To investigate the correctness of the lock, we distilled the from CPU litmus tests [5, 6]; others are specific to GPUs.
sl-future test, given in Fig. 11, from the CUDA code of We focus on the PTX case, the AMD case being similar.

Figure 10: CUDA spin lock implementation of [22, p. 322]

7 2015/6/26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

memory stress o o [) e o [) [[)
general bank conflicts [[(] (] [[(] o
thread synchronisation (] (] { (] { [° o
thread randomisation L [L [[) [) [) [)
Nvidia coRR(intra—CTA) 0 0 0 0 0 1235 0 9774 161 118 847 362 632 3384 399385
GTX Ib (mter-CTA) 0 0 0 0 0 0 0 0 181 1067 1553247 4 37 83 486
Titan MP (inter-CTA) 0 0 0 0 0 621 0 2921 315 1128 2372347 7 94 442 2888
sb (inter-CTA) 0 0 0 0 0 0 0 0 462 1403 3308673 3 50 88 749

AMD coRR (intra-CTA) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Radeon Ib (in_ter-CTA) 10959 8979 31895 29092 13510 12729 29779 26784 D360 3762438664 5321 10054 32796 34196
HD 7970 MP (inter-CTA) 212 31 243 158 277 46 318 247 473 217 1289 563 6119 2542 1628

sb (inter-CTA) 0 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0

Table 6: Observations out of 100k executions for combimatiaf incantations (all tests target global memory)

GPU_PTX 5B where non-SC executions are encoded as cyclic graphs. It
{0:.reg .s32 r0; 0:.reg .s32 r2; takes as input a set of edges, enumerates the possible cycles
(1)‘ ‘reg 'bg; r(l) X (1)"reg 'bg; r;’ BRA that can be formed with those edges, and generates a litmus
:.reg .S ro; :.reg .S ri; . . .
i:.reg .b64 r3 = x;} test from each cycle. The main challenge in extendiiyg

from CPUs to GPUs was the need for a much larger set of

edges, to accommodate for GPU features such as scope trees
mov.s32 r0,1 | mov.s32 r0,1 ; .. .

and memory maps. Additionally, because we write our tests
st.cg.s32 [r1],r0 | st.cg.s32 [r1],r0 ; . . di | . be decl db
1d.cg.s32 r2,[r3] | 1d.cg.s32 r2,[r3] ; in an intermediate language, registers must be declared be-
fore use (see lines 2-5, Fig. 12), and dependencies must be
protected against compiler optimisations (see Sec. 4.5).

1:.reg .b64 rl1 = y;
TO | T1 ;

© 0O N O OB~ WN PP

=
o

ScopeTree (grid(cta(warp TO) (warp T1)))
x: shared, y: global
exists (0:r2=0 /\ 1:r2=0)

B
N

4.2 Running litmus tests

Figure 12: GPU PTX litmus tesib Our tool generates code that is split into two parts: the CPU

. , code and the GPU kernel code.
Line 1 states the architecture (hetBU_PTX) and test

(here SB for “store buffering”, the typical x86-TSO sce- Testing locations The tests’ memory locations (vitesting
nario [37]). Lines 2-5 declare and initialise registersteno locationg are either in the global or shared memory region.
that PTX registers are typed (see [36, Chap. 5.2]). Global testing locations are allocated and freed by the CPU
Lines 6-9 list the test program with each column describ- while shared testing locations are statically allocateat. F
ing the sequential program to be executed by a thread. Eactincantations (see Sec. 4.3), we allocate an array of global

sequential program starts with an identifier (e1g), fol- memory, distinct from the testing locations.
lowed by a sequence of PTX instructions. The list of sup-))
ported instructions is described in Sec. 2.3. Testing threads In GPU programming, threads have access

The test ends with an assertion about the final state of 10 their CTAid, CTA size and thread id (within the CTA) [34,
registers or memory. In Fig. 12, line 12 askgifs register ~ P- 92 These values can be combined to give each thread a
r2 andT}’s registerr2 can both hold at the end. un!qyeglpbal id within the grid. These ids dlﬁgr from CPU

)) -) _ affinity since they are part of the programming model, e.g.
Execution hierarchy A test specifies the location of itS the semantics of CUDA's_syncthreads () and OpenCL’s
threads in the concurrency hierarchy (see Sec. 2.1) throughyayrier () differs for threads in the same or distinct CTAs.

a scope tree(borrowing the termscopefrom [24, 25]). The kernel function, executed by all threads, switches
In Fig. 12, we declare the scope tree on line I9:and pased on the global id of a thread. A settedting threads
Ty are in the same CTA but different warps. runs the test and records register values into a global array

Memory hierarchy A test specifies a region for each loca- thatthe CPU can copy and record. Unused threads either exit
tion (viz. shared or global, see Sec. 2.2) imamory map the kernel or participate in incantations (see Sec. 4.3).
immediately after the scope tree: e.g. line 11 in Fig. 12 spec

ifies thatz is in shared memory anylis in global memory. Scope tree Our tool computes global ids of the testing

threads matching the scope tree specified in the litmudtest:
Automatic test generation We extendeddiy—a tool for the scope tree requir@g andT; to be in different CTAs, we
systematically generating CPU litmus tests (see [6] and computely’s andT;’s global id so that their CTA ids differ.
http://diy.inria.fr)—to generate GPU tests. Tlhlgy Unless the thread randomisation incantation (Sec. 4.8.3) i
tool assumes an axiomatic modelling style (see Sec. 5.1)enabled, global ids are assigned in ascending order.

8 2015/6/26

4.3 Incantations CTA weak behaviours when combined with memory stress:

The setup of Sec. 4.2 only witnessed weak behaviours in €omparing columns 12 and 16 (which differ only by general

combination withincantationson Nvidia chips; these incan- Pank conflicts), the number of weak behaviours lforde-
tations also influenced the incidence of weak behaviours oncré@sed from 2247 to 486. On HD7970 we only obsesked
AMD chips. We benchmarked them on a subset of our lit- _/vhe_n bank co_nfllcts were enabled, but th|s_weak behaviour
mus tests (see complete results online [1]). Tab. 6 gives aiS Still notably infrequent; we observep consistently more
selection of results for the GTX Titan and Radeon HD 7970, Oftén when the incantation is enabled.

highlighting for each test the column (i.e. combinationrof i
cantations) with the greatest incidence of weak behaviours . .)
We write intra-CTA (resp. inter-CTA) for tests with threads 1YPothesis Varying the layout, e.g. the thread ids of test-
in the same CTA (resp. different CTAS). ing threads and the number of threads per kernel, of a test in

We present absolute numbers of observations over 100kthe execution hierarchy, ip a way that is.consistent with the
runs to demonstrate the extent to which our incantations SCOP€ tree of the test, might exercise different components
provoke weak behaviour during testing: we emphasise that?_i”d paths through thg hardware and hence, increase the like-
for correct GPU programming thmssibility notprobability ~ 1h0od of weak behaviours
of weak behaviours is what matters. Implementation We randomly select the ids of testing
threads and the number of non-testing threads, while réspec
ing the scope tree, on each test execution.

4.3.3 Thread randomisation

4.3.1 Memory Stress

Hypothesis Stressing caching protocols might trigger weak i i
behaviours. For example, a bus may be more likely to trans-Efficacy Tab. 6 shows that for all tests, thread randomi-

fer data out of order when it is under heavy stress than whenSation contributes to the columns yielding the most weak
it is only servicing a few requests. behaviours on Titan. In intra-CTA testsdRR) thread ran-

) _ domisation increases the number of weak behaviours ob-
Implementation All non-testing threads branch to a code served dramatically: comparing columns 15 and 16 (which
block and repeatedly access non-testing memory locations. gifer only by thread randomisation), the number of weak
Efficacy Tab. 6 shows that we did not obsersie andlb behaviours forcoRR increased from 3993 to 9985. On
on Titan without this incantation. Combined with thread-ran HD7970, thread randomisation consistently decreases the
domisation (column 12), this incantation provokes the most extent to which we observep, but consistently increases
weak behaviours for inter-CTA testth(mp andsh). For observations olb when combined with memory stress.

AMD HD7970 we did not need memory stress to observe

weak behaviour, although we obsemp consistently more 434 Thread synchronisation

when this incantation is enabled. Hypothesis Synchronising testing threads immediately be-

fore running the test pomotes interactions while values are
4.3.2 General bank conflicts actively moving through the memory system, which might
Hypothesis GPUs access shared memory throlgimks increase the likelihood of weak behaviours.

which can handle only one access at a tiBank conflicts |\ \ementation Testing threads synchronise immediately

occur when multiple threads in a warp seek simultaneous ., e rnning the test by atomically incrementing a counte
access to locations in the same bank. Hardware mlghthandleand busy-waiting until the counter reaches the number of

accesses out of order to hide the latency of bank conflicts. - 4c participating in the test. Compared with a similar

Implementation Bank conflicts apply only within a warp, incantation used in CPU testing [5] we had to take care to
so this incantation is performed only by threads in the same avoid deadlock due to the lack of progress guarantees across
warp as a testing thread. The non-testing threads performCTAs [34, p. 12] and within warps [20].

the same actions as the testing thread, but on locations thaEﬁicacy Tab. 6 records the most weak behaviours on Titan
are offset fr(_)m the testing locations. These offsets_ can beWhen thread synchronisation is enabled. In inter-CTA tests
calculated either to produce bank conflicts or to avoid them, (Ib, mp, andsb) thread synchronisation increases the num-
and we randomly oscillate between these on each iterationbe'r of V\’/eak behaviours dramatically: comparing columns 10
of the test. For warps that do not contain a testing thre&d, th .

. X . . X and 12 (which differ only by thread synchronisation), the
threads either exit as in the basic testing setup (see S¢. 4. number of weak behaviours observed brincreased from
or perform the memory stress incantation (see Sec. 4.3.1).

1403 to 6673. For HD7970, thread synchronisation consis-
Efficacy Tab. 6 shows that for intra-CTA testsoRR), this tently increases observationslbfandmp.

incantation combined with all others (column 15) provokes] o

the most weak behaviours on Titan. However, general bank#4 Checking for optimisations

conflicts alone do not expose any weak behaviours (see colWe now discuss how we guard against unwanted compiler
umn 5), and even consistently reduce the number of inter-optimisations in the case of Nvidia and AMD.

9 2015/6/26

For Nvidia, recall from Sec. 2.3 that we write our tests in files by hand to guard against unwanted compiler optimisa-
PTX. We compile this to SASS machine-level assembly with tions. We observed that multiple loads from the same loca-
the ptxas assembler, which optimises the code for efficiency. tion (e.g in Fig. 1) get optimised into a single load. We ex-

If we invoke the assembler with minimal optimisations plain online [1] how to suppress this optimisation. We also
(-00), we find that although each PTX load or store has a explain how to check whether the order of loads and stores
corresponding SASS load or store, instructions that were ad is consistent with the original litmus test.
jacent in the PTX code are separated by several instructions
in the SASS code. This is undesirable for testing: it can make 4.5 Manufacturing dependencies
the difference between observing weak behaviours or not. We also want to test whether dependencies between memory

If we invoke the assembler with maximal optimisations accesses have an effect on memory consistency. For CPUs,
(-03), most intermediate instructions are optimised away. sych litmus tests usialse dependencid6]: ones that have
However, we found that on rare occasions some instructionsno effect on the computed values. For example, in the PTX
were reordered. For example, testingRR on Maxwell code snippet in Fig. 13a, there is address dependency
uncovered cases where the CUDA 5.5 compiler reorderedpetween the load in line 1 and the load in line 5, since
volatile loads to the same address; we did not observe thisthe result of the first load is used to compute the address
for CUDA 6.0. This is again harmful for testing, as we could of the memory location accessed by the second load. The
attribute weak behaviours to the hardware, when in fact they dependency is a false dependency as the result ofahés
were introduced by the compiler. In fact, such optimisation always0, so the subsequeatid never changes the value of
can occur at any optimisation level, in principle even @ the address registes.
(which does not fully disable optimisations).

1 1d.s32 r1, [r0]

To overcome these challenges, we developedpbeheck > T
tool that detects whether SASS code has been optimised. TQ, .+ 164 139 r3: r2
do this, we first add instructions to the PTX code of a lit- , .44 uea ra, ra, r3
mus test that specify certain properties of the test, such as; 14.s32 r5, [r4]
the order of instructions within a thread. The compiled code
thus contains both the litmus test code and the specification (a) Optimised byptxas (-03) (b) Not optimised byptxas (-03)
Our optcheck tool takes a binary, obtains the corresponding
SASS code usinguobjdump [35, Chap. 2], and then checks
whether the SASS code and the specification are consistent. Since we compile our litmus tests with the highest opti-

A specification (in PTX) consists of a sequencexof misation settings (cf. Sec. 4.4), the PTX assembler would
instructions, placed at the end of each thread, for example: recognise that the result of ther is always0, and hence

: : : remove lines 2—4, thereby removing the dependency. There-
register use L nstruction type fore, we use a different scheme for testing dpependencies, ex
xor.b32 r2, rb, 0x07£3a001 N emplified in Fig. 13b. It is based amd-ing with a constant
constant L position that has just the high bit set. The result of this operatidh wi
)) always be0, since in our litmus tests all memory locations
Eachxor instruction corresponds to exactly one memory ac- g initialised ta) and the store instructions only write small
cess instruction. The integer literal of asrr instruction (last positive values (with the high bit beirg. However, deter-
operand) specifies several properties of the correspoading ining that the result i8 would require an inter-thread anal-

cess: which register it uses, what type of instruction ieigy(ysis (which the PTX assembler does not perform). Thus, the
00 for a load with cache operatoeg), and its position in the dependency is left intact.

order of memory access instructions. The constant serves to

dlstlngwsh these spec!flcatlon |nstruct|on§ from any in- 5 A model of Nvidia GPUs

structions that appear in the code. In the litmus tests we gen

erate, the accesses within a thread use different registers Sec. 3 illustrates some difficulties faced by GPU program-

we can always create a one-to-one correspondence betweefers. One crucial issue is to reliably predict the possible b

memory accesses amdr instructions. haviours of concurrent GPU programs. As a step forward,
Our optcheck tool was essential in checking the data We present a formal model for a fragment of PTX. We also

which informs our model of PTX (Sec. 5); this data comes Propose a simulation tool that determines the allowed be-

from running 10930 tests on the Nvidia chips of Tab. 1. Our haviours of PTX litmus tests w.r.t. our formal model.

AMD testing is for now more modest: 12 distinct litmus tests))

to assess weak behaviours and programming assumptions ip-1 Axiomatic models

Sec. 3 and 14 tests to evaluate the incantations of Sec. 4.3. Our model is axiomatic (see e.qg. [6, 7]), thus discriminates
For all these tests we checked the generated Evergreerior a given program, itsandidate execution&iven a PTX

(for TeraScale 2) and Southern Islands (for GCN 1.0) ISA program we build a set of candidate executions which our

1d.s32 r1, [r0]

and.b32 r2, ri, 0x80000000
cvt.u64.u32 r3, r2
add.u64 r4, r4, r3

1d.s32 r5, [r4]

a b~ W NP

Figure 13: Load-load address dependencies

10 2015/6/26

model partitions into executions that amfowed (the pro- Communication relations Theread-from relation(rf) as-

grammaybehave in this manner) éorbidden(the program sociates every readwith a unique corresponding write that

cannotbehave in this manner). agrees with- on variable and value components. In Fig. 14,
the load ofy on the second thread reads from the storg of

init: (global x=0) final: T0=1 Ar2=0 threads:intra-CTA on thefirst thread, as indicated by the final stati=(). Thus

global y=0 we have a read-from between the two corresponding events
01 st.cg [x],1 11 1d.cg 0, [y] b <_':1_ndc. The Igad ofx on the s_econd thread_regds fro.m the
02 membar.cta 12 membar.gl initial state (sm_c&2=0 in the flngl §tate), which is depicted
03 st.cg [yl,1 13 1d.cg r2, [x] as arf arrow W|t_h no source pointing to the redd
Writes to a single location are totally ordered tgher-
enceco, i.e. the order in which they hit the memory.
a: W.cg x=1 ‘ c: R.cgy=1
r
membar.cta, po —ra membar.gl, p 5.1.2 Froma PTX litmus to its candidate executions
b: W.cg y=1 rfd: R.cg x=0

Recall that a PTX litmus test (see Sec. 4.1 and Fig. 12) spec-
Figure 14: An execution of theap test, similar to Fig. 3 ifies the shared variables, with initial values, the seqaeafc
instructions for each thread, and a scope tree describiwvg ho
the threads are organised into warps and CTAs.
i . We can enumerate the candidate execution graphs of a
Informally, a candidate executionis agraph (see .9. BiB. 1 jimys test by unwinding the body of each thread: this gives
which consists of a set ahemory eventéor each thread, |5 the program ordepo for each thread, as well as the
and relations over these events. These relations desbgbe t dependency and fence relations, which are includegbin

program ordemwithin a thread, theommunicationbetween pe gcope relations come directly from the scope tree. Once
threads, and specifically for GPUs, tseopesof threads yheqe relations are established, any choice for the read-fr
along the memory hierarchy. and coherence relations respecting the above definitions
yields a candidate execution graph.

5.1.1 Candidate executions

Memory eventgive a semantics to instructions (we omit the
formal instruction semantics for brevity). Essentiallyadls
give rise toreads and stores tavrites

For example in the test of Fig. 14, the first thread issues Given a candidate execution graph, originating from a PTX
two stores, the first one to memory locatioand the second litmus test, we seek to answer the question of whether the ex-
one to locatiory, separated by a fencedmbar . cta). In the ecution is allowed or not. As mentioned earlier, we achieve
execution graph of Fig. 14, we have two corresponding write this through an axiomatic model. Essentially, an axiomatic
events, bearing the same cache operatgy, (@nd mention- model lists a set of constraints over execution graphst buil
ing the same locations and values as the store instructionsfrom the primitive relations described above, such that an
The second thread issues two loads frpandx, separated ~ execution isallowedif and only if it satisfies the constraints.
by a fence fembar.gl). In the execution graph, we have
two corresponding read events, bearing the same cache op2.2.1 Derived relations over events
erator ¢g), and mentioning the same locations as the load The following derived relations are useful in defining the
instructions. The values of the reads are given by the final constraints of our model.
state of the litmus test.

5.2 Defining our model

o . The relationpo-1loc is the program ordepo restricted to
Scope relationdink events from threads in the same CTA eyents having the same memory location.

(cta), same grid g1) and anywhere in the systemsys).

Note that thesys relation is simply the universal relation The relation rfe is therf relation restricted teexternal

between all events. events, i.e. events coming from different threads. For exam
ple in Fig. 14 the read-from relation betwekmndc is in

The program order relation o) totally orders events in @ act anrte relation, as ande belong to distinct threads.
thread, and does not relate events from different threads.

Thedependencselationdp, included inpo, relates events ~ The from-read relationfr relates a read to all the writes
in program order whose instructions are separated by anoverwriting the value: reads from. Formally(r, w) relates
addresgaddr), data(data) or control (ctr1l) dependency. by fr whenr reads from a writev’ (i.e. (w’,r) is in rf)

Similarly, the membar fencerelations, included inpo, such thatw’ hits the memory before (i.e. (w’, w) is in co).
relate events whose instructions are separated by a fence. In Fig. 14, the read of on the second thread reads from
There is one relation per strength of fenses, gl andcta. the initial state. By convention the initial state for a give
In Fig. 14 the fence on the first thread corresponds to the location hits the memory before any update to this location;
membar . cta relation between the writesandb. thus the read of x is in fr with the update; of x.

11 2015/6/26

1 let com =rf | co | fr 8 let sys-fence = membar.sys
2 let po-loc-1llh = 9 let gl-fence = membar.gl | sys-fence
3 WW(po-loc) | WR(po-loc) | RW(po-loc) 10 let cta-fence = membar.cta | gl-fence
4 acyclic (po-loc-11h | com) as sc-per-loc-1llh 11 let rmo-cta = rmo(cta-fence) & cta
5 let dp = addr | data | ctrl 12 let rmo-gl = rmo(gl-fence) & gl
6 acyclic (dp | rf) as no-thin-air 13 let rmo-sys = rmo(sys-fence) & sys
7 let rmo(fence) = dp | fence | rfe | co | fr 14 acyclic rmo-cta as cta-constraint
15 acyclic rmo-gl as gl-constraint

Figure 15: RMO. cat file 16 acyclic rmo-sys as sys-constraint

5.2.2 The.cat format illustrated on Sparc RMO Figure 16: RMO per scope

The .cat format of [7] uses a small language that allows rf, co andfr. Line 3 definepo-loc-11h: program order
the user to describe an axiomatic model in a succinct way. A over single locations without read-read pairs. We require o
. cat file, together with a litmus test, can be given to baed line 4 that communications do not contradiet-1loc-11h.

tool (see [7] ancthttp://diy.inria.fr/herd). Given an The weak behaviour afoRR is allowed by our model,
instruction semantics module (i.e. a way to translate a pro-because we excluded the read-read pairs fronsth@er-
gram into a set of candidate executions) for the language un-Loc-11h check at line 3.

der scrutiny (in our case PTX), the tool takesaat file (e.g.

the one in Fig. 16) to produce a simulator that enumerates all
the valid executions of a litmus test.

NO THIN AIR preventsausal loopswhere the dependency
and reads-from, that intuitively suggest causation, form a
cycle. Load buffering tests, e.glb-Ib (Fig. 8), check for
Syntax of . cat files In Fig. 15 and 16, we use several syn- violations of this principle. Formally, following [3, 4, 7]
tactic constructs that we list here. One declares newoelgiti this corresponds to lines 5-6. Line 5 defines the reladipn
with let. The union of relations is writte, and their in- (for dependencies), made of the union of address, data, and
tersection is&. One can obtain a subrelation of a relation control dependencies. Line 6 declares the chesckthin-

r using various filters: for exampl@ (r) returns only the air, which requires that the union ép andrf is acyclic.

pairs of write events related by, RW(r) returns the read-
write pairs related by. One can enforce the acyclicity of
a relationr by declaring the checkcyclic r. One can
give a name to such a check with the keywagd for ex-
ampleacyclic (po | com) as sc declares a new check
sc, that enforces the acyclicity of the union of program order
and communication relations.

Our model resembles Sparc’s Relaxed Memory Order
(RMO) [43], factoring in the GPU concurrency hierarchy. As
an introduction to thecat syntax, we present here theat 5.3 Our PTX model
transcription of Sparc RMO as formalised in [3].

The rmo relation declared at line 7 collects the orderings
due to dependenciedp, inter-thread communicationfe,

co andfr, and fencesence, where the behaviour of fences

is left parametric. Constraints ovetio can be used to forbid

the weak behaviour of idioms such as message passing

or store bufferingsb, when using the appropriate ordering,
e.g. fences between writes and dependencies between reads.
Such constraints are at the heart of our PTX model.

Our model is the concatenation of Fig. 15 and 16, and im-
Intuitively, RMO allows any pair of memory accesses to plements RMQper scopeln contrast to RMO for CPUs, for
different locations to be reordered, unless separated by awhich Fig. 15 suffices, our PTX model duplicates e
dependency or a fence. For example, RMO allows the non-relation at each scope (see lines 11, 12 and 13).

SC behaviour ofnp (see Fig. 14). To forbid this behaviour, More precisely, lines 8-10 declare the relatiofss-
one can use a fence between instructions 0.1 and 0.3 and &ence, gl-fence and cta-fence, which provide order-
dependency between instructions 1.1 and 1.3. Additionally ing within the named scopes. Lines 11-13 then instantiate
RMO allows the testoRR of Fig. 1. the generiamo relation (see Fig. 15, line 7) for each scope
of fence, using the intersection operatwy {0 restrict to the
appropriate scope. Lines 14-16 enforce the acyclicity ef th
SC PER LOCATION WITH LOAD -LOAD HAZARD Most threermo relations; this implements RMO at each scope.
CPU hardware guarantees what we call PER LOCATION In Fig. 14, the execution ofp exhibits a cycle in the
explained in Sec. 3.1.1. RMO relaxes this constraint, as it union ofmembar. cta, rfe, fr andmembar.gl, i.e. a cycle
allows coRR (Fig. 1). As shown in Fig. 1, Nvidia chips in rmo-cta. Our model forbids this execution by the con-
exhibit this behaviour; thus our model allows it. straintcta-constraint at line 14.

Formally, following [3, 4, 7], this corresponds to the con-
straintsc-per-loc-11h on line 4 of Fig. 15, which builds
on the definitions on lines 1 and 3. More precisely, line 1 de- We developed a PTX simulator as part of tieed tool [7]:
fines the relatiorcom (for communication) as the union of it enumerates, for a litmus test, its candidate executions

Formally, RMO relies on three principles, detailed below.

5.4 Validating our model

12 2015/6/26

(see Sec. 5.1.1), then discriminates them following our PTX case both with and without optimisations (e-g3 and-00),
model (see Fig. 15 and 16). We automatically generatedthen run both versions with the same input while logging the
10930 tests with our extension of thg tool (see Sec. 4.1). accesses to volatile variables. If the traces of the twdeess

We supplied all our tests tbherd, and our PTX.cat differ, an invalid optimisation has been detected. Motisse
model: our model is experimentally sound w.r.t. our 10930 al. extend this work to a subset of C++11 [31].
tests for the Nvidia chips of Tab. 1. This means that when- Our approach differs from these in that we do not make
ever the hardware exhibits a behaviour, our model allows it. use of an unoptimised version of the code, but instead embed

We provide all experimental data for all chips online [1]. a specification of the expected instruction sequence irgo th
o optimised version. Moreover, we statically check whether
5.5 Limitations of our model the compiled code conforms to the specification. Finally, th

Our model reflects the hardware behaviour of a PTX pro- methods have different aims: our aim is not to find compiler
gram, compiled in the setup given in Tab. 1, in which ac- bugs but to detect unwanted reorderings due to compilation.

cesses of shared data have not been reordered or optimiseg}PU models Hower et al. proposed several models for

as checked by ousptcheck tool (see Sec. 4.4). The Ii_mita— GPUs [24, 25]. All of these models are “SC-for-DRF” mod-
t!ons qf our _model are as follows: we only handle the instruc- els, i.e. only concern data race free programs, and ensatre th
tions listed in Sec. 2.3, and_ we assume that all accesses USE,ch programs have an SC semantics. Somewhat relatedly,
the . cg cache operator (W.h'Ch targets the L2 cache).) Hechtman and Sorin show that weak memory has negligible
The reason for choosingeg is that our observations o tormance benefits on their set of benchmarks, thus argue
on Fgrm| (see 3.1.2) show that it is not pqsable to restore -+ S¢ is an attractive model for GPUs [23]. By contrast,
ordering between accesses marked (targeting the L.1). and since we are concerned with hardware, we give seman-
tics to race free and racy programs alike.
6. Related work Sorensen et al. [40, 41] proposed an operational model
Testing and modelling Our method follows the work of ~ of Nvidia hardware, based on reading the Nvidia docu-
Alglave et al. [4—7] for CPUs, which follows the steps of mentation and communication with Nvidia representatives;
Collier [17]. More precisely, in [17] Collier presents the they provide intuition about their model using GPU litmus
ARCHTEST tool for CPUs, which runs a small number of tests similiar to the ones we present (e.g. Fig. 1). How-
fixed tests to check for discrepancies with Lamport’s Se- ever, this model is unsound w.r.t. hardware: the inter-CTA
quential Consistency [28], e.goRR (see Fig. 1). Usingfew Ib+rmembar.ctastest, i.e. a variant adlb-lb (Fig. 8) without
handwritten tests has limitations, as rich sets of litmssste ~ atomics and withembar . cta fences between all accesses, is
were required to inform the formalisation of weak architec- forbiddenby the model, but observed 586 times on GTX Ti-
tures such as IBM Power [6, 7, 39]. Alglave et al. [6] de- tanand 19 times on GTX 660 out of 100k iterations (see [1]).
veloped a method to automatically generate litmus tests for]
CPUs based on the axiomatic framework of [4, 6], and im- /. Perspectives

plemented their approach in té toolsuite (see [5-7] and The present work uncovered weak behaviours, and exposed
http://diy.inria/fr). The toolsuite generates and runs several programming assumptions as false, summarised in
systematic families of litmus tests, and collects their-out Tap, 2. We use these examples to plead for clarity and rigour
comes. As detailed in Sec. 4, we implemented several novelin vendor documentations. We believe that formal models,
extensions to make these tools suitable for GPUs. such as the one we propose in Sec. 5, can help remedy this
situation, providing a rigorous basis on which to build our
systems. Further steps towards that goal include building |
guage level models (e.g. for OpenCL), and sound compila-
tion mappings from language to hardware.

Microbenchmarkingis loosely related to our approach.
While we are concerned with semantics, microbenchmark-
ing gathers performance data. TeBRUBench [2] suite gath-

ers statistics such as memory bandwidth and instruction
throughput of AMD and Nvidia GPUs. Wong et al. [44] Acknowledgments We thank Luc Maranget for feedback
developed a test suite to reveal microarchitectural aspect on extendinditmus anddiy, Mary Hall for lending us her

of Nvidia GeForce GT200 and GTX280 GPUs: they draw group’s machines, Tom Stellard for feedback on setting up
conclusions about the latency of memory accesses, or theour AMD testbed, Matt Arsenault and Brad Beckmann for
structure of the caches. Feng and Xiao [19] analyse the overclarification on the AMD OpenCL compiler behaviour, and
head of barrier synchronisation. Benedict Gaster, Peter Sewell, Tatiana Shpeisman and our

Checking for optimisations Our checking whether a lit- reviewers for their feedback.

mus test has been optimised (see Sec. 4.4) is related to tesBupport EPSRC grants EPH005633, H008373, K0O08528,
ing of compiler optimisations for concurrent programs. K011499, K03943}, EU FP7 project CARP (287767),

Eide and Regehr check whether accesses to C volatileNSF CCF Awards 1346756 and 1302449, and SRC project
variables are compiled correctly [18]. They compile a test 2269.002.

13 2015/6/26

References [20] A. Habermaier and A. Knapp. On the correctness of the
SIMT execution model of GPUs. IEuropean Symposium
on Programming (ESORpages 316-335, 2012.

[21] T. Harder and A. Reuter. Principles of transactiorentéd
database recovery.Computing Survey (CSUR}5(4):287—
317, 1983.

[22] B. He and J. X. Yu. High-throughput transaction exewosi

[1] Online companion material.http://multicore.doc.ic.
ac.uk/gpu-litmus/.

[2] GPUBench, June 2014. http://graphics.stanford.
edu/projects/gpubench.

[3] J. Alglave. A Shared Memory Poetic®hD thesis, Université

Paris7, 2010. on graphics processorshe Proceedings of the VLDB Endow-
[4] J. Alglave. A formal hierarchy of weak memory models. ment (PVLDB)4(5):314-325, 2011.
Formal Methods in System Design (FMSB)L(2):178-210, 53] B, A, Hechtman and D. J. Sorin. Exploring memory consis-
2012. tency for massively-threaded throughput-oriented premes
[5] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Litmus In International Symposium on Circuits and Systems (ISCA)
Running tests against hardware. Tiools and Algorithms for pages 201-212, 2013.
the Construction and Analysis of Systems (TACA&)es 41— [24] D. R. Hower, B. M. Beckmann, B. R. Gaster, B. A. Hechtman,
44, 2011. M. D. Hill; S. K. Reinhardt, and D. A. Wood. Sequential
[6] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Ferges consistency for heterogeneous-race-freeMemory Systems
weak memory models (extended versiof)rmal Methods in Performance and Correctness (MSP213.
System Design (FMSDP30(2):170-205, 2012. [25] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
[7] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats M. D. Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous-
Modelling, simulation, testing, and data mining for weak race-free memory models. IArchitectural Support for
memory.ACM Transactions on Programming Languages and Programming Languages and Operating Systems (ASPLOS)
Systems (TOPLAS)6(2):7, 2014. pages 427-440, 2014.
[8] AMD. AMD intermediate language (IL), version 2.4, Oct. [26] W.-m. W. Hwu.GPU Computing Gems Jade Editiavorgan
2011. Kaufmann Publishers Inc., 2011.

[27] Khronos OpenCL Working Group. The OpenCL specification

9] AMD. Evergreen family instruction set architecturestruc- . .
[l g y (version 1.2, revision 19), Nov. 2012.

tions and microcode, revision 1.1a, Nov. 2011.
[28] L. Lamport. How to make a multiprocessor computer that

correctly executes multiprocess prograt<EE Transactions
on Computers28(9):690-691, 1979.

[29] S. Lee, Y. Kim, J. Kim, and J. Kim. Stealing webpages
rendered on your browser by exploiting GPU vulnerabilities

[10] AMD. Southern Islands series instruction set archiites;
revision 1.1, Dec. 2012.

[11] AMD. AMD accelerated parallel processing OpenCL pro-
gramming guide, Nov. 2013.

[12] ARM. Cortex-A9 MPCore, programmer advice notice, read In Symposium on Security and Privacy (Spages 19-33,
after-read hazards ARM reference 761319, Sept. 2011. 2014.

[13] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread [30] P. Misra and M. Chaudhuri. Performance evaluation of-co
scheduling for multiprogrammed multiprocessors.Sympo- current lock-free data structures on GPUs. International
sium on Parallelism in Algorithms and Architectures (SPAA) Conference on Parallel and Distributed Systems, (ICPADS)
pages 119-129, 1998. pages 53-60, 2012.

[14] H. Boehm and S. V. Adve. Foundations of the C++ concur- [31] R. Morisset, P. Pawan, and F. Z. Nardelli. Compileritest
rency memory model. IRrogramming Language Design and via a theory of sound optlmlsatlons in the_ C11/C++11 mem-
Implementation (PLD|)pages 6878, 2008. ory model. InProgramming Language Design and Implemen-

tation (PLDI), pages 187-196, 2013.
[15] D. Cederman and P. Tsigas. On dynamic load balancing on () pag

graphics processors. BIGGRAPH/Eurographicpages 57— [32] Nvidia. CUDA C programming guide, version 5.5, July 201
64, 2008. [33] Nvidia. CUDA by example — errata, June 2018ttp://
[16] D. Cederman and P. Tsigas. Dynamic load balancing guhgra developer.nvidia.com/cuda-example-errata-page.
ics processors, Feb. 201t tp: //www.cse.chalmers.se/ [34] Nvidia. CUDA C programming guide, version 6, July 2014.
research/group/dcs/gpuloadbal .html. [35] Nvidia. CUDA binary utilities, Aug. 2014.http://docs.
[17] W. Collier. Reasoning About Parallel ArchitectureBrentice- nvidia.com/cuda/pdf/CUDA_Binary Utilities.pdf.
Hall, 1992. [36] Nvidia. Parallel thread execution ISA: Version 4.0bF2014.
[18] E. Eide and J. Regehr. \olatiles are miscompiled, andtwh [37] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
to do about it. IEmbedded software (EMSOFPages 255— model: x86-tso. ITheorem Proving in Higher Order Logics
264, 2008. (TPHOLSs) pages 391-407, 2009.
[19] W. Feng and S. Xiao. To GPU synchronize or not GPU [38] J. Sanders and E. KandrotCUDA by Example: An Intro-
synchronize? Irinternational Symposium on Circuits and duction to General-Purpose GPU ProgrammingAddison-
Systems (ISCA)ages 3801-3804, 2010. Wesley Professional, 2010.

14 2015/6/26

[39] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D liafits. [43] D. L. Weaver and T. Germond.The SPARC Architecture

Understanding POWER multiprocessors. Rmogramming Manual Version 9 SPARC International Inc., 1994.
Language Design and Implementation (PLDiages 175- [44] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
186, 2011. A. Moshovos. Demystifying GPU microarchitecture through

[40] T. Sorensen. Towards shared memory consistency méafels microbenchmarking. IrPerformance Analysis of Systems
GPUs. Bachelor’s thesis, University of Utah, 2013. Software (ISPASSpages 235-246, 2010.

[41] T. Sorensen, G. Gopalakrishnan, and V. Grover. Towards [45] S. Xiao and W. Feng. Inter-block GPU communication via
shared memory consistency models for GPUs. Interna- fast barrier synchronization. limternational Symposium on
tional Conference on Supercomputing (ICSages 489-490, Parallel and Distributed Processing (IPDPSpages 1-12,
2013. 2010.

[42] J. A. Stuart and J. D. Owens. Efficient synchroniza-
tion primitives for GPUs. Computing Research Repository
(CoRR) abs/1110.4623, 2011.http://arxiv.org/pdf/
1110.4623.pdf.

15 2015/6/26

